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PAPER

A Timed-Release Proxy Re-Encryption Scheme∗

Keita EMURA†a), Atsuko MIYAJI††, Members, and Kazumasa OMOTE††, Nonmember

SUMMARY Timed-Release Encryption (TRE) is a kind of time-
dependent encryption, where the time of decryption can be controlled.
More precisely, TRE prevents even a legitimate recipient decrypting a ci-
phertext before a semi-trusted Time Server (TS) sends trapdoor sT assigned
with a release time T of the encryptor’s choice. Cathalo et al. (ICICS2005)
and Chalkias et al. (ESORICS2007) have already considered encrypting a
message intended for multiple recipients with the same release time. One
drawback of these schemes is the ciphertext size and computational com-
plexity, which depend on the number of recipients N. Ideally, it is de-
sirable that any factor (ciphertext size, computational complexity of en-
cryption/decryption, and public/secret key size) does not depend on N. In
this paper, to achieve TRE with such fully constant costs from the encryp-
tor’s/decryptor’s point of view, by borrowing the technique of Proxy Re-
Encryption (PRE), we propose a cryptosystem in which even if the proxy
transformation is applied to a TRE ciphertext, the release time is still ef-
fective. By sending a TRE ciphertext to the proxy, an encryptor can foist
N-dependent computation costs on the proxy. We call this cryptosystem
Timed-Release PRE (TR-PRE). This function can be applied to efficient
multicast communication with a release time indication.
key words: timed-release encryption, proxy re-encryption

1. Introduction

Timed-Release Encryption (TRE) was proposed by May
[33], and is a kind of time-dependent encryption, where
the time of decryption can be controlled. Even a legitimate
recipient cannot decrypt a ciphertext before a semi-trusted
Time Server (TS) sends (or broadcasts) trapdoor sT assigned
with release time T of the encryptor’s choice. Similarly, TS
(which can generate all trapdoors) cannot decrypt a cipher-
text, since TS does not have the legitimate decryption key.
That is, both sT and the legitimate recipient’s decryption key
are indispensable to decrypt a ciphertext assigned with T .
To guarantee this, TS is modeled as a honest-but-curious
adversary in the security model (called time server security
[22], [34]). Such adversary follows the protocol correctly,
but may try to obtain additional information.

Although usual TREs deal with only a single recipi-
ent, Cathalo et al. [13] and Chalkias et al. [14] have already
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considered encrypting a message intended for several recip-
ients with the same release time. Schemes by Cathalo et
al. and Chalkias et al. are efficient compared with previous
TRE schemes with recipient-to-recipient encryption, since
the most costly part (especially pairing computation e(·, ·)
or group operation on the range of the pairing, e.g., e(·, ·)r

for some exponent r) has only to be computed once, and
this element is used commonly. Note that, since Chow et
al. [18] showed that the Chalkias et al. scheme [14] is vulner-
able under the CCA attack, we pay attention to the Cathalo
et al. scheme in the following discussion. Informally, for
a common release time T and number of recipients N,
the form of a ciphertext in the Cathalo et al. scheme is:
(C1,C2, . . . ,CN , (M||random nonce)⊕K),RecipientList, T ),
where K = Hash(e(·, ·)) is a commonly used ephemeral
key computed by both Ci and a user Ui’s secret key. One
drawback of this scheme is the ciphertext size, namely, the
length of the ciphertext depends on N (See Fig. 1). As a
simple countermeasure, if each ciphertext (for a user Ui)
is represented as (Ci, (M||random nonce) ⊕ K, T ), then ac-
tual transferred ciphertext size is constant. Nevertheless,
there is still a remaining problem, where the encryption
cost also depends on N. This can be a serious problem
when N becomes large. Ideally, it is desirable that any
factor (ciphertext size, computational complexity of encryp-
tion/decryption, and public/secret key size) does not depend
on N.

Due to the fact that typical group-oriented encryp-
tion systems (e.g., broadcast encryption [21], hierarchical
identity-based encryption (IBE) [8], and others) only satisfy
partially constant costs (i.e., at least one of the factor de-
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Fig. 1 Previous TRE for multiple recipients [24].
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Fig. 2 Our TR-PRE with multiple recipients [24].

pends on N), it seems hard to directly† construct TRE with
such fully constant costs. Therefore, we need to investi-
gate another approach to achieve TRE with the fully con-
stant costs.

As a solution, we focus on that TRE with the fully con-
stant costs from the encryptor’s/decryptor’s point of view
is highly significant from the perspective of usability. So,
here we consider an additional agency who takes over N-
dependent computation costs. Of course, if such additional
agency is fully trusted, then we can easily achieve such TRE
system. For example, an encryptor computes a ciphertext by
using the agency’s public key, and sends it with the recipient
list and the release time T to the agency. The agency de-
crypts the ciphertext (and therefore the agency can know all
plaintexts), re-encrypts the resulting plaintext by using the
corresponding recipient’s public key and the release time T ,
and sends TRE ciphertexts to each recipient. In this solu-
tion, the agency has a special privilege that the agency can
know all plaintexts. However, in the conventional TRE, TS
is modeled as the semi-trusted agency for ensuring that only
a legitimate recipient can decrypt a ciphertext encrypted by
the recipient’s public key. That is, the additional agency
should be modeled as semi trusted (as in TS). So, we need
to investigate a methodology how to foist N-dependent com-
putation costs to the agency ensuring that only a legitimate
recipient can decrypt a ciphertext.

Proxy Re-Encryption (PRE) [5] is a candidate cryp-
tographic primitive to implement a semi-trusted agency
who takes over N-dependent computation costs. Briefly, a
semi-trusted intermediate agency, called proxy, transforms
a ciphertext made by a delegator’s public key into a re-
encrypted ciphertext that can be decrypted using a dele-
gatee’s secret key. For example, the proxy can forward
a ciphertext for a delegatee (or potentially plural delega-
tees) without decrypting the ciphertext. This functionality
seems applicable to TRE for multiple recipients, however,
any methodology to apply PRE for reducing costs of TRE
has not been proposed so far.

Our contribution: In this paper, to achieve TRE with

fully constant costs from the encryptor’s/decryptor’s point
of view, by borrowing the technique of PRE, we propose a
cryptosystem in which even if the proxy transformation is
applied to a TRE ciphertext, the release time is still effec-
tive. By sending a TRE ciphertext to the proxy, an encryp-
tor can foist N-dependent computation costs on the proxy.
We call this cryptosystem Timed-Release PRE (TR-PRE)††.
Informally, the flow of TR-PRE is as follows (illustrated in
Fig. 2). An encryptor computes a TRE ciphertext under the
particular public key, and the proxy translates this cipher-
text into re-encrypted ciphertexts under each recipient. The
proxy sends the corresponding re-encrypted ciphertext to
each recipient. Each recipient can decrypt it after the cor-
responding trapdoor sT is released.

As in TRE, the condition that no authority can decrypt
ciphertexts should be satisfied. To do so, the proxy is mod-
eled as a semi-trusted agency, and we assume that not only
the proxy follows the protocol but also the proxy will not
collude with receivers as in [19], [27], since the proxy and a
receiver can decrypt any ciphertext by colluding with each
other.

By applying PRE functionality, an encryptor can trans-
fer these N-dependent parts to the proxy, and therefore the
number of ciphertexts (and computational complexity of en-
cryption/decryption also) does not depend on the number of
recipients N. In addition, our TR-PRE achieves constant
public/secret key size. The factor depending on N is the
proxy re-encryption costs only. So, TR-PRE can work like
TRE with fully constant costs from the encryptor’s and de-
cryptor’s point of view. One trade-off of this efficiency, in-
formation that who recipients are is known by the proxy as
in PRE.

†The words “directly construction” mean construction in the
conventional TRE framework, namely, trying to construct TRE
with fully constant costs without adding any functionality to the
original TRE functionalities such as Cathalo et al. scheme.
††Note that Attribute-Based PRE (AB-PRE) [31] is not suit-

able for constructing TRE scheme with fully constant costs even
if the release time is regarded as an attribute (we explain it in the
Sect. 5.3).
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Organization: The paper is organized as follows: Security
definitions of TR-PRE are presented in Sect. 3. Our scheme
is described in Sect. 4. The security analyses are presented
in Sect. 5. Efficiency comparisons and applications of TR-
PRE are presented in Sect. 6.

2. Preliminaries

In this section, we give the definitions of bilinear groups and
complexity assumptions which are applied in our TR-PRE

construction. In the following descriptions, x
$← S means

that x is chosen uniformly from a set S . y←A(x) means that
y is an output of an algorithm A under an input x.

2.1 Bilinear Groups and Complexity Assumptions

Definition 1. (Bilinear Groups) Bilinear groups and a bi-
linear map are defined as follows:

1. G and GT are cyclic groups of prime order p.
2. g is a generator of G.
3. e is an efficiently computable bilinear map e : G×G→
GT with the following properties.

• Bilinearity: for all u, u′, v, v′ ∈ G, e(uu′, v) =
e(u, v)e(u′, v) and e(u, vv′) = e(u, v)e(u, v′).

• Non-degeneracy: e(g, g) � 1GT (1GT is the GT

unit).

