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Abstract This paper presents a simple model of the manufacturing line which fo-
cuses on the performance of collision probability, and a method of application to the
manufacture of Flat Panel Displays (FPDs) and semiconductors. We derive an ap-
proximate formula of the collision probability. When the processing time follows a
normal distribution, we also did simulations to evaluate the exact probabilities and
confirm that our approximation approach yields reasonable results compared to the
simulated results. Moreover, we simplify our approximate formula of the collision
probability. Concretely speaking, we derive a closed form formula when the pro-
cessing time follows an exponential distribution. Finally, we present an optimization
problem with the collision probability and show a method to solve it.
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1 Introduction

The manufacturing process of Flat Panel Displays (FPDs) or semiconductors starts
from cleaning, followed by such operations as film deposition, resist coating, and
exposure (see [10], [11]). In the process, all given jobs are required to be completed as
soon as possible. In order to do this, to date, various efforts to upgrade each machine
have been made. As a result, this manufacturing system, consisting of a number of
sophisticated machines, is too complicated and, in turn, creates the problem of how to
increase efficiency. To solve this problem, we present a method which is not intended
to upgrade each machine but to improve the efficiency of the whole manufacturing
system.

To do this, we consider a variant on the stochastic flow shop model detailed in [8]
(see Fig. 1). Concretely speaking, m machines (M;,M>, ... ,M,,) are connected in a
line, where each job is fed from an entrance, and conveyed to an exit after m machines
complete their operations. After each job is first processed by My, it is processed by
m — 1 machines in the order of Mp,Ms,...,M,,. After each job is completed at a
machine, it is automatically conveyed to the next machine. There is no intermediate
buffer between successive machines. Moreover, we assume that (1) the inter-arrival
time of jobs at the first machine M is constant, and (2) the processing time follows a
continuous probability distribution at each machine.

In the above model, dedicated processing equipment for FPDs or semiconductors
is regarded as a machine, and a glass substrate that is the FPD or semiconductor ma-
terial is regarded as a job. In addition, the above assumption (1) comes from the “tact
time” constraint. Tact time is a Japanese-English word, which derives from the Ger-
man word “takt”, and was originally coined as part of the Toyota Production System
(also known as the Just-In-Time System), but is now widely used in manufacturing
practice. Next, assumption (2) reflects the character of the actual dedicated process-
ing equipment. That is, because the actual processing time is uncertain and may vary
according to conditions at that time due to solution foaming, chemicals, heat treating,
etc., the processing time is treated as a random variable. These are the main reasons
for assuming the above model.

In this paper, the phenomenon where a job is sent to a machine which is pro-
cessing the previous job is called a “collision”. Since the actual material used for the
production of FPDs or semiconductors is expensive and fragile, manufacturers sus-
tain big losses when collisions occur. Therefore, we consider the collision probability
an important evaluation factor in this paper.

Entrance My — M, [—* " My Exit

Fig. 1 In-line m machines model.
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In a flow shop model, this collision-like phenomenon is often called “blocking”,
where the following rule is assumed: even if a machine M; completes a process, the
machine M; keeps the completed job if the next machine M is still processing.
Then, the completed job is conveyed to the machine M; | when it becomes empty.
According to the above rule, the purpose is often to minimize an objective function
based on the makespan. If the processing time is deterministic, there are many study
results on blocking (see extensive survey in [2]). If the processing time is stochastic,
study results are somewhat limited in comparison with their deterministic counter-
parts. For example, see [8] and [7], where the purpose is to minimize the expected
makespan. On the other hand, in queueing theory, depending on the rule for pro-
cessing blockings (blocked calls cleared, blocked calls delayed, etc.), previous work
mainly focused on performance measures in the steady state. More specifically, ma-
jor measures such as the distribution of the number of jobs, the mean number of jobs,
and the mean waiting time on the queueing model exist. In addition, there are other
measures; we can find, in fact, that a wide range of literature in the field of queuing
theory has been investigated, for example in [3], [4] and [5]. In contrast, in this paper,
given the number of jobs to be processed in the prescribed tact time span, we focus
on a new measure, which is the probability that there will be at least one collision,
called the collision probability. In a comparatively new manufacturing system such
as one manufacturing FPDs, the evaluation item (i.e., collision probability) is the new
focus of observation. Then we derive an approximation formula for this probability.

