JAIST Repository

https://dspace.jaist.ac.jp/

Redesigning Group Key Exchange Prot
Title Bilinear Pairing Suitable| for Vari ol
Environments
Author(s) Desmedt, Yvo; Miyaji, Atspko
o Lecture Notes in Computer| Science,
Citation
236-254
Issue Date 2011-07-109
Type Journal Article
Text version aut hor
URL http://hdl.handle.net/ 10109/ 10292
This is the author-createfd version
Yvo Desmedt and Atsuko Miyaji, Lect
Rights Computer Science, 6584/ 2001, 2011, :
d original publication is apailable af
www. springerlink. com,
http://dx.doi.org/10.1007f978-3-642-
I nformation Security and LCryptologyl
L I nternational Conference, I nscrypt
Description] .
Shanghai , Chi na, October P 0- 24, 201 (
Sel ected Papers

AIST

JAPAN
ADVANCED

INSTITUTE OF

® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Redesigning Group Key Exchange Protocol based on
Bilinear Pairing Suitable for Various Environments

Yvo Desmedt' * and Atsuko Miyaji* **

! University College London
y.desmedt@cs.ucl.ac.uk
2 Japan Advanced Institute of Science and Technology
miyaji@jaist.ac.jp

Abstract. Group key exchange (GKE) allows a group of # parties to share
a common secret key over insecure channels. Since key management is
important, NIST is now looking for a standard. The goal of this paper
is to redesign GKE using bilinear pairings, proposed by Desmedt and
Lange, from the point of view of arrangement of parties. The arrangement
of parties is called a party tree in this paper. Actually, we are able to
redesign the party tree, to reduce the computational and communicational
complexity compared with the previous scheme, when GKE is executed
among a small group of parties. We also redesign the general party tree for
a large number of parties, in which each party is in a different environment
such as having large or limited computational resources, electrical power,
etc.

Key words: group key exchange, pairing, party tree, graph theory

1 Introduction

A group key exchange protocol (GKE) allows a group of n parties to share a
common secret key over an insecure channel and, thus, parties in the group can
encrypt and decrypt messages among group members. Secure communication
among many parties has become an integral part of many applications. For
example, ad hoc wireless networks are deployed in many areas such as homes,
schools, disaster areas, etc., where a network is susceptible to attacks ranging
from passive eavesdropping to active interference. Besides ad hoc networks,
another environment where ad hoc groups are popular is in the context of new
emerging social networks. The most well-known examples are Facebook and
the professional network LinkedIn. Note that, as pointed out by Katz-Yung [15]
some dynamic GKE protocols are slower than restarting from scratch with an
efficient GKE. So, we do not consider making our protocols dynamic.

* A part of this work was done while funded by PSRC EP/C538285/1, by BT, (as BT
Chair of Information Security), by RCIS (AIST), and by JSPS/S-08153.
** This study is partly supported by Grant-in-Aid for Scientific Research (A), 21240001.

Some previous GKEs are based on the DH-key exchange protocol [7,8]. These
GKEs were defined over a finite field, however, it can also be naturally defined
over an elliptic curve for efficiency, denoted by GKE-ECDH. Some GKEs [10, 12],
based on Joux’s tripartite key exchange protocols [14] using a bilinear pairing,
follow constructions by [7,8], which are denoted by GKE-BP. Other GKEs [1-
3] are not based on [7,8], which combine DH-key over an elliptic curve and
Joux’s tripartite key exchange. In this paper, we focus on GKE-BP proposed by
Desmedt and Lange [12].

Let us discuss the differences between GKE-ECDH and GKE-BP from the
point of view of arrangement of parties. A party-arrangement tree is called a
party tree in this paper. GKE-ECDH is based on a two-party GKE and, thus, the
generalization to an n-party GKE uses a binary tree. On the other hand, GKE-BP
is based on Joux's [14] three-party GKE. In order to generalize the three-party
GKE-BP to an n-party GKE-BP, n parties are simply arranged in a triplet tree.
As a result, GKE-BP has the merit of reducing the height of the tree which
arranges parties. In addition to this fact, GKE-BP is fit for combination with the
short signature [6], since both GKE-BP and the short signature are based on a
bilinear pairing over elliptic curve, using similar technology. However, there
might be room for improvement in the arrangement of multiple triangles from
the point of view of communicational or computational complexity; and the
most efficient party tree might be different according to the number of parties.
Previous protocols [12] based on GKE-BP, denoted by BDI-BP and BDII-BP?
in this paper, do not focus on the party tree, and use a triplet tree to arrange
parties by connecting the triangles at the nodes. In fact, few generalizations
were developed to achieve an n-party version, although Joux’s 3-party GKE-BP
is a heavily cited paper.

In this paper, we explore the improvement of n-party versions of GKE-
BP by redesigning the party tree, and investigate what type of party tree is
suitable for given each condition: for example, the number of parties is decided
according to application, or in the case of a large number of parties, each party
may be under a different environment, such as having limited computational
resources, electrical power, etc. As a result, we succeed in constructing a new
GKE based on bilinear pairings which uses a new party tree and arranges
parties by connecting the triangles at the edges, which we call an edge-based
GKE. Compared with our edge-based GKE, BDII-BP is called a node-based
GKE. We also analyze the performance of our edge-based GKE, and, the node-
based GKE carefully, and show that the most efficient party arrangement is
different, according to the number of parties, n. In addition, each tree has various
strengths and weaknesses. Edge-based scheme has an advantage over node-
based GKE in sent message complexity for parties with low computational
resources. On the other hand, node-based GKE has an advantage over Edge-
based scheme in received message complexity. Edge-based scheme is suitable in
the case of a small number of parties. From the point of view of computational

% We focus on BDII-BP in this paper since BDII-BP is more efficient than BDI-BP.

complexity, our edge-based GKE can work more efficiently than node-based
GKEfor4 <n<9and 16 <n <21.