Definition 2 (3-QDBDH assumption [32]). The 3-Quotient
Decision Bilinear Diffie-Hellman (3-QDBDH) problem is a
problem in which, for input of a tuple (g, ga, ga2

, ga3
, gb, Z) ∈

G
5 × GT , to decide whether Z = e(g, g)b/a or not. We say

that the 3-QDBDH assumption holds in G if the advantage
Adv3-QDBDH

G,A (1k) := |Pr[A(g, ga, ga2
, ga3
, gb, e(g, g)b/a) = 0]−

Pr[A(g, ga, ga2
, ga3
, gb, e(g, g)z) = 0]|, where e(g, g)z ∈ GT \

{e(g, g)b/a}, is negligible for any probabilistic polynomial-
time (PPT) algorithmA.

The hardness of the 3-QDBDH problem was discussed in
[32], where the 3-QDBDH problem is not easier than the
q-Decisional Bilinear Diffie-Hellman Inversion (q-DBDHI)
problem [7]. The difficulty of the q-DBDHI problem in
generic groups was shown in [23], and this result implies
the difficulty of the 3-QDBDH problem in generic groups.
As in [32], we use the modified version of the 3-QDBDH
(modified 3-QDBDH) problem, where for input of a tu-
ple (g, g1/a, ga, ga2

, gb, Z) ∈ G5 × GT , to decide whether
Z = e(g, g)b/a2

or not. This modified 3-QDBDH problem
is equivalent to the 3-QDBDH problem (See [32] Lemma
1).

Definition 3 (Truncated decisional q-ABDHE assump-
tion [26]). The truncated decisional q-Augmented Bilin-
ear Diffie-Hellman (q-ABDHE) problem is a problem in
which, for input of a tuple (g′, g′(α

q+2), g, gα, gα
2
, . . . , gα

q
,

Z) ∈ Gq+3 × GT , to decide whether Z = e(g, g′)α
q+1

or
not. We say that the truncated decisional q-ABDHE as-
sumption holds in G if the advantage Advq-ABDHE

G,A (1k) :=

|Pr[A(g′, g′(α
q+2), g, gα, gα

2
, . . . , gα

q
, e(g, g′)α

q+1
) = 0] −

Pr[A(g′, g′(α
q+2), g, gα, gα

2
, . . . , gα

q
, e(g, g′)z) = 0]|, where

e(g, g′)z ∈ GT \ {e(g, g′)α
q+1}, is negligible for any PPT algo-

rithmA.

2.2 Strongly Existential Unforgeable One-Time Signa-
tures

We apply the Libert-Vergnaud PRE [32], which needs
the CHK transformation [11] to satisfy CCA security by
strongly existential unforgeable (sUF) one-time signatures
(e.g., [3]). So, here we introduce sUF one-time signature
as follows. An sUF one-time signature consists of three al-
gorithms, Sig.KeyGen, Sign and Verify. Sig.KeyGen is a
probabilistic algorithm which outputs a signing/verification
key pair (Ks,Kv). Sign is a probabilistic algorithm which
outputs a signature σ from Ks, and a message M ∈ MS ig,
where MS ig is the message space of a signature scheme.
Verify is a deterministic algorithm which outputs a bit from
σ, Kv and M. “Verify outputs 1” indicates that σ is a valid
signature of M, and 0, otherwise. The security experiment
of sUF one-time signature under an adaptive Chosen Mes-
sage Attack (one-time sUF-CMA) is defined as follows:

Definition 4 (one-time sUF-CMA). We say that a signa-
ture scheme is one-time sUF-CMA secure if the advantage
Advone-time sUF-CMA

A (1k) is negligible for any polynomial-time
adversaryA in the following experiment.

Advone-time sUF-CMA
A (1k) =

Pr
[
(Ks,Kv)← Sig.KeyGen(1k);

(M, S tate)← A(Kv);σ← Sign(Ks,M);

(M∗, σ∗)← A(Kv, σ, S tate);

(M∗, σ∗) � (M, σ); Verify(Kv, σ
∗,M∗) = 1

]

3. Definitions of TR-PRE

3.1 Functions of (Single-Hop) TR-PRE

First, we introduce encryption levels (refer to [1]) for
single-hop PRE as follows: A ciphertext computed by the
Encrypt2 algorithm is called the “second-level” cipher-
text, which can be re-encrypted using an appropriate re-
encryption key. A ciphertext computed by the Re-Encrypt
algorithm or the Encrypt1 algorithm is called the “first-
level” ciphertext, which cannot be re-encrypted for any
user. A ciphertext is identified whether it is the first one
or not, since the form of the first and second ciphertext
is different in our TR-PRE (and the Libert-Vergnaud PRE
also). A TR-PRE scheme Π consists of eight algorithms
(Setup, KeyGen, Encrypt1, Encrypt2, TS-Release, RK-
Gen, Re-Encrypt, Decrypt):

Definition 5. TR-PRE
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Setup(1k) : This algorithm takes as input the security pa-
rameter k, and returns the master public parameters
params, the TS’s public key TS pub, and the TS’s secret
key tspriv. We assume that params includes TS pub.

KeyGen(params) : This algorithm takes as input params,
and returns a public/secret key pair (upk, usk).

TS-Release(params, tspriv, T ) : This algorithm takes as in-
put params, tspriv, and a release time T , and returns a
trapdoor sT .

Encrypt1(params, upk,M, T ) : This algorithm takes as in-
put params, a user’s public key upk, a plaintext M, and
T , and returns a first-level ciphertext C which cannot
be transformed.

Encrypt2(params, upk,M, T ) : This algorithm takes as in-
put params, a user’s public key upk, a plaintext M, and
T , and returns a second-level ciphertext C which can
be transformed into the first-level ciphertext using an
appropriate re-encryption key.

RKGen(params, uski, upk j) : This algorithm takes as input
params, a user Ui’s secret key uski, and a user U j’s
public key upk j, and returns a re-encryption key Ri j.

Re-Encrypt(params,Ri j, upki,C) : This algorithm takes as
input params, Ri j, and upki, and a second-level cipher-
text C encrypted by upki, and returns the first-level re-
encrypted ciphertext C which can be decrypted by usk j.

Decrypt(params, usk, sT ,C, T ) : This algorithm takes as
input params, usk, sT and C, and returns M or ⊥.

3.2 A Typical Usage of TR-PRE

Here, we describe a typical usage of TR-PRE.

Setup Phase: We assume that each user executes the
KeyGen algorithm, and obtains its own key pair. Let
(upk, usk) be the key pair of the encryptor of the
following explanation, and RecipientList be the set
of recipient. The encryptor computes re-encryption
keys Rj ← RKGen(params, usk, upk j) for all U j ∈
RecipientList. This procedure can be done before the
actual encryption procedure. In addition, once a re-
encryption key is stored in the proxy, this key can be
continually used after that. Therefore, we assume that
the computation of re-encryption keys has already been
done before the actual encryption.

Encryption Phase: An encryptor computes a TRE cipher-
text by using its own public key upk, and sends (C, T )
with (recipient list) to the proxy. The proxy re-encrypts
(C, T ) by using its re-encryption key, and sends the re-
encryption result to the corresponding recipient.

Of course, we can assume that an encryptor com-
putes a TRE ciphertext by using a recipient (say Ui) pub-
lic key. In this case, however, we need to assume that re-
encryption keys from the Ui to U j ∈ RecipientList has al-
ready been preserved in the proxy. Since the encryptor de-
cides RecipientList, our scenario (the encryptor uses its own

public key) is reasonable in practice.

3.3 Security Requirements

First, we define the correctness of TR-PRE as follows. Cor-
rectness guarantees that the honestly computed ciphertext
and the honestly re-encrypted ciphertext can be correctly
decrypted by using the appropriate secret key and the ap-
propriate trapdoor.

Definition 6 (Correctness). For all (params, tspriv) ←
Setup(1k), (upki, uski), (upk j, usk j) ← KeyGen(params),
T , M, and sT ← TS-Release(params, tspriv, T ),

M =Decrypt
(
params, uski, sT ,

Encrypt2(params, upki,M, T ), T
)
,

M =Decrypt
(
params, uski, sT ,

Encrypt1(params, upki,M, T ), T
)
, and

M =Decrypt
(
params, usk j, sT ,

Re-Encrypt
(
params,RKGen(params, uski, upk j),

upki,Encrypt2(params, upki,M, T )
)
, T
)

hold.

Next, we define the chosen-ciphertext security require-
ments of TR-PRE. These are naturally defined from the se-
curity definitions of the Cathalo et al. TRE [13] and the
Libert-Vergnaud PRE [32].

First, we define replayable chosen-ciphertext (IND-
RCCA) security. IND-RCCA security guarantees that even
if the appropriate trapdoor is given, non-legitimate users
(who do not have an appropriate secret key) cannot decrypt
a ciphertext. This suggestsA is an “honest but curious” TS.
We give two IND-RCCA security notions at second-level
ciphertext and first-level ciphertext, respectively. In the fol-
lowing experiments, for the challenge public/secret key, ci-
phertext, and plaintext, these are superscripted by ∗. For
honest parties, keys are subscripted by h or h′. For corrupted
parties, keys are subscripted by c or c′.

First, we define IND-RCCA security at second-level
ciphertext. As in [32], a PPT adversary A is given all re-
encryption keys, except from the target user to a corrupted
user. As in [12], [32], we assume a static corruption model,
which does not capture a scenario in which an adversary
generates public/secret keys for all parties.

