
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Hardness Results and an Exact Exponential

Algorithm for the Spanning Tree Congestion

Problem

Author(s)
Okamoto, Yoshio; Otachi, Yota; Uehara, Ryuhei;

Uno, Takeaki

Citation
Journal of Graph Algorithms and Applications,

15(6): 727-751

Issue Date 2011-10

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/10303

Rights

Copyright (C) 2011 Journal of Graph Algorithms

and Applications. Yoshio Okamoto, Yota Otachi,

Ryuhei Uehara, and Takeaki Uno, Journal of Graph

Algorithms and Applications, 15(6), 2011, 727-

751.

Description

Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 15, no. 6, pp. 727–751 (2011)

Hardness Results and an Exact Exponential

Algorithm for the Spanning Tree Congestion

Problem

Yoshio Okamoto 1 Yota Otachi 2 Ryuhei Uehara 3 Takeaki Uno 4

1Center for Graduate Education Initiative,
JAIST, Asahidai 1–1, Nomi, Ishikawa 923–1292, Japan.

2Graduate School of Information Sciences,
Tohoku University, Sendai 980–8579, Japan.

3School of Information Science,
JAIST, Asahidai 1–1, Nomi, Ishikawa 923–1292, Japan.

4National Institute of Informatics,
2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo, 101–8430, Japan.

Abstract

Spanning tree congestion is a relatively new graph parameter, which
has been studied intensively. This paper studies the complexity of the
problem to determine the spanning tree congestion for non-sparse graph
classes, while it was investigated for some sparse graph classes before. We
prove that the problem is NP-hard even for chain graphs and split graphs.
To cope with the hardness of the problem, we present a fast (exponential-
time) exact algorithm that runs in O

∗(2n) time, where n denotes the
number of vertices. Additionally, we present simple combinatorial lem-
mas, which yield a constant-factor approximation algorithm for cographs,
and a linear-time algorithm for chordal cographs.

Submitted:

May 2011
Reviewed:

September 2011
Revised:

October 2011
Accepted:

October 2011

Final:

October 2011
Published:

October 2011

Article type:

Regular paper
Communicated by:

S.-H. Hong

Extended abstract of this paper appeared in the proceedings of TAMC 2011 [22].

E-mail addresses: okamotoy@jaist.ac.jp (Yoshio Okamoto) otachi@dais.is.tohoku.ac.jp (Yota

Otachi) uehara@jaist.ac.jp (Ryuhei Uehara) uno@nii.ac.jp (Takeaki Uno)

mailto:okamotoy@jaist.ac.jp
mailto:otachi@dais.is.tohoku.ac.jp
mailto:uehara@jaist.ac.jp
mailto:uno@nii.ac.jp

728 Okamoto et al. Spanning Tree Congestion Problem

1 Introduction

Spanning tree congestion is a graph parameter defined by Ostrovskii [23] in
2004. Simonson [27] also studied the same parameter under a different name as
a variant of cutwidth. After Ostrovskii [23], several graph-theoretic results have
been presented [5, 8, 14, 16, 17, 18, 19, 20, 21, 24, 25], and very recently the
complexity of the problem for determining the parameter has been studied [4,
26]. The parameter is defined as follows. Let G be a connected graph and T
be a spanning tree of G. The detour for an edge {u, v} ∈ E(G) is a unique
u–v path in T . We define the congestion of e ∈ E(T), denoted by cngG,T (e),
as the number of edges in G whose detours contain e. The congestion of G in
T , denoted by cngG(T), is the maximum congestion over all edges in T . The
spanning tree congestion of G, denoted by stc(G), is the minimum congestion
over all spanning trees of G. We denote by STC the problem of determining
whether a given graph has spanning tree congestion at most given k. If k is
fixed, then we denote the problem by k-STC.

Bodlaender, Fomin, Golovach, Otachi, and van Leeuwen [4, 26] studied the
complexity of STC and k-STC. They showed that k-STC is linear-time solvable
for apex-minor-free graphs and bounded-degree graphs, while k-STC is NP-
complete even for K6-minor-free graphs with only one vertex of unbounded
degree if k ≥ 8. They also showed that STC is NP-complete for planar graphs.
Bodlaender, Kozawa, Matsushima, and Otachi [5] showed that the spanning tree
congestion can be determined in linear time for outerplanar graphs. Although
several complexity results are known as mentioned above, they are restricted
to sparse graphs. The complexity for non-sparse graphs such as chordal graphs
and chordal bipartite graphs were unknown.

In this paper, we show that STC is NP-complete for these important non-
sparse graph classes. More precisely, we show that STC is NP-complete even
for chain graphs and split graphs. It is known that every chain graph is chordal
bipartite, and every split graph is chordal. The hardness for chain graphs is quite
unexpected, since there is no other natural graph parameter that is known to
be NP-hard for chain graphs, to the best of our knowledge. The hardness for
chain graphs also implies the hardness for graphs of clique-width at most three.
To cope with the hardness of the problem, we present a fast exponential-time
exact algorithm. Our algorithm runs in O∗(2n) time, while a naive algorithm
that examines all spanning trees runs in O∗(2m) or O∗(nn) time, where n and m
denote the number of vertices and the number of edges. Note that O∗(f(n)) =
O(f(n) · poly(n)). The idea, which allows us to achieve this running time, is to
enumerate all possible combinations of cuts instead of all spanning trees. Using
this idea, we can design a dynamic-programming-based algorithm that runs in
O∗(3n) time. Then, by carefully applying the fast subset convolution method
developed by Björklund, Husfeldt, Kaski, and Koivisto [1], we finally get the
running time O∗(2n). We also study the problem on cographs. It is known
that cographs are precisely the graphs of clique-width at most two. For some
cographs such as complete graphs and complete p-partite graphs, the closed
formulas for the spanning tree congestion are known [14, 17, 19, 23]. Although

JGAA, 15(6) 727–751 (2011) 729

the complexity of STC for cographs remains unsettled, we provide a constant-
factor approximation algorithm for them. Furthermore, we present a linear-time
algorithm for chordal cographs.

Graphs in this paper are finite, simple, and connected, if not explicitly stated
otherwise. We deal with edge-weighted graphs in Subsections 1.2 and 2.1. Our
exponential-time exact algorithm runs in O∗(2n) time for edge-weighted graphs,
too.

1.1 Graphs

Let G be a connected graph. For S ⊆ V (G), we denote by G[S] the subgraph
induced by S. For an edge e ∈ E(G), we denote by G − e the graph obtained
from G by the deletion of e. Similarly, for a vertex v ∈ V (G), we denote by
G−v the graph obtained from G by the deletion of v and its incident edges. By
NG(v), we denote the (open) neighborhood of v in G; that is, NG(v) is the set of
vertices adjacent to v in G. For S ⊆ V (G), we denote

⋃

v∈S NG(v) by NG(S).
We define the degree of v in G as degG(v) = |NG(v)|. If degG(v) = |V (G)| − 1,
then v is a universal vertex of G.

Let G and H be graphs. We say that G and H are isomorphic, and denote
it by G ≃ H , if there is a bijection f : V (G) → V (H) such that {u, v} ∈ E(G)
if and only if {f(u), f(v)} ∈ E(H). Now assume V (G) ∩ V (H) = ∅. Then the
disjoint union of G and H , denoted by G ∪H , is the graph with the vertex set
V (G) ∪ V (H) and the edge set E(G) ∪ E(H). The join of G and H , denoted
by G ⊕ H , is the graph with the vertex set V (G) ∪ V (H) and the edge set
E(G) ∪ E(H) ∪ {{u, v} | u ∈ V (G), v ∈ V (H)}.

For A,B ⊆ V (G), we define EG(A,B) = {{u, v} ∈ E(G) | u ∈ A, v ∈ B}.
For S ⊆ V (G), we define the boundary edges of S, denoted by θG(S), as θG(S) =
EG(S, V (G) \ S). Note that θG(∅) = θG(V (G)) = ∅. The congestion cngG,T (e)
of an edge e ∈ E(T) in a spanning tree T of G satisfies cngG,T (e) = |θG(Ae)|,
where Ae is the vertex set of one of the two components of T−e. For an edge e in
a tree T , we say that e separates A and B if A ⊆ Ae and B ⊆ Be, where Ae and
Be are the vertex sets of the two components of T−e. Clearly, if T is a spanning
tree of G and e ∈ E(T) separates A and B, then cngG,T (e) ≥ |E(A,B)|. If e
separates A and B, we also say that e divides A ∪B into A and B.

