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Abstract Removing noise in a given binary image is a common operation. A general-
ization of the operation is to erase an arbitrarily specified component by reversing pixel
values in the component. This paper shows that this operation can be done without
using any data structure like a stack or queue, or more exactly using only constant
extra memory (consisting of a constant number of words of O(log n) bits for an image
of n pixels) in O(mlogm) time for a component consisting of m pixels. This is an
in-place algorithm, but the image matrix cannot be used as work space since it has
just one bit for each pixel. Whenever we flip a pixel value in a target component, the
component shape is also deformed, which causes some difficulty. The main idea for our
constant work space algorithm is to deform a component so that its connectivity is
preserved.

Keywords algorithm, binary image, component, connectivity, constant work space

1 Introduction

A binary image is the simplest form of an image. A number of algorithms have been
developed for binary images. One of the most fundamental problems on a binary image
is to identify a connected component which contains an arbitrarily given query pixel.
It is easy to design an algorithm for solving the problem if we are allowed to use mark
bits and a queue. In fact, a so-called wave propagation method using a queue runs in
linear time in the size of a component to be reported.

What happens if we are allowed to use only constant extra memory in addition to
a given input binary image? By constant extra memory we mean one consisting of a
constant number of words of O(log n) bits for an image of n pixels. This is the problem
we address in this paper. Our main concern is to develop space-efficient algorithms on
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binary images. As far as the author knows, such space-efficient algorithms on binary
images were first introduced in [11] by Malgouyresa and Moreb. They solved several
basic problems related to 2-dimensional digital topology. One of the most interesting
problems among them is that of st-connectivity. Given two white pixels s and ¢t in a
given binary image, determine using only constant extra memory whether they belong
to the same connected component. They assumed that an input binary image is given
as a read-only array with random access. Their algorithm runs in linear time in the
total size of component(s) containing the two pixels.

Another interesting problem related to binary images is to count the number of
connected components in a given binary image. It can be done in O(nlog n) time using
only constant extra memory, where n is the number of pixels in the image. It is not
trivial at all, but we can design such an algorithm using the algorithm by de Berg et
al. [7] and its improvement by Bose et al. [5] for traversing a planar subdivision without
using any mark bit. It is implicitly assumed that an input binary image is given as a
read-only array, but it does not seem that relaxation to an ordinary read/write array
can improve the running time (if the binary image is given by a bit array of length n).
Surprisingly, we can extend the above-mentioned algorithm to another O(nlog n)-time
algorithm with constant extra work space so that it can enumerate all the pixels in a
connected component containing a query pixel.

In this paper we consider a similar problem in a slightly different setting. An input
image is given by an ordinary bit array so that any pixel is accessed in constant time.
In particular, it is allowed to flip pixel value between 0 and 1. Note that only one bit is
used for each pixel. Given an arbitrary query pixel g, we want to erase the connected
component that contains q. Here, by erasing a component we mean flipping every pixel
value in the component from 1 to 0. Of course, only constant extra memory can be
used. We will show any component of size m can be erased in O(mlogm) time by
a constant work space algorithm. Note that the component may contain holes. The
problem is much easier if no hole is contained.

This is the first constant work space in-place algorithm for erasing a component
in a binary image. Although it is usual to assume a read-only array for an input
image in other constant work space algorithms (especially, in those known as log-space
algorithms), we do not. An input image is an ordinary read/write array. But it is
hard to use the image matrix as work space since it has a single bit for each pixel.
Furthermore, whenever we flip a pixel value in a target component, the component
shape is also deformed, which causes some algorithmic difficulty. The main idea for
our constant work space algorithm is to deform the target component while keeping
its connectivity.

There are several related results, such as an in-place algorithm for rotating an image
by an arbitrary angle [1] and a constant work space algorithm for scanning an image
with an arbitrary angle [2]. For in-place algorithms in general a mumber of different
algorithms are reported (e.g. [6]).