We also investigate GKE in the case of a large number of parties. In such a
case, each party may be in a different environment. For example, some parties
may have large computational resources, but others may have few resources;
and some parties may have almost unlimited electrical power, but others may
run on small batteries. In [12], a GKE among a group with two types of parties
is discussed. 11 parties have large computational resources and n, parties have
few resources. In this paper, we give the general and systematic construction
of a GKE among a group by redesigning the party tree, in which ny, np, -+,
n,, parties have computational resources in descending order, which we call an
(n1,n2,+ -+, my,)-GKE. From a practical point of view, the necessary features for
GKE depend on the application. By using our results, we can choose the optimal
party tree according to each application.

This paper is organized as follows. Section 2 summarizes computational
assumptions, security assumptions, and security definitions of GKE, together
with notations. Section 3 reviews the previous GKEs based on bilinear pairings.
Section 4 presents our new edge-based GKE using bilinear pairings, after mak-
ing clear the differences between edge-based and node-based GKE. Section 5
shows how to construct (11,1, -+, 1,)-GKE, in which ny, ny, ---, n,, parties
have computational resources in descending order.

2 Preliminary

This section summarizes notations, assumptions, and the basic security notions
used in this paper.

2.1 The Bilinear Map, its Related Assumptions, and Security Model of
GKE

Let G; and G; be two cyclic groups of prime order 4. G; (resp. G) is represented
additively (resp. multiplicatively), where O (resp. 1) represents the zero element
(identity element) for addition (multiplication) in G; (resp. G). The following
bilinear map & : G; X G1 — G is defined over G;.

1. Bilinearity: é(GO + G, Gz) = é(Go, Gz) * é(Gl, G2), é(Go, G+ Gz) = é(Go, Gl) *

é(Go, Gz) VGy, G1,Gr € G.

2. Non-degeneracy: é(G, G) # 1 for any G € G; \ {O}.
3. Computability: There is an efficient algorithm to compute é(Go, G1) for any

Go, G1 € G1.

Let k be a security parameter. A DBDH (Decision Bilinear Diffie Hellman)
parameter generator J G is a probabilistic polynomial time (ppT) algorithm that
on input 1¥, outputs a description of the above (G1, Gz, é). The DBDH problem
with respectto 7Gis: givenrandom G, Y1, Y3, Y3 € G1 and z € G, where Y; = ;G
(i =1,---,3) to decide whether z = &(G, G)"*** or not. More precisely, we
say that 7G satisfies the DBDH assumption if ‘pl - pz‘ is negligible (in k) for

all ppr algorithms A, where p1 = Pr[(G1, Gy, 8) « IG6(1%;G, Y1 = ;G,Y; =
G, Ys = az3G « Gy A(Gl, Gy, 2,G,Y1,Y5, Y53, @(G, G)“1“2“3) = 0] and P2 =
Pr[(Gy, Gy, 8) «— IG(1X);G, Y1 = a1G,Ys = G, Y3 = 3G « Gp,z « G, :
A(G1,Gy,6,G,Y1,Y,Y3,z) = 0]. This assumption is believed to hold if ¢ is a
Weil/Tate pairing on either a supersingular elliptic curve or an ordinary elliptic
curve [18].

Let IT be a GKE protocol with n parties, let k be a security parameter, and let
P = {Pq,---, P} be aset of n parties, where 7 is bounded above by a polynomial
in k. We follow the security model described in [15]. Here we review their
definitions while focusing on models used in this paper.

We assume that parties do not deviate from the protocol and an adversary
A is an outsider, that is, never participates as a party in the protocol. The in-
teraction between A and parties occurs only via the following oracle queries,
where IT,, denotes the i-th instance of party P; ski, denotes the session key after
execution of the protocol by IT; sid}, denotes the session identity for instance
IT%; and pid’, denotes the partner identity for instance IT,.

Send(P, i, m): This sends message m to instance IT,, and outputs the reply gen-
erated by this instance. This query models an active attack.

Execute(P1,i1,- -+, Py, iy): This executes the protocol between the unused in-
stances {H;f}lg j<n and outputs the transcript of the execution;

Reveal(P, i): This outputs a session key skj, for a terminated instance IT;,.
Corrupt(P): This outputs the long-term secret key of a party P.

Test(P,i): This query is asked only once, at any time during the adversary’s
execution. A bit b € {0, 1} is chosen uniformly at random. The adversary is given
sk if b = 1, and a random session key if b = 0.

A passive adversary is given access to the Execute, Reveal, Corrupt, and
Test oracles, while an active adversary is additionally given access to the Send
oracle. The adversary can query Send, Execute, Reveal, and Corrupt oracles
several times, but Test oracle is asked only once and on a fresh instance?.

Finally, the adversary outputs a guess bit b’. Then, Succ, the event in which A
wins the game for a protocol I, occurs if b = b” where b is the hidden bit used by
the Test oracle. The advantage of A is defined as Adv;(k) = [Prob[Succ] — 1/2|.
We say II is a secure group key exchange protocol if, for any PPT passive
adversary A, Advy; is negligible (in k). We say I1 is a secure group authenticated
key exchange protocol if, for any PPT active adversary A, Adv};"® is negligible
(in k). The requirement of forward secrecy is already included in the above
definition, since A is allowed to access the Corrupt oracle in each case.

