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1. Introduction 

Deploying a large number of resource-constrained mobile robots performing a common 
group task may offer many advantages in efficiency, costs per system, and fault-tolerance 
(Sahin, 2005). Therefore, robot swarms are expected to perform missions in a wide variety of 
applications such as environment and habitat monitoring, exploration, odor localization, 
medical service, and search-and-rescue. In order to perform the above-mentioned tasks 
successfully, one of the most important concerns is how to enable swarms of simple robots 
to autonomously navigate toward a specified destination in the presence of obstacles and 
dead-end passageways as seen in Fig. 1. From the standpoint of the decentralized 
coordination, the motions of individual robots need to be controlled to support coordinated 
collective behavior.  
We address the coordinated navigation of a swarm of mobile robots through a cluttered 
environment without hitting obstacles and being trapped in dead-end passageways. Our 
study is motivated by the observation that schools of fish exhibit emergent group behavior. 
For instance, when schools of fish are faced with obstacles, they can split themselves into a 
plurality of smaller groups to avoid collision and then merge into a single group after 
passing around the obstacles (Wilson, 1976). It is also worth noting that a group of fish 
facing a dead end can get out of the area. 
Based on the observation of schooling behavior in fish, this work aims to present a novel 
adaptive group behavior, enabling large-scale robot swarms with limited sensing 
capabilities to navigate toward a goal that is visible only to a limited number of robots. In 
particular, the coordinated navigation is achieved without using any leader, identifiers, 
common coordinate system, and explicit communication. Under such a minimal robot 
model, the adaptive navigation scheme exploits the geometric local interaction which allows 
three neighboring robots to form an equilateral triangle. Specifically, the proposed 
algorithm allows robot swarms to 1) navigate while maintaining equilateral triangular 
lattices, 2) split themselves into multiple groups while maintaining a uniform distance of 
each other, 3) merge into a single group while maintaining a uniform distance of each other, 
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and 4) escape from any dead-end passageways. During the adaptive navigation process, all 
robots execute the same algorithm and act independently and asynchronously of each other. 
Given any arbitrary initial positions, a large-scale swarm of robots is required to navigate 
toward a goal position in an environment while locally interacting with other robots. The 
basic necessities for the proposed solution are argued as follows. First, the robots can self-
control their travel direction according to environmental conditions, leading to enhancing 
autonomy of their behavior. Secondly, by being split into multiple groups or re-united into a 
single swarm, the robots can self-adjust its size and shape depending on the conditions. By 
the capabilities above, robots have the emergent capability to maximize adaptability to 
operate in uncertain environments. Thirdly, the coordinated navigation of multiple robots in 
an equilateral triangle formation reduces a potential traffic jam and stragglers. 
 

 
(a) adaptive navigation problem 

 

 
(b) escape function 

Fig. 1. Concept of adaptive navigation by autonomous mobile robot swarms 

Consequently, the proposed adaptive navigation provides a cost-effective way to allow for 
an increase in efficiency and autonomy of group navigation in a highly cluttered 
environment. What is important from a practical standpoint is that the swarm flocking is 
considered as a good ad hoc networking model whose connectivity must be maintained 
while moving. In particular, maintaining the uniform distance enables the model to 
optimize efficient energy consumption in routing protocols (Fowler, 2001)(Lyengar et al., 
2005). This networking model can potentially be used in application examples such as 
exploration and search-and-rescue. This navigation can be further applied to swarms of 
unmanned vehicles and sensors performing autonomous operations such as capturing and 
transporting toxic and hazardous substances. We describe our algorithm in detail, and 
perform extensive simulations to demonstrate that a swarm of robots can navigate toward a 
specified destination while adapting to unknown environmental conditions in a scalable 
manner. 
The rest of this paper is organized as follows. Section 2 introduces a brief description of 
research related to swarming and flocking and sheds light on our motivation. Section 3 
presents the robot model and the formal definitions of the adaptive navigation problem. 
Section 4 describes the fundamental motion control of each robot locally interacting with 
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their neighboring robots, leading to forming an equilateral triangle lattice. Section 5 gives 
the solution scheme of the adaptive navigation. Section 6 demonstrates the validity and 
applicability of the proposed scheme through extensive simulations. Section 7 draws 
conclusions. 