This paper is organized as follows. Section 2 states the problem in a formal way
after preparing some notations and terminologies. Then, in Section 3 we propose our
algorithm together with analysis of its time complexity. Some possible applications are
mentioned in Section 4. Finally we conclude in Section 5.



2 Preliminary

Consider a binary image G consisting of n pixels, white (value 1) or black (value
0). When two pixels of the same color are adjacent horizontally or vertically, we say
they are 4-connected [12]. Moreover, if there is a pixel sequence of the same color
interconnecting two pixels p and ¢ and every two consecutive pixels in the sequence
are 4-connected, then we say that they are 4-connected. We can define 8-connectivity
in a similar fashion. In the 4-connectivity we take only four among eight immediate
neighbors (pixels in the 3 x 3-neighborhood) of a pixel. In the 8-connectivity, on the
other hand, we take all of the eight immediate neighbors as 8-connected neighbors.

A 4-connected (resp., 8-connected) component is a maximal subset of white pixels
such that any two of them are 4-connected (resp., 8-connected). Hereafter, it is referred
to as a component in short if there is no confusion. Following the tradition we assume
that white components are defined by 4-connectivity while black ones by 8-connectivity.
A binary image may contain a number of white components. Some of them may have
holes, which are black components. Even holes may contain white components, called
islands, and islands may contain islands’ holes, etc.

Fig. 1 An example of a binary image with white components C'; and C5, one hole By, and
islands Cs and Cy4. C'; has one hole which contains two islands C3 and C4. Since 8-connectivity
is used for black pixels, the lower part of C'; is not a hole but a part of the background Bj.

To simplify the presentation we assume without loss of generality that all the
marginal pixels are black. We also assume that a query pixel is white. So, our problem
is to erase a 4-connected white component containing a query pixel. It is not so hard to
adapt our algorithm to erase a black component which is 8-connected if we use different
local rules for traversing boundaries.

In this paper a pixel is represented by a square. See Figure 2. The four sides of the
square are referred to as edges. An edge is called a boundary edge if it lies between
two pixels of different colors. We orient each boundary edge so that a white pixel lies
to its left. Thus, external boundaries are oriented in a counter-clockwise manner while
internal boundaries are clockwisely oriented.

The leftmost vertical boundary edge on a boundary is defined as a canonical edge
of the boundary. If there are two or more such edges then we take the lowest one. The
definition guarantees that each boundary, internal or external, has a unique canonical
edge. It is also easily seen that the canonical edge of an external boundary is always
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Fig. 2 Definition of pixels and edges around pixels.

downward (directed to the South). On the other hand, the canonical edge of an internal
boundary is upward (directed to the North). So, when we find a canonical edge, it is
also easy to determine whether the boundary containing it is external or not. It suffices
to check the direction of the canonical edge. See Figure 3.

Fig. 3 Canonical edges (indicated by arrows) which are leftmost and lowest edges on internal
or external boundaries. Given a query pixel, we can find the canonical edge of the component
containing it by following the boundaries.

3 Erasing a connected component in constant work space

One of the most fundamental problems in computer vision or pattern recognition is,
given a query pixel g in a binary image, to enumerate all pixels belonging to the
component to which the pixel g belongs. We could also consider the problem in a more
general setting: Suppose we are given a color image and we know a rule on how to
partition the image into homogeneous regions by computing a function using local
information around a pixel in constant time. More exactly, we assume some function
which maps a color value s in the neighborhood of a pixel into {0, 1}. Using the function



we can define a binary image. A connected component in the binary image corresponds
to a homogeneous region in the original color image.

