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Chapter 1

Introduction

1.1 Constructivism

There are several approaches to constructive mathematics. This thesis follows the ap-
proach set out by Errett Bishop, Bishop’s Constructive Mathematics, in his book Foun-
dation of Constructive Mathematics [10]. The distinguishing feature of his approach is
that it is consistent with classical mathematics as well as the other two main schools of
constructive mathematics, Brouwer’s intuitionism and Markov’s Constructive Recursive
Mathematics.
All three schools accept the principles of intuitionistic logic. However, Brouwer and

Markov accepted principles which are inconsistent with classical mathematics. Brouwer,
for example, accepted the continuity principle which states that all functions from NN to
N are continuous. The principle expresses a view that the value of such functions at each
sequence is completely determined by some initial segment of its argument. The continuity
principle, together with a certain form of axiom of choice, implies that all functions on
the real numbers are continuous, which clearly contradicts classical mathematics. On the
other hand, Markov’s view that all mathematical objects are algorithms led him to accept
Church’s Thesis which states that all functions on the natural numbers are recursive. He
also accepted Markov’s principle which states that for any (recursive) function α ∈ NN

MP : ¬¬∃n(α(n) �= 0) → ∃n (α(n) �= 0)

which expresses a view that if it is impossible that an algorithm does not halt then it must
halt. Church’s Thesis, together with Markov’s principle, also implies that all functions on
the real line are continuous. It is also known that Brouwer’s intuitionism and Markov’s
Constructive Recursive Mathematics contradict each other. Thus we can say that Bishop’s
Constructive Mathematics is the most general style of constructive mathematics.
Although Bishop did not make his foundational background explicit, it is generally

accepted that Bishop’s Constructive Mathematics is also predicative: it is not permissible
to define a set d in term of a collection in which d is to be an element. For example,
to define the transitive closure of a relation r ⊆ X × X by the intersection of all the
transitive relations which include r is not permissible.
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Since the publication of Bishop’s book, two possible foundational approaches to Bishop’s
Constructive Mathematics had emerged. One of them is Constructive Set Theory by My-
hill [19] and the other is Intuitionistic Type Theory by Martin-Löf [17] (henceforth, simply
the type theory). Constructive Set Theory was introduced for formalization of Bishop’s
mathematics in a style that is close to that of classical set theories. On the other hand,
the type theory makes the intuitionistic reading of the logical connectives explicit, and
for this reason, it is regarded as the most fundamental framework for constructive math-
ematics. However, the presentation of mathematics in the type theory is very different
from widespread set theoretical presentations. Aczel, in [1, 2, 3], introduced a version
of Constructive Set Theory, the constructive Zermelo-Frankel set theory (CZF). The dis-
tinguishing feature of CZF compared to that of Myhill’s is that it has an interpretation
in the type theory, which means the theorems in CZF are also valid in the type theory,
and hence they are given constructive justification. CZF uses intuitionistic logic and
some modifications of the axioms of the classical set theory ZF to avoid impredicativity.
Hence, CZF does not have Powerset axiom nor Full Separation scheme; separations are
restricted to bounded formulae. Instead, CZF introduced the axioms of Strong Collection
and Subset Collection. The full set of axioms of CZF are described in Section 2.1.
This thesis takes CZF as a foundational framework. We also accept two axioms of

CZF: Relativized Dependent Choice (RDC) and Regular Extension Axiom (REA). Section
2.1 describes these axioms as well as how to carry out some of the basic mathematical
constructions in CZF.
For the history of constructive mathematics and constructive mathematics in general,

see [27]. For the practice of Bishop’s Constructivism Mathematics, see, for example,
[10, 11, 12, 13, 18].

1.2 Basic Pairs and Concrete Spaces

The topic of basic pair and concrete space was initiated by Sambin in [24]. The notion
of basic pair and concrete space arose from the analysis of the usual notion of topological
space in the light of intuitionistic and predicative foundations, such as the type theory
and CZF.
The standard definition of a topological space (X,O(X)) where X is a set andO(X) is a

set of open subsets ofX which satisfies the following axioms is unacceptable constructively.

O1 ∅, X ∈ O(X),

O2 if U, V ∈ O(X), then U ∩ V ∈ O(X),

O3 for any family (Ui)i∈I of O(X),
⋃

i∈I Ui ∈ O(X).

The problem is that the open sets of an inhabited space cannot form a set in CZF. This
can be seen by the following argument which is due to Fox [15, Chapter 2].

Proposition 1.2.1. If the open subsets of an inhabited space forms a set, then Powerset
axiom is derivable in CZF.
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Proof. Suppose that (X,O(X)) is an inhabited topological space, i.e. there is an element
a ∈ X. Note that Up = {x ∈ X | 0 ∈ p} is an open set for each p ∈ Pow({0}):
we have (∀x ∈ Up)x ∈ X ⊆ Up and X is an open set. Then the mapping p �→ Up

is a bijection between Pow({0}) and U = {Up | p ∈ Pow({0})}. It is clearly surjective.
Moreover, suppose that Up = Uq for p, q ∈ Pow({0}). Let n ∈ p. Then n = 0, so a ∈ Up,
and hence a ∈ Uq, i.e. 0 ∈ q. Therefore p ⊆ q. Similarly we have q ⊆ p, and thus
p = q. So the mapping is injective. Now, suppose that O(X) forms a set. Then we have
U = V = {U ∈ O(X) | (∀x, y ∈ X)x ∈ U ↔ y ∈ U}. The inclusion U ⊆ V is clear. For
the other direction, let U ∈ V, and put p = {n ∈ {0} | (∀x ∈ X)x ∈ U}. Then, it is easy
to see U = Up, and hence V ⊆ U . Therefore U is a set by Bounded Separation scheme, so
Pow({0}) is a set. Given any set A, Pow({0})A is a set by Exponentiation (cf. Definition
2.1.19). Then, we can show that Pow({0})A ∼= Pow(A) (cf. [1, Proposition 2.3]). Thus
Pow(A) is a set for every set A.

A constructively acceptable definition of a topological space is obtained by specifying
a certain set of subsets of X as a base for a topology, that is, a topological space is a pair
(X,B) of set X and set B of subsets of X such that

1. (x ∈ X) (A,B ∈ B) [x ∈ A ∩B → (∃C ∈ B) x ∈ C ⊆ A ∩ B],

2. X =
⋃

B∈B B.

A subset U ∈ Pow(X) is defined to be open if U =
⋃

B∈C B for some subset C of B. This
is essentially the notion of neighbourhood space by Bishop [10].
We can generalize the above definition of topological space as follows: first, we consider

that the base for a topology is given by a family (ext a)a∈S of subsets ext a of X indexed
by some set S. Since the family (ext a)a∈S corresponds bijectively to a binary relation
�⊆ X × S such that ext a = {x ∈ X | x � a}, we consider a topological space to be a
triple (X,�, S) where X and S are sets and �⊆ X × S is a relation such that the family
(ext{a})a∈S satisfies the above two conditions for a base. Thus we have arrived at the
definition of concrete space: a concrete space is a triple (X,�, S) of sets X and S and a
relation �⊆ X × S such that

(B1) ext a ∩ ext b = ext(a ↓ b),

(B2) X = extS,

where a ↓ b = {c ∈ S | ext c ⊆ ext a ∩ ext b}. The notion of basic pair is obtained by
dropping the conditions (B1) and (B2). Thus, a basic pair is just a pair of sets together
with a binary relation between them. However, this simple structure is enough to define
a notion of open and closed subsets of S as well as of X. Moreover, the notion of map
between basic pairs (X1,�1, S1) and (X2,�2, S2) is defined to be a pair (r, s) of relations
r ⊆ X1 ×X2 and s ⊆ S1 × S2 , called a relation pair, which makes the square

X1

r

��

�1 �� S1

s

��
X2

�2 �� S2
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commute rather than a function between the sets X1 and X2 as in the case of a continuous
function between topological spaces. The notion of map between concrete spaces is then
obtained by adding certain conditions to a relation pair so that it preserves the structure
of the open sets on a concrete space. The usual notion of continuous function becomes a
special case of that of relation pair. Thus, one can say that the notion of basic pair and
concrete space are generalizations of that of topological space.
Since the notion of basic pair and concrete space appear to be new, the literature

on these subjects is scarce [25, 26, 23, 15], although the publication of the forthcoming
monograph [21] may change the current situation. Hence, it is still to be seen whether
those notions are fruitful compared to the other existing notions of general topology in
constructive mathematics, in particular that of formal topology [22].

1.3 Contributions

The primary contribution of this thesis consists of the results in [16] where we showed
that the category of basic pairs (BP) and that of concrete spaces (CSpa) are both
complete and cocomplete, and moreover that CSpa is a coreflective subcategory of BP.
The categorical structure of BP and CSpa has been given less attention in the study of
basic pairs and concrete spaces, and the only known result is [14], where the existence of
binary products of BP is mentioned. Also no adjunctions between BP and CSpa has
been constructed so far. Our results fill in the missing pieces. Working in the extension of
CZF, we showed that both BP and CSpa have arbitrary (co)products and (co)equalisers.
The distinctive feature of our construction of (co)products and (co)equalisers is a uniform
application of the notion of a generalized geometric theory [6] to deal with predicativity
problems: the difficulties in showing that a certain collection of objects forms a set.
Our construction of (co)equalisers of BP and CSpa and products of CSpa are good
demonstrations of how the notion of generalized geometric theory is useful for dealing
with such kind problems.