To evaluate the exact probabilities and confirm that our approximation approach
yields reasonable results compared to the simulated results, we also carry out a num-
ber of simulations. At that time, we assume that the processing time follows a normal
distribution in consideration of the actual situation.

Another contribution of this paper is to simplify the proposed approximation for-
mula; in short, we show a closed form for the proposed formula of the collision
probability when the processing time follows an exponential distribution.

Finally, we parameterize the collision probability and consider an optimization
problem, which minimizes the tact time under the constraint that the collision proba-
bility is less than or equal to a given value. This reflects an actual problem in the field
of manufacture. This approach is quite unique to the best of the authors’ knowledge
and has high application potential for the manufacture of FPDs or semiconductors.

The remainder of this paper is organized as follows. In Sect. 2, we describe a
formal model of the production line. In Sect. 3, we derive an approximation formula
of the collision probability. In Sect. 4, based on the assumption that the processing
time follows a normal distribution, we show numerical results for the above approxi-
mation formula, as well as computer simulation results, confirming that the two types
of results are almost the same. In Sect. 5, we derive a closed form for the proposed
formula of the collision probability when the processing time follows an exponential
distribution. In Sect. 6, we present an optimization problem with the collision proba-
bility and show a method to solve it. Finally, Sect. 7 sets forth the conclusions of this

paper.
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2 Model of in-line machines

We describe a formal model of the production line. For this, the following notations
will be used:

- M| ,M,,...,My,: m different machines in the line.

- J1,J2,...,Ju: n jobs to be processed.

- T,.(j) (> 0): Processing time of job J; on machine M.

— Tiact (> 0): Tact time, i.e., the time difference between the start time instants of J;
and J;;; forall 1 <i<n—1 at the entrance to the line.

The production model is illustrated in Fig. 1. With the same time interval Tiac,
jobs are successively fed to the line from the entrance. Every job is first processed
on machine M. It is then automatically transported to the next machine M, after it
has been finished on M. It is assumed, for simplicity, that the transportation time
between machines is nil. As soon as M, receives the job, it starts processing. In this
manner, every job is processed on the machines in the order of My, M,,...,M,,, and
then sent to the exit. Moreover, we assume that the processing time T, 7 on M jisa

random variable that follows a continuous probability distribution, and all T,.(J ) (1<
i <n,1 < j<m) are independent of each other.

In the above model, a collision occurs if the next job arrives at M; while M is still
processing the current job. We obtain the following lemma on the collision condition
between jobs.

Lemma 1 Suppose that Ti(j) = tl.(j) foralll1 <i<nand1 < j<m. Forn(>2)jobs,
there is no collision in the above production line of m machines if and only if

- 0) 0
Ztij S Ract“‘ Z tH]»l
j=1 j=1
holds forall1 <i<n—1land1<I<m.

Proof Easily proved by double induction on n and m, so we omit it. O

3 Approximation of collision probability

In this section, we derive an approximation formula of the collision probability. By
Lemma 1, the probability that there is no collision is given by

l . -1 .
Pr<ZT,.(’)thact+ZTi$}:1gign—1,1glgm>. (1)
=1 =1

Unfortunately, it does not seem that Eq. (1) can be simplified further. Therefore, we
try to approximate Eq. (1) by considering only two consecutive jobs.

The reason why we pay attention to two consecutive jobs is as follows: even if
we consider n jobs, a collision is the phenomenon which occurs between only two
consecutive jobs. Therefore, we first pay attention to only two consecutive jobs, and
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then we derive the no-collision probability between them. After that, considering
n jobs, as the number of pairs of two consecutive jobs is n — 1 (J; and J», J, and
J3,...,Jyu—1 and J,), we approximate the no-collision probability over all n jobs using
the (n — 1)-th power of the above derived probability of two consecutive jobs.

For this, we introduce the following event E; for values of i from 1 ton — 1.

E; : Event that, under the assumption that there are only two consecutive jobs J; and
Jit1, there is no collision between them on m machines.