The problem is easily solved using a queue. Starting from a query pixel g, we
expand a search space just as wave is propagated from gq. Whenever we find a pixel of
the same color reachable from ¢ which has not been checked yet, we put it into the
queue and check its neighborhood to look for unvisited pixels of the same color. This
simple algorithm works quite well. In fact, it runs in time linear in the number of pixels
of the component (or component size). Unfortunately, it is known that the size of the
queue is linear in the size of the component in the worst case [4]. This storage size is
sometimes too expensive. We could also use depth-first algorithm with mark bits over
the image. In this case the total storage size is reduced to O(n) bits for an image of n
pixels, but we also need storage for recursive calls in the depth-first search.

A question we address in this paper is whether we can solve the problem in a more
space efficient manner. That is, can we design an algorithm for erasing a component
without using any extra array? An input binary image is given using an array of n-bits.
This is an ordinary bit array. We are allowed to modify their values, but it is hard to
use it to store some useful information for the algorithm since we have only one bit for
each pixel.

In the above problem we are requested, given a query pixel ¢, to enumerate all
pixels in the component containing q. Whenever we find a pixel to report, we output
its coordinates and flip its pixel value to 0 to prevent duplicate outputs. In this way
we can erase the component containing the query pixel. Thus, our problem is restated
as follows.

Problem: Let G be a binary image. Given an arbitrary pixel g in GG, erase the com-
ponent containing the query pixel q. Here, by erasing a component we mean reversing
a color of each pixel in the component.

Figure 4 shows a simple experimental result. Figure 4(a) is an input binary image.
When a query pixel lies in the middle white component, the resulting image looks like
one in Figure 4(b). Note that the two islands of the component are left.

How fast can we erase a connected component? If our target component is singly-
connected, that is, if it has no hole in it, it is rather easy. We can borrow an algorithm
for thinning components to extract skeletons of a binary image. Standard algorithms
for component thinning [9,10] repeatedly remove safe pixels (by flipping their pixel
values from 1 to 0). Here, a pixel p is safe if and only if removal of p (flipping the pixel
value of p) does not separate any component within the 3 x 3 neighborhood around p.

See Figure 5 for some examples of safe pixels and non-safe pixels. The notion of
a safe pixel is well known in digital geometry [8], especially for component thinning
algorithms to extract skeletons of a binary image [9,10]. Safe pixel check is done in
constant time.

A naive algorithm repeatedly removes safe pixels until no pixel is left or no pixel is
safe. Unfortunately, the algorithm above gets stuck when it is applied to a component
with hole(s).

This flaw can be fixed as follows: The above naive algorithm gets stuck when none
of the pixels along the external boundary is safe. However, this is not a bad news but
good. By the definition of a safe pixel, its removal (or flipping) breaks connectivity in
the 3 x 3 neighborhood of the non-safe pixel. That is, if we flip the non-safe pixel, then
the hole touching the pixel is exposed to either another hole or the external region.
We can verify that none of the remaining pixels along the external boundary is safe:
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Fig. 4 Implementation result of our demo program. Erasing the middle (white) component
in an input binary image (a) specified by a query pixel results in the binary image (b). Note
that islands are left unchanged.
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Fig. 5 Examples of safe and non-safe pixels. A central white pixel (of value 1) is safe if flipping
it (into 0) does not increase the number of connected components in its 3 x 3 neighborhood.

whenever we flip a safe pixel along the boundary, we record the edge associated with the
pixel on the updated external boundary. This is the last updated edge. If our current
edge on the external boundary coincides with the last updated edge, it means there is
no safe pixel on the current external boundary. Thus, we can flip the pixel to remove
the hole adjacent to the pixel, and then continue the task until all the safe pixels are
removed.

The algorithm runs in linear time in the number of pixels of a component if the
component has no hole in it. How fast does it run when it is applied to a component
with holes? Unfortunately it may be very slow. Suppose a component with m pixels
has O(m) small holes, as shown in Figure 6. Then, the algorithm removes the holes one
by one. Whenever a hole is removed, the external boundary is modified only a little
bit, but we have to follow the whole external boundary again to find the next hole to
remove. Thus, it takes O(mz) time to erase the component.

