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Particle Filter Based Feedback Control of JAIST Active Robotic Walker

Takanori Ohnuma, Geunho Lee, and Nak Young Chong

Abstract— We present a new control scheme of JAIST Ac-
tive Robotic Walker (JARoW) developed to provide potential
users such as the elderly with sufficient ambulatory capability.
Toward its practical use, we tackle JARoW’s easy and reliable
maneuverability by creating a natural user interface between
a user and JARoW. Specifically, our focus is placed on how to
realize the natural and smooth movement of JARoW despite
different gait parameters of users. For this purpose, a particle
filtered interface function (PFIF) is proposed to estimate and
predict the locations of the user’s legs and body. Then, the
simple feedback motion control function adjusts the motions
of JARoW corresponding to the estimation and prediction.
Experimental results show that the proposed control scheme
can be quite satisfactory for practical use without requiring
any additional user effort.

I. I NTRODUCTION

Personal mobility aids are strongly desired to help elderly
and/or lower limb disabled people stay independent. Recent
advances in robot technology have provided a solid founda-
tion for the development of various walking aids. Notable
examples include wheelchairs [1][2], canes [3], and walkers
[4]-[7]. Specifically, robotic walkers can be further divided
into passive [4][5] and active walkers [6][7]. The featuresof
passive walkers include low cost, simple structure, and com-
pact size. However, users must take overly cautious steps not
to push it out too far forward. Also, it is deemed to be unsafe
to use on uneven/slope terrain. Active walkers may provide
both ambulatory aid and rehabilitation. However, they are
still bulky and costly, and their complicated operation often
requires considerable skill to use.

Toward more widespread use of active walkers, there are
important things that need to be taken into consideration.
For instance, the human gait control system is nonlinear,
and the gait parameters vary across users. To meet these
requirements, voice activation systems have been presented
in [8]. Despite their many advantages, there are critical
problems such as interference and recognition that remain to
be resolved. Instead of using the user’s command directly,
it would be very convenient if his/her intention can be
recognized by robotic walkers. A few examples include
the visual recognition using cameras [9] and human gait
detection based on pressure sensors [10]. However, under real
world conditions, it is difficult to guarantee their reliability.

As shown in Fig. 1, JARoW was developed in 2009 [11] to
provide potential users with sufficient ambulatory capability
in all directions and easy-to-use features. Toward enabling
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Fig. 1. JAIST active robotic walker (JARoW) prototype

the practical use of JARoW, there still remains a challenge on
how to realize its easier and more reliable maneuverability.
As a first step to achieve this, our challenge is placed on
how to create a natural user interface between JARoW and
users with different gait parameters and to employ a sim-
ple feedback control without requiring any special-purpose
interface. As the main contribution of this paper, a particle
filtered interface function (PFIF) is proposed to estimate and
predict the locations of the user’s lower limbs and body,
resulting in the JARoW’s natural and smooth movement.
The PID feedback motion control function can then adjust
the motions of JARoW corresponding to the user’s walking
behaviors. We describe the proposed control algorithms in
detail, and perform extensive experiments to demonstrate
their effectiveness in our laboratory environment.

II. JAROW: PROTOTYPEDESCRIPTION

A. Control Architecture

JARoW is designed to autonomously adjust its motion
according to the user’s walking behavior without requiring
any additional user effort. Specifically, as illustrated inFig.
2, JARoW consists of the drive-train, the interface system,
and the main controller. We use a laptop PC that runs on
Microsoft’s Windows XP as the main controller. The input to
the main controller includes the measurement data obtained
from the interface system. Based on the data, PFIF estimates
and predicts the locations of the user’s body with respect
to JARoW’s local coordinates. The feedback motion control
function then outputs the desired velocity matrix to the drive-
train at each time step. Details on the control scheme will



Fig. 2. Schematic for the overall control flow

1
s

2
s

(mm)

jc
p

j
y
r

400300

490

82

164

880

°120

770

j
x

r

r

Fig. 3. Specification and notations of the base frame

be explained in the following sections.