Let T be a tree rooted at r ∈ V (T). Then we denote by prtT (v) the parent
of v ∈ V (T) in T . The parent of the root r is not defined. We denote by ChT (v)
the children of v ∈ V (T) in T . Clearly, NT (v) = {prtT (v)} ∪ ChT (v) for every
non-root vertex v.

1.2 Spanning tree congestion of weighted graphs

A graph G may be associated with an edge-weight function wei : E(G) → Z+.
If a graph has such a function, then we call it an edge-weighted graph or just
a weighted graph. Note that unweighted graphs can be considered as weighted
graphs by setting wei(e) = 1 for each edge e. For an edge-weighted graph G
and F ⊆ E(G), we define wei(F) =

∑

f∈F wei(f) for F ⊆ E(G). We extend

730 Okamoto et al. Spanning Tree Congestion Problem

Cograph ∩ Split = Threshold

Chordal Cograph

Perfect

Split

Open

NP-hard

P

Chain

Bipartite permutation

Interval bigraph

Chordal bipartite

Cograph ∩ Chordal
= Trivially perfect

Bipartite

Figure 1: Relations among graph classes.

the notion of spanning tree congestion to edge-weighted graphs by defining
the congestion of an edge e as the sum of the weights of edges whose detours
pass through the edge e. If e ∈ E(T) separates vertex sets A and B, then
cngG,T (e) ≥ wei(E(A,B)).

For a weighted graphG, we define the weighted degree of v inG as wdegG(v) =
wei(θG({v})). It is not difficult to see that the following fact holds.

Proposition 1.1 Let G be a weighted graph, and let S ⊆ V (G). Then

wei(θG(S)) =
∑

v∈S

wdegG(v)− 2wei(E(G[S])).

It is known that STC for weighted graphs is equivalent to STC for unweighted
graphs in the following sense.

Lemma 1.2 ([4, 26]) Let G be a weighted graph and let e ∈ E(G). Let G′ be
the graph obtained from G by removing the edge e and adding wei(e) internally
disjoint paths of arbitrary lengths between the endpoints of e, where each edge
in the added paths is of unit weight. Then, stc(G) = stc(G′).

1.3 Graph classes

Here we introduce some graph classes. Figure 1 depicts relations among graph
classes. For graph classes not defined in this subsection see textbooks on graph
classes [6, 12].

A graph is chordal if it has no induced cycle of length greater than three. A
graph G is a split graph if its vertex set V (G) can be partitioned into two sets C
and I so that C is a clique of G and I is an independent set of G. Clearly, every
split graph is a chordal graph (see [12]). A cograph (or complement-reducible
graph) is a graph that can be constructed recursively by the following rules:

1. K1 is a cograph;

JGAA, 15(6) 727–751 (2011) 731

2. if G and H are cographs, then so is G ∪H ;

3. if G and H are cographs, then so is G⊕H .

Note that if G is a connected cograph with at least two vertices, then G can be
expressed as G1 ⊕G2 for some nonempty cographs G1 and G2. A cograph is a
chordal cograph if it is also a chordal graph. Chordal cographs are also known
as trivially perfect graphs [6, 12] and quasi-threshold graphs [28]. It is known
that in the construction of a chordal cograph by the above rules, we can assume
one of two operands of ⊕ is K1 [28].

Analogously to chordal graphs, chordal bipartite graphs are defined as the
bipartite graphs without an induced cycle of length greater than four. A bi-
partite graph G = (X,Y ;E) is a chain graph if there is an ordering < on X
such that u < v implies NG(u) ⊆ NG(v). It is known that every chain graph is
2K2-free [29], and thus chordal bipartite.

Clique-width is a graph parameter which generalizes treewidth in some sense.
Many hard problems can be solved efficiently for graphs of bounded clique-
width. It is known that every chain graph has clique-width at most three [7],
and that a graph has clique-width at most two if and only if it is a cograph [9].
For the definition and further information of clique-width, see a recent survey
by Hliněný, Oum, Seese, and Gottlob [13].

2 Hardness for split graphs and chain graphs

This section presents our hardness results for split graphs and chain graphs.
Namely, we prove the following theorems.

Theorem 2.1 STC is NP-complete for split graphs.

Theorem 2.2 STC is NP-complete for chain graphs.

Since every chain graph has clique-width at most three, we have the following
corollary.

Corollary 2.3 STC is NP-complete for graphs of clique-width at most three.

The weighted edge argument [4, 26] allows us to present a simple proof for
split graphs. However, we are unable to present a simple proof based on the
weighted edge argument for chain graphs. This is because, in the process of
modifying a weighted graph to an unweighted graph, we may introduce many
independent edges (see Lemma 1.2). Although we need somewhat involved
arguments for chain graphs, the proofs are based on essentially the same idea.

Clearly, STC is in NP. The proofs of NP-hardness are done by reducing the
following well-known NP-complete problem to STC for both graph classes.

Problem: 3-Partition [11, SP15]

732 Okamoto et al. Spanning Tree Congestion Problem

Instance: A multi-set A = {a1, a2, . . . , a3m} of 3m positive integers and a
bound B ∈ Z+ such that

∑

ai∈A ai = mB, a1 ≤ a2 ≤ · · · ≤ a3m, and
B/4 < ai < B/2 for each ai ∈ A.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that,
for 1 ≤ i ≤ m,

∑

a∈Ai
a = B? (Thus each Ai must contain exactly three

elements from A.)

It is known that 3-Partition is NP-complete in the strong sense [11]. Thus we
assume a3m ≤ poly(m), where poly(m) is some polynomial on m. By scaling
each a ∈ A, we can also assume that a1 ≥ 3m + 2, m ≥ 3, B ≥ 8, and
B/4 + 1 ≤ ai ≤ B/2− 1.

2.1 Hardness for split graphs

In this subsection, we prove that STC is NP-hard for split graphs. We first show
that STC is NP-hard for edge-weighted split graphs with weighted edges only
in the maximum clique, by reducing an instance A of 3-Partition to an edge-
weighted split graph GA such that A is a yes instance if and only if stc(GA) ≤ k
for some k. We then show that GA can be modified to an unweighted split graph
G′

A in polynomial time so that stc(GA) = stc(G′
A). This proves Theorem 2.1.

Let A be an instance of 3-Partition. We now construct GA from A in
polynomial time (see Figure 2). Let I = {ui | 1 ≤ i ≤ 3m} and C = {x}∪V ∪W ,
where V = {vi | 1 ≤ i ≤ m} and W = {wi | m + 1 ≤ i ≤ a3m}. The graph
GA has vertex set I ∪ C. The sets I and C are independent set and a clique
of GA, respectively. Each ui ∈ I is adjacent to all vertices in V and vertices
wm+1, wm+2, . . . , wai

. More formally, E(GA) is defined as follows:

E(GA) = {{c, c′} | c, c′ ∈ C} ∪ {{u, v} | u ∈ I, v ∈ V }

∪ {{ui, wj} | ui ∈ I,m+ 1 ≤ j ≤ ai}.

Recall that ai > m for any i ≥ 1. The degrees of vertices in GA can be deter-
mined as follows: degGA

(ui) = ai, degGA
(vi) = |C| + |I| − 1, and degGA

(wi) =
|C| + |{j | aj ≥ i}| − 1. Some edges of GA have heavy weights. Let k =
2B + 2|C|+ 2|I| − 15. Then

wei(e) =

α := (k + 1)/2 if e = {x, vi},

βi := k − degGA
(wi) + 1 if e = {x,wi},

1 otherwise.

Clearly, GA is a split graph with weighted edges only in the clique C. The
weighted degrees of vertices in GA is as follows: wdegGA

(ui) = ai, wdegGA
(vi) =

α+ |C|+ |I| − 2 = k −B + 6, and wdegGA
(wi) = k.

Lemma 2.4 Let k = 2B + 2|C| + 2|I| − 15. Then A is a yes instance if and
only if stc(GA) ≤ k.

JGAA, 15(6) 727–751 (2011) 733

... ...

...

I u1 u2 ui u3m

v1 v2 vm

α

x

C

wm+1 wai wa3mwm+2

βai

Figure 2: Reduction. (Unweighted edges in C are not depicted.)

... ...v1

x

... vmvi
wm+1 wa3m

U1 Ui Um

wi

...
βi

α

Figure 3: Spanning tree T .