We introduce a different scheme for removing holes in a component. Once we have
a component without any hole, it is easy to erase the component by removing safe
pixels in order.

Our algorithm consists of the following three steps (see Figure 7):

Algorithm for Erasing a Component
Step 1: Given a query pixel ¢, locate the external boundary (and its canonical edge)
of the component which contains ¢ in it.



Fig. 6 A worst case for which the algorithm using safe pixel flippings takes quadratic time.

Step 2: Deform the component into a singly-connected one by merging all of holes to
the external boundary.
Step 3: FErase the resulting component by removing safe pixels repeatedly.

x ik

B

Fig. 7 Rough sketch of the algorithm. A query pixel is specified and then the canonical edge
of the external boundary of the component containing the pixel is computed. Then, merge all
of the holes by tunnels (gray parts in the middle). The resulting component has no hole.

Step 1: Locating a given pixel

Given a query white pixel p, we want to locate it in a given binary image. In
other words, we want to find a connected component of white pixels containing q. It is
equivalent to finding the canonical edge of the component. It is done using the existing
algorithm [11]. To make the paper self-contained, we describe the algorithm using our
terminologies.

We first traverse the image from a query white pixel horizontally to the left until we
encounter a black pixel. The eastern edge e of the pixel is a candidate of the canonical
edge. To verify it we follow the boundary starting from the edge whether we encounter
any other vertical edge that is lexicographically smaller than e. Here, a vertical edge e
is lexicographically smaller than another vertical edge ¢’ if e lies to the left of e’ (more
precisely, the x-coordinate of e is smaller than that of e/) or both of them lie on the
same vertical line but e is below ¢’ on the line. If the boundary has no smaller edge
than e, it 1s certainly the canonical edge of the external boundary. Otherwise, starting
from the pixel just to the left of e we perform the same procedure again. The leftmost
figure in Figure 7 illustrates how to find the canonical edge starting from a query pixel
indicated by a cross.

Step 2: Removing holes



After finding the canonical edge es of the external boundary of the component to
be erased, we make it simply connected by removing all the holes in the component. For
the purpose we traverse the external boundary from e;. At each downward edge e on
the traverse we walk to the right within the component until we encounter a boundary
edge f. Then we check by using a bidirectional search whether f is the canonical edge
of an internal boundary. If so, we merge the boundary B with some other internal
boundary or the external boundary. We walk back or dig a tunnel to the left from
f until the tunnel tip touches a corner of a black pixel. Figure 8 illustrates a simple
situation in which the tunnel reaches the starting edge e without touching any corner
of a black pixel on the way. In the simple case we just flip all the pixels on the tunnel.
Then, the hole is connected to either some other hole or the external boundary. In
either case the number of holes is decreased by one.
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Fig. 8 Definition of a tunnel. White pixels in the tunnel are flipped to merge the hole.

Figure 9 illustrates our algorithm in more detail. Whenever we find the canonical
edge of an internal boundary, we extend a tunnel to the left to merge the boundary with
another internal or external boundary. Suppose the tunnel hits another boundary at a
pixel p. Then, by the definition one of the three pixels at the upper left, immediately
left, and the lower left must be black. If two of them are white, then just flip the tunnel
part and it is connected to the other boundary at p (note that 8-connectivity is used
for black pixels). We should be careful when only the middle pixel is white and the
top and bottom pixels are black. One such example is shown in the middle of Figure 7.
In the figure there is a small hole consisting of two black pixels arranged in 45 degree.
The corresponding tunnel touches two black pixels at the same time. If we flip all the
white pixels in the tunnel, then the hole is merged at two different places. If both of
them belonged to the external boundary, then this tunnel would separate the interior
part of the component into two. If at least one of them is an internal boundary, then
there is no problem. Since it is hard to determine whether a fragment of a boundary
is external or not, we should avoid using this tunnel. Our solution is to choose only
one of them. Recall that the pixel p is the first white pixel on the tunnel that touches
any black pixel at edge or at corner. So, the pixels above and below p are both white.
Instead of flipping the pixel p, we flip the white pixel just below p. By the same reason,
the lower right pixel is also white. So, this flipping operation safely merges the hole
with another boundary. Figure 9 exhausts all possible cases.