1.4 Organization

Our original results consist of Section 4.6 and Chapter 5. The other chapters and sections
contain background materials and basic facts about basic pairs and concrete spaces which
are well described in [21].
In Chapter 2, we describe background materials: CZF, generalized geometric theory,

category theory, and some basic mathematical notions which are frequently used in the
later chapters. In Chapter 3, we introduce the notion of basic pair and relation pair
between them, and define the category of basic pairs BP. We show that BP is isomorphic
to its own dual BPop, from which it follows that BP is complete if and only if it is
cocomplete. In Chapter 4, we describe concrete spaces and convergent relation pairs,
which are shown to form a coreflective subcategory CSpa of BP. We also define the
notion of convergent subset and ideal point of a basic pair. Then we introduce a weak
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separation axiom T0 and sobriety of basic pairs, and consider relations between category
of T0 basic pairs and BP and between the category of sober concrete spaces and that
of the sober topological spaces. In Chapter 5, we describe the categorical constructions,
(co)products and (co)equalisers, of BP and CSpa and show that both categories are
complete and cocomplete.

1.5 Note to the reader

There is no prerequisite for reading this thesis. All the necessary backgrounds of CZF,
category theory, generalized geometric theory, basic pairs and concrete spaces are included
with proofs. The reader who has basic understanding of CZF and category theory can
start from Chapter 3. However, since the notion of generalized geometric theory plays
a crucial role in Chapter 5, she should at least look at Definition 2.2.2 and Theorem
2.2.13. The notion of four operators given in Section 2.4 are frequently used in Chapter 3
and Chapter 4, but not in Section 4.6 and Chapter 5, where all of our contributions are
presented. The reader who is only interested in our own results can jump to Section 4.6
and Chapter 5, consulting Section 2.2 and Chapter 3 and Chapter 4 for basic definitions
and notations.
We use ”iff” for the phrase ”if and only if” throughout this thesis.
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Chapter 2

Preliminary

2.1 Constructive Zermero-Frankel Set Theory

In this section, we describe the axiom system CZF, Constructive Zermelo-Frankel Set
Theory, and show how some of basic mathematical constructions, e.g. ordered pairs,
relations and functions, products and exponentiations, can be carried out in CZF. We
also describe two axioms for CZF, the Relativized Dependent Choice (RDC) and the
Regular Extension Axiom (REA). This chapter is a summary of Chapter 3, 4, 10 and 11
of [7]; see [7] for further details of CZF.

2.1.1 The axiom system CZF

CZF is a first order theory using intuitionistic predicate logic with equality with a binary
predicate symbol ∈ as its only non-logical constant symbol. CZF is based on the following
axioms and axiom schemes:

Extensionality
∀a∀b [∀ (x ∈ a↔ x ∈ b) → a = b]

Paring
∀a∀b∃y∀u [u ∈ y ↔ u = a ∨ u = b]

Union
∀a∃y∀x [x ∈ y ↔ ∃u ∈ a (x ∈ u)]

Bounded Separation
∀a∃b∀x [x ∈ b↔ x ∈ a ∧ ϕ(x)]

for all bounded formulae ϕ(x), where y is not free in ϕ(x). A formula is bounded if
all quantifiers are bounded, i.e. occur only in one of the forms ∀x ∈ a or ∃x ∈ a.

Strong Collection

∀a [∀x ∈ a∃y ϕ(x, y) → ∃b [∀x ∈ a∃y ∈ b ϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y)]]

for all formulae ϕ(x, y).
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Subset Collection

∀a∀b∃c∀u[∀x ∈ ∃y ∈ b ϕ(x, y, u) →
∃d ∈ c [∀x ∈ a∃y ∈ d ϕ(x, y, u) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, u)] ]

for all formulae ϕ(x, y, u).

Strong Infinity
∃a [Ind(a) ∧ ∀b Ind(b) → ∀x ∈ a (x ∈ b)]

where we use the following abbreviations.

• Empty(y) for (∀z ∈ y)⊥,

• Succ(x, y) for ∀z [z ∈ y ↔ z ∈ x ∨ z = x],

• Ind(a) for ∃y ∈ aEmpty(y) ∧ (∀x ∈ a) (∃y ∈ a)Succ(x, y).

Set induction
∀a [∀x ∈ aϕ(x) → ϕ(a)] → ∀aϕ(a)

for all formula ϕ(x).

Remark 2.1.1.

• The set y asserted to exist by Pairing is unique by Extensionality and is denoted
by {a, b}. We also write {a} = {a, a}. In the following, we shall not explicitly say
that a certain set is uniquely determined by Extensionality.

• The set y asserted to exist by Union is denoted by
⋃
b.

• The set b asserted to exist by Bounded Separation is denoted by {x ∈ a | ϕ(x)} .

Class notation

When working in CZF, we freely exploit the notion of class and notations for classes.

Definition 2.1.2. For any formula ϕ(x), we call the collection of sets of the form
{x | ϕ(x)} a class. A set x is an element of a class A = {x | ϕ(x)}, denoted by x ∈ A,
if ϕ(x). A class A is a subclass of a class B, denoted by A ⊆ B, if ∀x [x ∈ A→ y ∈ B].
Classes A and B are equal if A ⊆ B and B ⊆ A. A set a is identified as a class {x | x ∈ a}.
We introduce the following class notations:

• ∅ = {x | ⊥},

• {a1, . . . , an} = {x | x = a1 ∨ · · · ∨ x = an}. When n = 0, it is ∅,

•
⋃
A = {x | (∃y ∈ A) x ∈ y},

• A ∪ B = {x | x ∈ A ∨ x ∈ B},
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• a+ = a ∪ {a},

• Pow(A) = {x | x ⊆ A},

• 〈a, b〉 = {{a} , {a, b}},

• A× B = {z | (∃x ∈ A) (∃y ∈ B) z = 〈x, y〉},

• {x ∈ A | ϕ(x)} = {x | x ∈ A ∧ ϕ(x)},

where A,B range over the classes and a, a1, . . . , an, b range over the sets. We also use the
following notation

{a | ϕ} for {z | (∃x1, . . . , xn) z = a ∧ ϕ}
where a denotes a set which depends on variables x1, . . . , xn. For example, we often write

{〈x, y〉 | x ∈ A ∧ y ∈ B} for {z | (∃x ∈ A) (∃y ∈ B) z = 〈x, y〉} .

Remark 2.1.3.

• ∅ is a set, for we can write ∅ = {x ∈ b | ⊥} where b is an arbitrary set; take b to be
the set whose existence is guaranteed by Strong Infinity.

• {a1, . . . , an} is a set by Pairing.

•
⋃
A is a set when A is a set by Union. If A and B are sets, then A ∪ B is a set by

Union and Pairing, and so is A× B; see Proposition 2.1.14.

• 〈a, b〉 is also denoted by (a, b).

2.1.2 Elementary mathematical construction in CZF

In this section, we show that some of the basic mathematical constructions can be per-
formed in CZF.

Definition 2.1.4. For any sets a and b, 〈a, b〉 is the ordered pair of a and b.

Proposition 2.1.5. 〈a, b〉 = 〈c, d〉 iff a = c and b = d.

Proof. The implication form right to left is trivial. Conversely, suppose that 〈a, b〉 = 〈c, d〉.
Since {a} ∈ 〈c, d〉, either {a} = {c} or {a} = {c, d}. In either case, we have a = c.
Similarly, we have {a, b} = {c} or {a, b} = {c, d}. In either case, we have b = c or b = d.
If b = c, then a = c = b, and hence b = d. Therefore, in either case, we have a = c and
b = d.

For any natural number n, we define an ordered n tuple by induction 〈〉 = ∅, 〈a〉 = a,
〈a1, . . . , an, an+1〉 = 〈〈a1, . . . , an〉, an+1〉.
We introduce an auxiliary axiom which is a theorem of CZF.

8



Definition 2.1.6. Replacement is a statement

∀x ∈ a∃!y ϕ(x, y) → ∃b∀y [y ∈ b ↔ ∃x ∈ aϕ(x, y)]

for any formula ϕ(x, y), where b is not free in ϕ(x, y).

Proposition 2.1.7. Strong Collection implies Replacement.

Proof. Suppose that ∀x ∈ a∃!yϕ(x, y). Then, there is a set b such that

∀x ∈ a∃y ∈ bϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y)

by Strong Collection. Then, ∀y [y ∈ b↔ ∃x ∈ aϕ(x, y)].

A relation is defined as usual.

Definition 2.1.8. A relation is a set R of ordered pairs. The domain and range of a
relation R are defined by

dom(R) = {x | ∃y (〈x, y〉 ∈ R)} ,
ran(R) = {y | ∃x (〈x, y〉 ∈ R)} .