Oracles: A can access the re-encryption oracle ORE-ENC

and the decryption oracle ODEC which are defined as fol-
lows. For an input (upki, upk j,C), ORE-ENC returns ⊥ if
the one of following holds: (1) C is the first-level ci-
phertext, or (2) upk j is a corrupted user and (upki,C) =
(upk∗,C∗), or (3) C is not properly computed by us-
ing upki, or (4) either upki or upk j were not generated
the KeyGen algorithm executed by the challenger. Oth-
erwise, ORE-ENC returns a re-encrypted ciphertext C′ =
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Re-Encrypt(params,RKGen(params, uski, upk j), upki, C).
For an input (upk,C, T ), ODEC returns ⊥ if the one of fol-
lowing holds: (1) upk was not produced by the KeyGen
algorithm executed by the challenger, or (2) (upk,C, T ) =
(upk∗,C∗, T ∗), or (3) (upk,C) is a derivative of (upk∗,C∗),
where we say that (upk,C) is a derivative of (upk∗,C∗)
if Decrypt(params, usk, sT ,C, T ) ∈ {M∗0,M

∗
1} for any

(queried) T whatever T � T ∗, C is a first level ciphertext
and either upk = upk∗ or upk ∈ {upkh}. Otherwise, ODEC

returns a decryption result M.

Definition 7 (IND-RCCA Security at Second-level Cipher-
text). We say that a (single-hop) TR-PRE scheme is IND-
RCCA secure at second-level ciphertext if the advantage
AdvIND-RCCA-2nd

Π,A (1k) is negligible for any PPT adversary A
in the following experiment.

AdvIND-RCCA-2nd
Π,A (1k) =
∣∣∣Pr
[
(params, tspriv)← Setup(1k);

(upk∗, usk∗)← KeyGen(params);

{(upkh, uskh)← KeyGen(params)};

{(upkc, uskc)← KeyGen(params)};
Set Keys := {upk∗, {upkh}, {(upkc, uskc)}};
{Rc∗ ← RKGen(params, uskc, upk∗)};
{Rh∗ ← RKGen(params, uskh, upk∗)};
{R∗h ← RKGen(params, usk∗, upkh)};
{Rhc ← RKGen(params, uskh, upkc)};
{Rch ← RKGen(params, uskc, upkh)};
{Rcc′ ← RKGen(params, uskc, upkc′)};
{Rhh′ ← RKGen(params, uskh, upkh′)};
Set ReKeys := {{Rc∗}, {Rh∗}, {R∗h}, {Rhc},

{Rch}, {Rcc′ }, {Rhh′ }};
(M∗0,M

∗
1, T

∗, S tate)

← AORE-ENC ,ODEC (params,Keys,ReKeys, tspriv);

μ
$← {0, 1}; C∗ ← Encrypt2(params, upk∗,M∗μ, T

∗);

μ′ ← AORE-ENC ,ODEC (C∗, S tate); μ = μ′
]
− 1/2

∣∣∣

A ciphertext encrypted under upk from {upkh} can be re-
encrypted for corrupt users by {Rhc}. In addition, second-
level ciphertexts under upk∗ can be translated for honest
users by {R∗h}. Since the resulting ciphertexts can be queried
for ODEC , a second-level decryption oracle is useless.

Next, we define the IND-RCCA security at first-level
ciphertext as follows. Since first-level ciphertexts cannot
be re-encrypted, all re-encryption keys are given to A. So,
ORE-ENC is useless and is deleted. For the same reason, a
second-level decryption oracle is also useless. The defini-
tion of ODEC is the same as that of the second level one,
except we say that (upk,C) is a derivative of (upk∗,C∗) if
Decrypt(params, usk, sT ,C, T ) ∈ {M∗0,M

∗
1} for any T and C

is a first level ciphertext and upk = upk∗.

Definition 8 (IND-RCCA Security at First-level Cipher-
text). We say that a (single-hop) TR-PRE scheme is IND-
RCCA secure at first-level ciphertext if the advantage
AdvIND-RCCA-1st

Π,A (1k) is negligible for any PPT adversary A
in the following experiment.

AdvIND-RCCA-1st
Π,A (1k) =
∣∣∣Pr
[
(params, tspriv)← Setup(1k);

(upk∗, usk∗)← KeyGen(params);

{(upkh, uskh)← KeyGen(params)};
{(upkc, uskc)← KeyGen(params)};
Set Keys := {upk∗, {upkh}, {(upkc, uskc)}};
{Rc∗ ← RKGen(params, uskc, upk∗)};
{Rh∗ ← RKGen(params, uskh, upk∗)};
{R∗h ← RKGen(params, usk∗, upkh)};
{R∗c ← RKGen(params, usk∗, upkc)};
{Rhc ← RKGen(params, uskh, upkc)};

{Rch ← RKGen(params, uskc, upkh)};
{Rcc′ ← RKGen(params, uskc, upkc′)};
{Rhh′ ← RKGen(params, uskh, upkh′)};
Set ReKeys := {{Rc∗}, {Rh∗}, {R∗h}, {R∗c},

{Rhc}, {Rch}, {Rcc′ }, {Rhh′ }};
(M∗0,M

∗
1, T

∗, S tate)

← AODEC (params,Keys,ReKeys, tspriv);

μ
$← {0, 1}; C∗ ← Encrypt1(params, upk∗,M∗μ, T

∗);

μ′ ← AORE-ENC ,ODEC (C∗, S tate); μ = μ′
]
− 1/2

∣∣∣

Next, we define weak chosen-time period chosen-
ciphertext (IND-wCTCA) security†. IND-wCTCA security
guarantees that even if A has the appropriate secret key, A
cannot decrypt a ciphertext before the appropriate trapdoor
is released. This suggestsA is a malicious user in this exper-
iment. As in the IND-RCCA security definitions, we give
two IND-wCTCA security notions at second-level cipher-
text and first-level ciphertext, respectively.

Oracles: A can access the key generation oracle
OKeyGen, the re-encryption oracleORE-ENC , the re-encryption
key generation oracleORKGen, the timed-release trapdoor ex-
traction oracle OTS -Release, and the decryption oracle ODEC

which are defined as follows. OKeyGen returns (upk, usk) ←
KeyGen(params). For an input (upki, upk j,C), ORE-ENC re-
turns ⊥ if the one of following holds: (1) C is the first-
level ciphertext, (2) C is not properly computed by us-
ing upki, or (3) either upki or upk j were not generated

†The notion “weak” means that our definition is weaker than
the IND-CTCA security (which is defined in the TRE context)
given by Cathalo et al. [13]. That is, whenA generates upk and in-
puts (upk,C,T ) to ODEC , ODEC has to answer without knowing the
corresponding decryption key in the IND-CTCA sense, whereas
ODEC returns⊥ in the IND-wCTCA sense, since we assume a static
corruption model.
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the KeyGen algorithm executed by the challenger. Oth-
erwise, ORE-ENC returns a re-encrypted ciphertext C′ =
Re-Encrypt(params,RKGen(params, uski, upk j), upki, C).
For an input (uski, upk j), ORKGen returns ⊥ if either uski or
upk j were not generated the KeyGen algorithm executed by
the challenger. Otherwise, ORKGen returns Ri j. For an input
T , if T = T ∗, where T ∗ is the challenge time, thenOTS -Release

returns ⊥. Otherwise, OTS -Release returns a trapdoor sT . For
an input (upk,C, T ),ODEC returns⊥ if either (1) upk was not
produced by the KeyGen algorithm executed by the chal-
lenger, or (2) (upk,C, T ) = (upk∗,C∗, T ∗). Otherwise, ODEC

returns a decryption result M.

Definition 9 (IND-wCTCA Security at Second-level Ci-
phertext). We say that a (single-hop) TR-PRE scheme is
IND-wCTCA-secure at second-level ciphertext if the advan-
tage AdvIND-wCTCA-2nd

Π,A (1k) is negligible for any PPT adver-
saryA in the following experiment.

AdvIND-wCTCA-2nd
Π,A (1k) =
∣∣∣Pr
[
(params, tspriv)← Setup(1k);

S et O := {OKeyGen,ORE-ENC ,ORKGen,ODEC ,

OTS -Release};
(M∗0 ,M

∗
1, T

∗, upk∗, S tate)← AO(params);

μ
$← {0, 1}; C∗ ← Encrypt2(params, upk∗,M∗μ, T

∗);

μ′ ← AO(C∗, S tate); μ = μ′
]
− 1/2

∣∣∣

Next, we define the IND-wCTCA security at first-level
ciphertext. Oracles used in the following experiment are the
same as that of the second-level one.

Definition 10 (IND-wCTCA Security at First-level Cipher-
text). We say that a (single-hop) TR-PRE scheme is IND-
wCTCA-secure at first-level ciphertext if the advantage
AdvIND-wCTCA-1st

Π,A (1k) is negligible for any PPT adversary A
in the following experiment.