The entire algorithm works as follows. We traverse the external boundary starting
from the canonical edge es. At each downward edge e we extend a horizontal ray to
the right until it hits a boundary edge f and check whether f is canonical or not. If
it is canonical, then we dig a tunnel to connect it to some other boundary to remove
the hole, and then continue the traverse on the renewed external boundary. If f is not
canonical, then we just continue the traverse.



Lemma 1 Let C be a connected component with m white pivels to be removed. Then,
the algorithm above flips only white pizels in C to remowve all the holes in it while keeping
the connectivity of all remaining white pizels in C. The algorithm runs in O(mlog m)
time.

Proof Since the edge f is a canonical edge of an internal boundary B, its North West
and South West pixels are both white and also they are connected around B as shown
in Figure 8. It is obvious that the path around B is preserved while digging the tunnel,
which guarantees the connectivity of the component C, independently on how the tun-
nel is formed. In the algorithm we never flip pixels not contained in C. By the definition
each tunnel touches only one boundary, internal or external, and it is merged into the
boundary, which reduces the number of holes by one. So, if we continue traversal of
the external boundary, all the holes are removed.

The time complexity of the algorithm is analyzed as follows. In the algorithm we
walk to the right in the interior of the component at each downward edge on the
external boundary. It is easily seen that each pixel in the component is visited only
once since there is a unique downward edge for each internal pixel throughout the
implementation of the algorithm. Some pixel may have no such downward edge at the
beginning due to holes, but it eventually has such an edge while holes are being merged.
It 1s also verified that any internal pixel is never visited more than once since each edge
on the external boundary is visited exactly once.

Why does it take super-linear time? It is because it may happen to visit the same
hole many times. At each downward edge on the external boundary we walk to the
right until it encounters a boundary edge. We check whether it is the canonical edge
on an internal boundary. For the test we traverse the boundary bidirectionally until
we encounter any edge smaller than or equal to the initial edge in our lexicographical
order. If the initial edge is the smallest, then it is the canonical edge. Otherwise, it
is not. Thus, this is just the same as the problem of finding nearest larger elements
in an array. It is known in [3] that bidirectional search is powerful enough to solve
this problem in O(nlogn) time for an array of size n. In our case we may examine
many edges on a boundary. The total amount of time for the tests is O(n; log n;) if the
boundary is of length n;. Since the total length of internal boundaries in a component
is linear in the number of pixels of the component, we have the time complexity in the
lemma.

Step 3: Erasing a simply connected component

Once we have a simply-connected component without any hole after removing all
the holes in the second step, it is now easy to erase the component. We just apply the
algorithm based on safe pixels. Just repeat flipping safe pixels while walking along the
external boundary. All the pixels in the component are flipped in linear time.

Lemma 2 The algorithm above for erasing a simply connected component flips all the
pixels in the component in linear time in the area of the component.

Proof In the algorithm we iteratively flip safe pixels. Suppose we find a non-safe pixel
p. Then, p must touch the external boundary at least twice. Then we can define an
interval on the boundary associated with p by its first and last contacts with the
external boundary. This structure induced by such intervals can be represented using
parentheses. Since the component is simply connected, this parentheses structure forms
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Fig. 9 Extending a tunnel to the left. (a) (b), and (c) just extend it to the left and flip all
the pixels in the tunnel, and (d) stop digging the tunnel and bend it downward to connect to
the lower corner.

a nested structure. Then the innermost parentheses correspond to a single pixel, which
can be flipped immediately. Thus, the induction on the area of the component completes
the proof.