B. Mechanical Structure and Hardware Configuration

A compact design, such as 825∼ 1000mm in height, and
880mmand 770mm in horizontal diameters, saves cost and
uses less space. It is therefore considered to be suited for
use in various environments including narrow hallways or
elevators. As shown in Fig. 1, the outline is a circular shape
to reduce possible collisions with obstacles or walls. Its stiff
and light design of 20kg is achieved with an aluminum alloy.

JARoW has three main structural parts: base frame, upper
frame, and connecting rods. The base frame is to support
the superstructure, and is directly connected to three omni-
directional wheels and equipped with a pair of Hokuyo URG-
04LX laser range finders (LRFs) detecting the user’s lower
limb locations. The length of the connecting rod can be
changed up to 175mm according to the height of users.
Users are able to lean their upper body forward and place
their forearm onto the upper frame. The main controller is

(a) cylinder-like model (b) coverage area of LRFs

Fig. 4. Lower limbs modeled as a cylinder with a diameterd

mounted on top of the upper frame.
The drive-train is composed of three Mecanum wheels,

three motors equipped with encoder and 43:1 gear reduction
unit, three motor drivers, and one motor controller. Three
Mecanum wheels are mounted underneath the base frame
120 degrees apart from each other (see Fig. 3), allowing
JARoW to move forward/backward, slide sideways, and
turn right/left. Such omni-directionality provides an effi-
cient means of direction control in highly cluttered indoor
environments. The maximum stall torque is determined in
such a way that JARoW can accommodate up to 90kg.
It is reported that the average maximum walking speed
for elderly pedestrians is 4.8km/h on flat terrain [12].
The maximum continuous torque is determined to meet the
maximum velocity requirement 6.58km/h of the drive-train.

C. Interface System

As shown in Fig. 4, a pair of LRFs detects the locations of
the user’s lower limbs, as well as obstacles or area borders.
The lower limbs are modeled as a cylinder with a diameter
d, representing each shin as illustrated in Fig. 4-(a). Further
details on this model can be found in [11]. We define a valid
region for the location measurement of shins as a rectangle
with 900× 700mm(length and width) inside the base frame.
It is assumed that the locations of shins always remain within
its region.

Each LRF outputs a 240 degree scan and measures up to
4000mmwith 100mssampling time. Accordingly, a pair of
LRFs can cover a full 360 degrees. After each scan, the range
data from the individual LRF rays are sorted into surface
information of shins and obstacles, respectively, according
to pre-determined regions. The interface system outputs the
LRF-to-surface distance that is fed to the main controller.

D. Kinematics

As shown in Fig. 3, JARoW has its local coordinates~xj

(vertical axis) and~yj (horizontal axis). Its center position
is denoted aspjc. S1 andS2 denote the positions of LRFs.
For a mobile robot with Mecanum wheels, theInstantaneous
Center of Rotation(ICR) corresponds to its centroid during
rotation. In contrast, we set the ICR to the center of the user
body defined aspbc = (xb, yb) in Fig. 5, the midpoint of
the line segment connecting the center points of two circles
projecting both shins onto the ground. By doing this, JARoW
effectively avoids being bumped into the user while it rotates.



Fig. 5. Illustration of JARoW kinematics

Now, the first-order kinematics of JARoW can be derived.θ̇i
andϕi denote the driving angular velocity of thei-th wheel
and the angular displacement of thei-th wheel relative to~xb-
axis in the user body reference frame~xb and~yb, respectively.
Using the tangent formula,ϕi is computed:

ϕi = tan−1(
yi − yb
xi − xb

). (1)

Next, Li which denotes the distance betweenpbc and each
wheel position(xi, yi) is given by

Li =
√

(yi − yb)2 + (xi − xb)2. (2)

For the desired JARoW velocity vector[ẋb ẏb ωb]
t, the

angular velocitieṡθ1, θ̇2, andθ̇3 of individual wheels through
the inverse Jacobian are derived:




θ̇1
θ̇2
θ̇3



=
1

r





−1 0 L1 cos(
π
2 − ϕ1)

cos π
3 − sin π

3 L2 cos(
7π
6 − ϕ2)

cos π
3 sin π

3 L3 cos(
π
6 + ϕ3)









ẋb

ẏb
ωb



 ,

(3)
wherer denotes the wheel radius.