Then, the probability of event E; occurring is given by

l . -1
Pr(E;) =Pr (Z T,-(J) < Thact + Z T,Sﬁ 1<I< m) . ()
j=1 j=1

We introduce the following random variables:

/S B
X = Z TI.(/) — Z T,Eﬁ — Tiaee forall 1 <1 < m.
j=1 j=1

Then, Eq. (2) is given as follows:

Pr(X,<0: 1 glgm)://.../ P13,y dxidrs A (3)
S1
Si:x;<Oforall 1 <I<m,

where f(x1,X2,...,%y) is the joint probability density function of random variables
X; forall 1 <[ <m.
These variables are transformed by y; = x1, y; = x; —xj_1, and Sy is expressed
as S» in terms of y;:
J
8o Zy,-SO forall 1 < j<m.
i=1

The Jacobian for x; = Z;:l y; for all 1 <i <m, which corresponds to Sy, is given by
100---0
10---0
/ _ a(xl,xz,...,xm) _ 111---0 -1
’ a()’l:)’Z:---aym) ) '
111---1
Therefore, the right side of Eq. (3) becomes the following:

///9 gO,y2, -, ym) [ Z | dyrdyz -+ - dym
S2
_ m—lyl

0 - i—1 Vi
Z/ dyl/ dyz"'/ g1(v1)82(32) -+ gm(Ym)dym, 4

—o0
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where g(y1,¥2,---,Vm) is the joint probability density function of random variables
Y =1 T, (5)
Y; :Ti(j) — Tigfl) for2<j<m, (6)

and each g;(y;) is the probability density function (pdf) of ¥;. Note that the equality
in Eq. (4) holds since all ¥; (1 < j <m) are assumed to be independent of each other.
As a result, the probability of event E; occurring, i.e. Pr(E;), can be expressed by the
right side of Eq. (4).

Moreover, since we assume that all TI.(J ) (i=1,2,...,n) have the same distribution
function, Pr(E;) = Pr(E,) = --- = Pr(E,_;) holds. Although the two events E; and
E; (i # J) are not independent, precisely speaking, we approximate the no-collision
probability over all n jobs (i.e. (1)) by the (n — 1)-th power of the right side of Eq. (4).
The approximate probability of collision is then given by

_ym—1

n—1
0 -y Yty vi
1- (/_mdm/_: dyz---/ ’ g1(y1)gz(yz)---gm(ym)dym> .

—o0

4 Numerical results

In this section, based on the above formula (Eq. (7)), we present the numerical results.

For this, we assume that the processing time Ti(/ ) on machine M i follows a normal
distribution with parameters of expectation (i; and standard deviation o}, i.e., T,.(J )~
N([,Lj,GJz). Then, by Eq. (5), the pdf g (y1) of ¥; is obtained by translating the pdf
of the normal distribution N(‘Lll,Glz) by —Tiact, yielding ¥; ~ N(p; — Y}M,,O'lz). On
the other hand, by Eq. (6), the pdfs g;(y;) of ¥; for 2 < j < m are obtained by the
reproductive property of the normal distribution, yielding ¥; ~ N(p; — 11, 0']2_1 +

sz) forall2 < j <m.Theg1(y1)g2(y2) - gm(¥m) in Eq. (7) then becomes as follows:

2
_1 (01 =M1+ Taer)? m o j—Hl—1)
exp{ 3 (70_12 Tl 70‘1'2—1+°-i2

o1 (V2m)" T}y /07 | + OF

Eq. (7) with Eq. (8) may not be simplified any further since the integral of the pdf
of normal distribution cannot be generally expressed as an elementary function[6].
So, we directly obtain the numeric integration values of Eq. (7) with Eq. (8) by using
MATHEMATICA[12].

For our computation in this section, the number of jobs is set to n = 1,000, 1 <
m < 4, and the parameters of the normal distributions are set so that the expectation
and the standard deviation of the processing time on each machine become equal to
1 and 0.01, respectively (i.e., Lj = 1, 6; = 0.01). The numerical results are shown in
Figs. 2 -5, for 1 <m < 4, respectively. In those Figs. 2 — 5, the solid lines represent
the numeric values based on Eq. (7).

®)
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We also carried out the following simulations to evaluate the exact probabilities.
The procedure is stated as follows: given the number of jobs n, the number of ma-
chines m, the tact time 7;,, the parameters of the normal distribution, and a positive
integer ¢ (specifying the number of iterations, which is related to the accuracy), derive
the collision probability by the following algorithm.