The Katz-Yung compiler [15], or a variant of [13], transforms any GKE which
is secure against a passive adversary with or without forward secrecy into one
that is secure against active adversaries with or without forward secrecy, re-

spectively. Let us briefly describe how the compiler transforms any passive-

* IT, is a fresh instance unless one of the following is true: (1) A, at some point, queried
Reveal (P,i) or Reveal (P, j) with P’ € pidi; or (2) A queried Corrupt(P”) with (P” €
pidy) before a query of Send(P, i, *) or Send(P’, j, *) with (P’ € pidp).

adversary-secure GKE into active-adversary-secure GKE: to avoid replay at-
tacks, the compiler introduces a fresh random nonce for each party for each
execution of the protocol, adds a message number for each party, and makes a
signature on message, the message number, and the nonce by using a strongly
unforgeable signature under adaptive chosen message attack. As for the de-
tailed construction, refer to [15,13]. This paper focuses on redesigning BDII-BP
from the graph-theory point of view, and investigates the optimal party tree
for a given condition, where BDII-BP is secure against a passive attack and
does not have a long-term secret key. Therefore, we focus solely on the passive
case without long-term secret key. Note that, our scheme will be shown to be
secure against passive adversaries, and, thus, both our scheme and BDII-BP are
transformed to become secure against active adversaries.

2.2 Assumptions regarding Computational Complexity

We make some assumptions necessary to compute the computational complex-
ity. The GKE we will build consists of scalar multiplications on G; (i = 1,2),
multiplications on G;, and pairings . We denote the computational complex-
ity of a single scalar multiplication on G;, a single multiplication on G;, and a
single pairing, by SM;, M;, and e, respectively, where i = 1 or 2. Based on the
current security parameters, the size of G is 6 or more times larger than G;.
Using the conventional algorithm [16], the ratio of computational complexity

G|
Gal

putational complexity of SM; versus M; can be set to SM; = @M,- for each
G;. The computational complexity of these operations, in descending order, is
e > SMy > SM; > M, > M. In our evaluation, we focus primarily on the
computational complexity of e, SM1, and M,. Note that we do not use a scalar
multiplication on G; in any GKE presented in this paper.

2
of M, versus M;j can be set to M; = () M,. Similarly, the ratio of the com-

2.3 Notation and Assumptions regarding GKE

This paper deals with each computational resources or electrical power slightly
precisely. For this purpose, we introduce notation, (#1,#,)-GKE, which means
GKE among 1y parties that have large computational resources and enough
electrical power, and n, parties that have low computational resources or are
running on batteries. More generally, we explore (11,12, -+ , n,,)-GKE among 11,
1y, -+, 1y, parties, each with computational resources or electrical power levels
in descending order.

Let us first make some observations regarding GKE. In this paper, when we
evaluate the communicational complexity per party, it is from the point of view
of the party with the maximum sent and received data. We distinguish between
point-to-point and broadcast communication, while we do not distinguish be-
tween multicast and broadcast communication. We use p; (resp. b;) to denote
a message in G; (i = 1,2) sent/received through point-to-point (resp. broadcast)
communication.

Another measure for comparing protocols is the computational complex-
ity per party. Keeping the discussion in Section 2.2 in mind, we focus on the
computational complexity of e, SM1, and M,.

We also introduce a concept, “auxiliary elements”. In some GKEs, some parties
can compute a shared key by themselves, that is, they can compute a shared
key using their own secret key and public data. Some parties, however, cannot
compute a shared key by themselves, that is, they need some additional data
computed and sent by others. Moreover, this data has to be received and stored
by the recipient. The maximum number of auxiliary elements a party receives
is denoted by MAE. MAE is also a good characteristic for evaluating each GKE.

To express these evaluations in detail we use the notation (11-[#e, #SM, #M>],
no-[#e, #SMy, #M], - - - , ny-[#e, #SMy, #M>]; #MAE)-GKE. For example,

(m1 -[3,4,5],n2-[1,1,0]; 2)-GKE indicates that 11 parties compute 3¢ +4SM; +5M>;
1, parties compute le + 1SM;; some parties need to receive 2 auxiliary elements
for the shared key.

For the sake of completeness, we define a triplet tree. A triplet tree is a
hypergraph [4] (V,E) in which each hyperedge is a 3-set, and the intersection
of two edges is a single vertex or empty. Note that some of our constructions
are not triplet trees (see Section 4). Our constructions can also be regarded as
a hypergraph (V, E) in which each hyperedge is a 3-set, and which is vertex-
connected. When such a hyperedge involves the vertices 4, b, c we often denote it
as Agp.. We also denote an edge which involves the vertices a, b as E,. Although
we use a normal graph to represent this hypergraph, the hyperedge will be
obvious.

3 Background

This section summarizes previous GKEs based on bilinear maps. The original
GKE, called BDI [7] and BDII [8], are constructed over a finite field or an elliptic
curve. They were adapted to work using pairings in [10, 12]. BDI using pairings
was proposed by [10], but it is neither more efficient than [12] nor adapted
to the situation of parties with different computational resources since it is
fully contributory. We are interested in dealing with parties having different
computational resources each other and, thus, redesigning the asymmetric party
tree. This is why we focus on BDII based on pairings [12], which we call BDII-BP.

In BDII-BP, parties are arranged in a tree based on a triangle, in which each
node is connected to two other triangles (See Fig 3.1). We denote the parent,
the two left children, or the two right children of i by par(i), 1.child. 1(i) and
1.child.2(i), or r.child. 1(7) and r.child. 2(i), respectively, and the sibling of
i, who is in the same triangle, by sib(i) (See Fig 3.2). The concepts of child and
parent of i are defined by using the distance from a shaded triangle A1p3. In
these figures, one party is set to each node; black nodes correspond to parties
with large computational resources; white nodes correspond to parties with
low computational resources; and a shaded triangle corresponds to the exact
triangle of a shared key.

Protocol 1 (BDII-BP[12])

sib(i)

1.child.1(7) r.child.2(7)

1.child.2() r.child.1(i)

Fig.3.1. BDII-BP using a bilinear map Fig.3.2. Neighbors of P;

1. Each P; computes Z; = ;G for a secretly chosen r; € Z; and sends it to 6 parties
such as its 2 left children, 2 right children, the sibling, and the parent.