2. Background 
Wireless network-enabled mobile robotic sensors have been increasingly popular over the 
recent years (Yicka et al., 2008). Such robotic sensors dispersing themselves into an area can 
be used for search-and-rescue and exploration applications by filling the area of interest 
and/or establishing an ad hoc network. To achieve a desired level of self-deployment of 
robotic sensors, many prior studies have attempted to use decentralized approaches in self-
configuration (Lee & Chong, 2009)(Shucker et al., 2008)(Spears et al., 2004), pattern 
generation (Lee & Chong, 2009-b)(Ikemoto et al., 2005), and navigation (Gu & Hu, 2010)(Lee 
& Chong, 2008)(Olfati-Saber, 2006). In particular, we have witnessed a great interest in 
distributed navigation control that enables a large number of robots to navigate from an 
initial position toward a desired destination without human intervention. 
Recently, many navigation control studies have been reported in the field of swarm robotics, 
where the decentralized navigation controls are mainly based on interactions between 
individual robots mostly inspired by evidence from biological systems (e.g., fish schools or 
bird flocks) or natural phenomena (e.g., liquid diffusion). The navigation control can be 
further divided into biological emergence (Folino & Spezzano, 2002)(Reynolds, 1987), 
behavior-based (Lee & Chong, 2008)(Ogren & Leonard, 2005)(Balch & Hybinette, 2000), and 
virtual physics-based (Esposito & Dunbar, 2006)(Zarzhitsky et al., 2005)(Spears et al., 2006) 
approaches. Specifically, the behavior-based and virtual physics-based approaches are 
related to the use of such physical phenomena as gravitational forces (Zarzhitsky et al., 
2005)(Spears et al., 2006) and potential fields (Esposito & Dunbar, 2006). Those works mostly 
use some sort of force balance between inter-individual interactions exerting an attractive or 
repulsive force on each other. This is mainly because the force-based interaction rules are 
considered simple yet effective, and provide an intuitive understanding on individual 
behavior. However, the computation of relative velocities or accelerations between robots is 
needed to obtain the magnitude of the interacting force. 
Regarding the aspect of calculating the movement position of each robot, accuracy and 
computational efficiency issues have been attracted. In practice, many works on robot 
swarms use sensor-rich information and explicit means of communication. Note that if 
any means of communication would be employed, robots need to identify with each other 
or use a global coordinate or positioning system (Correll et al., 2000)(Lam & Liu, 
2006)(Nembrini et al., 2002). In this paper, we attempt to achieve adaptive navigation 
without taking advantage of rich computational capabilities and communication. This will 
allow us to develop robot systems in simple, robust, and non-costly ways. A subset of this 
work was reported in (Lee & Chong, 2008) which provided mobile robot swarms with 
basic navigation and adaptation capabilities. The main objective of this paper is to present 
a completely new and general adaptive navigation coordination scheme assuming a more 
complicated arena with dead-end passageways. Specifically, we highlight the simplicity 
and intuition of the self-escape capability without incorporating a combination of 
sophisticated algorithms. 
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3. Problem statement 
3.1 Robot model and notations 
 

  
          (a) ri’s local coordinate          (b) observation set O୧         (c) triangular configuration T୧ 
Fig. 2. Illustration of definition and notation 

In this work, we consider a swarm of mobile robots denoted by r1,⋯,rn. It is assumed that an 
initial distribution of all robots is arbitrary and their positions are distinct. Each robot 
autonomously moves on a two-dimensional plane. Robots have no leader and no identifiers. 
They do not share any common coordinate system. Due to a limited observation range, each 
robot can detect the positions of other robots only within its line-of-sight. In addition, robots 
are not allowed to communicate explicitly with each other. 
Next, as illustrated in Fig. 2-(a), let’s consider a robot	r୧	with local coordinate 
system	rԦ୶,୧	and	rԦy,i. The robot’s heading direction	rԦy,i	is defined as the vertical axis of	ri’s 
coordinate system. It is straightforward to determine the horizontal axis	rሬሬԦx,i	by rotating	rԦy,i	90 
degrees clockwise. The position of	ri	is denoted by	pi. Note that	pi	is (0, 0) with respect to	ri’s 
local coordinate system. The line segment	pipj	is defined as a straight line 
between	pi	and	pj	occupied by another robot	rj. The distance between	pi	and	pj	is defined as dist൫pi,pj൯. In particular, the desired inter-robot distance between	ri	and	rj	is denoted by	du. 
Moreover, angሺmሬሬሬԦi,nሬԦiሻ	denote the angle between two arbitrary vectors	mሬሬሬԦi	and	nሬԦi. 
As shown in Fig. 2-(b), r୧	detects the positions	pj,	pk	and	pl	of other robots located within its 
sensing boundary	SB, yielding a set of the positions	Oi൫=൛pj,pk,plൟ൯	with respect to its local 
coordinate system. When	ri	selects two robots	rn1	and	rn2	within its	SB, we call	rn1	and	rn2 the 
neighbors of	ri, and their position set	ሼpn1,pn2ሽ	is denoted by	Ni	as illustrated in Fig. 2-(c). 
Given	pi	and	Ni, a set of three distinct positions	ሼpi,pn1,pn2ሽ	with respect to	ri	is called the 
triangular configuration	 i, namely	ሼpi,pn1,pn2ሽ. We further define the equilateral triangular 
configuration, denote by	 i, as the configuration that all distances between any two of	pi, pn1	and	pn2	of	 i are equal to	du. 