Remark 2.1.9. dom(R) and cod(R) are both sets, for let A =
⋃⋃

R, then we can write

dom(R) = {x ∈ A | (∃y ∈ A) (∃z ∈ R) z = 〈x, y〉}

and similarly for ran(R).

A relation f is a function if

∀x ∈ dom(f)∃!y ∈ ran(f) 〈x, y〉 ∈ f.

We write f : A→ B to assert that f is a function with dom(f) = A and ran(f) ⊆ B.
For any x ∈ dom(f), we write f(x) for the unique y ∈ ran(f) such that 〈x, y〉 ∈ f .

Lemma 2.1.10. If ∀x ∈ a∃!yϕ(x, y), then there exists a unique function f with dom(f) =
a such that ∀x ∈ aϕ(x, f(x)).

Proof. Suppose that ∀x ∈ a∃!y ϕ(x, y). Let θ(x, z) be a formula such that θ(x, z) =
∃y (z = 〈x, y〉 ∧ ϕ(x, y)). Then ∀x ∈ a∃!z θ(x, z). Hence, there is a set f such that

∀z [z ∈ f ↔ ∃x ∈ a θ(x, z)] .

by Replacement. It is straightforward to verify that f is a function with domain a and
that ∀x ∈ aϕ(x, f(x)). The uniqueness of f is obvious.

We introduce a few more class notations.
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Definition 2.1.11. Let A be a class and θ(x, y) be a formula. A family of classes (Ba)a∈A
over A is a collection

Ba = {y | θ(a, y)}
for each a ∈ A. A family of classes over A is also called a family of classes indexed by A
or an A-indexed family of classes.
Let (Ba)a∈A be a family of classes. We define classes:⋃

a∈A
Ba = {y | (∃a ∈ A) y ∈ Ba} ,⋂

a∈A
Ba = {y | (∀a ∈ A) y ∈ Ba} .

If R is a class of ordered pairs, then we write aRb for 〈a, b〉 ∈ R. If A and B are classes,
then a class function from A to B, denoted by F : A → B, is a class F ⊆ A × B such
that

∀x ∈ A∃!y ∈ B [xFy] .

Lemma 2.1.12. For any class function F : A→ B, if A is a set, then so is F .

Proof. Let F : A → B be a class function where A is a set. Then ∀x ∈ A∃!y〈x, y〉 ∈ F .
By Lemma 2.1.10, there exists a unique function f with dom(f) = A such that ∀x ∈
A〈x, f(x)〉 ∈ F . Clearly, f = F , so F is a set.

Lemma 2.1.13. Let A be a set and (Ba)a∈A be a family of sets over A. Then

1.
⋃

a∈ABa is a set,

2. if A is inhabited, i.e. ∃a0 ∈ A, then
⋂

a∈ABa is a set.

Proof. 1. Since ∀a ∈ A∃!y y = Ba, there exists a set

b = {y | (∃a ∈ A) y = Ba}

by Replacement. Then
⋃

a∈ABa =
⋃
b is a set by Union.

2 Let a0 ∈ A. Since ∀x ∈ A∃!y y = Ba, there is a unique function with domain A such
that (∀x ∈ A) f(x) = Ba. Hence, we have⋂

a∈A
Ba = {y ∈ f(a0) | (∀a ∈ A) y ∈ f(a)} ,

so
⋂

a∈ABa is a set by Bounded Separation.

Proposition 2.1.14. A×B is a set whenever A and B are sets.

Proof. Let a ∈ A. Since ∀y ∈ B∃!z z = 〈a, y〉, we have a set

{a} × B = {z | (∃y ∈ B) z = 〈a, y〉}

by Replacement. Therefore, A× B =
⋃

a∈A {a} × B is a set by Lemma 2.1.13.
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Definition 2.1.15. Let I be a class and (Ai)i∈I be a family over I. The sum of (Ai)i∈I
is the class ∑

i∈I
Ai = {〈i, a〉 | i ∈ I ∧ a ∈ Ai} .

Proposition 2.1.16. Let (Ai)i∈I be a family of sets over a set I. Then,
∑

i∈I Ai is a set.

Proof. Since
∑

i∈I Ai =
⋃

i∈I {i} ×Ai,
∑

i∈I Ai is a set by Proposition 2.1.14 and Lemma
2.1.13 (1).

Definition 2.1.17. Let A and R ⊆ A × A be classes. The class R is an equivalence
relation on A if for all a, b, c ∈ A

1. aRb,

2. aRb⇒ bRa,

3. aRb and bRc⇒ aRc.

For each a ∈ A, the class
[a]R = {x ∈ A | xRa}

is called the equivalence class of a with respect to R.

Proposition 2.1.18. Let A be a set and R be an equivalence relation on A. If R is a
set, [a]R is a set for each a ∈ A, and moreover, the quotient of A with respect to R

A/R = {[a]R | a ∈ A}

is a set.

Proof. If R is a set, then [a]R is a set for each a ∈ A by Bounded Separation. Then, A/R
is a set by Replacement.

Definition 2.1.19. Let a and b be sets and let ba = {f | f : a→ b}. We also write a→ b
for ba. Let mv(a, b) be the class of relations r ⊆ A × B such that ∀u ∈ a∃v ∈ b u r v. A
set c is full in mv(a, b) if c ⊆ mv(a, b) and

∀r ∈ mv(a, b)∃s ∈ c [s ⊆ r] .

Fullness is a statement

∀a∀b∃c [c is full in mv(a, b)] .

Exponentiation is a statement

∀a∀b∃c∀f [f ∈ c↔ f ∈ ba] .

Proposition 2.1.20. Fullness is derivable in CZF.
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Proof. Let a, b be sets. Let ϕ(x, z, u) be a formula such that

ϕ(x, z, u) = ∃y ∈ b [〈x, y〉 = z ∧ z ∈ u] .

By Subset Collection, there is a set d such that

∀u[∀x ∈ a∃z ∈ a×b ϕ(x, z, u) → ∃r ∈ d [∀x ∈ a∃z ∈ r ϕ(x, z, u) ∧ ∀z ∈ r∃x ∈ aϕ(x, z, u)]].

Then
c = {r ∈ d | r ∈ mv(a, b)}

is a set by Bounded Separation. Let r ∈ mv(a, b). Then ∀x ∈ a∃z ∈ a× b ϕ(x, z, r), and
thus there exists a set s ∈ d such that

∀x ∈ a∃z ∈ s ϕ(x, z, r) ∧ ∀z ∈ s∃x ∈ aϕ(x, z, r).

Then s ⊆ r and s ∈ mv(a, b), and thus s ∈ c. Therefore, c is full in mv(a, b).

Corollary 2.1.21. Fullness implies Exponentiation.

Proof. Let a, b be sets. By Fullness, there is a set c which is full in mv(a, b). Then

X = {f ∈ c | f ∈ ba}

is a set by Bounded Separation. Let f ∈ ba. Since f ∈ mv(a, b), there is g ∈ c such that
g ⊆ f . As f is a function, we must have g = f , and hence f ∈ X. Therefore, X = ba so
ba is a set.

Definition 2.1.22. Let I be a set and (Ai)i∈I be a family of classes over I. The dependent
product (or Cartesian product) of (Ai)i∈I is the class∏

i∈I
Ai =

{
f | f : I →

⋃
i∈I
Ai ∧ (∀i ∈ I) f(i) ∈ Ai

}
.

Proposition 2.1.23. Let (Ai)i∈I be a family of sets over a set I. Then,
∏

i∈I Ai is a set.

Proof.
⋃

i∈I Ai is a set by Lemma 2.1.13, and hence I →
⋃

i∈I Ai is a set by Exponentia-
tion. Therefore

∏
i∈I Ai is a set by Bounded Separation.

2.1.3 The Natural Numbers

We show that the set which is asserted to exist by the Strong Infinity satisfies the usual
property of natural numbers including the well-know axiom of Dedekind and Peano. We
also introduce the notion of finitely enumerable set.

Lemma 2.1.24. Let Ind(a) and θ(a) be formulae

Ind(a) ≡ 0 ∈ a ∧ (∀x ∈ a) (∃y ∈ a) y = x+,

θ(a) ≡ Ind(a) ∧ ∀y [Ind(y) → a ⊆ y]

where 0 ≡ ∅. If θ(a) and θ(b), then a = b.

12



Proof. If θ(a) and θ(b), then a ⊆ b and b ⊆ a, i.e. a = b.

Definition 2.1.25. The unique set a such that θ(a) is denoted by ω or N.

Theorem 2.1.26.

1. ϕ(0) ∧ ∀n ∈ ω [ϕ(n) → ϕ(n+)] → (∀n ∈ ω)ϕ(n) for every bounded formula ϕ(n).

2. ∀n ∈ ω [n = 0 ∨ (∃m ∈ ω)n = m+] .

3. ∀n ∈ ω (0 �= n+).

4. ∀n ∈ ω (∀x ∈ nx ⊆ n).

5. ∀n ∈ ω (n /∈ n).