Simulation Algorithm

Step 1: loop :=1.

Step 2: Generate the processing time tl.(/ ) (1 <i<n,1 < j<m)randomly from the
normal distribution.

Step 3: Based on the condition in Lemma 1, check whether a collision occurs. Let
loop :==loop + 1.1f loop < c, return to Step 2; otherwise go to Step 4.

Step 4: Output the collision probability (the number of collisions observed in Step

3)/c.

Collision probability
1.0

approximation

0.8 . simulation

0.6

0.4

0.2

® 7;80[
1.025 1.030 1.035 1.040 1.045 1.050

Fig. 2 Collision probability evaluated by approximate formula and simulation when m = 1.

Collision probability
1.0

approximation
08 e  simulation
0.6
0.4
0.2
1.04 1.05 1.06 1.07 18 T

Fig. 3 Collision probability evaluated by approximate formula and simulation when m = 2.
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Collision probability

10 o
approximation
0.8 e  simulation
0.6
0.4
0.2
*—0—0 Ty
1.05 1.06 1.07 1.08 1.09 1.10 1.1

Fig. 4 Collision probability evaluated by approximate formula and simulation when m = 3.

Collision probability

1.0 approximation
08 . simulation
0.6
0.4
0.2
—0 Ty

1.07 1.08 1.09 1.10 1.1 1.72 113

Fig. 5 Collision probability evaluated by approximate formula and simulation when m = 4.

The computation time is ®(cmn). Throughout all the simulations, we use Mersenne
Twister[9] as the pseudorandom generator, and the number of iterations is set to
¢ = 1,000,000. The simulation results are shown in Figs. 2 — 5, for | <m < 4, re-
spectively. In those Figs. 2 — 5, the black dots represent the results of the simulations.

Figs. 2 —5 show that, as the tact time increases, the collision probability decreases,
clearly exhibiting the trade-off between the tact time and the collision probability. We
also confirmed that the collision probability increases with m. We may conclude that
the numerical and simulation results are reasonably close in most cases.

5 Simplification of approximate formula

In this section, we show that the approximate formula Eq. (7) shown in Sect. 3 can

()

be simplified when the processing time 7;*’ on machine M; follows an exponential
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distribution with a parameter A; which is a positive real number. The pdf of the ex-
ponential distribution is defined as follows:

flx;) = lje*’lfx forx > 0.

Using exponential distribution, we show a closed form formula.

5.1 Closed form form =1

By Lemma 1 for m = 1, the no-collision probability becomes as follows:

Pr(T.(l)thactzlgign—l)

1

= (Pr (Tl(l) < Tiact))nil (since the Ti(l) are i.i.d.)

Tiact Cdix n-1
= )«16 Ydx
0

-1
— (1 _ e_llecl)n X

Therefore, the collision probability for m = 1 is given by the following closed form:
1— (1 _e—MTlacl)”_l_

Note that this is not an approximation but an exact formula.

5.2 Closed form form =2

We sketch a derivation of approximate collision probability for m = 2. By Eq. (5), the
pdf g1(y1) of ¥; is obtained by translating the pdf of the exponential distribution with
parameter A; by —T,,. Therefore, we have
Me MOt (y > T ),
gi(n) = 02 ) ©)
0 (yl < _Ttact)-

By Eq. (6) for m = 2, the Y5 is the sum of two independent random variables Ti(z)

and ~T,}.

by the convolution of /; and %,. The pdf of Ti(z) follows the exponential distribution
with parameter A, i.e.,

with pdfs &; and A, respectively. Therefore, the pdf g»(y2) of Y5 is given

e (x>0),
hl(x)_{o (x <0).
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The graph of the pdf of —Ti(l) is a reflection of the pdf of )

¥ i1 With parameter A; with
respect to the line y = 0,

ha(y) = {0 0> 0).

Aety  (y<0).