Proof: (=⇒) Let A1, . . . , Am be a partition of A such that
∑

a∈Ai
a = B for

1 ≤ i ≤ m. Let Ui denote the set {uj | aj ∈ Ai}. The desired spanning tree T of
GA can be obtained from the partition A1, . . . , Am as follows: E(T) = {{x, c} |
c ∈ C \ {x}} ∪

⋃

1≤i≤m {{vi, uj} | uj ∈ Ui}. Clearly, T is a spanning tree of GA

(see Figure 3).
The congestion of a leaf edge in T is at most ∆(GA) = max{a3m, k, k−B+6}.

Clearly, k ≥ k − B + 6 since B ≥ 8. Since |C| = a3m + 1 and B ≥ 8, we have
k = 2B + 2|C|+ 2|I| − 15 > 2a3m ≥ a3m. Thus ∆(GA) = k and the congestion
of any leaf edge is at most k.

Every inner edge of T is of the form {x, vi}. From the definition of T ,
cngGA,T ({x, vi}) = wei(θGA

({vi} ∪ Ui)). Since GA[{vi} ∪ Ui] is a star with
center vi,

wei(θGA
({vi} ∪ Ui)) = wdegGA

(vi) +
∑

uj∈Ui

wdegGA
(uj)− 2|Ui|

= (k −B + 6) +B − 6 = k.

(⇐=) Let T be a spanning tree of GA such that cngGA
(T) ≤ k. First we

prove the following two properties of T .

734 Okamoto et al. Spanning Tree Congestion Problem

Property 2.5 All edges incident to x are included in T .

Proof: Suppose there is a vertex y ∈ C \ {x} such that {x, y} /∈ E(T). Then,
a unique path from x to y in T first visits a vertex z ∈ C \ {x, y} immediately
after x. Hence, the edge {x, z} ∈ E(T) has congestion at least

wei(EGA
({x}, {y, z})) = wei({x, y}) + wei({x, z}) ≥ 2min{α, βi}.

If βi < α, then k < 2 degGA
(wi)− 1 ≤ 2|C|+ 2|I| − 3. This contradicts B ≥ 8.

Therefore, wei(EGA
({x}, {y, z})) ≥ 2α = k + 1. �

Property 2.6 All ui and wi are leaves of T .

Proof: By Property 2.5, it is easy to see that every ui is a leaf of T , since
otherwise T has a cycle. Let Ni denote {uj | {wi, uj} ∈ E(T)}. Suppose
Ni 6= ∅. Since each uj ∈ Ni is a leaf, cngGA,T ({x,wi}) = wei(θGA

({wi} ∪Ni)).
Since GA[{wi} ∪Ni] is a star with center wi,

wei(θGA
({wi} ∪Ni)) = wdegGA

({wi}) +
∑

uj∈Ni

wdegGA
(uj)− 2|Ni|

= k +
∑

uj∈Ni

(aj − 2).

Since aj > m ≥ 2, we have cngGA,T ({x,wi}) > k, which is a contradiction. �

From the above observations, each ui is a leaf and its unique neighbor in T is
some vj . Therefore, T gives a partition A1, . . . , Am of A such that ai ∈ Aj

if and only if ui is adjacent to vj in T . Suppose there is some j such that
∑

ai∈Aj
ai > B. Then clearly |Aj | ≥ 3 since ai < B/2 for any ai ∈ A. From the

properties of T discussed above, cngGA,T ({x, vj}) = wei(θGA
({vj} ∪ Uj)). By

the same argument in the proof of Property 2.6,

wei(θGA
({vj} ∪ Uj)) = wdegGA

({vj}) +
∑

ui∈Uj

wdegGA
(ui)− 2|Uj |

= k − B + 6 +
∑

ui∈Uj

ai − 2|Uj | > k + 6− 2|Uj|.

If |Uj | = 3, then wei(θGA
({vj} ∪ Uj)) > k + 6 − 2|Uj | = k. Hence, |Uj | ≥ 4.

Since ai ≥ B/4 + 1,

wei(θGA
({vj} ∪ Uj)) = k −B + 6 +

∑

ui∈Uj

ai − 2|Uj|

≥ k −B + 6 + 4(B/4 + 1− 2) = k + 2

This contradicts cngGA
(T) ≤ k. �

Now we prove the NP-hardness of STC for unweighted split graphs. To this
end, we first reduce an instance A of 3-Partition to a weighted split graph GA

as stated above. Recall that all weighted edges of GA are in GA[C]. We need
the following lemma.

JGAA, 15(6) 727–751 (2011) 735

...

C

x1 x2 xw−1
I

C

I

u v
wei({u, v}) = w u v

⇐⇒

Figure 4: Weighted edge in the clique C.

Lemma 2.7 Let G be an edge-weighted split graph with a partition (C, I) of
V (G), where C and I are a clique and an independent set of G, respectively. If
the weighted edges are only in G[C] and the maximum edge weight is wmax, then
an edge-unweighted split graph G′ satisfying stc(G) = stc(G′) can be obtained
from G in O(wmax · |E(G)|) time.

Proof: Let {u, v} ∈ E(G) be an edge of weight w = wei({u, v}) > 1. We
replace the weighted edge between u and v by an unweighted edge, and add
w − 1 unweighted u–v paths of length two, where the inner point of ith path
is a new vertex xi ∈ I (see Figure 4). Let us call the obtained graph H .
Obviously, this can be done in O(w) time, H has less weighted edges than G,
and stc(H) = stc(G) by Lemma 1.2. Also it is easy to see that H is a split
graph with weighted edges only in H [C]. Therefore, repeatedly applying this
local modification, we eventually obtain the desired graph G′ in O(wmax ·|E(G)|)
time. �

Observe that the maximum edge-weight in GA is bounded by a polynomial
function on B and m. Thus the above lemma implies that from an instance A of
3-Partition, we can construct in polynomial time an unweighted split graph
G′

A and k ∈ Z+ such that A is a yes instance if and only if stc(G′
A) ≤ k. This

proves Theorem 2.1.

2.2 Hardness for chain graphs

Next we prove the NP-hardness for chain graphs. Given an instance A of 3-

Partition, we construct the graph GA = (P,Q;E). For convenience, let M =
B + 3m − 4 and γi = |{aj ∈ A | aj ≥ i}|. Note that 0 < γi ≤ 3m for
m+ 1 ≤ i ≤ a3m. In particular, γm+1 = 3m and γa3m

> 0. First we define the
vertex sets P = U ∪ V ∪W and Q = X ∪ Y ∪ Z as follows:

U = {ui | 1 ≤ i ≤ m}, X = {xi | 1 ≤ i ≤ 3m},

V = {vi | m+ 1 ≤ i ≤ a3m}, Y = {yi | m+ 1 ≤ i ≤ a3m},

W = {wi | 1 ≤ i ≤ M − a3m}, Z = {zi | 1 ≤ i ≤ M − a3m}.

736 Okamoto et al. Spanning Tree Congestion Problem

U V W

X Y Z

P

Q

P0

Q0

U0 V0 W0

X0 Y0 Z0 P1

Q1Z1 Y1 X1

W1 V1 U1

GA HA

Figure 5: Graphs GA and HA. A solid line between two sets implies that the
two sets induce a complete bipartite graph, and a dotted line between two sets
implies that there are some (but not all) edges between the two sets. Two color
classes of HA are P0 ∪Q1 and Q0 ∪ P1.

Next we define the edge set as follows:1

E = (X × U) ∪
(

Y × (U ∪ V)
)

∪
(

Z × (U ∪ V ∪W)
)

∪ {{xi, vj} | xi ∈ X,m+ 1 ≤ j ≤ ai}

∪ {{yi, wj} | yi ∈ Y, 1 ≤ j ≤ M − a3m − γi}.

See Figure 5 for a simplified illustration of GA.
Let G0 and G1 be two disjoint copies of GA. That is, GA ≃ G0 ≃ G1 and

V (G0) ∩ V (G1) = ∅. By Pi, Qi, Ui, Vi, Wi, Xi, Yi, and Zi, we denote the
vertex sets of Gi, i ∈ {0, 1}, that correspond to the vertex sets P , Q, U , V ,
W , X , Y , and Z of GA, respectively. Similarly, we denote the vertices of Gi,
i ∈ {0, 1}, that correspond to vertices uj, vj , wj , xj , yj , and zj of GA by ui

j ,

vij , w
i
j , x

i
j , y

i
j , and zij , respectively. We define the graph HA as follows (see

Figure 5): V (HA) = V (G0)∪ V (G1) and E(HA) = E(G0)∪E(G1)∪ (P0 ×P1).

Lemma 2.8 The graph HA is a chain graph.