3.2 Problem definition 
It is known that the local geometric shape of schools of tuna represents a diamond shape 
(Stocker, 1999), whereby tuna exhibit their adaptive behavior while maintaining the local 
shape. Similarly, the local interaction in this work is to generate	 i from	 i. Formally, the 
local interaction is to have	ri maintain	du	with	Ni	at each time toward forming	 i. Now, we can 
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address the coordination problem of adaptive navigation of robot swarms based on the local 
interaction as follows: 
Given r1,⋯,rn located at arbitrarily distinct positions, how to enable the robots to autonomously 
travel through unknown territories using only local information in order to reach a destination? 
It is assumed that the unknown environment to be navigated by a swarm of robots includes 
obstacles and dead-end passageways. Next, we advocate that adaptive flocking can be 
achieved by solving the following four constituent sub-problems.  
• Problem-1(Maintenance): Given robots located at arbitrarily distinct positions, how to 

enable them to navigate with	 i.  
• Problem-2(Partition): Given that an obstacle is detected, how to enable a swarm to split 

into multiple smaller swarms to avoid the obstacle. 
• Problem-3(Unification): Given that multiple swarms exist in close proximity, how to 

enable them to merge into a single swarm. 
• Problem-4(Escape): Given some robots trapped in a dead-end passageway, how to 

enable them to escape from the area. 

4. Geometric local interaction scheme 
This section explains the local interaction among three neighboring robots. As presented in 
ALGORITHM-1, the algorithm consists of a function φinteraction whose arguments are	pi	and Ni	at each activation. 
 

 
Algorithm 1. Local Interaction (code executed by the robot ri at point pi) 

 

 
Fig. 3. Illustration of the local interaction algorithm 

4.1 Local interaction algorithm 
Let’s consider a robot	ri	and its two neighbors	rn1	and	rn2	located within	ri’s	SB. As shown in 
Fig. 3, three robots are configured into	 i whose vertices are	pi,	pn1	and	pn2, respectively. 
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First, ri	finds the centroid of the triangle	△pipn1pn2, denoted by	pct, with respect to its local 
coordinate system, and measures the angle ϕ between the line	pn1pn2	connecting the 
neighbors and	rԦx,i	(r୧’s horizontal axis). Using	pct	and ϕ, ri	calculates the next movement 
point	pti. Each robot computes	pti by its current observation of neighboring robots. 
Intuitively, under ALGORITHM-1, ri	may maintain	du	with its two neighbors at each time. 
In other words, each robot attempts to form an isosceles triangle for	Ni	at each time, and 
by repeatedly running ALGORITHM-1, three robots configure themselves into	 i(Lee & 
Chong, 2009). 