6. ∀n,m ∈ ω [n ∈ m→ n+ ∈ m ∨ n+ = m].

7. ∀n,m ∈ ω [n+ = m+ → n = m].

8. ∀n ∈ ω (0 ∈ n+).

9. ∀n,m ∈ ω [n ∈ m ∨ n = m ∨m ∈ n].

10. ∀n,m ∈ ω [m ∈ n ∨m /∈ n] ∧ ∀n,m ∈ ω [m = n ∨m �= n].

Proof. 1. Let ϕ be a bounded formula. Suppose that ϕ(0) ∧ ∀n ∈ ω [ϕ(n) → ϕ(n+)]. Let
a = {n ∈ ω | ϕ(n)} be a set by Bounded Separation. Clearly, Ind(a) so ω ⊆ a, and thus
(∀n ∈ ω)ϕ(n).
2. Let ϕ(n) be a formula such that ϕ(n) ≡ n = 0 ∨ (∃m ∈ ω)n = m+. Then ϕ(0), and

if ϕ(n), then ϕ(n+) for all n ∈ ω. Therefore, 2 follows from 1.
3. We have n /∈ 0, and n ∈ n+ for any n ∈ ω. Thus 0 �= n+ by Extensionality.
4. Let ϕ(n) ≡ ∀n ∈ ωm ⊆ n. Then ϕ(0). Let n ∈ ω, and suppose that ϕ(n). Let

m ∈ n+. Either m = n or m ∈ n. If m ∈ n, since ϕ(n), we have m ⊆ n. So in either case,
we have m ⊆ n ⊆ n+; the conclusion follows from 1.
5. Trivially 0 /∈ 0. Suppose that n /∈ n and n+ ∈ n+. Then either n+ = n or n+ ∈ n.

In either case, we have n+ ⊆ n by 4, and hence n ∈ n, a contradiction.
6. Let ϕ(m) ≡ ∀n ∈ ω [n ∈ m→ n+ ∈ m ∨ n+ = m]. Then ϕ(0). Suppose that ϕ(m),

and let n ∈ m+. Either n ∈ m or n = m. If n ∈ m, then n+ ∈ m or n+ = m, so n+ ∈ m+.
Hence, in either case, we have n+ ∈ m+ ∨ n+ = m+.
7. Suppose that n+ = m+. Then, either n = m or n ∈ m. In either case, we have

n ⊆ m by 4. Similarly, we have m ⊆ n. Thus n = m.
8. Let ϕ(n) ≡ 0 ∈ n+. The conclusion follows from 1.
9. Let ϕ(n) ≡ ∀m ∈ ω [n ∈ m ∨ n = m ∨m ∈ n]. Since 0 = m ∨ ∃n ∈ ωn = m+ for

all m ∈ ω by 2, we have ϕ(0) by 8. Assume that ϕ(n), and let m ∈ ω. Then, we have
n ∈ m∨n = m∨m ∈ n. If n ∈ m, then n+ ∈ m∨n+ = m by 6. If n = m or m ∈ n, then
m ∈ n+. Hence ϕ(n+).
10. The first part follows from 4, 5 and 9. The second part follows from 5 and 9.
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Definition 2.1.27. The Dedekind-Peano axioms for the structure (N, 0, S) is the follow-
ing list of axioms.

1. 0 ∈ N.

2. S : N → N.

3. 0 �= S(n) for all n ∈ N.

4. S(n) = S(m) → n = m for all n,m ∈ N.

5. For each subset X ⊆ N, if 0 ∈ X and S(n) ∈ X for all n ∈ X, then n ∈ X for all
n ∈ N.

Proposition 2.1.28. (ω, 0, S) satisfies the Dedekind-Peano axioms, where 0 = ∅ and for
all n ∈ ω, S(n) = n+.

Proof. Since Ind(ω), the first two and the last axioms are immediate. The others are 3
and 7 of Theorem 2.1.26.

Structure (N, 0, S) satisfying the Dedekind-Peano axioms can be shown to be unique
up to isomorphism (See [7, Chapter 6]).
To close this section, we given a notion of finiteness of a set.

Definition 2.1.29. A set A is finitely enumerable if there exist n ∈ ω and a surjective
function f : n → A. Note that n = {m ∈ ω | m ∈ n}. Let Fin(S) denote the class of all
finitely enumerable subsets of a set S.

Lemma 2.1.30. Fin(S) is a set whenever S is a set.

Proof. Since Sn is a set for each n ∈ ω by Exponentiation, Fn = {ran(f) | f ∈ Sn} is a set
by Replacement. Therefore, Fin(S) =

⋃
n∈ω Fn is a set by Replacement and Union.

2.1.4 Choice Principles in CZF

We introduced three constructive choice principles which are available in CZF, the last
one was shown to be valid in the interpretation in the type theory [2], from which the
others follow.

Definition 2.1.31.
The Axiom of Countable Choice (ACω) states that

For any function F with domain ω, if ∀n ∈ ω∃y ∈ F (n), then there exists a
function f : ω →

⋃
n∈ω F (n) such that (∀n ∈ ω) f(n) ∈ F (n).

The Axiom of Dependent Choice (DC) states that

For any set a and formula ϕ, if (∀x ∈ a) (∃y ∈ a)ϕ(x, y), then for any a0 ∈ a
there exists a function f : ω → a such that f(0) = a0∧ (∀n ∈ ω)ϕ(f(n), f(n+
1)).
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The Axiom of Relativized Dependent Choice (RDC) states that

For any formulae ϕ and ψ, if ∀xϕ(x) → ∃y [ϕ(y) ∧ ψ(x, y)], then for any
set a0 such that ϕ(a0) there exists a function f with domain ω such that
f(0) = a0 ∧ (∀n ∈ ω)ϕ(f(n)) ∧ ψ(f(n), f(n+ 1)).

Proposition 2.1.32.

1. DC implies ACω.

2. RDC implies DC.

Proof. 1. Let F be a function with domain ω such that ∀n ∈ ω∃y ∈ F (n). Let A =∑
n∈ω F (n). Then ∀(i, x) ∈ A∃(j, y) ∈ A [j = i+ 1]. Pick a0 ∈ F (0). Applying DC,

there is a function f : ω → A with f : n �→ (in, xn) such that (i0, x0) = (0, a0) and
(∀n ∈ ω) in+1 = in + 1. Then, in = n for all n ∈ w, and thus we have a function
g : ω →

⋃
n∈ω F (n) defined by g(n) = xn such that ∀n ∈ ω g(n) ∈ F (n).

2. Given a set a and a formula ψ such that (∀x ∈ a) (∃y ∈ a)ψ(x, y), put ϕ(x) ≡ x ∈ a
and apply RDC.

2.1.5 The Regular Extension Axiom

The Regular Extension Axiom was introduced in CZF to accommodate inductive defini-
tions [3].

Definition 2.1.33. A set A is transitive if (∀a ∈ A) a ⊆ A, and it is regular if it is
transitive and for any a ∈ A and R ∈ mv(a, A), there exists b ∈ A such that

(∀x ∈ a) (∃y ∈ b) (x, y) ∈ R ∧ (∀y ∈ b) (∃x ∈ a) (x, y) ∈ R.

The axiom REA asserts that

REA Every set is a subset of a regular set.

A set A is union-closed if
⋃
a ∈ A for each a ∈ A. The axiom uREA asserts that

uREA Every set is a subset of a union-closed regular set.

A regular set A is RRS2-regular if for each A′ ∈ Pow(A), R ∈ mv(A′×A′, A′) and a0 ∈ A′,
there exists A0 ∈ A such that a0 ∈ A0 ⊆ A′ and

∀(x, y) ∈ A0 × A0∃z ∈ A0 ((x, y), z) ∈ R.

The axiom RRS2-uREA asserts that

RRS2-uREA Every set is a subset of a union-closed RRS2-regular set.

Lemma 2.1.34. Let A be a regular set. Then, ran(f) ∈ A for any a ∈ A and f : a→ A.
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Proof. Let f : a→ A. Since f ∈ mv(a, A) and A is regular, there exists a set b ∈ A such
that

∀x ∈ a∃y ∈ bf(x) = y ∧ ∀y ∈ b∃x ∈ af(x) = y.

Then, obviously ran(f) = b ∈ A.

Lemma 2.1.35. Let A be a regular set such that 2 = {0, 1} ∈ A. Then,

1. ∀x, y ∈ A {x, y} ∈ A, and

2. f ∈ A for all a ∈ A and f : a→ A.

Proof. 1. Let x, y ∈ A. Define a function g : 2 → A by g(0) = x and g(1) = y. Then,
{x, y} by Lemma 2.1.34.
2. Let a ∈ A and f : a→ A. Then, for each x ∈ a, we have 〈x, f(x)〉 ∈ A by 1. Hence,

we have a function x �→ 〈x, f(x)〉 from a to A, and thus f = {〈x, f(x)〉 | x ∈ a} ∈ A by
Lemma 2.1.34.

Lemma 2.1.36. Let A be a union-closed regular set such that 2 ∈ A. Then, for any
I ∈ A and a family (ai)i∈I of elements of A,

∑
i∈I ai ∈ A.