AdvIND-wCTCA-1st
Π,A (1k) =
∣∣∣Pr
[
(params, tspriv)← Setup(1k);

S et O := {OKeyGen,ORE-ENC ,ORKGen,ODEC ,

OTS -Release};
(M∗0 ,M

∗
1, T

∗, upk∗, S tate)← AO(params);

μ
$← {0, 1}; C∗ ← Encrypt1(params, upk∗,M∗μ, T

∗);

μ′ ← AO(C∗, S tate); μ = μ′
]
− 1/2

∣∣∣

4. Proposed Scheme

In this section, we propose our TR-PRE scheme†. Our TR-
PRE is based on the Libert-Vergnaud PRE [32], and the
(IND-ID-CCA-secure ††) Gentry IBE [26].

First, we explain how difficult is to construct TR-PRE
(without random oracles) even if generic constructions of

TRE [15]–[17], [34] are given. In Nakai et al.’s construc-
tion [34]††† (based on IBE, Public Key Encryption (PKE),
and sUF one-time signature), a ciphertext is represented
as (Kv, T, c1, c2, σ), where Kv is a signature verification
key (paired with a signing key Ks), T is a release time,
c1 = PKE.Enc(upk, (Kv||r)), r is a random number chosen
from the message space, upk is a user’s public key, c2 =

IBE.Enc(T, (Kv||(M ⊕ r))), and σ = Sign(Ks, (T ||c1||c2)).
In this construction, T is regarded as the “identity” of the
IBE scheme. Therefore, someone may think that it is not
hard to construct TR-PRE by applying such generic con-
strictions of TRE, e.g., by replacing the PKE part into PRE
and so on. However, when simply exchanging the under-
lying PKE scheme for a PRE scheme, σ cannot work after
the proxy translates c1 into c′1 (which can be decrypted by
another user), since a “signed-message” c1 has already been
changed. Other generic constructions [15], [16] require ran-
dom oracles, since these constructions apply the Fujisaki-
Okamoto transformation [25]. In [17], a generic construc-
tion of TRE based on Security-Mediated Certificateless En-
cryption (SMCLE) was proposed. However, SMCLE is not
a primitive tool (such as PKE, IBE, digital signatures, hash
functions, and so on), and therefore “TRE combines PRE”
is similar to “SMCLE combines PRE”. From the above con-
siderations, we need another structure to combine TRE and
PRE schemes without random oracles.

The overview of our construction is as follows: As
in the Nakai et al. construction, a release-time T is re-
garded as an identity of the underlying IBE scheme, and
thus sT is the private key of the Gently IBE. In addition,
the part of ciphertexts of IBE and PRE containing a plain-
text M are connected. More precisely, in the following
construction, (C3,C5,C6,C7) is a ciphertext for a message
M′ of the Gentry IBE scheme, where M′ := M · e(g, g)r1 ,
and (C1,C2,C3,C4) is a (part of) ciphertext for a message
M′′ of the Libert-Vergnaud PRE scheme, where M′′ :=
M · e(g, h1)r2 (i.e., C3 is commonly used from both IBE and
PRE section). e(g, g)r1 is computed from a PRE section, and
e(g, h1)r2 is computed from an IBE section. Together with
these elements, the cancel element e(g, g)r1 ·e(g, h1)r2 can be
computed. In addition, a signature part of our construction
is different from that of the Libert-Vergnaud PRE scheme.
In the Libert-Vergnaud PRE scheme, a (one-time) signature
is computed as σ ← Sign(Ks, (C3,C4)). On the other hand,
we include IBE ciphertexts (C3,C5,C6,C7) (and T also) in
the signed message to bind all ciphertexts. This signed mes-
sage does not change through the re-encryption procedure.

†Note that, we do not consider encrypting with distinct release
times as in Cathalo et al. [13], since colluding receivers could de-
crypt the message without having the appropriate trapdoor.
††The CCA-secure Gentry IBE scheme also provides recipient

anonymity. In the TR-PRE context, recipient anonymity property
is not required. For the sake of clarity, we introduce the defini-
tion of IND-ID-CCA game and the Gentry IBE scheme in the Ap-
pendix.
†††Although this construction also handles pre-open capability,

we omit the explanation of this property, since pre-open capability
property is out-of-scope in our context.
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So, by modifying the signed message above, σ works even
after the proxy translates the second-level ciphertext.

Protocol 1. The proposed TR-PRE scheme

Setup(1k) : Let (G,GT ) be a bilinear group with prime
order p, e : G × G → GT be a bilinear map,
and g, u, v, h1, h2, h3 ∈ G be generators. Set the
message space as GT and the release time space as

Zp. Select s
$← Z

∗
p, compute TS pub = g

s, and
output tspriv = s and params = (g, u, v, h1, h2, h3,
TS pub, e(g, g), e(g, h1), e(g, h2), e(g, h3),H), where H :
{0, 1}∗ → Zp is a cryptographic hash function cho-
sen from a family of universal one-way hash functions
(UOWHF) [35]†.

KeyGen(params) : For a user Ui, choose xi
$← Zp, com-

pute Xi = g
xi , and output (upki, uski) = (Xi, xi).

TS-Release(params, tspriv, T ) : For a release time T ∈ Zp,

choose rT,1, rT,2, rT,3
$← Z

∗
p, compute sT =

(
(rT,1,

(h1 ·g−rT,1 )
1

s−T ), (rT,2, (h2 ·g−rT,2 )
1

s−T ), (rT,3, (h3 ·g−rT,3 )
1

s−T )
)
,

and then output sT .

Encrypt2(params, upki,M, T ) : Let upki = Xi. For M ∈
GT and T ∈ Zp, choose r1, r2

$← Zp and a one-time sig-
nature key pair (Ks,Kv) ← Sig.KeyGen(1k), set C1 :=
Kv, compute C2 = Xr1

i , C3 = M · e(g, g)r1 · e(g, h1)r2 ,
C4 = (uKv ·v)r1 , C5 = (g−T ·TS pub)r2 , C6 = e(g, g)r2 , and
C7 = (e(g, h2) ·e(g, h3)β)r2 , for β = H(C3,C5,C6). Then
compute σ = Sign(Ks, (C3,C4,C5,C6,C7, T )). Output
a second-level ciphertext C = (C1,C2,C3,C4,C5,C6,
C7, σ, T ).

Encrypt1(params, upki,M, T ) : Let upki = Xi. For M ∈
GT and T ∈ Zp, choose r1, r2, t

$← Zp and a one-time
signature key pair (Ks,Kv) ← Sig.KeyGen(1k), set
C1 := Kv, and compute C′2 = Xt

i , C′′2 = g
1/t, C′′′2 = Xr1t

i ,
C3 = M ·e(g, g)r1 ·e(g, h1)r2 , C4 = (uKv ·v)r1 , C5 = (g−T ·
TS pub)r2 , C6 = e(g, g)r2 , C7 = (e(g, h2) · e(g, h3)β)r2 ,
where β = H2(C3,C5,C6), and σ = Sign(Ks, (C3,C4,
C5,C6,C7, T )). Output a first-level ciphertext C = (C1,
C′2,C

′′
2 ,C

′′′
2 ,C3,C4,C5,C6,C7, σ, T ).

RKGen(params, uski, upk j) : Let uski = xi and upk j = Xj.

Compute Ri j = X
1
xi
j = g

x j
xi . Then output Ri j.

Re-Encrypt(params,Ri j, upki,C) : Let upki = Xi. For the
second-level ciphertext C = (C1,C2,C3,C4,C5,C6,C7,
σ, T ), check whether C was encrypted by using Xi or
not by verifying the following:

e(C2, u
C1 · v) ?

= e(Xi,C4), and

Verify(C1, σ, (C3,C4,C5,C6,C7, T ))
?
= 1

If well-formed, the first-level ciphertext C′ is computed

as follows: Choose t
$← Zp, compute C′2 = Xt

i , C′′2 =

R
1
t
i j, and C′′′2 = Ct

2, and output the first-level ciphertext
C′ = (C1,C′2,C

′′
2 ,C

′′′
2 ,C3,C4,C5,C6,C7, σ, T ).

Decrypt(params, usk,C, sT ) :

In the case of first-level ciphertexts : Let (C1,C′2,
C′′2 ,C

′′′
2 ,C3,C4,C5,C6,C7, σ, T ) be the first-level

ciphertext, and sT =
(
(rT,1, hT,1), (rT,2, hT,2),

(rT,3, hT,3)
)

be the trapdoor of T . Compute β =
H(C3,C5,C6) and check

e(C′2,C
′′
2 )

?
= e(Xj, g),

e(C′′′2 , u
C1 · v) ?

= e(C′2,C4),

e(C5, hT,2hβT,3) · CrT,2+rT,3β

6
?
= C7, and

Verify(C1, σ, (C3,C4,C5,C6,C7, T ))
?
= 1

If well-formed, compute

e(C′′2 ,C
′′′
2 )

1
x j = e(g

x j
txi , gtxir1 )

1
x j

= e(g, g)r1 ,

e(C5, hT,1) · CrT,1

6 = e((g−T · TS pub)r2 ,

(h1 · g−rT,1 )
1

s−T ) · e(g, g)rT,1r2 = e(g, h1)r2 ,

and C3/{e(g, g)r1 · e(g, h1)r2 } = M,

and output M.

In the case of second-level ciphertext : Let (C1,C2,
C3,C4,C5,C6,C7, σ, T ) be a second-level cipher-
text, and sT =

(
(rT,1, hT,1), (rT,2, hT,2), (rT,3, hT,3)

)

be the trapdoor of T . Compute β = H(C3,C5,C6)
and check

e(C2, u
C1 · v) ?