III. PARTICLE FILTERED INTERFACE FUNCTION (PFIF)

Our PFIF is to measure the locations of both shins, to
estimate the body position of a user using the measured
shins’ locations, and to predict the next position of the body.
According to the phase, the interface function is implemented
as follows.

A. Formulation

Measurement data for the surface of shins are represented
as red circles in Fig. 6-(a). After each sampling time,
they are divided into left and right clusters, and then the
mean positions of these clusters are calculated. Through
preliminary tests, we empirically learned that the mean
positions were in the immediate vicinity of the cylinder’s

(a) measurement data for the surface of shins

(b) particlex(i)t for location vector of the body

Fig. 6. Definitions and notations used in the particle filtered interface
function (PFIF)

surface and the distances from the mean position topr or
pl were approximately one-half of its diameterd. Therefore,
pl = (xl, yl) andpr = (xr , yr) can be obtained by adding the
mean position tod/2. Based onpr andpl, thepbc candidate
is defined as the midpoint on the line segment connecting
these estimates as illustrated in Fig. 6. Specifically,pbc =
(xb, yb) is considered to be the body position. The motion
of pbc is also assumed to be at constant velocity. (Then,
the particle filtering formulations based onpr andpl can be
utilized for the body matching.)

As shown in Fig. 6-(b), the variable of interest at timet
is the location of the body with respect to the walker’s local
coordinates, represented as a set ofn samples (i.e., particles
s
(i)
t = {x(i)t , w

(i)
t } : i = 1, 2, · · · , n), where i denotes the

i-th particle. Each particle consists of its 2-D location vector
x(i)t and its associated weightw(i)

t . In particular,x(i)t with
respect to the walker’s local coordinates is defined:

x(i)t = [x
(i)
b,t y

(i)
b,t ]

T . (4)

The state vector for a givenxt is defined asXt. pp in Fig.
6-(b) denotes the predicted position of the body att + 1.
Moreover, the sensor observation vector for measurement
datamt is defined asMt.

B. Location Estimation

To estimate the posterior probabilityp(Xt|Mt) of Xt

givenMt, we need to have a desired model. Our scheme in
the estimation phase is realized as follows.



• Step-1: initialization

As a set of particles estimating the location of the body
at t = 0, the number ofn initial particles are generated
and denoted by{s(i)0|0|1 ≤ i ≤ n}, where s

(i)
0|0 indicates

{x(i)0|0, w
(i)
0 }. By the use of the Metropolis-Hastings (for

simplicity, M-H) algorithm [13], x(i)0 is obtained through
sampling drawn from a Gaussian distribution with the
variance vectorσ(2)

0 and the mean vectorµ0. It is assumed
thatw0 is a constant.

• Step-2: system model at timet

The system model representing the forward and backward
movements of both lower limbs is formalized as follows:

x(i)
t|t−1=







x
(i)
b,t|t−1

y
(i)
b,t|t−1






=







x
(i)
b,t−1|t−1

y
(i)
b,t−1|t−1






+







n
(i)
bx,t−1

n
(i)
by,t−1






, (5)

wheren(i)
bx,t−1 andn(i)

by,t−1 denote the random system noises,
which are sampled from a Gaussian distribution withσ2

y

andµy using the M-H algorithm. By using (5),x(i)
t|t−1 and

s
(i)
t|t−1 are computed fromx(i)

t−1|t−1 in s
(i)
t−1|t−1.