Proof. Let I ∈ A and let (ai)i∈I be a family of elements of A. For each i ∈ I, we have a
function fi : ai → A defined by fi(x) = 〈i, x〉 by Lemma 2.1.35. Thus, we have a function
g : I → A defined by g(i) = ran(fi) = {i}× ai by Lemma 2.1.34. Since A is union-closed
regular, we have

⋃
ran(g) =

⋃
i∈I{i} × ai =

∑
i∈I ai ∈ A by Lemma 2.1.34.

Corollary 2.1.37. For a union-closed regular set A such that 2 ∈ A, a× b ∈ A for each
a, b ∈ A.

Lemma 2.1.38. Let A be a union-closed regular set such that N ∈ A. Then, Fin(a) ∈ A
for each a ∈ A.

Proof. Let a ∈ A. Since Fin(a) =
⋃

n∈N {ran(f) | f ∈ an}, A is union-closed regular and
N ∈ A, it suffices to show that an ∈ A for each n ∈ N. If n = 0, then since N ⊆ A,
trivially a0 = 1 ∈ A. For the induction step, assume that an ∈ A. Let f ∈ an. Since
A is union-closed regular and N ∈ A, we have f ∪ {〈n+ 1, x〉} ∈ A for each x ∈ a, and
therefore G(f) = {f ∪ {〈n+ 1, x〉} | x ∈ a} ∈ A. Hence, an+1 =

⋃
f∈an G(f) ∈ A.

Proposition 2.1.39. uREA and DC imply RRS2-uREA.

Proof. Assume uREA and DC. Let S be a set. Then, there exists a union-closed regular
set A such that {N} ∪ S ⊆ A. We claim that A is RRS2-regular. Let A′ ∈ Pow(A),
a0 ∈ A′ and R ∈ mv(A′ × A′, A′). Let AA′ = {a ∈ A | a ⊆ A′} and a ∈ AA′. Then

∀ (x, y) ∈ a× a∃z ∈ A [(x, y)Rz ∧ z ∈ A′] .

Since a× a ∈ A by Corollary 2.1.37, there is a set b ∈ A such that

∀ (x, y) ∈ a× a∃z ∈ b [(x, y)Rz ∧ z ∈ A′] ∧ ∀z ∈ b∃ (x, y) ∈ a× a [(x, y)Rz ∧ z ∈ A′] .
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by regularity of A. Hence b ⊆ A′, and thus b ∈ AA′ . Since 2 ∈ A and A is union-closed
regular, we have a ∪ b ∈ A, and so a ∪ b ∈ AA′. Thus, we have

∀a ∈ AA′∃b ∈ AA′ [a ⊆ b ∧ (∀ (x, y) ∈ a× a) (∃z ∈ b) (x, y)Rz] .

Since a0 ∈ A′, 1 ∈ A and A is regular, we have {a0} ∈ A′, and hence {a0} ∈ AA′ .
Applying DC, there exists a function f : N → AA′ such that f(0) = a0 and

(∀n ∈ N) f(n) ⊆ f(n+ 1) ∧ (∀ (x, y) ∈ f(n)× f(n)) (∃z ∈ f(n+ 1)) (x, y)Rz.

Since N ∈ A and A is union-closed regular, we have A0 =
⋃
ran(f) ∈ AA′ by Lemma

2.1.34. Then, a0 ∈ A0, and for any (x, y) ∈ A0 × A0 then there exists n ∈ N such
that x, y ∈ f(n), so there exists z ∈ f(n + 1) such that (x, y)Rz. Therefore, R ∈
mv(A0 ×A0, A0).
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2.2 Set-generated classes and generalized geometric

theories

We introduce the notion of set-generated class and generalized geometric theory by Ishi-
hara et al. [6]. In the practice of constructive mathematics, we often face difficulties in
showing that a certain collection forms a set. However, in the case where the object X
in question is a collection of subsets of a set S, we can often construct a subset G of X
which generates X in the following sense:

Definition 2.2.1. A class C of subsets of a set S is set-generated if there is a subset G
of C such that

(∀U ∈ C) (∀σ ∈ Fin (U)) (∃V ∈ G)σ ⊆ V ⊆ U,

We call G a generating subset (shortly, generating set) of C and say that G generates C.

It often turns out that a generating subset G suffices for a particular purpose. Ishihara
et al. showed that the class of models of a generalized geometric theory over a give set
is set generated. In practice, if we want to show that a collection X of subsets of a set
S is set-generated, we formulate a generalized geometric theory over the set S in such a
way that a subset α of S is a model of the theory iff α ∈ X. The notion of generalized
geometric theory plays a crucial role in Chapter 5 where we construct (co)equalisers and
products of the categories of basic pairs and concrete spaces.

2.2.1 Generalized geometric theories

First, we review the notion of generalized geometric theory [6].

Definition 2.2.2. A generalized geometric implication (shortly, implication) and a gen-
eralized geometric theory (shortly, theory) over a set S, and their ranks, are defined
simultaneously by

1. s is a generalized geometric implication of rank 0 for each s ∈ S;

2. if σ is a finitely enumerable subset of S and Γ is a set of generalized geometric
theories of rank n, then

∧
σ →

∨
U∈Γ

∧
U is a generalized geometric implication of

rank n+ 1;

3. a set T of generalized geometric implications of rank ≤ n is a generalized geometric
theory of rank n.

Remark 2.2.3. More precisely, the classes In and Tn of implications of rank ≤ n and
theories of rank n, respectively, over a set S are defined by simultaneous induction as
follows:

I0 = S,

In+1 = In ∪ {(n+ 1, (σ,Γ)) | σ ∈ Fin(S) ∧ Γ ∈ Pow(Tn)} ,
Tn = Pow(In).
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A class C is predicative if it can be is presented by a bounded formula π, i.e.

∀x (x ∈ C ↔ x ∈ π(x)) .

If a class C is predicative and presented by a formula π, then Pow(C) is also predicative,
for we have ∀y (y ∈ Pow(C) ↔ ∀x ∈ yπ(x)). Therefore, for an externally given natural
number n, the classes In and Tn are predicative.
We introduce the following abbreviations for geometric implications.

s ≡
∧

σ if σ = {s},

θ ≡
∧

U if U = {θ},∧
U ≡

∨
U∈Γ

∧
U if Γ = {U},∨

U∈Γ
∧
U ≡

∧
∅ →

∨
U∈Γ

∧
U.

where σ ∈ Fin(S), and U and Γ are a theory and a set of theories respectively. For an
implication ϕ ≡

∧
σ →

∨
U∈Γ

∨
U of positive rank, we write σϕ = σ and Γϕ = Γ.

Definition 2.2.4. The relation |= between a subset α of S, and implication s (of rank
0), ϕ (of positive rank) and a theory T over S is defined by

1. α |= s if s ∈ α,

2. α |= ϕ if σϕ ⊆ α implies α |= U for some U ∈ Γϕ,

3. α |= T if α |= θ for all θ ∈ T .

A subset α of S is a model of a theory T if α |= T . The class of models of a theory T will
be denoted by M(T ).

Remark 2.2.5. More precisely, the class relations |=In and |=Tn between Pow(S) and In

and Tn are defined by simultaneous induction:

1. α |=I0 s ⇐⇒ s ∈ S,

2. α |=In+1 θ ⇐⇒ α |=In θ if θ ∈ In,

3. α |=In+1 (n + 1, (σ,Γ)) ⇐⇒ σ ⊆ α implies α |=Tn U for some U ∈ Γ,

4. α |=Tn T ⇐⇒ α |=In θ for each θ ∈ T.

Note that, for an externally given n, the class relations |=In and |=Tn are predicative.

An extension S ′ of a set S is a set with an inclusion (i.e. an injection) ι : S → S ′.
Let S ′ be an extension of a set S with an inclusion ι. Then we can naturally extend
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the inclusion ι to an inclusion ι̂ from the implications and the theories over S into the
implications and the theories over S ′ of the same rank by

ι̂(s) = ι(s),

ι̂(ϕ) =
∧

ι(σϕ) →
∨

U∈Γϕ

∧
ι̂(U),

ι̂(T ) = {ι̂(θ) | θ ∈ T} ,

where s and ϕ are implications of rank 0 and of positive rank respectively, and T is a
theory.

Remark 2.2.6. More precisely, we define the class functions ι̂In : In → I ′
n and ι̂Tn : Tn →

T ′
n, where I ′

n and T ′
n are the classes of implications of rank ≤ n and theories of rank n

over S ′ respectively, by simultaneous induction:

1. ι̂I0(s) = ι(s),

2. ι̂In+1(θ) = ι̂In(θ) if θ ∈ In,

3. ι̂In+1(n+ 1, (σ,Γ)) = (n+ 1, (ι(σ), {ι̂Tn(U) | U ∈ Γ})),

4. ι̂Tn(T ) = {ι̂In(θ) | θ ∈ T}.

Note that the image ι̂Tn(T ) of a set T is a set by Strong Collection.

Lemma 2.2.7. For an externally given n, ι̂In and ι̂Tn are injective.