Proof: Observe that in HA the following relations hold:

NHA
(x0

1) ⊆ · · · ⊆ NHA
(x0

3m) ⊆ NHA
(y01) ⊆ · · · ⊆ NHA

(y0a3m
)

⊆ NHA
(z01) = · · · = NHA

(z0M−a3m
) ⊆ NHA

(w1
M−a3m

) ⊆ · · · ⊆ NHA
(w1

1)

⊆ NHA
(v1a3m

) ⊆ · · · ⊆ NHA
(v11) ⊆ NHA

(u1
m) = · · · = NHA

(u1
1).

This ordering shows that HA is a chain graph. �

Lemma 2.9 degHA
(ui

j) = 2M + 2m, degHA
(vij) = 2M −m + γj > 2M − m,

2M−a3m ≤ degHA
(wi

j) ≤ 2M−m, degHA
(xi

j) = ai, degHA
(yij) = M−γj < M ,

and degHA
(zij) = M . Moreover, ∆(HA) = 2M + 2m and δ(HA) = a1. �

1 For simplicity, we denote by S × T the set of unordered pairs {{s, t} | s ∈ S, t ∈ T}.

JGAA, 15(6) 727–751 (2011) 737

...

...

y1
a3m

...

...

z1
M−a3m

{x1
h | ah ∈ A1} {x

1
h | ah ∈ A j} {x

1
h | ah ∈ Am}

...

......

w1
1

z1
1y1

m+1

v1
m+1 v1

a3m
u1

1 u1
j

...

u1
m

z0
M−a3m

z0
1y0

a3m
y0

m+1

w1
M−a3m

x0
mx0

2x0
1 x0

3mx0
m+1

w0
1v0

m+1 v0
a3m

w0
M−a3m

...

u0
2 u0

m

......... ...

u0
1

Q0

P1

Q1

P0

Figure 6: Spanning tree T in the proof of Lemma 2.10.

Now we prove that A is a yes instance of 3-Partition if and only if
stc(HA) ≤ k. We divide the proof into the only-if-part (Lemma 2.10) and
the if-part (Lemma 2.11).

Lemma 2.10 Let k = 3M −m− 2. If A is a yes instance, then stc(HA) ≤ k.

Proof: Let A1, . . . , Am be the partition of A such that |Ai| = 3 and
∑

aj∈Ai
aj =

B for 1 ≤ i ≤ m. We shall show that there is a spanning tree T of HA such that
cngHA

(T) ≤ k. Roughly speaking, T is constructed as follows (see Figure 6).

• Take all edges incident to u0
1 in HA.

• Take {u1
j , x

1
h} if and only if ah ∈ Aj .

• Take a perfect matching between {u0
2, . . . , u

0
m} and {x0

2, . . . , x
0
m}.

• Take a perfect matching between Vi and Yi for each i ∈ {0, 1}.

• Take a perfect matching between Wi and Zi for each i ∈ {0, 1}.

More precisely, the edge set of T is defined as follows:

E(T) = {{u0
1, v} | v ∈ Q0 ∪ P1} ∪ {{u1

j , x
1
h} | ah ∈ Aj , 1 ≤ j ≤ m}

∪ {{u0
j , x

0
j} | 2 ≤ j ≤ m} ∪ {{vij, y

i
j} | i ∈ {0, 1}, m+ 1 ≤ j ≤ a3m}

∪ {{wi
j , z

i
j} | i ∈ {0, 1}, 1 ≤ j ≤ M − a3m}.

Clearly, T is a spanning tree ofHA. It is easy to see that edges not incident to
u0
1 are leaf edges. The congestions of these edges are at most ∆(HA) = 2M+2m.

Since B ≥ 8, it follows that 2M +2m = k−B +6 < k. There are four types of
inner edges, and they divide V (HA) as follows.

738 Okamoto et al. Spanning Tree Congestion Problem

1. {u0
1, u

1
j} divides V (HA) into {u1

j} ∪ {x1
h | ah ∈ Aj} and its complement.

2. {u0
1, x

0
j}, 2 ≤ j ≤ m, divides V (HA) into {u0

j , x
0
j} and its complement.

3. {u0
1, v

1
j } or {u0

1, y
0
j } divides V (HA) into {vij , y

i
j} and its complement.

4. {u0
1, w

1
j} or {u0

1, z
0
j } divides V (HA) into {wi

j , z
i
j} and its complement.

Hence, it suffices to show that all |θHA
({u1

j}∪{x1
h | ah ∈ Aj})|, |θHA

({u0
j , x

0
j})|,

|θHA
({vij , y

i
j})|, and |θHA

({wi
j , z

i
j})| are at most k. Note that {u1

j} ∪ {x1
h | ah ∈

Aj} induces a star K1,3, and all {u0
j , x

0
j}, {v

i
j , y

i
j}, and {wi

j , z
i
j} induce edges in

HA. Recall thatM = B+3m−4 and k = 3M−m−2. Thus 2M+2m = k−B+6.
(1) Since degHA

(u1
j) = 2M + 2m = k − B + 6 and

∑

ah∈Aj
degHA

(x1
h) = B,

we have |θHA
({u1

j} ∪ {x1
h | ah ∈ Aj})| = (k − B + 6) + B − 6 = k. (2)

Since degHA
(u0

j) = 2M + 2m = k − B + 6 and degHA
(x0

j) = aj , we have

|θHA
({u0

j , x
0
j})| = (k−B+6)+ aj − 2 = k−B+ aj +4. Assumptions aj < B/2

and B ≥ 8 imply that |θHA
({u0

j , x
0
j})| ≤ k. (3) Since degHA

(vij) = 2M −m+γj
and degHA

(yij) = M − γj , we have |θHA
({vij , y

i
j})| = 3M − m − 2 = k. (4)

Since degHA
(wi

j) ≤ 2M − m and degHA
(zij) = M , we have |θHA

({wi
j , z

i
j})| ≤

3M −m− 2 = k. �

Lemma 2.11 Let k = 3M −m− 2. If stc(HA) ≤ k, then A is a yes instance.

Proof: Let T be a spanning tree of HA such that cngHA
(T) ≤ k. We first prove

the following properties of T .

• Property 2.12. No edge e in T divides P0 ∪ P1 into R and S such that
min{|R|, |S|} ≥ 2.

• Property 2.13. There exist i ∈ {0, 1} and pi ∈ Pi such that NT (pi) ⊇ P1−i.

We may assume without loss of generality that i = 0 in Property 2.13 and T
is rooted at p0. Assuming Properties 2.12 and 2.13 with these assumptions, we
have the following properties.

• Property 2.14. All vertices in Q1 are leaves of T , and for any p1 ∈ P1,
ChT (p1) ⊆ Q1.

• Property 2.15. For any z1j ∈ Z1, prtT (z
1
j) ∈ W1 and ChT (prtT (z

1
j)) =

{z1j }.

• Property 2.16. T can be modified to a spanning tree T ∗ of HA so that
cngHA

(T ∗) = cngHA
(T), T ∗ has Properties 2.12–2.15, and additionally

prtT∗(y1j) ∈ V ′
1 and Ch(prtT (y

1
j)) = {y1j} for any y1j ∈ Y ′

1 .

We postpone the proofs of the above properties, and first prove the lemma
with these properties at hand.

We assume T satisfies the last condition in Property 2.16; that is, T is
already modified. By Properties 2.15 and 2.16, ChT (V1 ∪W1) = Y1 ∪ Z1. Thus

JGAA, 15(6) 727–751 (2011) 739

P0

P1

Q0

Q1

R S

R0

R1

S 0

S 1

G0

G1

Figure 7: Illustration of R and S.

by Property 2.14, prtT (x
1
j) ∈ U1 for any x1

j ∈ X1. This implies that T gives
a partition of A into m (possibly empty) sets A1, . . . , Am such that aj ∈ Ah if
and only if {x1

j , u
1
h} ∈ E(T). Suppose A is not a yes instance. Then there exists

some h such that
∑

aj∈Ah
aj > B. Since aj < B/2, we have |Ah| ≥ 3. It is easy

to see that

cngHA,T ({p0, u
1
h}) = degHA

(u1
h) +

∑

aj∈Ah

(degHA
(x1

j)− 2).

If |Ah| = 3, then degHA
(u1

h)+
∑

aj∈Ah
(degHA

(x1
j)−2) > (2M+2m)+B−6 = k.

Thus |Ah| ≥ 4. Since aj ≥ B/4 + 1, we have

degHA
(u1

h) +
∑

aj∈Ah

(degHA
(x1

j)− 2) ≥ (2M + 2m) + 4(B/4− 1) = k + 2.