= e(Xi,C4),

e(C5, hT,2hβT,3) · CrT,2+rT,3β

6
?
= C7, and

Verify(C1, σ, (C3,C4,C5,C6,C7, T ))
?
= 1

If well-formed, compute

e(C2, g)
1
xi = e(Xr1

i , g)
1
xi

= e(g, g)r1 ,

e(C5, hT,1) · CrT,1

6 = e((g−T · TS pub)r2 ,

= e(g, h1)r2 , and

C3/{e(g, g)r1 · e(g, h1)r2 } = M,

and output M.

5. Features of Our TR-PRE Scheme

5.1 Security Analysis

Here, we give proofs of our TR-PRE scheme.

Theorem 1. Our TR-PRE scheme is IND-RCCA-secure at
†Bellare and Rogaway [2] rename UOWHF to target collision

resistant (TCR) hash functions. However, in this paper we use the
name UOWHF according to the Gently IBE.
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second-level ciphertext if the modified 3-QDBDH assump-
tion holds, and the underlying one-time signature scheme is
sUF.

Proof. This proof is similar to that of the Libert-Vergnaud
PRE scheme. However, we cannot directly use the chal-
lenger of the Libert-Vergnaud PRE scheme in a black-box
manner, since the signature part of our scheme is different
from that of the Libert-Vergnaud PRE scheme. Therefore,
we have to write down the detailed proof: Let (g, A−1 = g

1/a,
A1 = g

a, A2 = g
a2
, B = gb, Z) be a modified 3-QDBDH

instance. We construct an algorithm B1 that can decide
whether Z = e(g, g)b/a2

or not, by using an adversary A
to break the IND-RCCA security at second-level ciphertext
of our TR-PRE scheme.

Before constructing B1, we explain two cases in which
we can break the sUF of the underlying one-time signature
scheme: Let C∗ = (C∗1 = K∗v ,C

∗
2,C

∗
3,C

∗
4,C

∗
5,C

∗
6,C

∗
7, σ

∗, T ∗)
be the challenge ciphertext. Let event1 be the event that
A issues a decryption query (K∗v ,C

′
2,C

′′
2 ,C

′′′
2 ,C3,C4,C5,

C6,C7, σ, T ), where Verify(K∗v , σ, (C3,C4,C5,C6,C7, T )) =
1. Let event2 be the event that A issues a re-encryption
query (K∗v ,C2,C3,C4,C5,C6,C7, σ, T ), where Verify(K∗v , σ,
(C3,C4,C5,C6,C7, T )) = 1. If either event1 or event2 oc-
curs, then we can construct an algorithm (seyB2) that breaks
sUF of the underlying one-time signature scheme.

From now, we construct an algorithm B1 that outputs
a random bit and aborts when either event1 or event2 oc-
curs. B1 computes (K∗s ,K

∗
v ) ← Sig.KeyGen(1k), chooses

α1, α2
$← Z

∗
p, and computes u := Aα1

1 = gaα1 and v :=

A−α1·K∗v
1 ·Aα2

2 = g
−aα1K∗v+a2α2 (note that uKv ·v = Aα1(Kv−K∗v )

1 ·Aα2
2

will appear in a part of a ciphertext). B1 chooses s
$← Zp as

tspriv, and h1, h2, h3
$← Zp, and computes TS pub = g

s.

Public/Secret Key Generation: For the target user, B1

chooses x∗
$← Zp, and computes upk∗ = X∗ := Ax∗

2 . For

an honest user Uh, B1 chooses xh
$← Zp, and computes

upkh = Xh := Axh

1 . For a corrupted user Uc, B1 chooses

xc
$← Zp as uskc, and computes upkc = Xc := gxc .

Re-encryption Key Generation: For Rc∗, B1 can compute
Rc∗ = (X∗)1/xc , since B1 knows uskc = xc. For Rh∗, B1 can
compute Rh∗ = Ax∗/xh

1 = gx∗a2/(xha). For R∗h, B1 can compute
R∗h = Axh/x∗

−1 = gxha/(x∗a2). Note that Rh∗ and R∗h are valid re-
encryption keys, since usk∗ = x∗a2 and uskh = xha. For Rhc,
B1 can compute Rhc = Axc/xh

−1 = gxc/(xha). For Rch, B1 can
compute Rch = Axh/xc

1 = gxha/xc . For Rcc′ , B1 can compute
Rcc′ = g

xc/xc′ , since B1 knows uskc = xc and uskc′ = xc′ . For
Rhh′ , B1 can compute Rhh′ = g

xh′/xh = gxh′a/(xha).

From the above considerations, B1 can send params = (g,
u, v, h1, h2, h3, TS pub, e(g, g), e(g, h1), e(g, h2), e(g, h3), H),
Keys, ReKeys, and tspriv to A, where Keys := {upk∗,
{upkh}, {(upkc, uskc)}} and ReKeys := {{Rc∗}, {Rh∗}, {R∗h},
{Rhc}, {Rch}, {Rcc′ }, {Rhh′ }}.

• When A issues ORE-ENC with an input (upki, upk j,C),
where C = (C1,C2,C3,C4,C5,C6,C7, σ, T ) is a
second-level ciphertext, then if either upki or upk j were
not generated by B1, B1 returns ⊥. If C is ill-formed,
then B1 returns ⊥. We consider the following three
cases as follows:

i is the target user and j is an honest user : B1 sim-
ply re-encrypts C by using R∗h.

i is not the target user and j is an honest user : B1

simply re-encrypts C by using Rhh′ or Rch.

i is the target user and j is a corrupted user : If C1

= K∗v (event2), then B1 outputs a random bit,
and aborts. Otherwise, B1 computes C1/x∗

2 =

((X∗)r1 )1/x∗ = Ar1

2 . Now C4 = (uKv · v)r1 =

(Aα1(Kv−K∗v )
1 · Aα2

2 )r1 . Therefore, Ar1
1 = gar1 =

(
C4/(C

1/x∗

2 )α2
)1/(α1(Kv−K∗v )) holds. B1 chooses

t, r2
$← Zp, sets t̃ := at/xc, and computes

C′2 = At
1 = g

at = gxc·at/xc = gxct̃ = Xt̃
c,

C′′2 = Axc/t
−1 = gxc/at = g1/t̃, and C′′′2 =

{
(
C4/(C

1/x∗

2 )α2
)1/(α1(Kv−K∗v ))}t = gar1t = gr1 xct̃ =

(Xr1
c )t.

• WhenA issues ODEC with an input (upk j,C, T ), where
C is the first-level ciphertext under upk j, then if C is
ill-formed, B1 returns ⊥. In addition, if C1 = K∗v
and (C3,C4, σ) = (C∗3,C

∗
4, σ

∗) (this may occur after the
challenge phase), thenB1 returns⊥ since C us a deriva-
tive of (upk∗,C∗). If upk j = upkc, then B1 can decrypt
C, since B1 knows uskc. We consider the remaining
two cases as follows:

j is an honest user: Since Xj = g
ax j , e(C′′2 ,C

′′′
2 ) =

e(Xj, g)r1 = e(g, g)ar1 x j hold. In addition, C4 =

(uKv · v)r1 = (Aα1(Kv−K∗v )
1 · Aα2

2 )r1 = gaα1r1(Kv−K∗v ) ·

ga2α2r1 holds. Therefore
(

e(C4,A−1)
e(C′′2 ,C

′′′
2 )α2/x j

) 1
α1(Kv−K∗v )

=

e(g, g)r1 holds. By using x j, B1 can compute
e(g, g)r1 . In addition, B1 can compute sT , and
e(g, h1)r2 from (C5,C6,C7). B1 returns M =

C3/{e(g, g)r1 · e(g, h1)r2 } toA.

j is the target user: If C1 = K∗v (event1), then B1 out-
puts a random bit, and aborts. Now Xj = g

x∗a2
.

Therefore, e(C′′2 ,C
′′′
2 ) = (e, Xj, g)r1 = e(g, g)a2r1 x∗

hold. Since C4 = g
aα1r1(Kv−K∗v ) · ga2α2r1 holds,

e(C4, g) = e(g, g)aα1r1(Kv−K∗v ) · e(g, g)a2α2r1 holds.

Therefore
(

e(C4,g)

e(C′′,C′′′2 )α2/x j

) 1
α1(Kv−K∗v )

= e(g, g)ar1 holds.