4.2 Motion control 
As illustrated in Fig. 4-(b), let’s consider the circumscribed circle of an equilateral triangle 
whose center is	pct	of	△pipn1pn2	and radius	dr	is	du √3⁄ . Under the local interaction, the 
positions of each robot are determined by controlling the distance	di	from	pct	and the 
internal angle	αi(see Fig. 4-(a)). First, the distance is controlled by the following equation dሶ iሺtሻ=-aሺdiሺtሻ-drሻ, (1)

Where a is a positive constant. Indeed, the solution of (1) is diሺtሻ=|diሺ0ሻ|e-at+dr that 
converges exponentially to	dr	as t approaches infinity. Secondly, the internal angle is 
controlled by the following equation  αሶ iሺtሻ=k൫βiሺtሻ-γiሺtሻ-2αiሺtሻ൯, (2) 

 

             
(a) control parameters range d୧ and bearing α୧         (b) desired equilateral triangle ॱ୧ 
Fig. 4. Two control parameter of local interaction 

where k is a positive number. Because the total internal angle of a triangle is 180˚	, (2) can be 
rewritten as αሶ iሺtሻ=k'൫60˚-αiሺtሻ൯, (3)

where	k'	is	3k. Likewise, the solution of (3) is	α୧ሺtሻ = |α୧ሺ0ሻ|eି୩ᇲ୲ + 60˚	that converges 
exponentially to 60˚ as t approaches infinity.  
Note that (1) and (3) imply that the trajectory of	ri	converges to	dr	and	60˚, an equilibrium 
state as termed ሾdr 60˚ሿT shown in Fig. 4-(b). This also implies that three robots eventually 
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form	 i. In order to prove the convergence of the local interaction, we apply Lyapunov’s 
stability theory (Slotine & Li, 1991). Lyapunov’s stability theorem states that if there exists a 
scalar function	vሺxሻ	of the state	x	with continuous first order derivatives such that vሺxሻ is 
positive definite, v'ሺxሻ	is negative definite, and	vሺxሻ→∞	as	‖x‖→∞, then the equilibrium at 
the origin is asymptotically stable. Now, the desired configuration can be regarded as one 
that minimizes the energy level of a Lyapunov function. 
Consider the following scalar function of the state	x	=	ሾdiሺtሻ αiሺtሻሿT	with continuous first 
order derivatives: 

f୪,୧ = 12 ሺd୧ − d୰ሻଶ + 12 ሺ60˚ − α୧ሻଶ. (4)

This scalar function is always positive definite except di≠dr and αi≠60. The derivative of the 
scalar function is given by  fሶ୪,୧ = −ሺd୧ − d୰ሻଶ − ሺ60˚ − α୧ሻଶ, (5)

which is obtained by differentiating	fl,i	to substitute for	dሶ i	and	αሶ ୧. It is evident that (5) is 
negative definite and the scalar function	fl,i	is radially unbounded since it tends to infinity 
as ‖x‖→∞. Therefore, the equilibrium state is asymptotically stable, implying 
that	ri	reaches a vertex of i. Further details on the convergence proof are given in (Lee & 
Chong, 2009). 
 

 
Fig. 5. Adaptive navigation algorithm flowchart 

5. Adaptive navigation algorithm 
As illustrated in Fig. 5, the input to the adaptive navigation algorithm at each time is	Oi		and 
the arena border detected with respect to	ri’s local coordinate system, and the output is	ri’s 
next movement position. When	ri	observes the arena within its	SB, depending on whether or 
not it can move forward, it either executes the partition function to avoid the obstacle or the 
escape function to break a stalemate. When	ri	faces no arena border but observes other 
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swarms, it executes the unification function. Otherwise, it basically performs the 
maintenance function to navigate toward a goal.  
 

 
Algorithm 2. Neighbor Selection -1 (code executed by the robot ri at point pi) 

The four functions above should determine two positions	pn1	and	pn2	occupied by two 
neighbors	rn1and	rn2. These positions are the input arguments of ALGORITHM-1. Before 
explaining the four functions as individual solutions of each sub-problem, we introduce the 
neighbor selection algorithm commonly used in the four functions, enabling	ri	to select its 
neighbor robots. To form	 i, the first neighbor	rn1	is selected as the one located the shortest 
distance away from	ri	as shown in Fig. 6-(a). When there exist two or more candidates	rn1m  
and	rn1n	for	rn1,	ri	arranges their positions	pn1m=൫xn1m,yn1m൯	and	pn1n=൫xn1n,yn1n൯	with respect 
to ri’s local coordinate system. Then,	ri	uniquely determines its	rs1	by sorting their positions 
in the following increasing order with respect to its local coordinate system: if	൫pn1m<pn1n൯	⇔	ൣ൫yn1m<yn1n൯∨൛൫yn1m=yn1n൯∧൫xn1m<xn1n൯ൟ൧ where the logic symbols	∨	and	∧ 
indicate the logical conjunction and the logical disjunction, respectively. As presented in Fig. 
6-(b), the second neighbor	rn2	is selected such that the length of	 i’s perimeter is minimized 
as follows: minሾdistሺpn1,pn2ሻ+distሺpn2,piሻሿ. In particular, when both	ri	and the neighbors are 
all aligned, if there are three or more robots in	Oi	,	rn2	is re-selected such that	ri	is not 
located on the same line. Under ALGORITHM-2,	ri	is able to select its neighbors and then 
form	 i. Notice that the currently selected neighbors do not coincide with ones at the next 
time due to the assumption of anonymity. Using the current	Oi		by	ri,	 i is newly formed at 
each time. 
 