2. Each P; computes both Xiest; and Xrigne; and multicasts these respectively to its
left and right descendants, where

e(Zparty, Zsivi))" 3 e(Zpary, riZsib(i)

Xiefti = % = —
et e(zl.child.l(i)/ Zl.child.z(i))” e(zl.child.l(i)/ Tizl.child.z(z‘))
= é(7’1'Zpar(i),Zs,ib(z‘)) : é(Zl.child.l(z‘)/ —Tizl.child.z(z‘))/
e(Zpar(iy, Zsiv(i))" E(Zpar(iy, TiZsin(i))
Xright,i = =

&(Zr.chirary Zreniraz®)” 6 Zr.cnitaig), HiZr.child ()
= é(7’1'Zpar(i), Zsib(i))é(zr.child. 1(i)/ —Tizr.child.z(i))-

3. Each P;computes ashared key K = &(riZpar(), Zsin) 11 jc ancestore Xi = &(G, G)"".

BDII-BP works® in (51— %, SZT” + %)—GKE, where 7 — % parties execute 3e + 4SM; +
(log, (n +1))M; at most by keeping and reusing &(r;Zyar(i), Zsin(;)), and SZT” + %

parties execute e + 2SM; + (log, (1 + 1) — 1)M; at most.
4 Redesigning GKE based on Bilinear Pairing

In this section, we present our basic new GKEs, which use a new arrangement of
parties by using triangles that overlap at edges. When viewing the triangles as
hyperedges, this formally corresponds with hyperedges at which an intersection
corresponds to two vertices. Any previous GKE based on bilinear pairings uses a
triplet tree, and so triangles were connected to each other at single nodes. Before
showing our new edge-based GKE, let us investigate the differences between
edge-based and node-based GKEs when using bilinear pairings.

4.1 Differences between edge-based and node-based GKE

We present three GKEs (Protocols 2, 3, and 4) between 7 parties, and inves-
tigate the differences among them, where Figures 4.1, 4.2, and 4.3 show each

5 From now on we will drop the notations (both | | and [1) when there is no confusion.

arrangement of parties, respectively. In these figures, arrows correspond to the
flow to compute the shared key and other descriptions such as nodes and a
shaded triangles are the same as in Section 3. Protocol 2 is a node-based GKE
using bilinear pairings; this protocol is easily derived from the previous GKE
[12]. Protocols 3 and 4 are edge-based GKEs, which are new arrangements in-
troduced in this paper. Let us compare Protocols 3 and 4 and, then, Protocols 2
and 4 after we describe these protocols.

40 4 1 6
1
6
5 7
2 3 N
3
2 3 7 5
7 5
Fig.4.1. Protocol 2 Fig.4.2. Protocol 3

Fig.4.3. Protocol 4

Protocol 2 ((1-[3,4,2],4-[1,2,1],2-[1,2,0]; 1)-GKE)

1. Each party P; computes Z; = ;G for a (private) randomly chosen r; € Z; and sends
it to its neighbors.

2. P1 computes two auxiliary elements Xy 5 and Xy and sends them to (P4, Ps) and
(Pe, P7), respectively, where

e(Zy, Z3)1

Xy5 = % = 8(r1Za, Z3)e(Zs, —11Zs) (reusing é(r1Z,, Z3));
é(Zy, Z3)"

Xo7 = D222 o(r1 2,5, 23)6(Ze, 11 Z

57 = 3Za Zo)" &(r1Zy, Z3)e(Zs, —11Z7)

3. A shared key is given as K = &(G, G)"""3. Py computes this as K = é(r1Z,,Z3);
Pz as K = 5(7’221,23),' P3 as K = é(1’3Z1, Zz); P4 as K = X4,5é(r4Z1, Z5); P5 as
K= X4/5@(1’5Zl,Z4),‘ P6 as K = X6,7@(T621,Z7),' and P7 as K = X6,7@(T721,Z6) and
this shared key is depicted in Figure 4.1 as computed from the shaded area.

Protocol 3 ((2-[3,3,01,1-[1,2,2],3-[1,2,1],1-[1,2, 0]; 2)-GKE)

1. Each party P; computes Z; = ;G for a (private) randomly chosen r; € Z; and sends
it to its neighbors.

2. P1 and P, compute 2 auxiliary elements (Xu, X¢) and (X5, X7) and send them to
(P4, Ps) and (Ps, Py), respectively, where

Pi: Xy = % = &(r1Zy, (Z3 — Zy)) (reusing r17Z5);
X = % = 8(Z3,11(Z2 — Zs));

Py: X5 = % = (23, (Z1 — Zs)) (reusing 1. Z3);
X7 = % = &(Zs,12(Z3 — Z7)).

3. A shared key is given as K = &(G, G)"""3. Py computes this as K = é(r1Z,,Z3);
Pz as K = é(Z1,1’2Z3); P3 as K = é(r3Z1,Zz),' P4 as K = X4é(1’4Z1,Zz),' P5 as
K= X5é(1’5Zz, Zg),‘ P6 as K = X6é(r621, Zg),‘ and P7 as K = X5X7@(T7Z5, Zz)

Protocol 4 ((2-[3,2,0],4-[1,2,1],1-[1,2,0]; 1)-GKE)

1. Each party P; computes Z; = ;G for a (private) randomly chosen r; € Z; and sends
it to its neighbors.

2. P1 and P, compute two auxiliary elements (X4, X¢) and (X5, X7) and send them to
(P4, Ps) and (Ps, Py), respectively, where

Pi: Xy= % = &(r1Zy, Z3 — Zy4) (reusing r1Zy);
Xe = % = &(rZs, Zy = Ze);

Py: X5= % = &(ryZ3,Z1 — Zs) (reusing 1y Z3);
X7 = % = &(r2Z3, 21 = Z7).