• Step-3: computation of thei-th posterior probability

Given the state vectorXt, the posterior probability
p(i)(Xt|Mt) of the observation vectorMt is computed:

p(i)(Xt|Mt) =
1√
2πσs

exp(−D(i)2

2σ2
s

), (6)

whereσs denotes the standard deviation for the permissi-
ble location error. In addition, the Euclidean distanceD(i)

betweenmt andx(i)t is defined as:

D
(i)
k = ‖x(i)

t|t−1 − mt‖. (7)

To reduce computational loads practically,x(i)
t|t−1 is not

regarded as the representation for the location of the body
in the following three cases: 1)x(i)

t|t−1 located on the base

frame, 2) ‖x(i)
t|t−1 − mt‖ < db (see Fig. 6-(b)), and 3)

x(i)
t|t−1 < mt with respect to the walker’s local coordinates.

In our implementation,p(i)(Xt|Mt) corresponding to any
aforementioned cases is set to0.

• Step-4: computation of thei-th weight

The associated weightw(i)
t is computed:

w
(i)
t =

p(i)(Xt|Mt)
∑n

i=1 p
(i)(Xt|Mt)

. (8)

• Step-5: re-sampling [14]

For x(i)
t|t−1, our re-sampling is to eliminates(i)

t|t−1 with
small weights, and then is to concentrate and replicate
on s

(i)
t|t−1 with large wights in order to best explainmt

according to their likehoods. Through such a re-sampling,

Fig. 7. Definitions and notations of the distanceeyp betweenpjc andpp
in ~xj and~yj directions during moving forward/backward

s
(i)
t|t = {x(i)

t|t , w
(i)
t } is obtained.

• Step-6: location estimate of the body
Using x(i)

t|t obtained in Step-5, the location estimates of the

body x̂(i)
t|t are calculated:

x̂t =
1

n

n
∑

i=1

x(i)
t|t . (9)

Then, the processes from Step-2 to Step-6 are reiterated.

C. Location Prediction

Employing the re-sampled location state in the manner of
Step-5, the predicted locations of the bodyx̃(i)

t|t are given:

x̃t|t=
[

x̂b, t

ŷb, t + ẏbδt

]

(10)

whereẏb is obtained through (3) andδt denotes the sampling
period.

IV. FEEDBACK MOTION CONTROL FUNCTION

The basic idea behind the proposed control is thatpjc
and pbc must remain coincident with each other. For this,
aProportional-plus-Integral-plus-Derivative(PID) controller
is implemented. Based on the PID control technique, prelimi-
nary tests for walking behaviors of 10 people were performed
and analyzed. From these results, the typical behavior pattern
of moving forward/backward is modeled as shown in Fig. 7.

During moving forward/backward, separating the center
position errorsex, ey, andeyp of pbc according to~xb and~yb
directions with respect to~xj and~yj , ex andey are defined as
ex = xj −xb, ey = yj − yb, andeyp = yj − yp, respectively,
that need to be minimized:
{

ẋb = Kp,x ex +Ki,x

∫

exdt+Kd,x ėx
ẏb = Kp,y ey +Ki,y

∫

eydt+Kd,y ėy + eyp
,

(11)
where ẋb and ẏb are input velocities of JARoW in (3),
andKp, Ki, andKd denote the proportional, integral, and
derivative gains, respectively.



(a) initial state (b) halt state

(c) forward state (d) forward state

Fig. 8. Experimental results for mobility state identification

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the test results for the enhanced
control capability of JARoW. Our proposed control scheme
is verified through extensive experiments. Parameters defined
in PFIF are set as follows:µ0 = (0, 0.34) m, σ2

0 =
(2.5e−5, 0.1e−5) m2, µy = 0 m, and σ2

y = (0.1e−5) m2.
Moreover, JARoW moves with the maximum linear velocity
of 4.8km/h. When it makes rotational motion, the magnitude
of the angular velocity is 0.5rad/s. The gains of the PID
controller in (11) are set toKp,y = Kp,x =2, Ki,y = Kd,y

=0.5, andKi,x = Kd,x =0.2, respectively.
To begin, we examined the effectiveness of PFIF. Fig.