    
(a) rn1 selection                          (b) rn2 selection 

Fig. 6. Illustration of the neighbour selection algorithm 

5.1 Maintenance function 
The first problem is how to maintain	 i	with neighboring robots while navigating. As shown 
in Fig. 7-(a),	ri	adjusts its traveling direction	TሬሬԦi	with respect to its local coordinate system and 
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computes Oi at the time t. By rotating TሬሬԦi 90 degrees clockwise and counterclockwise, 
respectively, two vectors	TሬሬԦi,c	and	TሬሬԦi,a	are defined. Within	ri’s	SB, an area of traveling direction A൫TሬሬԦi൯ is defined as the area between	TሬሬԦi,cand	TሬሬԦi,aas illustrated in Fig. 7-(b). Under 
ALGORITHM-2, ri	checks whether there exists a neighbor in	A൫TሬሬԦi൯. If any robots exist 
within	A൫TሬሬԦi൯, ri	selects the first neighbor	rn1	and defines its position	pn1. Otherwise,	ri	spots a 
virtual point	pv	located some distance	dv	away from	pi	along	A൫TሬሬԦi൯, which gives	pn1. After 
determining	pn1,	rn2	is selected and its position	pn2	is defined.  
 

    
 (a) traveling direction TሬሬԦi   (b) maintenance area A൫TሬሬԦi൯ 
Fig. 7. Illustration of the maintenance function 

5.2 Partition function 
 

     
 (a) favorite vector fԦj     (b) partition area A൫fԦjmax൯ 
Fig. 8. Illustration of the partition function 

When	ri	detects an obstacle that blocks its way to the destination, it is required to modify the 
direction toward the destination avoiding the obstacle. In this work,	ri	determines its 
direction by using the relative degree of attraction of individual passageways	sj, termed the 

favorite vector	fԦj, whose magnitude is given:  
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หfԦ୨ห = ቤw୨d୨ଶቤ (6) 

where	wj	and	dj	denote the width of	sj	and the distance between the center of	wj	and	pi, 
respectively. Note that if	ri	can not exactly measure	wj	beyond its	SB, wj	may be shortened. 

Now, sj	can be represented by a set of favorite vectors	൛fԦjห1≤j≤mൟ, and then	ri	selects the 

maximum magnitude of	fԦj, denoted as	หfԦjหmax. Similar to defining	A൫TሬሬԦi൯	above,	ri	defines a 

maximum favorite area	A൫fԦjmax൯	based on the direction of	หfԦjหmax	within its	SB. If neighbors 

are found in	A൫fԦjmax൯, ri	selects	rn1	to define	pn1. Otherwise,	ri	spots a virtual point	pv	located 

at	dv	in the direction of	หfԦjหmax	to define	pn1. Finally,	rn2	and its	rn2	are determined under 

ALGORITHM-2. 