3. A shared key is given as K = &(G, G)"""3. Py computes this as K = é(r1Z,,Z3);
Pz as K = é(Z1,1’2Z3); P3 as K = é(r3Z1,Zz),' P4 as K = X4é(1’4Z1,Zz),' P5 as
K= X5é(1’5Zz, Zg),‘ P6 as K = X6é(r621, Zg),‘ and P7 as K = X7é(1’7Zz, Zg)

We now compare these protocols by focusing on how to compute auxiliary el-
ements. The computational complexity of each of these 3 GKEs are summarized
in Table 1. Here we assume that parties with large computational resources
compute at least three pairings, and these with low computational resources
compute at most one.

In Protocol 2, A123, A1s54 and A1ey share a node (not edge) with party Py and,
thus, the computational complexity of one auxiliary element is 2e + 2SM; + M>.
To compute another auxiliary element, e + SM; can be reused, and, thus the
additional computational complexity is e + SM; + M,. One auxiliary element
enables 2 parties to compute the shared key. P also can compute the shared

Table 1. Computational complexity of GKE among 7 parties

Party Type large computational resources low computational resources
He[HSM | M, |[Re[#S ML ML [[Re[ASMI M,
|(node-based GKE) Protocol 2[| 3] 4] N1 2] 11 2] 0o

2
(edge-based GKE) Protocol 3|| 3 3 0f 1 2[2(D|| 1 2l 0
(edge-based GKE) Protocol 4| 3 2 0f 1 21 1|1 20

key itself during computation of the auxiliary element. Remark that MAE, the
maximum number of auxiliary elements, is 1. In Protocol 3, A1»3 shares one
edge E;» with A1py and another edge E;3 with Aqzs. Thus, the computational
complexity of one auxiliary element such as Xj or X is e+ SM;. In this protocol,
computation of each auxiliary element is independent, and, thus, that of another
auxiliary element is ¢ + SM;. However, SM; can be reused to compute the shared
key, and, thus only additional computation of e is required for the computation
of the shared key. One auxiliary element enables 1 party to compute the shared
key. Remark that MAE is 2, and, thus, there exists a party which needs two
auxiliary elements. In Protocol 4, A123 shares one edge E;» with A1p4 and the
same edge Ej» with Aqp. Thus, the computational complexity of one auxiliary
element is e + SM;. To compute another auxiliary element, SM; can be reused,
and, thus the additional computational complexity is e. Furthermore, SM; can
be reused to compute the shared key, and, thus only additional computation of e
is required for the computation of the shared key. One auxiliary element enables
1 party to compute the shared key. Remark that MAE is 1.

Let us compare the two edge-based GKEs, Protocols 3 and 4. The differences
are:

1. In Protocol 4, no party needs to use two auxiliary elements to compute the
shared key. This is due to the “parallel” locations of P5 and P7, while in Protocol 3
these two parties are arranged “serially”. So, in Protocol 3, P7 needs 2 auxiliary
elements to compute the shared key. (When using a graph (E,E’) as used to
explain the triplet tree in Section 2.3, then Asy is at distance 2 from the shaded
A123, while no triangle is at such a distance in Figure 4.3.)

2. In Protocol 4, computations of auxiliary elements are not independent. In
Protocol 3, computation of auxiliary elements is independent. This is due to
the “edge-sharing” of A14 and A1y in Protocol 4, while in Protocol 3 these two
triangles A1p4 and 4136 do not share any edge. So, the computations of auxiliary
elements X, and X, in Protocol 3 are done independently.

Comparing the node-based GKE (Protocol 2) with the better edge-based GKE
(Protocol 4), the edge-based GKE can reduce the computational complexity of
parties with large computational resources by 25M,. As for parties with low
computational resources, both the node-based GKE and the edge-based GKE
need e + 2SM;. The concepts developed in Protocol 4 are applied to construct

the edge-based GKE among any group in order to reduce MAE and reuse
computations.

4.2 New edge-based GKE

We show the generalization of Protocol 4 as Protocol 5. All parties are arranged
in a graph which consists of triangles, seen in Figure 4.4. Figure 4.5 shows
the party tree which describes the relation between a parent and two children,
where all nodes except leaves have two children, and a parent node generates
two auxiliary elements for its two children to compute a shared key. The parties
P1, P, and P3 are parents to each other, that is, Pi(resp. P;, resp. P3) is the
parent of Ps(rep. Pi, resp. P»). In detail, P; is arranged in a tree that starts
with Py, P», or P3;, where the tree is decided by the residue class of i in Z3,
and nodes in leaves correspond to parties with low computational resources or
small batteries. Figure 4.6 shows neighbors of a party P;, which is a close-up of
the structure of Figure 4.4. Let a party P; be an inner node in Figure 4.5. Then,
neighbors of P; are described in Figure 4.6: Ppar() (resp. Pparpar())) corresponds
to the parent of P; (resp. Ppar()) and Pi.chiiqi) and Pr.chigi correspond to left
and right children of P; in Figure 4.5. P; computes auxiliary elements for parties
P1 chi1ag) and Pr cni1gg). By using the residue class of i in Z3, i can be represented
byi=3-j;+a;fora; =1,2,3and j; > 0. So, two children Py chi1q4) and Pr.chi1qg)
of P; (i 2 1) are denoted by P3(2j,+1)+q; and P3(j,42)+4,, Tespectively.

par(i) par(par(i))

Fig.4.6. Neighbors of P;

Fig.4.5. Party tree of Proto-
col 5

Fig.4.4. Protocol 5

Protocol 5 (%52 -[3,2,log,(% + 1) — 1], &2 -[1,2,log, (4 + 1)];1og, (4 + 1))-GKE)

1. Each party P; computes Z; = r,G using a (private) uniformly random chosen
7 € Z;‘] and sends Z; to its parent, children, and grandchildren.