In addition to this, e(C4, A−1) = e(g, g)α1r1(Kv−K∗v ) ·
e(g, g)aα2r1 holds. B1 computes

(e(g, g)α1r1(Kv−K∗v ) · e(g, g)aα2r1

(e(g, g)ar1 )α2

) 1
α1(Kv−K∗v )

= e(g, g)r1

In addition, B1 can compute sT , and e(g, h1)r2
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2Advmodified 3-QDBDH
G,B1

(1k)

= 2|Pr[B1 → 0 ∧ Z = e(g, g)b/a2
] − Pr[B1 → 0 ∧ Z = e(g, g)z]|

= 2| Pr[B1 → 0|Z = e(g, g)b/a2
] Pr[Z = e(g, g)b/a2

] − Pr[B1 → 0|Z = e(g, g)z] Pr[Z = e(g, g)z]|
= |Pr[B1 → 0|Z = e(g, g)b/a2

] − Pr[B1 → 0|Z = e(g, g)z]|
= |1 − Pr[B1 → 1|Z = e(g, g)b/a2

] − Pr[B1 → 0|Z = e(g, g)z]|
≥ |1 − ( 1

2 +A
IND-RCCA-2nd
Π,A (1k) − Pr[forge|Z = e(g, g)b/a2

]) − ( 1
2 − Pr[forge|Z = e(g, g)z])|

≥
(
AIND-RCCA-2nd
Π,A (1k) − (Pr[forge|Z = e(g, g)b/a2

] + Pr[forge|Z = e(g, g)z])
)

= AIND-RCCA-2nd
Π,A (1k) − Pr[forge](Pr[Z = e(g, g)b/a2

] + Pr[Z = e(g, g)z])
= AIND-RCCA-2nd

Π,A (1k) − Pr[forge]
≥ AIND-RCCA-2nd

Π,A (1k) − Advone-time sUF-CMA
B2

(1k)

Fig. 3 The probability estimations.

from (C5,C6,C7). B1 returns M = C3/{e(g, g)r1 ·
e(g, h1)r2 } toA.

Challenge: A sends (M∗0,M
∗
1, T

∗) to B1. B1 chooses r∗2
$←

Zp, sets C∗1 = K∗v , and computes C∗2 = Bx∗ , C3 = M∗μ · Z ·
e(g, h1)r∗2 , C∗4 = Bα2 , C∗5 = (g−T ∗ · TS pub)r∗2 , C6 = e(g, g)r∗2 ,
and C7 = e(g, h2)r∗2 · e(g, h3)r∗2β, where β = H(C∗3,C

∗
5,C

∗
6),

and σ∗ = Sign(K∗s , (C
∗
3,C

∗
4,C

∗
5,C

∗
6,C

∗
7, T

∗)).

Finally, A outputs μ′. B1 decides Z = e(g, g)b/a2
(i.e.,

B1 outputs 1) when μ′ = μ, and Z is a random value (i.e., B1

outputs 0), otherwise. When Z = e(g, g)b/a2
, C∗ = (C∗1,C

∗
2,

C∗3,C
∗
4,C

∗
5,C

∗
6,C

∗
7, σ

∗, T ∗) is a valid ciphertext of M∗μ with
r∗1 := b/a2. So,A has the advantage, and therefore

Pr[B1 → 1|Z = e(g, g)b/a2
]

≥1
2
+AIND-RCCA-2nd(1k) − Pr[forge|Z = e(g, g)b/a2

]

holds. Otherwise, if Z is a random value, M∗μ is perfectly
hidden by Z. So,A has no advantage, and therefore

Pr[B1 → 0|Z = e(g, g)z] ≥
1
2
− Pr[forge|Z = e(g, g)z]

holds. Finally, we estimate the advantage of B1. Let
forge be the event that B2 breaks sUF-CMA of the un-
derlying signature. From our simulation, Pr[forge] =
Pr[event1 ∨ event2] = Advone-time sUF-CMA

B2
(1k) hold.

Then AdvIND-RCCA-2nd
Π,A (1k) ≤ 2Advmodified 3-QDBDH

G,B1
(1k) +

Advone-time sUF-CMA
B2

(1k) holds from the estimations described
in Fig. 3. �

Theorem 2. Our TR-PRE scheme is IND-RCCA-secure at
first-level ciphertext if the modified 3-QDBDH assumption
holds, and the underlying one-time signature scheme is sUF.

Proof. Let (g, A−1 = g
1/a, A1 = g

a, A2 = g
a2
, B = gb, Z) be a

modified 3-QDBDH instance. We construct an algorithmB1

that can decide whether Z = e(g, g)b/a2
or not, by using an

adversary A to break the IND-RCCA security at first-level
ciphertext of our TR-PRE scheme.

As in the second-level ciphertext case, we explain the

case in which we can break the sUF of the underlying one-
time signature scheme: Let C∗ = (C∗1 = K∗v ,C

′
2
∗,C′′2

∗,
C′′′2

∗,C∗3,C
∗
4,C

∗
5,C

∗
6,C

∗
7, σ

∗, T ∗) be the challenge ciphertext.
Let event be the event that A issues a decryption query
(K∗v ,C

′
2,C

′′
2 ,C

′′′
2 ,C3,C4,C5,C6,C7, σ, T ), where Verify(K∗v ,

σ, (C3,C4,C5,C6,C7, T )) = 1. If event occurs, then we can
construct an algorithm that breaks sUF of the underlying
one-time signature scheme.

From now, we construct an algorithm B1 that outputs
a random bit and aborts when event occurs. B1 computes

(K∗s ,K
∗
v ) ← Sig.KeyGen(1k), chooses α1, α2

$← Z
∗
p, and

computes u := Aα1

1 = gaα1 and v := A−α1 ·K∗v
1 · Aα2

2 =

g−aα1K∗v+a2α2 (note that uKv · v = Aα1(Kv−K∗v )
1 · Aα2

2 will appear

in a part of a ciphertext). B1 chooses s
$← Zp as tspriv, and

h1, h2, h3
$← Zp, and computes TS pub = g

s.

Public/Secret Key Generation: For an honest user Uh, B1

chooses xh
$← Zp, and computes upkh = Xh := gxh . For

a corrupted user Uc, B1 chooses xc
$← Zp as uskc, and

computes upkc = Xc := gxc . For the target user, B1 sets
upk∗ = X∗ := A1.

Re-encryption Key Generation: B1 can compute all re-
encryption keys as follows. For Rhc, B1 can compute Rhc =

gxc/xh . For Rch, B1 can compute Rch = g
xh/xc . For Rcc′ , B1

can compute Rcc′ = g
xc/xc′ . For Rhh′ , B1 can compute Rhh′ =

gxh′ /xh . For Rc∗, B1 can compute Rc∗ = A1/xc

1 = ga/xc . For
Rh∗, B1 can compute Rh∗ = A1/xh

1 = ga/xh . For R∗h, B1 can
compute R∗h = Axh

−1 = g
xh/a. For R∗c, B1 can compute R∗c =

Axc

−1 = g
xc/a.

From the above considerations, B1 can send params = (g,
u, v, h1, h2, h3, TS pub, e(g, g), e(g, h1), e(g, h2), e(g, h3), H),
Keys, ReKeys, and tspriv to A, where Keys := {upk∗,
{upkh}, {(upkc, uskc)}} and ReKeys := {{Rc∗}, {Rh∗}, {R∗h},
{R∗c}, {Rhc}, {Rch}, {Rcc′ }, {Rhh′ }}.

WhenA issues ODEC with an input (upk j,C, T ), where
C is the first-level ciphertext under upk j, then if C is ill-
formed, B1 returns ⊥. In the case that j is not the target
user (i.e., upk j � upk∗), then B1 can decrypt C using xh
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or xc. So, we assume that upk j = upk∗. If e(C′′2 ,C
′′′
2 ) =

e(C′′2
∗,C′′′2

∗) (this may occur after the challenge phase), then
B1 returns ⊥, since (upk j,C) is a derivative of (upk∗,C∗).
Now for (unknown) exponents r1, t ∈ Z∗p, Xj = A1, C′2 =
At

1, C′′2 = g
1/t, and C′′′2 = Ar1t

1 hold. From e(C′′2 ,C
′′′
2 ) =

e(Xj, g)r1 = e(g, g)ar1 and C4 = (uKv · v)r1 = (Aα1(Kv−K∗v )
1 ·

Aα2

2 )r1 = gaα1r1(Kv−K∗v ) · ga2α2r1 ,
(

e(C4,A−1)
e(C′′2 ,C

′′′
2 )α2

) 1
α1(Kv−K∗v )

= e(g, g)r1

holds. In addition, B1 can compute sT , and e(g, h1)r2 from
(C5,C6,C7). B1 returns M = C3/{e(g, g)r1 · e(g, h1)r2 } toA.

Challenge: A sends (M∗0,M
∗
1, T

∗) to B1. B1 chooses

t∗, r∗2
$← Zp, sets C∗1 = K∗v , and computes C′2

∗ = At∗
2 ,

C′′2
∗ = A1/t∗

−1 , C′′′2
∗ = Bt∗ , C3 = M∗μ · Z · e(g, h1)r∗2 ,

C∗4 = Bα2 , C∗5 = (g−T ∗ · TS pub)r∗2 , C6 = e(g, g)r∗2 , and
C7 = e(g, h2)r∗2 · e(g, h3)r∗2β, where β = H(C∗3,C

∗
5,C

∗
6),

and σ∗ = Sign(K∗s , (C
∗
3,C

∗
4,C

∗
5,C

∗
6,C

∗
7, T

∗)). When Z =

e(g, g)b/a2
, C∗ = (C∗1,C

′
2
∗,C′′2

∗,C′′′2
∗,C∗3,C

∗
4,C

∗
5,C

∗
6,C

∗
7, σ

∗,

T ∗) is a valid ciphertext of M∗μ with r∗1 := b/a2. Otherwise,
if Z is a random value, M∗μ is perfectly hidden by Z. There-

fore, B1 decides Z = e(g, g)b/a2
when μ′ = μ, and Z is a

random value, otherwise.
As in the case of the second-ciphertext one,

AdvIND-RCCA-1st
Π,A (1k) ≤ 2Advmodified 3-QDBDH

G,B1
(1k) +

Advone-time sUF-CMA
B2

(1k) holds. �

Theorem 3. Our TR-PRE scheme is IND-wCTCA-secure
at second/first-level ciphertext if the truncated decisional q-
ABDHE assumption holds, H is chosen from a UOWHF
family, and the underlying one-time signature scheme is
sUF.