This contradicts cngHA
(T) ≤ k, and thus the lemma holds.

Now we shall prove the properties.

Property 2.12 No edge e in T divides P0∪P1 into R and S withmin{|R|, |S|} ≥
2.

Proof: Suppose that e ∈ E(T) divides P0 ∪ P1 into R and S such that
min{|R|, |S|} ≥ 2. Clearly, cngHA,T (e) ≥ |EHA

(R,S)|. By symmetry, we may
assume |R| ≤ |S|. Let Ri = R∩Pi and Si = S∩Pi (see Figure 7). Observe that
HA[R ∪ S] = HA[P0 ∪ P1] ≃ KM,M . Hence, |EHA

(R,S)| = |EKM,M
(R,S)| =

|R| · M − 2|R0| · |R1|. Obviously, |R0| · |R1| ≤ |R|2/4 since |R0| + |R1| = |R|.
Thus we have

|EHA
(R,S)| ≥ |R| ·M − |R|2/2.

Now we divide the rest of the proof into three cases: |R| = 2, |R| ∈ {3, 4, 5},
and |R| ≥ 6.

[Case 1] |R| ≥ 6. Since cngHA
(T) ≤ k, we have |R| ·M − |R|2/2 ≤ k < 3M .

Thus

M <
|R|2

2(|R| − 3)
= |R| ·

|R|

2(|R| − 3)
≤ |R|.

740 Okamoto et al. Spanning Tree Congestion Problem

This contradicts the assumptions |R| ≤ |S| and |R|+ |S| = 2M .
[Case 2] |R| ∈ {3, 4, 5}. For this case, we can easily verify that

|R| ·M − |R|2/2 > 3M − 5 ≥ 3M −m− 2 = k,

since M = B + 3m− 4, B ≥ 8, and m ≥ 3. This contradicts cngHA,T (e) ≤ k.
[Case 3] |R| = 2. Let TR and TS be the components of T − e containing R

and S, respectively. From the definition, cngHA,T (e) = |E(TR, TS)|. Recall that
|Z| = M − a3m and NGA

(z) = P = U ∪ V ∪W for any z ∈ Z. Here we have
two subcases.

[Case 3-1] R 6⊆ Pi for any i. Let R = {r0, r1}, where ri ∈ Ri. Clearly,
|EHA

(R,S)| = |S0| + |S1| = 2(M − 1). If zi ∈ Zi is included in TR, then the
M − 1 detours from zi to P1−i \ {r1−i} pass through the edge e. If zi ∈ Zi is
included in TS, then the detour from zi to r1−i passes through e. In both cases,
at least one detour for zi ∈ Zi and its neighbor passes through e. Hence,

cngHA,T (e) ≥ 2(M − 1) + 2(M − a3m)

= k + 4m− 4 +B − 2a3m

> k + 4m− 4 ≥ k.

[Case 3-2] R ⊆ Pi for some i. Clearly, |EHA
(R,S)| = |R| · |S1−i| = 2M . If

zi ∈ Zi is included in TR, then the M −2 detours from zi to Pi \R pass through
the edge e. If zi ∈ Zi is included in TS , then the two detours from zi to R pass
through e. In both cases, at least two detours for zi ∈ Zi and its neighbor pass
through e. Hence, cngHA,T (e) ≥ 2M + 2(M − a3m) > k. �

Property 2.13 There exist i ∈ {0, 1} and pi ∈ Pi such that NT (pi) ⊇ P1−i.

Proof: Assume T has Property 2.12. Observe that there is an edge e ∈ E(T)
that lies between P0 and P1, since otherwise T is disconnected. Let e = {p0, p1},
where pi ∈ Pi. By Property 2.12, we may assume, without loss of generality,
that e divides P0 ∪ P1 into {p1} and (P0 ∪ P1) \ {p1}. We shall show that p0 is
the desired vertex; that is, NT (p0) ⊇ P1.

Let T0 and T1 be the connected components of T − e, where Ti includes
pi (see Figure 8). Let p′1 ∈ P1 \ {p1}. Since p0, p

′
1 ∈ V (T0), a unique p0–p

′
1

path in T is contained in T0. It suffices to show that the path is a single edge
{p0, p′1} ∈ E(T). Suppose this is not the case. Let the unique p0–p

′
1 path be

(p0, s1, . . . , sℓ, p
′
1) with ℓ ≥ 1. Clearly, (p1, p0, s1, . . . , sℓ, p

′
1) is a unique p1–p

′
1

path in T . By Property 2.12, no inner vertex sj can be included in P0∪P1, since
otherwise the edge {p0, s1} divides P0 ∪ P1 into two non-singleton sets. Hence,
{s1, . . . , sℓ} ⊆ Q0 ∪ Q1. Observe that Q0 ∪ Q1 is an independent set of HA.
Thus we have ℓ = 1 and the p0–p

′
1 path is (p0, s1, p

′
1). However, this cannot be

happen, since no vertex in Q0 ∪Q1 has neighbors both in P0 and P1. �

In the rest of the proof, we assume T has Properties 2.12 and 2.13. We also
assume without loss of generality that i = 0 in Property 2.13 and T is rooted
at p0.

JGAA, 15(6) 727–751 (2011) 741

p0 e p1p′1 s1

T0 T1

Figure 8: The p0–p
′
1 path in T has to be a single edge.

Property 2.14 All vertices in Q1 are leaves of T , and ChT (p1) ⊆ Q1 for any
p1 ∈ P1.

Proof: Observe that NHA
(Q1) = P1. Thus if q ∈ Q1 has two neighbors p

and p′ in T , then p, p′ ∈ P1. By Property 2.13, p and p′ have p0 as their
common neighbor. Hence, T has a cycle induced by q, p, p′, and p0. This is
a contradiction. Therefore, all vertices in Q1 are leaves of T . If p1 ∈ P1 has a
neighbor p′0 in P0 \{p0}, then {p0, p1} ∈ E(T) separates {p1, p′0} and {p0}∪P1 \
{p1}. This contradicts Property 2.12. Thus for any p1 ∈ P1, ChT (p1) ⊆ Q1. �

Property 2.15 For any z1j ∈ Z1, prtT (z
1
j) ∈ W1 and ChT (prtT (z

1
j)) = {z1j }.

Proof: Clearly, prtT (z
1
j) ∈ P1 and ChT (prtT (z

1
j)) ⊆ Q1 by Property 2.14. We

first prove that prtT (z
1
j) ∈ W1 for any z1j ∈ Z1. Since ChT (prtT (z

1
j)) ⊆ Q1 and

vertices in Q1 are leaves of T ,

cngHA,T ({p0, prtT (z
1
j)}) = |θHA

({prtT (z
1
j)} ∪ ChT (prtT (z

1
j)))|

= degHA
(prtT (z

1
j)) +

∑

q∈ChT (prtT (z1

j))

(degHA
(q) − 2)

≥ degHA
(prtT (z

1
j)) + degHA

(z1j)− 2.

If prtT (z
1
j) ∈ U1∪V1, then degHA

(prtT (z
1
j)) > 2M −m. Since degHA

(z1j) = M ,

degHA
(prtT (z

1
j)) + degHA

(z1j)− 2 > 3M −m− 2 = k.

Thus prtT (z
1
j) ∈ W1 and ChT (prtT (z

1
j)) ⊆ Y1 ∪ Z1. Let prtT (z

1
j) = w1

h ∈ W1.

Next we prove that z1j is a unique child of w1
h. Suppose ChT (w

1
h) \ {z1j } 6= ∅.

Then
∑

q∈ChT (w1

h
)\{z1

j }

(degHA
(q)−2) ≥ min{degHA

(q) | q ∈ Y1∪Z1}−2 = degHA
(y11)−2,

and thus

cngHA,T ({p0, w
1
h}) ≥ degHA

(w1
h) + degHA

(z1j)− 2 + degHA
(y11)− 2

≥ (2M − a3m) +M + (M − 3m)− 4

= k +M − a3m − 2m− 2

= k +m+B − a3m − 6

> k +m+B/2− 6.

742 Okamoto et al. Spanning Tree Congestion Problem

Since m ≥ 3 and B ≥ 8, we have cngHA,T ({p0, w
1
h}) > k. �

Property 2.16 T can be modified to T ∗ so that cngHA
(T ∗) = cngHA

(T), T ∗

has Properties 2.12–2.15, and additionally prtT∗(y1j) ∈ V ′
1 and Ch(prtT (y

1
j)) =

{y1j} for any y1j ∈ Y ′
1 .