2. Let P; be an inner-node party, where i = 3j; + a; (a; = 1,2,3). Then, P; computes
two auxiliary elements, X3oj+by+a; (b € {1,2}), and multicasts each to its left and

right descendants, where

X &(Zpar(i)s Zpar(par(@)"
32ji+b)+a; = & ;
@jiby+a e(zpar(i)/ ZS(Zj,-+h)+a,-)rl

= &(riZpar(), Zpar(ar(i)) — Z3@jr+by+a;) (reUSING 1iZpar(iy)-

3. Let P; (i =1,---,n) be a party, represented by i = 3j; + a; (a; = 1,2,3); and the
sequence of ancestors of i be A; = v -+ - vi¢, Where vi1 = a; and vie = i. Then, P;
computes a shared key

Vil

—6(1’1 par(i)s par(par(z))) H Xt

teA; t=v;,

Remarks 1

1. Note that the numbering of the nodes may seem strange. A quick check of
Figure 4.5, however, will show that the computational (and communication)
load is balanced among the inner nodes. For this reason we call our protocol
balanced.

2. Let us call n; the number of leaves in the tree of Figure 4.5 and . the number
of non-leaves. A quick check shows that n; < n. + 3. For this reason it is an
(7123, n+3) GKE.

3. Computing one auxiliary element costs e+ SM; and another auxiliary element
costs e by reusing SM;.

4.3 Comparison and discussion

Table 2 summarizes the communicational complexity of Protocols 5 and BDII-
BP [12] for n > 4 and Table 3 summarizes their computational complexity®. We
see that the sent message complexity of Protocol 5 is less than that of BDII-BP for
parties with low computational resources. On the other hand, that of BDII-BP is
less than that of Protocol 5 for parties with large computational resources. The
received message complexity of BDII-BP is less than that of Protocol 5.

Let us compare both Protocol 5 and BDII-BP from the point of view of com-
putational complexity. Both protocols execute the same number of times of & for
parties with large and low computational complexity. To simplify the compari-
son, we focus on M, and SM; and remove e for formulae, where Compy; .. ;.. ge
and Comp, . ;... are the computational complexity of BDII-BP and Proto-
col 5 for parties with large computational complexity; and Compg;.; ;.. and
Comp,,,,._; ., are for parties with low computational complexity,

CompBDII—Large = 25M; + |—10g4 (n+1)IMy, Comp0ur—Large = (rlogz (g +11-2)M,,
Compypry o, = ([logy (n+1)1-1)M;, Compyg,,,,, = ([log, (g +1)T-1)M..

The differences between Compy;;; ;... and Compg,. ;... (Compy,; , and
Compyg,, ;..) depend on the number of parties, and choice of G; and G,. We

¢ Protocols 5 and BDII-BP are coincident with Joux's three-party GKE for n = 3.

investigate computational complexity when |G1| = 160 and |G,|/|G1| = 6. Fig-
ure 4.7 shows each computational complexity of Compy; ;... and Compg,, ;.o
with the number of parties n < 10°, and Figure 4.8 shows each complexity of
Compypr; 1o, and Comp,, . withn < 10°. Formulae are measured by M; and
conversion of both SM; and M, to M; were shown in Section 2.2. We see that
Protocol 5 can always reduce computational complexity for parties with large
computational resources in BDII-BP under the above conditions. However, the
computational complexity for parties with low computational resources in Pro-
tocol 5 is equal to that for those in BDII-BP for 4 <n <9 and 16 < n < 21, as we
have seen in the case of n = 7 in Section 4.1. Protocol 5 is slightly worse than
BDII-BP for other n.

In summary, we have seen that the optimal party tree is different according
to the number of parties. In addition, each tree has various strengths and weak-
nesses. Protocol 5 has an advantage over BDII-BP in sent message complexity
for parties with low computational resources. On the other hand, BDII-BP has
an advantage over Protocol 5 in received message complexity. Protocol 5 has an
advantage over BDII-BP in computational complexity among a small number
of parties. On the other hand, BDII-BP has an advantage over Protocol 5 in com-
putational complexity among a large number of parties. From a practical point
of view, the necessary features for GKE depend on the application. By using our
results, we can choose the optimal party tree according to each application.

Table 2. Sent/received message complexity of several GKEs among # parties

| ||sent message complexity” received message complexity |
Party Type || large comp.| low comp. || large comp.| low comp.
BDII-BP
4 -3, 3 + 1)-GKE[|2b, + 6p:] 2p:[[log, (n + 1)b, + 6p1[log, (1 + 1)b, + 2p;
Protocol 5
(%, "T”)—GKE ||2b2 + 7p1| p1||log2 (g + 1)by + 4p1|log2 (g + 1)by +2p;
Table 3. Computational complexity of several GKEs among n parties
Party Type large computational resources low computational resources
He[#SM] #M [[#e[#SM | #M,
BDII-BP
-3, 3+ D-GRE]| 3] 4] Tlog, (n+ 1] 1] 2[[log, (n+1)]-1
Protocol 5
(=2, 25)-GRE || 3] 2[[log, (4 + 1)1 -2[1] 2[[log, (A +1)]-1

BDII-BP

700 —

600 —

500 [— ’7

Protocol 5

300 —

200 |—

Computational complexity { Af;)

100 [—

4 910 100 1000 10000 100000

Number of parties (1)

Fig.4.7. Comparison of CompBDH_Lalrge and Compolu__l_'_:lrge (Estimated by M. |G1| = 160, |G2|/|G1| =
6.)

Protocol 5

BDII-BP

Computational complexity {41} }

0 TR L L L L
4 910 1621 100 1000 10000 100000

Number of parties ()

Fig.4.8. Comparison of Compy, ., and Compy, . (Estimated by M;. |G1| = 160, |G2|/G1] = 6.)

4.4 Security of Protocol 5

We show that a passive adversary that can break Protocol 5 can be used to solve
the DBDH Problem. The detailed proof will be shown in the final paper due to
the lack of space.