8 presents the snapshots of walking process. The outputs
of the interface function at each corresponding process
step were taken from the developer interface in the main
controller. Here the tiny points in each snapshot indicate
the generated particles. Fig. 8-(a) presents the initial state
where the particles are scattered in the valid region defined
in Fig. 6. The test scenario is as follows: First, in Fig. 8-
(b) a subject was standing still. By measuring the locations
of both shins, PFIF could estimate the body location as
the midpoint on the line segment connecting the locations.
Then, the interface function could compute the next predicted
location drawn by the blue circle. Secondly, when the subject
takes a step forward as shown in Fig. 8-(c), the interface
function offered the reliable estimate of the body location
and the next prediction according to the outputs of shin
locations. Finally, while driving JARoW forwards according
to the outputs measured as shown in Fig. 8-(d), the interface
function detects the changed body location.

Next, to test the validity of PFIF and the feedback mo-
tion control function, we performed a long distance test in
an outdoor environment. Fig. 9 presents snapshots for the

Fig. 9. Experimental results for the forward movement in an outdoor
environment

forward movements of a subject. In this test, he walked as
in normal times without operation of any manual controls.
Corresponding to his moving forward behaviors, JARoW
autonomously controlled its feedback motions based on the
estimated and predicted data. This result verifies that the
control functions of the JARoW prototype equipped with
LRFs work satisfactorily under our laboratory conditions.

Finally, to investigate the performances of JARoW’s PFIF,
the moving forward motions employing the PID controller
are performed. As a subject took steps forward for 30
seconds while keeping up a steady pace, JARoW followed
his walking behaviors. Figs. 10-(a) and (b) show the results
of JARoW’s velocity variations based on the no-filtered
function and PFIF, respectively. Here, the black bold solid
lines indicate user’s walking velocities, and the red and blue
lines present the variation of JARoW’s velocity by non-
filtered function and PFIF, respectively. Compared with Fig.
10-(a), JARoW’s velocity variation in Fig. 10-(b) became
flattened and JARoW attempted to follow the subject’s
walking velocity as closely as possible. Specifically, the
time period between 5 second and 13 second in Fig. 10-
(a) indicates unstable velocity responses against the subject’s
walking. Moreover, Fig. 11 presents statistic data to assist
the understanding of the results in Figs. 10-(a) and (b).
Although overshoots were observed under the proposed
control scheme, the lower peak value and frequency were
investigated. Clearly, compared with the non-filtered result,
the particle filtered result shows JARoW could generate the
more reliable moving forward motion according to the actual
user’s behavior. More notably, the proposed feedback control
allows users to easily control JARoW without requiring any
mental or physical efforts. In contrast to existing active
walkers, our walker features simple structure and compact
size that can be fit into our everyday environment.

VI. CONCLUSIONS

This paper presented the enhanced control scheme for
JARoW that is easy for potential users to handle and trans-



(a) JARoW’s velocity variation based on the non-filtered interface

function

(b) JARoW’s velocity variation based on PFIF

Fig. 10. Comparison results between non-filtered interfacefunction and
PFIF

Fig. 11. Statistic data for the comparison results in Figs. 10-(a) and (b)

port. First, we proposed a natural user interface without
requiring any user operations, through the use of a pair of
LRFs. Secondly, the user’s location estimation and prediction
scheme employing a particle filter was developed to offer

the natural motions of JARoW according to the user walk-
ing motions. Thirdly, the feedback motion control adjusted
the motions of JARoW corresponding to the actual user
walking behaviors. To demonstrate the effectiveness of the
proposed control functions, different types of experiments
were performed and the results were quite encouraging.
When considering the elderly who tend to lean their upper
body onto the walker, as our future study, more sophisticated
control algorithms will be needed to cope with dynamic and
unpredictable changes in the nominal walker parameters.
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