Proof: By Property 2.14, ChT (prtT (y
1
j)) ⊆ Q1. By Property 2.15, prtT (y

1
j) ∈

U1 ∪ V1. We first prove that Ch(prtT (y
1
j)) = {y1j }. Suppose Ch(prtT (y

1
j)) \

{y1j} 6= ∅. Since ChT (prtT (y
1
j)) ⊆ Q1 and vertices in Q1 are leaves of T , we

have

cngHA,T ({p0, prtT (y
1
j)}) = |θHA

({prtT (y
1
j)} ∪ ChT (prtT (y

1
j)))|

≥ min
p∈U1∪V1

degHA
(p) + degHA

(y1j)− 2

+ min
q∈Q1

(

degHA
(q)− 2

)

> (2M −m) + (M − γj)− 2 + a1 − 2

= k + a1 − γj − 2.

Since a1 ≥ 3m+ 2 and γj ≤ 3m, we have cngHA,T ({p0, prtT (y
1
j)}) > k. This is

a contradiction, and thus Ch(prtT (y
1
j)) = {y1j }. Hence,

cngHA,T ({p0, prtT (y
1
j)}) = degHA

(prtT (y
1
j)) + degHA

(y1j)− 2.

Next we prove that prtT (y
1
j) ∈ V1 \ V ′

1 for any y1j ∈ Y1 \ Y ′
1 , where V ′

1

and Y ′
1 denote {v1h ∈ V1 | γh = 3m} and {y1h ∈ Y1 | γh = 3m}, respectively.

It is easy to see that degHA
(v) = 2M + 2m for any v ∈ U1 ∪ V ′

1 . Suppose
that prtT (y

1
j) ∈ U1 ∪ V ′

1 for some y1j ∈ Y ′
1 . Then cngHA,T ({p0, prtT (y

1
j)}) =

(2M +2m)+ (M − γj)− 2 = k+3m− γj > k. This is a contradiction, and thus
prtT (y

1
j) ∈ V1 \ V

′
1 .

We now show that T can be modified to T ∗, without loosing other prop-
erties, so that prtT∗(y1j) ∈ V ′

1 for any y1j ∈ Y ′
1 . Observe that NHA

(v1j) =

NHA
(prtT (y

1
j)) for any y1j ∈ Y ′

1 . Let h be the maximum index such that

prtT (y
1
h) 6= v1h. (If there is no such h, then we are done.) It is easy to see

that ChT (v
1
h) ⊆ X1 ∪ {yj | m + 1 ≤ j ≤ h − 1}. We swap the children of v1h

for the children of prtT (y
1
h) (see Figure 9). That is, we remove E− from T and

then add E+ to T , where E− and E+ denote the following edge sets:

E− =
{

{y1h, prtT (y
1
h)}

}

∪
{

{v1h, q1} | q1 ∈ ChT (v
1
h)
}

,

E+ =
{

{y1h, v
1
h}

}

∪
{

{prtT (y
1
h), q1} | q1 ∈ ChT (v

1
h)
}

.

We call the new tree T ′. It is not difficult to see that T ′ is a spanning tree of
HA, and prtT ′(y1h) = v1h ∈ V1. Since NHA

(v1h) = NHA
(prtT (y

1
h)), it follows that

cngHA
(T ′) = cngHA

(T). Observe that if we denote by h′ the maximum index
such that prtT ′ (y1h′) 6= v1h′ , then h′ < h since ChT (v

1
h) ⊆ X1 ∪ {yj | m+1 ≤ j ≤

h− 1}. Therefore, by repeatedly applying this swapping, we eventually obtain
a desired tree T ∗. �

As we mentioned earlier, Properties 2.12–2.16 imply the lemma. �

JGAA, 15(6) 727–751 (2011) 743

... ...

...... ...

Z1 ∪ Y1 \ Y′1

W1 ∪ V1 \ V′1v1
h

y1
h

prtT (y1
h)

chdT (v1
h)

... ...

...... ...

Z1 ∪ Y1 \ Y′1

W1 ∪ V1 \ V′1v1
h

y1
h

prtT (y1
h)V′1

Y′1

V′1

Y′1

=⇒

chdT (v1
h)

Figure 9: Swapping ChT (v
1
h) for ChT (prtT (y

1
h)).

3 Exponential-time exact algorithm

We have shown that STC is NP-complete even for very simple graphs. It is
widely believed that NP-hard problems cannot be solved in polynomial time.
Thus we need fast exponential-time (or sub-exponential-time) algorithms for
these problems. Nowadays, designing fast exponential-time exact algorithms
becomes an important topic in theoretical computer science. See a recent text-
book of exponential-time exact algorithms by Fomin and Kratsch [10]. For
STC, we can easily design an O∗(2m)- or O∗(nn)-time algorithm that examine
all spanning trees of input graphs, where n and m denote the number of vertices
and the number of edges, respectively. In this section, we describe an algorithm
for STC that runs in O∗(2n) time. Although it is still an exponential-time
algorithm, it is significantly faster than a naive algorithm.

Let G = (V,E) be a given undirected graph. For convenience, we denote
|θG(X)| by c(X). Note that c(∅) = c(V) = 0. Consider a spanning tree T with
congestion at most k. We regard T as a rooted tree with root r ∈ V . We denote
this rooted tree by (T, r). Let e = {u, v} ∈ E(T) be an edge of T , and without
loss of generality, let u be the parent of v. Then, the congestion of e in T is equal
to c(DT,r(v)), where DT,r(v) denotes the set of descendants of v in (T, r). Since
the congestion of T is at most k, we see that c(DT,r(v)) ≤ k. See Figure 10.
Conversely, if c(DT,r(v)) ≤ k for all v ∈ V \ {r}, then the congestion of T is at
most k. This is because there exists a one-to-one correspondence between the
edges e of T and the vertices v in V \ {r} so that v is a deeper endpoint of e.
We summarize this observation in the following lemma.

Lemma 3.1 The congestion of a rooted tree (T, r) is at most k if and only if
c(DT,r(v)) ≤ k for every vertex v ∈ V \ {r}. �

The lemma above suggests the following dynamic-programming approach.
We call a pair (X, v) of a subset X ⊆ V and a vertex v 6∈ X a rooted subset
of V . By definition, X 6= V for a rooted subset (X, v) of V . A rooted subset
(X, v) of V is good if there exists a rooted spanning tree (T, v) of G[X ∪ {v}]
such that c(DT,v(u)) ≤ k for all u ∈ X . Here, c is a cut function of G, not of
G[X ∪ {v}]. By definition (X, v) is good when X = ∅. Note that there exists
a rooted spanning tree (T, r) of G with congestion at most k if and only if the

744 Okamoto et al. Spanning Tree Congestion Problem

r

v

DT,r(v)

Figure 10: The definition of DT,r(v).

rooted set (V \ {r}, r) is good.
The following lemma provides a recursive formula that forms a basis of our

algorithm (see Figure 11).

Lemma 3.2 Let (X, v) be a rooted subset of V with |X | ≥ 1. Then, (X, v) is
good if and only if at least one of the following holds.

1. c(X) ≤ k and there exists a vertex u ∈ X ∩NG(v) such that (X \ {u}, u)
is good.

2. There exists a non-empty proper subset Y ⊆ X such that both of (Y, v), (X\
Y, v) are good.

Proof: For the only-if-part, assume that (X, v) is good. Then, there exists a
rooted spanning tree (T, v) of G[X∪{v}] such that c(DT,v(u)) ≤ k for all u ∈ X .

Now, we have two cases. In the first case, v has only one child u in T . Then,
u ∈ X ∩ NG(v), and T − v is a spanning tree of G[X] rooted at u. Hence,
for all u′ ∈ X we have c(DT−v,u(u

′)) = c(DT,v(u
′)) ≤ k, which means that

c(X) = c(DT,v(u)) ≤ k and (X \ {u}, u) is good. Thus, Condition 1 is satisfied.
In the second case, v has at least two children in T . Let u1, . . . , uk be the

children of v in T , and T1, . . . , Tk be the subtrees of T rooted at u1, . . . , uk,
respectively. Then, we set Y to be the vertices of T1. Then, X \ Y is composed
of the vertices of T2, . . . , Tk. Furthermore, as in the first case, we see that (Y, v)
and (X \ Y, v) are good. Thus, Condition 2 is satisfied.

We prove the if-part by induction on |X |. When |X | = 1, let X = {u}.
First note that Condition 2 cannot be satisfied since {u} cannot have a non-
empty proper subset. Therefore, we assume that c({u}) ≤ k and u ∈ NG(v).
Then, there exists a unique spanning tree T of G[{u, v}] rooted at v such that
DT,v(v) = {u, v} and DT,v(u) = {u}. Since c(DT,v(u)) = c({u}) ≤ k, we see
that ({u}, v) is good.