Theorem 1. Assuming the DBDH problem over G is hard, Protocol 5, denoted simply
by I, is a secure group GKE protocol. Namely,

AQVEE(t, 7o) < AQVEEDH(E),

where AdvIKYE(t, Gex) 15 an adversary to I1 with q.. Execute queries and in t time, and
AdvZPH(t) is an adversary to DBDH in ' = t + (n — 3)qex(e + 25M) time for the
number of parties n.

The Katz-Yung compiler [15] and a variant [13] turn Protocol 5 into an
authenticated GKE protocol which is secure against active attack, as we have
reviewed in Section 2.

Corollary 1. The authenticated GKE IT" obtained from Protocol 5, denoted simply by
I1, by applying the compiler is secure against active adversary. Namely, for the number
of Send queries, qs, and the number of Execute queries, q.., we obtain

2
—fs ’ q ’ , qs + Jexqs
AQVE 55 (t, Gev, 4s) < AQVIF(E, Gex) + SAVIF(E, 1) + nSucos(t) + =,

where AAViE*5(t, qox, g5) is an adversary to IT, ' = t + (Nqex + gs)trr, try is the time
required for an execution of II' by any party, and Succ, is the success probability
against the signature scheme used, X.

5 Construction of GKE among a Large Group

In this section, we will deal with a large group. In such a group, some parties
may have large computational resources and electrical power, while others do
not, that is, the resources may be different for each party. As we have seen
in Section 4, node-based GKEs are suitable for a large group. We will further
redesign a party tree of node-based GKEs from the point of view of different
weight, to construct GKEs suitable for a large group among parties with different
resources.

5.1 Variants of node-based GKEs

In order to apply node-based GKEs to parties with different resources, we
redesign variants of Protocol 2, in such a way that one party has large compu-
tational resources and electrical power to compute all auxiliary elements.

Protocol 6 ((1-[%432 +1,22 +2, 23], (n - 3)-[1,2,1],2-[1,2,0];1)-GKE) Figure5.1
shows an arrangement of parties, which is a variant of (1,6)-GKE (Protocol 2) for the
case in which 1 party constructs all auxiliary elements.

1. n — 3 parties are set under Uy, which are denoted by U,; (i=1,--- ,n = 3).

2. Each party U; (i = 1,2,3) computes Z; = ;G for a (private) randomly chosen
ri € Zy and sends it to its neighbors. Only Uy broadcasts Zy to all parties. Each
party Ur; (i = 1,--- ,n — 3) computes Z1; = r1;G and sends it to its neighbors
(including U,).

3. Uy computes ["53] auxiliary elements and sends them to the corresponding parties

{Unja, Unp) (j=1,---, 152D,

é(Zy, Z3)"

i= m = &(r1Z2, 23)e(—112Z1,2j-1, Z12j)(reusing é(r1 7, 73)). (1)

4. A shared key is given as K = &(G, G)""*"3, where Uy computes K = é(r1Z,,Z3);
Uz computes K = é(rpZ1, Z3); Us computes K = &(r3Z1, Z); and Uy 2j-1 and Uy o)
(] =1, ty, F%D compute K= Xjé\(i’l,z]'_lzl,zllzj) and K = X]-é(rmjzl, Zl,zj—l)r
respectively.

ni

2 3 no S»

Fig.5.1. Protocol 6

_/Z n3

Fig. 5.2. Variants of Proto- Fig. 5.3. Protocol 7
col 6

Remarks 2

1. Aswe have discussed in Protocol 2, computing (n—3)-party auxiliary elements
costs (%52 + 1)e + (42 + 2)SM; + 52 M, by reusing e + SM; for every auxiliary
element. Note that the shared key itself is computed during this computation.
2. Protocol 6 can be executed as a (2,7 — 2) or a (3,n — 3)-GKE by using the
computational resources and electrical power of 2 or 3 parties instead of 1 party.
It can also be generalized to (1,1, 1, 2111 + 215 + 2n3)-GKE for 1 > 1o > 113 as seen
in Figure 5.2.

3. Protocol 6 can be modified in such a way that n parties {U;}" | have already
shared a key K; 2t parties {U,-,,-}?i , are set under each U;; each U; computes ¢
auxiliary elements and sends each auxiliary element to the appropriate party,
{Ui,]-}?i 1» and, thus, n + 2tn parties share the key K by changing Equation (1) to
X,',]' = Ké(—r,-Z,-,zj, Z,',2]'+1). This achieves (n —[1, 2, 1], 2tn —[1, 2, 1], 1)—GKE.

We show that a passive adversary that can break Protocol 6 can be used to solve
the DBDH Problem. The detailed proof will be shown in the final paper due to
the lack of space.

Theorem 2. Assuming the DBDH problem over G is hard, Protocol 6, denoted simply
by I, is a secure group GKE protocol. Namely,

AQVEE(t, o) < AQVEEDH(E),

where AdvIK}E(t, Gex) 15 an adversary to I1 with q.. Execute queries and in t time, and
AQvZPH(t') is an adversary to DBDH in t' = t + %53q,.(e + 5SMy) time for the number
of parties n.

In the same way as Protocol 5, Protocol 6 can be turned into an authenticated
GKE protocol, as we have seen in Section 4.4. We avoid the repetition of the
same corollary here.

5.2 Construction of GKE in Different Environments

We investigate (111, - , 1y, m)-GKE from the following point of view: the com-
putational resources or electrical power required by ny,---,n; parties are ar-

ranged according to the allowable number of computations of pairings’ with
di > -+ > dy > 3; and m parties with the lowest computational resources or
electrical power can share the key by computing 1 pairing.

For the sake of simplicity, we will show the case of k = 1, i.e. (1, m)-GKE, where
n parties with large computational resources and electrical power compute d
pairings with d > 3; and m parties with low computational resources or which
are using small batteries compute 1 pairing.