Proof. The roadmap of the proof is described as follows.
We can use the challenger of the IND-ID-CCA game of the
Gentry IBE scheme C in a black-box manner. The simulator
B1 chooses all PRE-related parameters (incl. all user’s secret
keys), and can use C when OTS -Release and ODEC are issued
by A. Especially, B1 can decrypt (upk,C, T ) if an element
(canceled by the TRE section) e(g, h1)r2 is computed by C,
since B1 knows all user’s secret keys. Since the Gentry IBE
scheme is IND-ID-CCA secure if the truncated decisional q-
ABDHE assumption holds and H is chosen from a UOWHF
family†, the theorem holds. For the sake of clarity, we in-
troduce the definition of IND-ID-CCA game and the Gentry
IBE scheme in the Appendix.

As in the IND-RCCA case, we explain the case in
which we can break the sUF of the underlying one-time
signature scheme: Let event be the event that A issues
a decryption query where Verify(K∗v , σ, (C3,C4,C5,C6,C7,
T )) = 1. If event occurs, then we can construct an algo-
rithm (say B2) that breaks sUF of the underlying one-time
signature scheme.

From now, we construct an algorithm B1 that out-
puts a random bit and aborts when event occurs. First, C
sends ibe.pk = (g, g1, h1, h2, h3,H) to B1. B1 computes
(K∗s ,K

∗
v ) ← Sig.KeyGen(1k), sets TS pub = g1, chooses

u, v
$← G, and sends params = (g, u, v, h1, h2, h3, TS pub,

e(g, g), e(g, h1), e(g, h2), e(g, h3),H) toA.

• For OKeyGen issued by A, B1 executes (X, x) ←
KeyGen(params), and sends (upk, usk) = (X, x) toA.

• For ORE-ENC and ORKGen, B1 can answer the query
since B1 has all secret keys usk.

• WhenA issuesOTS -Release with an input T ,B1 forwards
T to C as a EXTRACT query, obtains sT , and sends
sT toA.

• When A issues ODEC with an input (upk,C, T ), if upk
was not generated by B1, B1 returns ⊥. If C is ill-
formed, B1 returns ⊥ (note that B1 cannot check the

equation e(C5, hT,2hβT,3) · CrT,2+rT,3β

6
?
= C7 if the corre-

sponding sT has not been appeared. However, since the
validity check of the IBE section can turn over the de-
cryption oracleDEC, here B1 just check the validity of
the remaining equations (the PRE section and the one-
time signature). By using usk (paired with upk), B1

decrypts the PRE section, and obtains e(g, g)r1 for an
unknown exponent r1 ∈ Z∗p. In addition, B1 sends (C3,
C5,C6,C7, T ) to C as aDEC query, obtains M′ from C,
and sends M′/e(g, g)r1 to A. Note that if C returns ⊥
(i.e., (C3,C5,C6,C7, T ) is not a valid IBE ciphertext),
then B1 also returns ⊥ toA.

Challenge: A sends (M∗0 ,M
∗
1, T

∗, upk∗ := X∗) to B1.
Next, we explain the IND-wCTCA-1st case and the
IND-wCTCA-2nd case, respectively.

The first-level ciphertext: B1 chooses r∗1, t
∗ $← Zp, set

C∗1 := K∗v , and compute e(g, g)r∗1 , C′2
∗ = X∗t

∗
, C′′2

∗ =

g1/t∗ , C′′′2
∗ = X∗r

∗
1t∗ , and C∗4 = (uK∗v · v)r∗1 . B1

sets (M′0,M
′
1) := (M∗0 · e(g, g)r∗1 ,M∗1 · e(g, g)r∗1 ) as

the challenge message of the Gentry IBE, and sends
((M′0)∗, (M′1)∗) to C. C gives the challenge cipher-
text of the Gentry IBE (C∗IBE,1,C

∗
IBE,2,C

∗
IBE,3,C

∗
IBE,4).

B1 sets C∗3 := C∗IBE,3, C∗5 := C∗IBE,1, C∗6 :=
C∗IBE,2, and C∗7 := C∗IBE,4, and computes σ∗ ←
Sign(K∗s , (C

∗
3,C

∗
4,C

∗
5,C

∗
6,C

∗
7, T

∗)), and sends C∗ = (C∗1,
C′2
∗,C′′2

∗,C′′′2
∗,C∗3,C

∗
4,C

∗
5,C

∗
6,C

∗
7, σ

∗, T ∗).
The second-level ciphertext: This is the same as the of the

first-level ciphertext case, except B1 computes C∗2 =
X∗r

∗
1 instead of (C′2

∗,C′′2
∗,C′′′2

∗).

Note that B1 cannot decrypt the challenge cipher-
text C∗, since the TRE part of the C∗ is the chal-
lenge ciphertext of the Gentry IBE scheme. Finally,
A outputs μ′. B1 outputs μ′ to C as the guess-
ing bit. So, AdvIND-wCTCA-1st

Π,A (1k) ≤ AdvIND-ID-CCA
Gentry IBE,B1

(1k) +

Advone-time sUF-CMA
B2

(1k) and AdvIND-wCTCA-2nd
Π,A (1k) ≤

AdvIND-ID-CCA
Gentry IBE,B1

(1k) + Advone-time sUF-CMA
B2

(1k) hold. �

†Although Gentry does not include the state of the hash func-
tion into the theorem of his IBE scheme, the universal onewayness
of H is required in the proof of the Gentry IBE scheme. So, in
this paper, we explicitly require that H is chosen from a UOWHF
family.
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Table 1 Efficiency comparison.

Enc. Cost Enc. Cost Re-Enc. Cost Dec. Cost
(single recipient) (N recipients) (first)

Cathalo et al. ME(G) + ME(GT ) N(ME(G) + 2BM) - -
TRE [13] +2BM +ME(GT )

Our 3ME(G) 3ME(G) N(4ME(G) 2ME(G) + 4ME(GT )
TR-PRE +3ME(GT ) + Sign +3ME(GT ) + Sign +2BM + Sig.ver) +6BM + Sig.ver

Dec. Cost Ciphertext Standard
(second) Size Model

Cathalo et al. ME(G) |M| + k + |G| No
TRE [13] +ME(GT ) + BM

Our 2ME(G) + 4ME(GT ) |σ| + |Kv| + 5|G| + 3|GT | Yes
TR-PRE +6BM + Sig.ver

5.2 Efficiency Comparisons

Here, we compare our TR-PRE scheme and the TRE scheme
proposed by Cathalo-Libert-Quisquater TRE [13] in Ta-
ble 1. Note that, as mentioned before, in the Cathalo et
al. TRE, if each ciphertext (for a user Ui) is represented as
(Ci, (M||random nonce) ⊕ K, T ), then actual transferred ci-
phertext size is constant. So, we estimate the communica-
tion cost (i.e., the size of ciphertext per each receiver) of the
Cathalo et al. TRE with such customized ciphertext form.
Since other TRE schemes do not consider the multiple re-
cipients case, we omit these schemes from Table 1.

ME(G) and ME(GT ) denote the computational cost of
multi-exponentiation inG andGT , respectively. BM denotes
that of one bilinear map computation. |G| and

∣∣∣Zp

∣∣∣ denotes
the bit-length of the representation of a element of G and
Zp, respectively. |M| denotes the bit-length of the plain-
text space, |σ| denotes the bit-length of the signature, and
|Kv| denotes the bit-length of the verification key. Note that
k (appeared in the Cathalo et al. TRE) is the security pa-
rameter which indicates the size of the random nonce. We
omit the costs of both the re-encryption and decryption of
the first level ciphertext from the Cathalo et al. TRE estima-
tion. In addition, the ciphertext of the Cathalo et al. TRE
is regarded as the second-level ciphertext, since it is not ap-
plied the proxy re-encryption procedure.

Due to random oracles, the Cathalo et al. TRE achieves
highly efficient construction and much smaller ciphertext
size compared with our TR-PRE scheme†. However, it is
desirable to construct cryptographic schemes without ran-
dom oracles even if efficient cryptographic schemes can be
easily achieved in the random oracle model. For example,
Canetti et al. [10] show that there exist signature and en-
cryption schemes, which are secure in the random oracle
model, but are insecure when random oracles are replaced
with actual hash functions. Constructing protocols in stan-
dard model is thus important in real-life applications since
there is no known hash function that is perfectly random.
In addition, encryption costs of the Cathalo et al. TRE lin-
early depend on N (it can be a serious problem when N be-
comes large), whereas no costs depend on N from the en-
cryptor’s/decryptor’s point of view in our TR-PRE scheme.

This is a superior point of our TR-PRE scheme compared
with the Cathalo et al. TRE scheme.