Proof. The proof is by induction on n. Trivially, ι̂I0 is injective, and so is ι̂T0 . Assume
that ι̂In and ι̂Tn are injective. Let θ, θ′ ∈ In, and suppose that ι̂In+1(θ) = ι̂In+1(θ

′).
Then ι̂In(θ) = ι̂In(θ

′), and so θ = θ′ because ι̂In is injective. Let σ, σ′ ∈ Fin(S) and
Γ,Γ′ ∈ Pow(Tn), and suppose that ι̂In+1(n + 1, (σ,Γ)) = ι̂In+1(n + 1, (σ′,Γ′)). Then,
(ι(σ), {ι̂Tn(T ) | U ∈ Γ}) = (ι(σ′), {ι̂Tn(T ) | U ∈ Γ′}), so σ = σ′ and Γ = Γ′ by injectivity
of ι and ι̂Tn . Hence, (n+1, (σ,Γ)) = (n+1, (σ′,Γ′)). Finally, let T, T ′ ∈ Tn+1 and suppose
that ι̂Tn+1(T ) = ι̂Tn+1(T

′). Then {ι̂In(θ) | θ ∈ T} = {ι̂In(θ) | θ ∈ T ′}. Since ι̂In is injective,
we have T = T ′.

Lemma 2.2.8. For an externally given n,

∀θ ∈ In∀α′ ∈ Pow(S ′)
[
ι−1(α′) |=In θ ⇐⇒ α′ |=I′

n
ι̂In(θ)

]
,

and

∀T ∈ Tn∀α′ ∈ Pow(S ′)
[
ι−1(α′) |=Tn T ⇐⇒ α′ |=T ′

n
ι̂Tn(T )

]
.

Proof. The proof is by induction on n. Let s ∈ I0 = S and α ∈ Pow(S ′). Then

ι−1(α′) |=I0 s ⇐⇒ s ∈ ι−1(α′) ⇐⇒ ι(s) ∈ α′ ⇐⇒ α′ |=I0 ι̂I0(s).
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Now, let T ∈ T0 ∈ Pow(Pow(S)) and α′ ∈ Pow(S ′). Then

ι−1(α′) |=T0 T ⇐⇒ (∀s ∈ T ) ι−1(α′) |=I0 s

⇐⇒ (∀s ∈ T )α′ |=I0 ι̂I0(s)

⇐⇒ α′ |=T0 ι̂T0(T ).

Assume that the assertion holds for |=In and |=Tn . Let α
′ ∈ Pow(S ′). If θ ∈ In, then we

have
ι−1(α′) |=In+1 θ ⇐⇒ α′ |=I′

n+1
ι̂In+1(θ)

by the definitions of |=In+1 and ι̂In+1 . Let σ ∈ Fin(S) and Γ ∈ Pow(Tn). Then

ι−1(α′) |=In+1 (n+ 1, (σ,Γ)) ⇐⇒ σ ⊆ ι−1(α′) ⇒ (∃U ∈ Γ) ι−1(α′) |=Tn U

⇐⇒ ι(σ) ⊆ α′ ⇒ (∃U ∈ Γ)α′ |=Tn ι̂Tn(U)

⇐⇒ α′ |=I′
n+1

(n+ 1, (ι(σ), {ι̂Tn(U) | U ∈ Γ}))
⇐⇒ α′ |=I′

n+1
ι̂In+1(n+ 1, (σ,Γ)).

Finally, if T ∈ Tn+1, then

ι−1(α′) |=Tn+1 T ⇐⇒ (∀θ ∈ T ) ι−1(α′) |=In+1 θ

⇐⇒ (∀θ ∈ T )α′ |=In+1 ι̂In+1(θ)

⇐⇒ α′ |=T ′
n+1

ι̂In+1(T ).

Hence, we have the following lemma.

Lemma 2.2.9. Let T be a theory over S, and let S ′ be an extension of S with inclusion
ι. Then ι−1(α′) ∈ M(T ) if and only if α′ ∈ M(ι̂(T )) for each α′ ∈ Pow(S ′).

Let S ′ be an extension of a set S with an inclusion ι. A theory T ′ over S ′ is an
extension of a theory T over S if ι−1(α′) ∈ M(T ) for each α′ ∈ M(T ′), and the extension
is conservative if for each α ∈ M(T ), there exists α′ ∈ M(T ′) such that α = ι−1(α′). Note
that ι̂(T ) is a conservative extension of T by Lemma 2.2.9.

Proposition 2.2.10. Each theory of rank n+ 1 (n ≥ 1) has a conservative extension of
rank n.

Proof. Let T be a theory of rank n+ 1 (n ≥ 1) over a set S. Divide T into the set P of
implications of rank ≤ n and the set Q of implications rank n+1. Define an extension S ′

of S by S ′ = S +
∑

ϕ∈Q
∑

U∈Γϕ
U , and let ιS : S → S ′ and ιU : U → S ′ (U ∈ Γϕ, ϕ ∈ Q)

be the canonical inclusions. Let Q̃ be a theory over S ′ of rank 1 defined by

Q̃ =
{∧

ιS(σϕ) →
∨

U∈Γϕ

∧
ιU(U) | ϕ ∈ Q

}
,
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and, for an implication θ ∈ U (U ∈ Γϕ, ϕ ∈ Q), define an implication θ̃ of rank 1 or the
same rank by

θ̃ ≡
{
ιU (θ) → ιS(θ) for θ of rank 0,∧

(ιS(σθ) ∪ {ιU(θ)}) →
∨

V ∈Γθ

∧
ι̂S(V ) for θ of positive rank.

Finally, define a theory T ′ over S ′ of rank n by

T ′ = ι̂S(P ) ∪ Q̃ ∪
{
θ̃ | θ ∈ U, U ∈ Γϕ, ϕ ∈ Q

}
.

We show that T ′ is a conservative extension of T . First, we show that T ′ is an extension
of T . Let α′ ∈ M(T ′). We must show that ιS

−1(α′) ∈ M(T ), i.e. ιS
−1(α′) |= P and

ιS
−1(α′) |= Q. Since α′ |= ι̂S(P ) and P is a theory over S, ιS

−1(α′) |= P by Lemma 2.2.9.
Let ϕ ∈ Q, and suppose that σϕ ⊆ ιS

−1(α′). Then ιS(σϕ) ⊆ α′. Since α′ |= Q̃, there exists
U0 ∈ Γϕ such that α′ |= ιU0(U0), so ιU0(U0) ⊆ α′. Let θ ∈ U0. If θ is of rank 0, then, since
α′ |= θ̃ and {ιU0(θ)} ⊆ α′, we have α′ |= ιS(θ), and hence ιS

−1(α′) |= θ. If θ is of positive
rank, suppose that σθ ⊆ ιS

−1(α′). Then ιS(σθ) ∪ {ιU0(θ)} ⊆ α′, and since α′ |= θ̃, there
exists V ∈ Γθ such that α′ |= ι̂S(V ). Hence, ιS

−1(α′) |= V by Lemma 2.2.9, and therefore
ιS

−1(α′) |= θ. Thus, ιS
−1(α′) |= U0, so ιS

−1(α′) |= Q.
Next, we show that T ′ is a conservative extension of T . Let α ∈ M(T ), and let α′ be a

subset of S ′ such that

α′ = ιS(α) ∪
⋃

{ιU(U) | α |= U, U ∈ Γϕ, ϕ ∈ Q} .

Note that α′ is a set since |= is a predicative class as mentioned in Remark 2.2.5. Clearly,
α = ιS

−1(α′). It remains to be shown that α′ |= T ′. First, since ιS
−1(α′) = α |= P , we

have α′ |= ι̂S(P ) by Lemma 2.2.9. Next, let ϕ ∈ Q, and suppose that ιS(σϕ) ⊆ α′. Then,
σϕ ⊆ ιS

−1(α′) = α. Since α |= Q, there exists U ∈ Γϕ such that α |= U . Then, ιU (U) ⊆ α′

by the definition of α′, i.e. α′ |= ιU (U), and hence α′ |= Q̃. Finally, let ϕ ∈ Q,U ∈ Γϕ,
and θ ∈ U . If θ is of rank 0, and if ιU (θ) ∈ α′, then θ ∈ U and ιS

−1(α′) = α |= U .
Therefore α′ |= ιS(θ) by Lemma 2.2.9. Thus α′ |= θ̃. If θ is of positive rank, suppose that
ιS(σθ) ∪ {ιU (θ)} ⊆ α′. Since ιU (θ) ∈ α′ we have α |= θ, and since σθ ⊆ ιS

−1(α′) = α,
there exists V ∈ Γθ such that ιS

−1(α′) = α |= V , so α′ |= ι̂S(V ) by Lemma 2.2.9, and

thus, α |= θ̃. Therefore, α′ |=
{
θ̃ | θ ∈ U, U ∈ Γϕ, ϕ ∈ Q

}
.

Proposition 2.2.11. Let T ′ be a conservative extension of a theory T . If the class M(T ′)
is set-generated, so is the class M(T ).