We now proceed to the induction step, and let |X | ≥ 2. If Condition 1 is
satisfied, by the induction hypothesis, there exists a spanning tree T ′ of G[X]
rooted at u such that c(DT ′,u(u

′)) ≤ k for all u′ ∈ X \ {u}. Now we form
a spanning tree T of G[X ∪ {v}] rooted at v, by attaching v to T ′ through
u. This is possible since u ∈ NG(v) (from Condition 1). Then, c(DT,v(u

′)) =
c(DT ′,u(u

′)) ≤ k for all u′ ∈ X by the induction hypothesis, and c(DT,v(u)) =
c(X) ≤ k by Condition 1. Thus, (X, v) is good.

If Condition 2 is satisfied, by the induction hypothesis, there exist a spanning
tree T1 of G[Y ∪ {v}] rooted at v and a spanning tree T2 of G[(X \ Y) ∪ {v}]

JGAA, 15(6) 727–751 (2011) 745

X

v

u

X \ {u}

v

(X, v) is good. (X \ {u}, u) is good and c(X) ≤ k. (Y, v), (X \ Y, v) are good.

⇐⇒
or

v

Y X \ Y

Figure 11: An illustration of Lemma 3.2.

rooted at v such that c(DT1,v(u1)) ≤ k for all u1 ∈ Y and c(DT2,v(u2)) ≤ k
for all u2 ∈ X \ Y . Now we form a spanning tree T of G[X] from T1 and T2

by identifying their roots v. If u ∈ Y , then c(DT,v(u)) = c(DT1,v(u)) ≤ k; If
u ∈ X \ Y , then c(DT,v(u)) = c(DT2,v(u)) ≤ k. Furthermore, c(DT,v(v)) =
c(X) ≤ k. Therefore, (X, v) is good. �

Lemmas 3.1 and 3.2 above readily give an O∗(3n)-time dynamic program-
ming algorithm. However, the fast subset convolution method enables us to
solve the problem in O∗(2n) time. We give more details below.

Let S be a finite set. For two functions f, g : 2S → R, their subset convolution
is a function f ∗ g : 2S → R defined as

(f ∗ g)(X) =
∑

Y⊆X

f(Y)g(X \ Y)

for every X ⊆ S. Given f(X), g(X) for all X ⊆ S, we can compute (f ∗ g)(X)
for all X ⊆ S in O∗(2n) total time, where n = |S| [1] (see also Husfeldt’s survey
paper [15]).

Back to the spanning tree congestion problem, let v ∈ V be an arbitrary
vertex. We define the function fv : 2

V \{v} → R by the following recursion:
fv(X) = 1 if X = ∅; otherwise,

fv(X) =
∑

u∈X∩NG(v)

fu(X \ {u})max{0, k− c(X)+ 1}+
∑

∅6=Y(X

fv(Y)fv(X \ Y),

where the empty sum is defined to be 0. It is easy to verify that fv(X) is
non-negative for every v ∈ V and every X ⊆ V \ {v}.

The following lemma connects the functions fv, v ∈ V and good rooted sets.

Lemma 3.3 Let (X, v) be a pair of a subset X ⊆ V \ {v} and a vertex v ∈ V .
Then, fv(X) > 0 if and only if (X, v) is a good rooted subset of V .

Proof: For the if-part, let (X, v) be a good rooted subset of V . We prove
that fv(X) > 0 by the induction on |X |. The base case when |X | = 0 is
straightforward from the definition of fv.

If |X | ≥ 1, then one of the two conditions in Lemma 3.2 holds. If Condition
1 is satisfied, then c(X) ≤ k and, by the induction hypothesis, fu(X \ {u}) > 0

746 Okamoto et al. Spanning Tree Congestion Problem

for some u ∈ X ∩ NG(v). Therefore, fv(X) > 0 by definition. If Condition 2
is satisfied, then fv(Y) and fv(X \ Y) are positive for some non-empty proper
subset Y ⊆ X . Thus, by definition, fv(X) > 0.

For the only-if-part, assume that fv(X) > 0. We now show that (X, v) is
good by the induction on |X |. The base case when |X | = 0 is immediate. If
|X | ≥ 1, then one of the following two holds.

• fu(X \ {u})max{0, k − c(X) + 1} > 0 for some u ∈ X ∩NG(v).

• fv(Y)fv(X \ Y) > 0 for some ∅ 6= Y (X .

When the former condition is satisfied, fu(X \ {u}) > 0 and c(X) ≤ k. By
the induction hypothesis, (X \ {u}, u) is good. Hence, Condition 1 in Lemma
3.2 holds, and (X, v) is good. When the latter condition is satisfied, by the
induction hypothesis, (Y, v) and (X \ Y, v) are good. Therefore, Condition 2 in
Lemma 3.2 holds, and (X, v) is good. �

To apply the subset convolution method, we use the following functions. For
each i ∈ {0, 1, . . . , n − 1}, where n = |V |, and v ∈ V , let f i

v : 2
V \{v} → R be

defined by

f i
v(X) =

{

fv(X) if |X | ≤ i,

0 if |X | > i,

for all X ⊆ V \ {v}. Then, it is not difficult to see the following.

1. For all v ∈ X and X ⊆ V \ {v}, fn−1
v (X) = fv(X).

fn−1
v (X) = fv(X).

2. For all v ∈ V and X ⊆ V \ {v},

f0
v (X) =

{

1 if X = ∅,

0 otherwise.

3. For all i ∈ {1, . . . , n− 1}, v ∈ V , and X ⊆ V \ {v}

f i
v(X) =

∑

u∈X∩NG(v)

f i−1
u (X \ {u})max{0, k − c(X) + 1}

+
∑

∅6=Y (X

f i−1
v (Y)f i−1

v (X \ Y)

=
∑

u∈X∩NG(v)

f i−1
u (X \ {u})max{0, k − c(X) + 1}

+
∑

Y ⊆X

f i−1
v (Y)f i−1

v (X \ Y)− 2f i−1
v (∅)f i−1

v (X)

=
∑

u∈X∩NG(v)

f i−1
u (X \ {u})max{0, k − c(X) + 1}

+ (f i−1
v ∗ f i−1

v)(X)− 2f i−1
v (∅)f i−1

v (X).

JGAA, 15(6) 727–751 (2011) 747

Our algorithm is based on these formulas.

Step 1. For all v ∈ V and X ⊆ V \ {v}, compute f0
v (X) based on the formulas

above.

Step 2. For each i = 1, . . . , n− 1 in the ascending order, do the following.

Step 2-1. For all v ∈ V , compute the subset convolution f i−1
v ∗ f i−1

v .

Step 2-2. For all v ∈ V and all X ⊆ V \ {v}, compute f i
v(X) based on

the formula above.

Step 3. If fn−1
v (V) > 0, then output Yes. Otherwise, output No.

The correctness is immediate from the discussion so far. The running time
is O∗(2n) since the running time of each step is bounded by O∗(2n). This is
an algorithm for solving the decision problem, but a simple binary search on
k ∈ {1, . . . , |E|} can provide the spanning tree congestion. Thus, we obtain the
following theorem.

Theorem 3.4 The spanning tree congestion of a given undirected graph can be
computed in O∗(2n) time.

Note that the algorithm also works for the weighted case with the O(n)-factor
increase of the running time, since the number of distinct cut values c(X) is
bounded by 2n and so the binary search over the all possible values of c(X)
takes at most O(log(2n)) = O(n) iterations. This is possible if we compute
c(X) for all X ⊆ V beforehand, which only takes O∗(2n) time.

4 Remarks on cographs

We have shown the NP-completeness of STC for graphs of clique-width at most
three. Here we study the spanning tree congestion of the graphs of clique-width
at most two; that is, cographs [9]. To deal with STC on cographs, we first
present two combinatorial lemmas.

Let µG(u, v) be the maximum number of edge-disjoint u–v paths in G, and
let µ(G) = maxu,v∈V (G) µG(u, v). Ostrovskii [23] showed that stc(G) ≥ µ(G)
for any graph G. Recall that a vertex v ∈ V (G) is universal if v is adjacent to
all other vertices in G.

Lemma 4.1 The spanning tree congestion of a graph G with a universal vertex
u is ∆(G− u) + 1.

