
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 並列項書換え抽象機械 : Parallel TRAMの設計と実装

Author(s) 近藤, 勝

Citation

Issue Date 1997-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1032

Rights

Description Supervisor:二木 厚吉, 情報科学研究科, 修士



Abstract Machine for Parallel Rewriting :

Design and Implementation of Parallel TRAM

Masaru Kondo

School of Information Science,

Japan Advanced Institute of Science and Technology

February 14, 1997

Keywords: parallel term rewriting, abstract machines, TRAM, parallel E-strategy,

multiprocessors, CafeOBJ.

1 Introduction

Algebraic speci�cation languages such as CafeOBJ have been widely attracting atten-

tion since they have clear semantics and the ability to write down lucid, non-ambiguous,

and non-inconsistent speci�cations of software systems. Many algebraic speci�cation lan-

guages use (order-sorted conditional) term rewriting systems as a general computaional

model. This makes it possible to verify and prove various properties of algebraic speci�-

cations, and to execute the speci�cations as programs by using rewrite engines. For im-

plementing the rewrite engines e�ciently on conventional computers, abstract machines

for term rewriting systems are designed. TRAM is one of these abstract machines.

On the other hand, with the rapid and steady advance of hardware technology, small-

sized and low-priced multiprocessor computers have been developed. These machines

are the next generation of uniprocessor workstations and personal computers and will

undoubtedly become standard for the future computers.

Judging from these facts, it would be very important to develop a method of imple-

menting rewrite engines e�ciently on multiprocessors. In this study, we have parallelized

TRAM so that the rewrite engines can be implemented e�ciently on the multiprocessors.

In addition, we have implemented the parallelized TRAM (Parallel TRAM) on the multi-

processor, and have assessed the performance of the implementation by executing several

benchmark programs on Parallel TRAM.

Copyright c
 1997 by Masaru Kondo

1



2 Parallel E-strategy

Parallel E-strategy is an extension of OBJ's E-strategy, which allows us to specify the

order of reductions explicitly including concurrent reductions. It is easy to adopt the

strategy that reduces all of arguments automatically in parallel. But, we can not expect

high performance because excessive number of parallel processes might be created in this

strategy. If we wish to execute concurrent reductions e�ciently, we should control the

number of parallelisms in some way. Parallel E-strategy is able to control this problem.

For example, f/4 : (1 {2 3 4} 0) speci�es a strategy for an operator f of arity 4. Non-

zero natural number n denotes the reduction of the nth argument of a term whose top

operator is f , and zero denotes the reduction of the term. If we wish to reduce arguments

in parallel, they are enclosed with brace brackets "{" and "}". The other elements in the

strategy are reduced sequentialy from left. The above strategy indicates that �rstly the

1st argument of the term is reduced, secondly the 2nd to 4th arguments are reduced in

parallel, and lastly the term itself is reduced.

3 Parallel TRAM

Parallel TRAM carries out reductions based on Parallel E-strategy. The structure of

Parallel TRAM is fundamentally the same as TRAM. However, the interpreters for ab-

stract instractions and the mutable memory spaces whose contents may be changed during

rewritings are replicated and given to each processor. (The marked units and spaces are

replicated.)

� Processing Units

Rule compiler : The rule compiler encodes the LHSs into a discrimination net

and compiles the RHSs into pairs of matching program templates and strategy

list templates.

Term compiler : The term compiler compiles input terms into pairs of the match-

ing programs and the strategy lists.

Interpreter� : The interpreter interprets the matching program according to the

strategy list.

� Memory Spaces

DNET : This is the space for the discrimination net that is the tree structure for

e�cient search of matching rules.

CODE� : This is the space for the matching programs that execute pattern-matching

between a term and the discrimination net. Since matching programs are

equivalent to the terms in Parallel TRAM, we can seek the applicable rules

only executing the matching programs corresponding to the term.

2



SL� : This is the space for the strategy list that indicates the order of traversing

the term. This strategy list is generated from the subject term according to

each operation's strategy. Parallel TRAM interpreter rewrites the subject term

according to the strategy list.

CR : This is the space for the matching program templates and the strategy list

templates.

STACK� : This space is working place for pattern-matching.

VAR� : This space contains variable bindings for pattern-matching.

In Parallel TRAM, the rules and the terms are compiled by the main processor sequen-

tially.

We mainly add following four abstract instractions to be able to reduce terms in

parallel. If we specify the concurrent reduction, the labels for calling these instractions

are put in the strategy list appropriately. The meanings of these instractions are as

follows:

FORK : This instraction creates a new process for reducing a term independently and

allocates it on an idle processor. If there are no such idle processors at the moment,

this instraction is ignored and the processor calling this instraction executes the new

process by itself.

JOIN : This instraction is used for synchronization. The processors calling this instrac-

tion suspend their executions until all of their child processes (that are allocated on

the other processors by FORK) are �nished. During they suspend, their states are

changed into idle and they may execute some reductions from the other processors.

EXIT : This instraction tells the parent processor that the reduction allocated by FORK

is �nished. This instraction is allocated on child processors with processes for par-

allel reductions by FORK.

SLEEP : This instraction is called when a processor �nishes all of its allocated reductions

and changes its state into idle.

For example, given f(A,B,C) as an input term, and the strategy of f is speci�ed as

f/3:({1 2 3} 0) , then the generated strategy-list is as follow:

[<FORK>, <matching program for "A">, <FORK>, <matching program for "B">,

<matching program for "C">, <JOIN>, <matching program for "f">,

<return result>]

This strategy list are allocated on the main processor's SL, Parallel TRAM performs the

reduction in the follwing way:

1. The main processor begins to reduce the input term by picking up an element in
strategy list and executing it. At �rst, sub-processors 1 and 2 are suspended because
of SLEEP.

3



SL main = [<FORK>, <m.p. for "A">, … , <return result>]

SL sub1 = [<SLEEP>]

SL sub2 = [<SLEEP>]

2. FORK creates the new process for the 1st argument A and allocates it on an idle
processor (sub-processor 1) with EXIT. Similarly, the new process for the 2nd ar-
gument B and EXIT are allocated on sub-processor 2. The main processor picks up
the next element (term C) in its strategy list.

SL main = [<m.p. for "C">, <JOIN>, <m.p. for "f">, <return result>]

SL sub1 = [<m.p. for "A">, <EXIT>, <SLEEP>]

SL sub2 = [<m.p. for "B">, <EXIT>, <SLEEP>]

3. Each processor executes each reduction in parallel.

4. The main processor may pause at JOIN until the sub-processors 1 and 2 �nish their

reductions. The two processors �nish their reductions, then each EXIT tells the

parent processor (the main processor) its termination.

5. The main processor executes the reduction for the whole term and returns the result.

The sub-processor 1 and 2 are suspended again by SLEEP.

4 Conclusion

We considered the mechanism for reducing terms in parallel and designed Parallel TRAM

which is an abstract machine for parallel term rewriting. We implemented this abstract

machine on the multiprocessor workstation LUNA-88K2 that carries four MC88100 pro-

cessors using C language and evaluated its performance. We got following results:

� We can restrain excessive number of the concurrent processes using Parallel E-

strategy, consequently Parallel TRAM e�ciently performs the reductions in parallel.

� We parallelize TRAM by integrating a concurrent mechanism in the strategy list,

without losing the advantages of TRAM.

� Parallel TRAM was found to be 1.67 to 1.98 times faster than TRAM after executing

some benchmark programs on the two versions of TRAM.

4