Protocol 7 ((n, m)-GKE)
SteP 1. CHECK THE CONDITIONS
Ifm > (d - 1)" for the height h = [10gy-1) ("(2‘;;3) + 1)1 -1, then stop and output
“Computational resources are not sufficient”.
STEP 2. ARRANGE PARTIES ACCORDING TO THE GIVEN ENVIRONMENT OF (1, 111)
Arrange a party tree in such a way that each node has (d — 1) triangles, that is,
2(d — 1) children; then set n parties to inner nodes on the party tree; finally set m parties
to leaves on the party tree.
StEP 3. KEY EXCHANGE AMONG 1 + 111 PARTIES BASED ON A VARIANT OF PROTOCOL 6
See Figures 5.2 and 5.3. First, Step 1 in Protocol 6 is executed; then, n parties
compute (d — 1) auxiliary elements and send them to their descendants; and finally,
K = é(G, G)"""s is shared.

Protocol 7 realizes (n-[d, d+1,h—1],m-[1,2, h]; h)-GKE for h = rlogz(d_l) ("(MT_:” +1)]-
1.

6 Concluding Remarks

Earlier schemes [10,12] developed to achieve an n-party GKE based on Joux’s
tripartite scheme, were based on combining several 3-party Joux based GKEs,
in which the 3 parties involved were represented by a triangle. Earlier schemes
did not focus on arrangement of parties, and, thus, simply, these triangles only
had at most one node in common.

We discovered that by just redesigning the arrangement in such a way that
these triangles overlap in two parties, we can reduce the communicational
or computational complexity according to the number of parties. To obtain
this advantage, we used an ingenuous trick by exploiting the mathematics
of bilinear pairings (i.e., a new method to compute auxiliary elements) and
proposed Protocol 5. By redesigning this arrangement, we can point out that
the most efficient party arrangement is different, according to the number of
parties. In fact, Protocol 5 can work more efficiently than BDII-BP for 4 <n <9
and 16 < n < 21, from the point of view of computational complexity.

Although earlier schemes already discussed asymmetric computational re-
sources, they characterized all machines into two classes based on their re-
sources. Moreover, roughly half the nodes had large computational resources,

7 n; parties with large computational resources should be able to compute d; > 3 pair-
ings. If d; < 2, those parties are assumed to be those with the least computational
resources.

while the other half had few resources. We also simply generalized this by re-
designing the arrangement of parties, so that we can use more than two classes,
and for some of our schemes we do not require a 50-50 division into two classes.

This paper enables us to give the optimal party tree for given either commu-

nication or computation complexity. The following open problem still remains:
For given each upper bound on P;’s available computation and communication
complexity, what is the optimal hyper-graph by using a bilinear-based group
key exchange?

References

1.

2.

|20

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Barua, and R. Dutta, “Dynamic Group Key Agreement in Tree-Based Setting”,
ACISP 2005, LNCS 3574(1994), 101-112, Springer-Verlag.

R. Barua, R. Dutta, P. Sarkar, “Extending Joux’s Protocol to Multi Party Key Agree-
ment (Extended Abstract)”, INDOCRYPT 2003, LNCS 2904(1994), 205-217, Springer-
Verlag.

. R.Barua, R. Dutta, P. Sarkar, “Provably Secure Authenticated Tree Based Group Key

Agreement”, ICICS 2004, LNCS 3269(1994), 92-104, Springer-Verlag.

. C. Berge, “Graphs and Hypergraphs”, Elsevier Science, 1985.
. A. Abdel-Hafez, A. Miri, L. Orozco-Barbosa, “Authenticated group key agreement

protocols for ad hoc wireless networks”, Journal of Network Security, 2007.

. D. Boneh and X. Boyen, “Short signatures without random oracles and the SDH

assumption in bilinear groups”, J. Cryptology, Vol. 21, No. 2 (2008), 149-177.

. M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution

system”, In Proceedings of Eurocrypt’94, LNCS 950(1994), 275-286, Springer-Verlag.

. M. Burmester and Y. Desmedt, “Efficient and secure conference key distribution”, In

Security Protocols, LNCS 1189(1997), 119-130, Springer-Verlag.

. D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing”, In

Proceedings of Crypto’01, LNCS 2139(2001), 213-229, Springer-Verlag.

K.Y.Choi,]. Y. Hwang. and, D. H. Lee, “Efficient ID-based group key agreement with
bilinear map”, In Proceedings of PKC'04, LNCS 2947(2004), 130-144, Springer-Verlag.
M. Ciet, M. Joye, K. Lauter, and P. L. Montgomey, “Trading inversions for multipli-
cations in elliptic curve cryptography”, Designs, Codes and Cryptography, Vol. 39, No.
2(2006), Springer Netherlands, 189-206.

Y. Desmedt and T. Lange, “Revisiting pairing based group key exchange”, In Pro-
ceedings of FC'08, LNCS 5143(2008), 53-68, Springer-Verlag.

Y. Desmedt, T. Lange and M. Burmester, “Scalable authenticated tree based group
key exchange for ad-hoc groups”, In Proceedings of FC'07, LNCS 4886(2007), 104-118,
Springer-Verlag.

A.Joux, “A One Round Protocol for Tripartite Diffie-Hellman”, J. Cryptology, Vol. 17,
No. 4 (2004), 263-276.

J. Katz and M. Yung, “Scalable Protocols for Authenticated Group Key Exchange”,
In CRYPTO 2003, LNCS 2729(2003), 110-125, Springer-Verlag.

D. E. Knuth, The Art of Computer Programming, vol. 2, Seminumerical Algorithms, 2nd
ed., Addison-Wesley, Reading, Mass. 1981.

E. Konstantinou, “Cluster-based group key agreement for wireless ad hoc networks”,
ARES 2008, 2008.

A. Miyaji, M. Nakabayashi and S. Takano, “New explicit conditions of Elliptic Curve
Traces under FR-reduction”, IEICE Trans., Fundamentals. vol. E84-A, No.5(2001),
1234-1243.