5.3 Unification function 
In order to enable multiple swarms in close proximity to merge into a single swarm,	ri 
adjusts	TሬሬԦi	with respect to its local coordinate system and defines the position set of robots	Du	 
located within the range of	du.	r୧	computes	ang൫TሬሬԦi,pipuሬሬሬሬሬሬሬሬԦ൯, where	pipuሬሬሬሬሬሬሬሬԦ	is the vector starting 
from	pi	to a neighboring point	puin	Du, and defines a neighbor point	pref	that gives the 
minimum	ang൫TሬሬԦi,pipuሬሬሬሬሬሬሬሬԦ൯	between TሬሬԦi and pipuሬሬሬሬሬሬሬሬԦ. If there exists	pul,	ri finds another neighbor 
point	pum	using the same method starting from	pipulሬሬሬሬሬሬሬሬሬԦ. Unless	pul	exists,	ri	defines pref	as	prn. 
Similarly,	ri	can decide a specific neighbor point	pln	while rotating 60 degrees 
counterclockwise from	piprefሬሬሬሬሬሬሬሬሬሬԦ. The two points, denoted as prn and pln, are located at the 
farthest point in the right-hand or left-hand direction of	pipuሬሬሬሬሬሬሬሬԦ, respectively. Next, a 
unification area	AሺUiሻ	is defined as the common area between	A൫TሬሬԦi൯	in	SB and the rest of the 
area in	SB, where no element of	Du	exists. Then,	ri	defines a set of robots in	AሺUiሻ	and selects 
the first neighbor	rn1. In particular, the second neighbor position	pn2	is defined such that the 
total distance from	pn1	to	pi	can be minimized only through either	prn	or	pln.  
 

     
 (a) traveling direction TሬሬԦi  (b) unification area AሺUiሻ 
Fig. 9. Illustration of the unification function 
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5.4 Escape control 
When ri detects an arena border within its SB as shown in Fig. 10-(a), it checks whether i is 
equal to i. Neighboring robots should always be kept du distance from ri. Moreover, ri’s 
current position pi and its next movement position pti remain unchanged for several time 
steps, ri will find itself trapped in a dead-end passageway. ri then attempts to find new 
neighbors within the area AሺEiሻ to break the stalemate. Similar to the unification function, ri 
adjusts TሬሬԦi with respect to its local coordinate system and defines the position set of robots De 
located within SB. As shown in Fig. 10-(b), ri computes ang൫TሬሬԦi,pipeሬሬሬሬሬሬሬሬԦ൯, where pipuሬሬሬሬሬሬሬሬԦ is the vector 
starting from pi to a neighboring point pe in De, and defines a neighbor point rref that gives 
the minimum ang൫TሬሬԦi,pipeሬሬሬሬሬሬሬሬԦ൯ between TሬሬԦi and pipuሬሬሬሬሬሬሬሬԦ. While rotating 60 degrees clockwise and 
counterclockwise from piprefሬሬሬሬሬሬሬሬሬሬԦ, respectively, ri can decide the specific neighbor points pln and prn. Employing pln and prn, the escape area AሺEiሻ is defined. Then, ri adjusts a set of robots in AሺEiሻ and selects the first neighbor rn1. In particular, the second neighbor position pn2 is 
determined under ALGORITHM-2. 
 

                          
(a) encountered dead-end passageway     (b) merging with another adjacent swarm 

Fig. 10. Illustration of the escape function 

6. Simulation results and discussion 
This section describes simulation results that tested the validity of our proposed adaptive 
navigation scheme. We consider that a swarm of robots attempts to navigate toward a 
stationary goal while exploring and adapting to unknown environmental conditions. In 
such an application scenario, the goal is assumed to be either a light or odor source that can 
only be detected by a limited number of robots. As mentioned in Section 3, the coordinated 
navigation is achieved without using any leader, identifiers, global coordinate system, and 
explicit communication. We set the range of SB to 2.5 times longer than du.  
The first simulation demonstrates how a swarm of robots adaptively navigates in an 
environment populated with obstacles and dead-end passageway. In Fig. 11, the swarm 
navigates toward the goal located on the right hand side. On the way to the goal, some of 
the robots detect a triangular obstacle that forces the swarm split into two groups from 7 sec 
(Fig. 11-(c)). The rest of the robots that could not identify the obstacle just follow their 
neighbors moving ahead. After being split into two groups at 14 sec (Fig. 11-(d)), each group 
maintains their local geometric configuration while navigating. At 18 sec (Fig. 11-(e)), some 
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robots happen to enter a dead-end passageway. After they find themselves trapped, they 
attempt to escape from the passageway by just merging themselves into a neighboring 
group from 22 sec to 32 sec (from Figs. 11-(f)) to (k)). After 32 sec (Fig. 11-(k)), simulation 
result shows that two groups merge again completely. At 38 sec (Fig. 11-(l)), the robots 
successfully pass through the obstacles.  
 