Proof. Let ι : S → S ′ be an extension. Let T be a theory over S and T ′ be a theory
over S ′, where T ′ is a conservative extension of T . Suppose that M(T ′) is set-generated,
and let G′ be a generating subset of M(T ′). We show that G = {ι−1(α′) | α′ ∈ G′} is
a generating subset of M(T ). To this end, let α ∈ M(T ) and σ ⊆ Fin(α). Since T ′

is a conservative extension of T , there exists β ∈ M(T ′) such that ι−1(β) = α, and so
ι(σ) ⊆ β. Then, since G′ generates M(T ′), there exists α′ ∈ G′ such that ι(σ) ⊆ α′ ⊆ β.
Therefore σ ⊆ ι−1(α′) ⊆ ι−1(β) = α.
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In the following sections, we give two different proofs for the following theorem in an
extension of CZF.

Theorem 2.2.12. The class M(T ) of models of a theory T of rank 1 is set-generated.

Combining this with the above two propositions, we have the following theorem.

Theorem 2.2.13. Assume RRS2-uREA or RDC. Then the class M(T ) of models of a
theory T of rank n is set-generated.

2.2.2 A regular extension axiom

In this section, we give proof of Theorem 2.2.12 in CZF extended with the axiom RRS2-
uREA [6, Theorem 5.2].

Theorem 2.2.14. Assume RRS2-uREA. Then the class M(T ) of models of a theory T
of rank 1 is set-generated.

Proof. Let T be a theory over a set S of rank 1. Let P = I0 ∩ T and Q = T − P .
Then P ⊆ S, and for each ϕ ∈ Q, we have Γϕ ⊆ Pow(S). For each α ∈ Pow(S), let
Qα = {ϕ ∈ Q | σϕ ⊆ α}. Since σϕ ∈ Fin(S) for each ϕ ∈ Q, we have Qα =

⋃
τ∈Fin(α)Qτ .

Let A be a union-closed RRS2-regular set containing {N, S, P} ∪ {Qτ | τ ∈ Fin(S)} ∪
{Γϕ | ϕ ∈ Q} and let

G = {α ∈ A | α |= M(T )} .
Note that G is a set by Bounded Separation. We show that G is a generating subset of
M(T ). To this end, let γ ∈ M(T ) and Aγ = {α ∈ A | P ⊆ α ⊆ γ}. Let R be a relation
on Aγ such that

R = {(α, β) | (∀ϕ ∈ Qα) (∃U ∈ Γϕ)U ⊆ β ∧ α ⊆ β}

Let α ∈ Aγ . Then Fin(α) ∈ A by Lemma 2.1.38. Since (∀τ ∈ Fin(α)) (∃y ∈ A) y = Qτ

and A is union-closed regular, we have Qα =
⋃

τ∈Fin(α)Qτ ∈ A. Since Qα ⊆ Qγ and

γ |= Q, we have
(∀ϕ ∈ Qα) (∃U ∈ A)U ∈ Γϕ ∧ U ⊆ γ.

Hence, since A is regular, there exists D ∈ A such that

(∀ϕ ∈ Qα) (∃U ∈ D) [U ∈ Γϕ ∧ U ⊆ γ] ∧ (∀U ∈ D) (∃ϕ ∈ Qα) [U ∈ Γϕ ∧ U ⊆ γ] ,

and since A is union-closed, we have δ =
⋃
D ∈ Aγ. Thus, since {δ, α, P} ⊆ A and A

is union-closed regular, we have β = δ ∪ α ∪ P ∈ A. Hence, β ∈ Aγ because P ⊆ γ.
Therefore, (α, β) ∈ R, and thus R ∈ mv(Aγ , Aγ). Define a relation R′ ⊆ (Aγ × Aγ)×Aγ

by
R′ = {((α, β) , η) | (α ∪ β)Rη} .

Then, since A is union-closed regular, α ∪ β ∈ Aγ for each α, β ∈ Aγ . Thus, since R is
total, so is R′. Now, let τ ∈ Fin(γ). Since N ∈ A and A is regular, we have τ ∈ A and
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τ ⊆ γ, and so τ ′ = P ∪ τ ∈ Aγ. Since A is RRS2-regular, there exists a set A0 ∈ A such
that τ ′ ∈ A0 ⊆ Aγ and

(∀α, β ∈ A0) (∃η ∈ A0) (α ∪ β)Rη.
Let α′ =

⋃
A0. Then τ ⊆ τ ′ ⊆ α′ ⊆ γ. Also, since A is union-closed, α′ ∈ A. It remains

to be shown that α′ |= T , i.e. α′ |= P and α′ |= Q. The former is trivial. For the latter,
let ϕ ∈ Q and suppose that σϕ ⊆ α′. Since σϕ ∈ Fin(α′), there exists β ∈ A0 such that
σϕ ⊆ β. Since R′ is total, there exists η ∈ A0 such that βRη, i.e.

(∀ϕ ∈ Qβ) (∃U ∈ Γϕ) [U ⊆ η ∧ β ⊆ η]

Since ϕ ∈ Qβ , we have U ∈ Γϕ such that U ⊆ α′, i.e. α′ |= U . Therefore α′ |= Q, and
thus α′ |= T .

2.2.3 The relativized dependent choice

In this section, we given a proof of Theorem 2.2.12 in CZF extended with the axiom RDC
[6, Theorem 4.1]. First we prove the following lemma for the main theorem.

Lemma 2.2.15. Let a, b and R be sets, and let

r ∈ mvR(a, b) ⇐⇒ r ∈ mv(a, b) ∧ r ⊆ R,

FullR(a, b, c) ⇐⇒ c ⊆ mvR(a, b) ∧ (∀r ∈ mvR(a, b)) (∃s ∈ c) s ⊆ r.

Then, there exists a set c such that FullR(a, b, c).

Proof. By Fullness, there exists a set d which is full in mv(a, b). Let c = {r ∈ d | r ⊆ R}
be a set by Bounded Separation. Then, c ⊆ mvR(a, b). Let r ∈ mvR(a, b). Since
r ∈ mv(a, b), there exists s ∈ d such that s ⊆ r. Then s ⊆ R, and so s ∈ c.

Theorem 2.2.16. Assume RDC. Then the class M(T ) of models of a theory T of rank
1 is set-generated.

The claim follows from the series of propositions. Let T be a theory over a set S of
rank 1. Let P = I0 ∩ T and Q = T −P , and note that P ⊆ S and Γϕ ⊆ Pow(S) for each
ϕ ∈ Q. For α ∈ Pow(S), let Qα = {ϕ ∈ Q | σϕ ⊆ α}.
Let b =

⋃
ϕ∈Q Γϕ and R =

∑
ϕ∈Q Γϕ, and define a class V by

V = {(α, c) | α ∈ Pow(S) ∧ FullR(Qα, b, c)} .

Proposition 2.2.17. There exists a set V ⊆ V such that

1. ∀τ ∈ Fin(S)∃c ((τ, c) ∈ V ),

2. ∀ (α, c) ∈ V ∀r ∈ c∃ (α′, c′) ∈ V (P ∪ α ∪
⋃

ran(r) = α′).
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Proof. Let ψ be a formula defined by

ψ(X, Y ) ≡ ∀(α, c) ∈ X∀r ∈ c∃ (α′, c′) ∈ Y
(
P ∪ α ∪

⋃
ran(r) = α′

)
.

We show that ∀X ∈ Pow(V)∃Y ∈ Pow(V)ψ(X, Y ). To this end, let X be a set such that
X ⊆ V. For each (α, c) ∈ X and r ∈ c, let α′ = P ∪ α ∪

⋃
ran(r), and let c′ be a set such

that FullR(Qα′ , b, c′) by Lemma 2.2.15. Then (α′, c′) ∈ V. Hence, we have

∀ ((α, c), r) ∈
∑

(α,c)∈X c∃(α′, c′) ∈ V (P ∪ α ∪
⋃
ran(r) = α′) ,

and therefore, there is a set Y ⊆ V such that

∀ ((α, c), r) ∈
∑

(α,c)∈X c∃(α′, c′) ∈ Y (P ∪ α ∪
⋃

ran(r) = α′) .

by Strong Collection. Thus ψ(X, Y ). Since ∀τ ∈ Fin(S)∃cFullR(Qτ , b, c) by Lemma
2.2.15, there exists a set X0 ⊆ V such that ∀τ ∈ Fin(S)∃c ((τ, c) ∈ X0) by Strong Collec-
tion. Applying RDC to ∀X ∈ Pow(V)∃Y ∈ Pow(V)ψ(X, Y ) and X0, we have a function
f with domain N such that f(0) = X0 and

∀n ∈ N [f(n) ⊆ V ∧ ψ (f(n), f(n+ 1))] .

Let V =
⋃

n∈N f(n). Then it is straightforward to see (1) and (2).

Using Exponentiation, Bounded Separation and Strong Collection, define sets B and
G by

B =
{
〈(αn, cn)〉n∈N ∈ V N | ∀n ∈ N∃r ∈ cn (P ∪ αn ∪

⋃
ran(r) = αn+1)

}
,

G =
{⋃

n∈N αn | 〈(αn, cn)〉n∈N ∈ B
}
.