Now the rest of the lemma is trivial from the argument so far.

The entire algorithm is decribed as follows.

Algorithm for erasing a component
Input: A binary image of n pixels given by an array of n bits, and a query pixel g
of value 1 in the image.
Output: The same n-bit array which gives the binary image in which the component
containing q is erased.
Algorithm
1. Locate the canonical edge es of the external boundary of the component containing q.
2. e =eg.
repeat
e = the next edge of e on the external boundary.
if e is downward then
find the first boundary edge f by walking from e to the right.
Check whether f is the canonical edge of an internal boundary.
if it is true then extend a tunnel to the left from f following the rules shown in
Figure 9 and erase the tunnel part.
until e = e;.
3. // now the component has no hole
e =es.
repeat
e = the next edge of e on the external boundary.
p = the pixel associated with e.
if p is safe then flip the pixel value of p.
until e = e;.
flip the last pixel.

Combining the results so far we have the following theorem.
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Theorem 1 Given a connected component with m pixels in a binary image, the com-
ponent can be erased in O(mlogm) time using constant work space.

4 Some applications of the algorithm
4.1 Removing small connected components as noise

One of basic tasks in image processing on binary images is to remove noise. If we define
a noise to be a small component, with size bounded by some small number, we can
remove all such noise components by applying our constant work space algorithm.

In the first step we scan the entire image and finds every component together with
their sizes. This is not a trivial task, but we can modify our algorithm for removing
holes. To enumerate all the components we do not remove holes by digging tunnels. At
each downward edge on an external boundary we walk to the right until it encounters
any boundary edge. If it is a canonical edge, then we continue the traverse to find holes
further to its right. In this way we can enumerate all the holes in a component. The sizes
of the holes are computed while walking along the boundaries. Thus, we can compute
the size (number of pixels) of the component. This algorithm runs in O(nlogn) time,
where n is the number of pixels of a given binary image.

Now we know how to enumerate all the components together with their sizes. If we
find a component of size smaller than a given threshold, we can erase it by applying
our algorithm. It takes O(m log m) time for a component of size m in the worst case in
which a number of small holes are included in the component. Such a worst case rarely
happens in practice. First of all, we are interested in erasing small components, which
cannot include many holes.

4.2 Region segmentation

One of the most fundamental tasks for pattern recognition for color images is region
segmentation, which partitions a given color image into meaningful regions. A number
of algorithms have been proposed so far. Here we simplify the problem. That is, we
assume that there is a simple rule for determining whether any two adjacent pixels
belong to the same region or not. In this particular situation we can solve the following
problem:

Region Clipping: Suppose we are given a local rule for determining similarity of
pixels. Given an image and an arbitrary pixel g in the image, report a connected region
consisting of pixels similar to g in the local rule.

It is rather easy to design such an algorithm if some sufficient amount of work space
is available. What about if only constant work space is available? Well, we can apply
our algorithm by assuming a binary image implicitly defined using the given local rule.
To clip a region we don’t need to convert the whole image into a binary image, but it
suffices to convert the region and its adjacent areas into binary data.

Using our algorithm we can collect all regions with some useful information such as
areas and average pixel values, etc., as well in O(nlogn) time. If every region is small,
then our algorithm runs in almost linear time.
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5 Concluding remarks

This paper has presented an in-place algorithm for erasing an arbitrarily specified
component in a binary image without using mark bits or extra array. The algorithm
runs in O(mlogm) time when the component to be erased consists of m pixels. The
output is written on an input array, and hence the input array allows writing as well as
reading. This is a difference from other constant work space (or log-space) algorithms
which assume read-only input arrays. If we are interested only in enumerating all
pixels in a component without changing pixel values, it is easier in some sense. The
algorithmic techniques developed here would be useful for other purposes in computer
vision.

No lower bound on the running time is known. The author is now trying to establish
the £2(mlog m) lower bound on this problem.
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