Then, by calculating the convolution of the above hy and hy, the pdf g2(y2) of 1>
becomes as follows:

Case 1:y, >0
g202) = [ m(@ha(2 —x)dx
- / " dpe=ar . g eh 029 gy
b))
My —A2y2
= 2, 10
M -l-lze (10)
Case 2: y, <0

g202) = [ (a2 - x)dx
— /oo lllze/h)'ze*(lﬁ/lz)xdx
0
=172 My, (11)

Using Eqgs. (9) — (11) we can simplify Eq. (4) (i.e. Pr(E;)) for m = 2 in the fol-
lowing equation. Since y; < 0 holds in Eq. (4), we have
0 -y
/7 g2(y2)dy2 + /0 g2(y2)dy2

M
M+

Therefore, by denoting the right side of the above equation as A, we obtain

=1 el

0
Pr(E;) :/ g1(n) -Ady;
77’{&5[ 0
:/ gl(yl)'Ady1+/T g1(y1) -Ady,

0
:/ lle*ll (14 Tiact) - Ady,

—Ttact
e*ll Tlacl}% e*AQTIaCIAIZ

o T AR,
1— C_ATL‘“"‘ — %C_AT‘“C‘ - Tiact (), =A = 2,2) .

This is a closed form formula of Pr(E;), from which the approximate collision prob-
ability 1 — Pr(E;)"~! is also obtained in a closed form formula.
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5.3 Closed form for the general case of m machines

It is possible to extend the above derivation for m = 2 to the general m machines
model in a straightforward manner. Therefore, we omit the details. However, there
are cases in which Eq. (4) (Pr(E;)) can be written as a simple expression depending
on the condition of parameters A; (1 < j < m). Such cases are given as follows:

Remark I When A; (1 < j <m) are distinct, Pr(E;) can be written as

m A,Z
1+(—1)’”Z<e‘“ﬂ°l [T 5= ’12>,
k=1 -4

JEI\{k} ;Lk J
where I, denotes the set {1,2,--- ,m}.
Remark 2 When A; (1 < j <m) = A, Pr(E;) can be written as

—ATiaey m—=1
AT _ © (m=Jj) 4 jpi
I—e = (m) am A Ttacta
am Jj=1

where coefficients a,(,{) (j=1,2,...,m) are represented by the following recursive
expressions:

(1) _

am —17
ad =aV 4+ (m+j—-2)a%" "V forall 2<j<m—1
m —, 1 J amfl ora SJjsm ?

al =2(m — l)ammjl).

6 Tact time minimization with collision probability

In this section, we consider an optimization problem which reflects an actual problem
in the field of manufacture. In manufacturing practice, the setting value for the tact
time is important since the production rate can expect to increase drastically as the
tact time is shortened. However, the collision probability also increases as the tact
time is shortened. Therefore, we parameterize the collision probability and present a
problem to find an optimal tact time. Concretely speaking, the problem is as follows:

Input: The number of jobs n, the number of machines m, the probability distribution
on the processing time, a positive real value @ (0 < o < 1).

Output: Tact time, such that the collision probability is less than or equal to o.

Objective function: T, —> min.

The collision probability decreases monotonically with the tact time. By using
this property, we can calculate an optimal tact time efficiently using a binary search.
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7 Conclusions

Our main contribution in this paper was to present a new evaluation item (i.e., colli-
sion probability) for the simple model discussed in queuing theory, which has appli-
cations in the manufacture of FPDs and semiconductors, and to analyze it theoreti-
cally. We have derived an approximation formula of collision probability and shown
numerical results, as well as computer simulation results, when the processing time
follows a normal distribution. Moreover, we have shown cases in which our formula
can be expressed by a closed form. Finally, we considered how to minimize the tact
time by including the collision probability as part of the input.

We assumed that exactly two consecutive jobs flow in the in-line model, in the
process by which our approximate formula of the collision probability was derived.
Working without this assumption is a future area of investigation. In the numerical
results section, we showed some results for instances where the number of machines
is small. Seeing how the simulated and approximated results behave when the number
of machines is larger is another valuable area of research. In order to do this, ideas
for working out multiple integrals might be needed.

Although the in-line m machines model in this paper doesn’t have any buffer
space between machines, such space may be effective in avoiding collisions between
jobs. However, it appears hard to analyze the collision probability with buffer space
included. In [1], the collision probability with buffer space included was calculated
by computer simulation, and a method was presented to minimize the total number
of buffers.

Acknowledgements The authors would like to thank the anonymous referees for their valuable comments
on some key areas where this work could be improved.
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