5.3 Is Technique of Attribute-Based Proxy Re-Encryption
Applicable to TR-PRE?

Liang et al. proposed AB-PRE [31]. Considering a release-
time T (and identity of user also) as an attribute, it is ex-
pected that TR-PRE is implied by AB-PRE. However, we
show that AB-PRE is not suitable for constructing TRE
scheme with fully constant costs as follows.

In AB-PRE, as in Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) [4], a decryption key is assigned with
a set of attributes, and a ciphertext is assigned with an access
structure. The proxy translates a ciphertext C assigned with
an access structure AS into the re-encrypted ciphertext as-
signed with another access structure AS ′. Each user is given
the corresponding decryption key assigned with certain at-
tributes by a trusted key generation authority (KGA). Then,
for example, by indicating AS = (T ∧ U1) as the access
structure of the second-level ciphertext and AS ′ = (T ∧ U2)
as the access structure of the first-level ciphertext, AB-PRE
might work like TRE with fully constant costs from the en-
cryptor’s and decryptor’s point of view. However, due to the
functionality of AB-PRE, KGA can know all plaintext, and
therefore KGA is modeled as fully trusted. As mentioned in
Sect. 1, the condition that no authority can decrypt cipher-
texts should be satisfied as in TRE. Thus, AB-PRE is not
suitable for constructing TRE scheme with fully constant
costs.

6. Applications of TR-PRE

By using TR-PRE, we can achieve a multicast secure com-
munication with release time indication††. For example,

†Note that 2BM containing the encryption costs of the Cathalo
et al. TRE is for checking whether the public key upk is valid or

not, namely, for upk = (X,Y), the verification e(X, TS pub)
?
= e(g,Y)

is required. Therefore, this verification is required for the first com-
munication only.
††Actually, as applications of PRE schemes, e-mail systems

based on PRE have been proposed, such as [6], [28]–[30]. By using
TR-PRE as a building tool of these e-mail systems, we can achieve
e-mail systems with release time indication.
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in an on-line examination, an examiner sends encrypted
e-mails to each examinee, and each examination can be
opened at the same time. Compared with the case of apply-
ing TRE, we can reduce the encryption costs of the exam-
iner. Compared with the case of applying public key encryp-
tion with recipient-to-recipient encryption, we can achieve
fairer examination, since each examinee can decrypt the cor-
responding encrypted e-mail, simultaneously.

By applying the fact that a trapdoor sT can be used
commonly for plural ciphertexts assigned with T , we can
apply TR-PRE to the case where huge encrypted data (e.g.,
digital movies) are transferred all over the world, and their
release time (e.g., release date) is indicated. Even if a con-
ventional PKE scheme is applied, encrypted contents (which
are encrypted by each recipient’s public key) cannot be de-
livered before the release date, since the contents might be
leaked though release date has not been passed. If such en-
crypted contents are delivered right before the release date,
then there is an possibility of delaying release time, since
huge encrypted data need to be transferred. By using a con-
ventional TRE scheme, we can achieve that encrypted con-
tents (which is encrypted by each recipient’s public key) can
be delivered before the release date with reasonable margin,
and sT is delivered right before the release date. However,
since there is no TRE scheme with fully constant costs, a
distributor is subject to huge amount of computational costs.
On the other hand, our TR-PRE achieves fully constant costs
from the encryptor’s/decryptor’s point of view. So, we can
construct an efficient fairly-opened multi-cast cryptosystem
with release time indication by applying TR-PRE.

7. Conclusion

In this paper, to achieve TRE with fully constant costs from
the encryptor’s/decryptor’s point of view, we propose a TR-
PRE scheme based on the Libert-Vergnaud PRE [32] and
the Gentry IBE [26]. An encryptor can foist N-dependent
computation costs on the proxy, and therefore any fac-
tor (ciphertext size, computational complexity of encryp-
tion/decryption, and public/secret key size) does not depend
on N, except the proxy re-encryption costs. TR-PRE works
like TRE with fully constant costs from the encryptor’s and
decryptor’s point of view. TR-PRE functionality can be ap-
plied to efficient multicast secure communication with a re-
lease time indication.

In cloud computing environments, users do not have to
grasp the actual data storage of some services, and therefore
data management becomes more and more difficult. Usu-
ally, access control of data and encryption of data are dif-
ferent technologies. Therefore, TRE (ABE [4] and search-
able encryption [9] are also another examples) is suitable
in cloud computing environments, since the access control
function is included in the encrypted data itself. In PRE,
access control (namely, who has decryption rights) may be
complicated and hard to manage, when the number of users
becomes large. TR-PRE is valuable in adding an access con-
trol function into encrypted (and re-encrypted) data itself.

This feature is suitable for data management (e.g., when
ciphertexts can be decrypted) in cloud computing environ-
ments.
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Appendix

In this Appendix, we introduce the security definition of
IND-ID-CCA security and the Gentry IBE scheme for the
sake of clarity of the proof of Theorem 3.

An IBE scheme Π consists of four algorithms,
IBE.Setup, IBE.Extract, IBE.Enc and IBE.Dec. The public
key ibe.pk and the master key ibe.mk are given by executing
IBE.Setup(1k). For an identity ID ∈ ID, where ID is the
identity space (and ID = Zp in the Gentry IBE scheme),
a secret key corresponding to ID sID is given by executing
IBE.Extract(ibe.pk, ibe.mk, ID). For a message M ∈ MIBE

and ID ∈ ID, where MIBE is the message space of IBE,
an encryptor runs IBE.Enc(ibe.pk, ID,M), and obtains a ci-
phertext CIBE. The message M is computed by executing
IBE.Dec(sID,CIBE).

Next, we define the security experiment of IBE under
chosen ciphertext attack (IND-ID-CCA) as follows.

Definition 11 (IND-ID-CCA). An IBE scheme is said to be
IND-ID-CCA secure if the advantage is negligible for any
PPT adversaryA in the following experiment.

AdvIND-ID-CCA
Π,A (1k)

:=
∣∣∣ Pr
[
(ibe.pk, ibe.mk)← IBE.Setup(1k);

(M∗0 ,M
∗
1, ID∗, S tate)← AEXTRACT ,DEC(ibe.pk);

μ
$← {0, 1}; C∗IBE ← IBE.Enc(ibe.pk, ID∗,M∗μ);

μ′ ← AEXTRACT ,DEC(C∗IBE, S tate); μ = μ′
]
− 1/2

∣∣∣

Let EXTRACT be an extract oracle, where, for input of an

identity ID, it returns the corresponding secret key sID. Note
that ID∗ is not allowed to input to EXTRACT . LetDEC be
a decryption oracle, where, for input of a ciphertext C and
an identity ID, it returns the corresponding plaintext M or⊥
according to the IBE.Dec algorithm. Note that (ID∗,C∗IBE)
is not allowed to input toDEC.

Next, we introduce the Gentry IBE scheme as follows.

Protocol 2 (The IND-ID-CCA secure Gentry IBE).

IBE.Setup(1k): Set the message space MIBE = GT and
the identity space ID = Zp. Choose generators

g, h1, h2, h3
$← G, s

$← Zp, and a hash function
H : {0, 1}∗ → Zp (chosen from a UOWHF fam-
ily [35]), compute g1 = g

s, and output ibe.pk =
(g, g1, h1, h2, h3,H) and ibe.mk = s.

IBE.Extract(ibe.pk, ibe.mk, ID): Choose rID,1, rID,2, rID,3
$← Zp, compute sID =

(
(rID,1, hID,1 = (h1g

−rID,1 )
1

(s−ID) ,

(rID,2, hID,2 = (h2g
−rID,2 )

1
(s−ID) , (rID,3, hID,3 = (h3g

−rID,3 )
1

(s−ID)
)
, and output sID.

IBE.Enc(ibe.pk, ID,M): For a plaintext M ∈ G, choose

r
$← Zp, and compute CIBE,1 = (g1g

−ID)r, CIBE,2 =

e(g, g)r, CIBE,3 = M · e(g, h1)r, β = H(CIBE,1, CIBE,2,
CIBE,3), and CIBE,4 = (e(g, h2)e(g, h3)β)r, and output
CIBE = (CIBE,1, CIBE,2, CIBE,3, CIBE,4).

IBE.Dec(sID,CIBE): Parse CIBE = (CIBE,1,CIBE,2,CIBE,3,
CIBE,4). Compute β = H(CIBE,1,CIBE,2,CIBE,3) and
check

e(CIBE,1, hID,2hβID,3)CrID,2+rID,3β

IBE,2
?
= CIBE,4

If the chack fails, then output ⊥. Otherwise, output
M = CIBE,3/{e(CIBE,1, hID,1) ·CrID,1

IBE,2}.

Due to the universal onewayness of H, it is hard to find
(CIBE,1,CIBE,2,CIBE,3) and (C′IBE,1,C

′
IBE,2,C

′
IBE,3) such that

β = H(CIBE,1,CIBE,2,CIBE,3) = H(C′IBE,1,C
′
IBE,2,C

′
IBE,3),

and (CIBE,1,CIBE,2,CIBE,3) � (C′IBE,1,C
′
IBE,2,C

′
IBE,3). So, no

adversary can issue a ciphertext to DEC with the condition
that the hashed vallue of the ciphertext is the same as that of
the challenge ciphertext (otherwise, we break the universal
onewayness of H). This is an analogous on the Cramer-
Shoup PKE [20].
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