Proof: Let G be a graph and u its universal vertex. The star spanning tree
centered at u has congestion ∆(G−u)+1. Let v be a vertex of G−u with degree
∆(G− u). For each w ∈ NG−u(v), there is a u–v path (u,w, v) in G. Also, the
edge {u, v} itself is a u–v in G. Since these paths are pairwise edge-disjoint, we
have stc(G) ≥ ∆(G− u) + 1. �

748 Okamoto et al. Spanning Tree Congestion Problem

Lemma 4.2 The spanning tree congestion of G = G1⊕G2 can be approximated
within a factor three in polynomial time.

Proof: For the sake of simplicity, let ni and ∆i denote |V (Gi)| and ∆(Gi),
respectively. We assume n1, n2 ≥ 2 since otherwise we can determine stc(G) by
Lemma 4.1.

Let u, v ∈ V (G1). Since G = G1 ⊕ G2, both NG(u) and NG(v) contain
V (G2). Therefore, µ(G) ≥ µG(u, v) ≥ n2. By symmetry, we have µ(G) ≥ n1

as well. For i ∈ {1, 2}, let ui be a maximum degree vertex of Gi. For each
w ∈ NG1

(u1) ∪NG2
(u2), we have a u1–u2 path (u1, w, u2) in G. Thus µ(G) ≥

∆1 +∆2. Combining these bounds, we have

stc(G) ≥ µ(G) ≥ max{n1, n2,∆1 +∆2} ≥ (n1 + n2 +∆1 +∆2)/3.

Let V (Gi) = {vi1, v
i
2, . . . , v

i
ni
} for i ∈ {1, 2}. Assume n1 ≤ n2 without loss

of generality. We construct a spanning tree T of G as follows (in polynomial
time):

E(T) = {{v11, v
2
j } | 1 ≤ j ≤ n2} ∪ {{v1j , v

2
j } | 2 ≤ j ≤ n1}.

Every leaf edge in T has congestion at most ∆(G) = max{∆1 + n2,∆2 + n1}.
It is easy to see that every inner edge e of T divides V (G) into {v1, v2} and its
complement, where vi ∈ V (Gi). Therefore, cngG,T (e) ≤ degG(v1)+ degG(v2) ≤
∆1 + n2 +∆2 + n1. Thus cngG(T) ≤ ∆1 + n2 +∆2 + n1 ≤ 3stc(G). �

Let G be a connected cograph with at least two vertices. Then G can be
expressed as G1 ⊕G2 for some nonempty cographs G1 and G2. Furthermore, if
G = G1 ⊕ G2 is a chordal cograph, then at least one of G1 and G2 is K1 [28].
Therefore, every connected chordal cograph with at least two vertices has a
universal vertex. By Lemmas 4.1 and 4.2, we have the following corollary.

Corollary 4.3 The spanning tree congestion of cographs can be approximated
within a factor three in polynomial time. Furthermore, the spanning tree con-
gestion of chordal cographs can be determined in linear time.

5 Conclusion

We showed that the problem of determining the spanning tree congestion is
NP-hard even for very simple graphs such as split graphs and chain graphs. To
cope with the hardness, we presented an exact O∗(2n)-time algorithm for the
spanning tree congestion problem, where n is the number of vertices.

The complexity of STC for some important graph classes such as cographs
and interval graphs remains unsettled. Note that k-STC is solvable in linear time
even for chordal graphs (and thus for interval graphs). To see this, recall that a
chordal graph has small treewidth if and only if it contains no large clique [3].
Since a large clique contains many edge disjoint paths, we can conclude that a
chordal graph has small spanning tree congestion only if its treewidth is small.
Thus we have a linear-time algorithm for k-STC on chordal graphs, since small
treewidth can be checked in linear time [2] and k-STC can be solved in linear
time for small treewidth graphs [4].

JGAA, 15(6) 727–751 (2011) 749

Acknowledgments

Part of this research is supported by the Funding Program for World-Leading
Innovative R&D on Science and Technology, Japan, and Grants-in-Aid for Sci-
entific Research from Ministry of Education, Science and Culture, Japan, and
Japan Society for the Promotion of Science.

750 Okamoto et al. Spanning Tree Congestion Problem

References

[1] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets
Möbius: Fast subset convolution. In Proceedings of the 39th Annual ACM
Symposium on Theory of Computing (STOC ’07), pages 67–74, 2007.

[2] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM J. Comput., 25:1305–1317, 1996.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoret. Comput. Sci., 209:1–45, 1998.

[4] H. L. Bodlaender, F. V. Fomin, P. A. Golovach, Y. Otachi, and E. J.
van Leeuwen. Parameterized complexity of the spanning tree congestion
problem. Algorithmica, to appear.

[5] H. L. Bodlaender, K. Kozawa, T. Matsushima, and Y. Otachi. Spanning
tree congestion of k-outerplanar graphs. Discrete Math., 311:1040–1045,
2011.

[6] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey.
SIAM, 1999.

[7] A. Brandstädt and V. V. Lozin. On the linear structure and clique-width
of bipartite permutation graphs. Ars Combin., 67:273–281, 2003.

[8] A. Castejón and M. I. Ostrovskii. Minimum congestion spanning trees of
grids and discrete toruses. Discuss. Math. Graph Theory, 29:511–519, 2009.

[9] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs.
Discrete Appl. Math., 101:77–114, 2000.

[10] F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer,
2010.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[12] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57
of Annals of Discrete Mathematics. North Holland, second edition, 2004.

[13] P. Hliněný, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond
tree-width and their applications. Comput. J., 51:326–362, 2008.

[14] S. W. Hruska. On tree congestion of graphs. Discrete Math., 308:1801–1809,
2008.

[15] T. Husfeldt. Invitation to algorithmic uses of inclusion–exclusion. In Pro-
ceedings of the 38th International Colloquium on Automata, Languages and
Programming (ICALP 2011), Part II, volume 6756 of Lecture Notes in
Comput. Sci., pages 42–59. Springer-Verlag, 2011.

JGAA, 15(6) 727–751 (2011) 751

[16] K. Kozawa and Y. Otachi. Spanning tree congestion of rook’s graphs.
Discuss. Math. Graph Theory, 31:753–761, 2011.

[17] K. Kozawa, Y. Otachi, and K. Yamazaki. On spanning tree congestion of
graphs. Discrete Math., 309:4215–4224, 2009.

[18] H.-F. Law. Spanning tree congestion of the hypercube. Discrete Math.,
309:6644–6648, 2009.

[19] H.-F. Law and M. I. Ostrovskii. Spanning tree congestion: duality and
isoperimetry; with an application to multipartite graphs. Graph Theory
Notes N. Y., 58:18–26, 2010.

[20] H.-F. Law and M. I. Ostrovskii. Spanning tree congestion of some product
graphs. Indian J. Math., 52:103–111, 2011.

[21] C. Löwenstein, D. Rautenbach, and F. Regen. On spanning tree congestion.
Discrete Math., 309:4653–4655, 2009.

[22] Y. Okamoto, Y. Otachi, R. Uehara, and T. Uno. Hardness results and an
exact exponential algorithm for the spanning tree congestion problem. In
Proceedings of the 8th Annual Conference on Theory and Applications of
Models of Computation (TAMC 2011), volume 6648 of Lecture Notes in
Comput. Sci., pages 452–462. Springer-Verlag, 2011.

[23] M. I. Ostrovskii. Minimal congestion trees. Discrete Math., 285:219–226,
2004.

[24] M. I. Ostrovskii. Minimum congestion spanning trees in planar graphs.
Discrete Math., 310:1204–1209, 2010.

[25] M. I. Ostrovskii. Minimum congestion spanning trees in bipartite and
random graphs. ActaMath. Sci., 31B:634–640, 2011.

[26] Y. Otachi, H. L. Bodlaender, and E. J. van Leeuwen. Complexity results
for the spanning tree congestion problem. In Proceedings of the 36th In-
ternational Workshop on Graph Theoretic Concepts in Computer Science
(WG 2010), volume 6410 of Lecture Notes in Comput. Sci., pages 3–14.
Springer-Verlag, 2010.

[27] S. Simonson. A variation on the min cut linear arrangement problem. Math.
Syst. Theory, 20:235–252, 1987.

[28] J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Discrete
Appl. Math., 69:247–255, 1996.

[29] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J.
Alg. Disc. Meth., 2:77–79, 1981.

	Introduction
	Graphs
	Spanning tree congestion of weighted graphs
	Graph classes

	Hardness for split graphs and chain graphs
	Hardness for split graphs
	Hardness for chain graphs

	Exponential-time exact algorithm
	Remarks on cographs
	Conclusion