 
Fig. 11. Simulation results of adaptive flocking toward a stationary goal ((a)0 sec,(b)4 sec, 
(c)7 sec,(d)14 sec,(e)18 sec,(f)22 sec,(g)23 sec,(h)24 sec,(i)28 sec,(j)29 sec,(k)32 sec,(l)38sec) 
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Fig. 12 shows the trajectories of individual robots in Fig. 11. We could confirm that the 
swarm was split into two groups due to the triangular obstacle located at coordinates (0,0). 
If we take a close look at Figs. 11-(f) through (j) (from 22 sec to 29 sec), the trapped ones 
escaped from the dead-end passageway located at coordinates (x, 200). More important, 
after passing through the obstacles, all robots position themselves from each other at the 
desired interval du. 
 

 
Fig. 12. Robot trajectory results for the simulation in Fig.11 

Next, the proposed adaptive navigation is evaluated in a more complicated environmental 
condition as presented in Fig. 13. On the way to the goal, some of the robots detect a 
rectangular obstacle that forces the swarm split into two groups in Fig. 13-(b). After passing 
through the obstacle in Fig. 13-(d), the lower group encounters another obstacle in Fig. 13-
(e), and split again into two smaller groups in Fig. 13-(g). Although several robots are 
trapped in a dead-end passageway, their local motions can enable them to escape from the 
dead-end passageway in Fig. 13-(i). This self-escape capability is expected to be usefully 
exploited for autonomous search and exploration tasks in disaster areas where robots have 
to remain connected to their ad hoc network. Finally, for a comparison of the adaptive 
navigation characteristics, three kinds of simulations are performed as shown in Figs. 14 
through 16. All the simulation conditions are kept the same such as du, the number of 
robots, and initial distribution. Fig. 14 shows the behavior of mobile robot swarms without 
the partition and escape functions. Here, a considerable number of robots are trapped in the 
dead-end passageway and other robots pass through an opening between the obstacle and 
the passageway by chance. As compared with Fig. 14, Fig. 15 shows more robots pass 
through the obstacles using the partition function. However, a certain number of robots 
remain trapped in the dead-end passageway because they have no self-escape function. Fig. 
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16 shows that all robots successfully pass through the obstacles using the proposed adaptive 
navigation scheme. It is evident that the partition and escape functions will provide swarms 
of robots with a simple yet efficient navigation method. In particular, self-escape is one of 
the most essential capabilities to complete tasks in obstacle-cluttered environments that 
require a sufficient number of simple robots. 
 

 
Fig. 13. Simulation results of adaptive flocking toward a stationary goal ((a)0 sec,(b)8 sec, 
(c)10 sec,(d)14 sec,(e)18 sec,(f)22 sec,(g)25 sec,(h)27 sec,(i)31 sec,(j)36) 
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Fig. 14. Simulation results for flocking without partition and escape functions 
 

 
Fig. 15. Simulation results for flocking with only partition function 
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Fig. 16. Simulation results for flocking with the partition and escape functions 

7. Conclusions 
This paper was devoted to developing a new and general coordinated adaptive 
navigation scheme for large-scale mobile robot swarms adapting to geographically 
constrained environments. Our distributed solution approach was built on the following 
assumptions: anonymity, disagreement on common coordinate systems, no pre-selected 
leader, and no direct communication. The proposed adaptive navigation was largely 
composed of four functions, commonly relying on dynamic neighbor selection and local 
interaction. When each robot found itself what situation it was in, individual appropriate 
ranges for neighbor selection were defined within its limited sensing boundary and the 
robots properly selected their neighbors in the limited range. Through local interactions 
with the neighbors, each robot could maintain a uniform distance to its neighbors, and 
adapt their direction of heading and geometric shape. More specifically, under the 
proposed adaptive navigation, a group of robots could be trapped in a dead-end passage, 
but they merge with an adjacent group to emergently escape from the dead-end passage. 
Furthermore, we verified the effectiveness of the proposed strategy using our in-house 
simulator. The simulation results clearly demonstrated that the proposed algorithm is a 
simple yet robust approach to autonomous navigation of robot swarms in highly-
cluttered environments. Since our algorithm is local and completely scalable to any size, it 
is easily implementable on a wide variety of resource-constrained mobile robots and 
platforms. Our adaptive navigation control for mobile robot swarms is expected to be 
used in many applications ranging from examination and assessment of hazardous 
environments to domestic applications.  
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