Proposition 2.2.18. Each α in G is a model of T .

Proof. Let α ∈ G. Then there exists 〈(αn, cn)〉n∈N ∈ B such that α =
⋃

n∈N αn. Note
that P ⊆ α1 ⊆ α, so α |= P . Now, let ϕ ∈ Q, and suppose that σϕ ⊆ α. Then, since
σϕ ∈ Fin(S) and αn ⊆ αn+1 for each n ∈ N, there exists m ∈ N and r ∈ cm such that
σϕ ⊆ αm and P ∪αm∪

⋃
ran(r) = αm+1. Therefore, since r ∈ mvR(Qαm , b) and ϕ ∈ Qαm ,

there exists U ∈ b such that U ∈ Γϕ and ϕ r U , and hence U ⊆
⋃

ran(r) ⊆ αm+1 ⊆ α.
Hence α |= Q, and thus α |= T .

Proposition 2.2.19. Let γ be a model of T , and let τ ∈ Fin(γ). Then there exists β ∈ G
such that τ ⊆ β ⊆ γ.

Proof. Let Vγ = {(α, c) ∈ V | α ⊆ γ}. We show that

∀ (α, c) ∈ Vγ∃ (α′, c′) ∈ Vγ∃s ∈ c
(
P ∪ α ∪

⋃
ran(s) = α′

)
.

Let (α, c) ∈ Vγ. Define a set

r = {(ϕ, U) ∈ R | U ∈ Γϕ ∧ U ⊆ γ} ,
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by Bounded Separation. Then, since Qα ⊆ Qγ and γ is a model of T , for each ϕ ∈ Qα

there exists U ∈ Γϕ such that U ⊆ γ. Therefore r ∈ mvR(Qα, b), so there exists s ∈ c
such that s ⊆ r. Note that

⋃
ran(s) ⊆

⋃
ran(r) ⊆ γ. Then, there exists (α′, c′) ∈ V such

that α′ = P ∪ α ∪
⋃

ran(s) ⊆ γ by Proposition 2.2.17 (2). Thus (α′, c′) ∈ Vγ.
By Proposition 2.2.17 (1), there exists c such that (τ, c) ∈ Vγ . Applying DC, we have

a function h : N → Vγ with h(n) = (αn, cn) such that (α0, c0) = (τ, c) and ∀n ∈ N∃s ∈
cn (P ∪ αn ∪

⋃
ran(s) = αn+1). Therefore, since h ∈ B, we have β =

⋃
n∈N αn ∈ G and

τ ⊆ β ⊆ γ.
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2.3 Category Theory

In this section, we introduce all the concepts of category theory that we use in this thesis.
The topics are largely drawn from the first chapter of [9]. They can be found in any
other introductory textbooks on category theory; see, e.g. [8]. The reader who is new
to category theory should be warned that some of the important concepts of category
theory, e.g. pullbacks, are deliberately omitted since they are not treated in this thesis.

2.3.1 Categories

Definition 2.3.1. A category C consists of a class Ob(C) of objects of C (called C-
objects), and a class Arr(C) of arrows of C (called C-arrows) such that

1. there are assignments dom, cod : Arr(C) → Ob(C) which assigns to each f ∈
Arr(C), objects dom(f) and cod(f), called the domain and the codomain of f
respectively. If X = dom(f) and Y = cod(f), we write

f : X → Y or X
f �� Y

for the statement

f ∈ Arr(C) ∧ dom(f) = X ∧ cod(f) = Y.

2. there is an assignment ◦ : Arr(C)×Arr(C) → Arr(C) which assigns to each arrows
f : X → Y and g : Y → Z with dom(g) = cod(f), an arrow g ◦ f : X → Z called
the composite (or composition) of f and g.

3. there is an assignment 1 : Ob(C) → Arr(C) which assigns to each X ∈ Ob(C), an
arrow 1X : X → X called the identity arrow on X.

These data are required to satisfy the following axioms:

Associativity law: For any arrows f : X → Y , g : Y → Z and h : Z → W ,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Identity law: For any Y ∈ Ob(C), and for any f : X → Y and g : Y → Z

1Y ◦ f = f, g ◦ 1Y = g.

Remark 2.3.2.

• Arrows are also called morphisms. We use arrow and morphism synonymously.

• The composite g ◦ f is defined iff dom(g) = cod(f).

• By Associativity law, we can unambiguously write h◦g◦f for h◦(g ◦ f) or (h ◦ g)◦f .
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Notations. Throughout this section, we follow the following conventions.

• C,D,E . . . denote categories

• A,B,C, . . . , X, Y, Z, . . . denote objects.

• f, g, h, . . . denote arrows.

Definition 2.3.3. Let C be a category. For each pair of C-objects X and Y , the class

HomC(X, Y ) = {f ∈ Arr(C) | f : X → Y }

is called the hom-set of X and Y . We also write C(X, Y ) for HomC(X, Y ), or just
Hom(X, Y ) if C is clear from the context.

Definition 2.3.4. A category C is small if Ob(C) and Arr(C) are sets, otherwise it is
large. It is locally small if HomC(X, Y ) is a set for each X, Y ∈ Ob(C).

Examples 2.3.5.

1. Set is a category whose objects are the class of all sets and whose arrows are the class
of functions between sets. The composition is the usual composition of functions,
and the identity arrow on a set X is the identity function idX . Set is a large category
but it is locally small.

2. Similarly, Top is a category whose objects are the class of topological spaces and
whose arrows are the class of continuous functions between topological spaces. The
composition and the identity are defined as in Set.

3. Rel is a category whose objects are the class of all sets and whose arrows are binary
relations between sets. The composition of relations r : X → Y and s : Y → Z,
namely r ⊆ X × Y and s ⊆ Y × Z, is a relation s ◦ r ⊆ X × Z defined by

s ◦ r = {(x, z) ∈ X × Z | (∃y ∈ Y ) x r y ∧ y s z} .

The identity arrow on a set X is the diagonal relation on X, namely ΔX =
{(x, x) | x ∈ X}. Note that Rel is neither small nor locally small in CZF.

4. A preordered class is a class P with a relation � on P such that

• (reflexive) p � p,

• (transitive) p � q ∧ q � r → p � r.

If, moreover, � satisfies

• (anti-symmetry) p � q ∧ q � p→ p = q,

then P is called a partially ordered class. Every preordered class determines a
category as follows:
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• Objects — The elements of P .

• Arrows — For any p, q ∈ P , Hom(p, q) = {(p, q) | p � q}.
• Compositions — For any arrows (p, q) and (q, r), their composite is (q, r) ◦
(p, q) = (p, r).

• Identities — For any p ∈ P , 1p = (p, p).

Note that Hom(p, q) has at most one arrow for any objects p, q ∈ P . Also, the
composition and the identity are well-defined by transitivity and reflexivity of �.
We write C(P ) for the category associated with a preordered class P .

5. The empty category, denoted by 0, has the empty set of objects and the empty set
of arrows. Similarly, the degenerate category, denoted by 1, has just one object and
one arrow, namely, the identity arrow on the object.

Since category theory makes heavy use of diagrams, we define an informal notion of
diagram in a category. Much more formal definition of a diagram in a category is given
in 2.3.54.

Definition 2.3.6. A diagram D in a category C consists of a set V of objects of C and a
set of arrows of C whose domain and codomain are in V . A diagram can be depicted as

• f �� •
h

���
��

��
��

�

g

��• �� •

A path in a diagram D is a finite sequence 〈f1, . . . , fn〉 of arrows of D with dom(fi+1) =
cod(fi) for each i < n. A diagram D is said to commute if for any two paths 〈f1, . . . , fn〉
and 〈g1, . . . , gm〉 with n ≥ 2 or m ≥ 2 and dom(f1) = dom(g1) and cod(fn) = cod(gm),
we have fn ◦ · · · ◦ f1 = gm ◦ · · · ◦ g1.

Examples 2.3.7. Here are two diagrams.

(i) •
f

����
��

��
� g

���
��

��
��

• h �� •

(ii) • e �� •
f ��
g

�� •

The diagram (i) commutes iff g = h ◦ f . The diagram (ii) commutes iff f ◦ e = g ◦ e.

Definition 2.3.8. A category D is a subcategory of a category C if

• Ob(D) ⊆ Ob(C),

• For each X, Y ∈ Ob(D), D(X, Y ) ⊆ C(X, Y ),

• The composition ◦D of D is the restriction of the composition ◦C of C to the arrows
of D.
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• For any X ∈ Ob(D), the identity arrow on X in D is 1X ∈ C(X,X) in C.

A subcategory D of C is full if for every X, Y ∈ Ob(D), D(X, Y ) = C(X, Y ).

Remark 2.3.9. A full subcategory is completely determined by specifying its objects.

Example 2.3.10.

• Set is a subcategory of Rel. It is not full.

• The category Finset of the category of finitely enumerable sets and functions be-
tween them is a full subcategory of Set.

Definition 2.3.11. For any category C, its opposite category Cop is a category defined
by

• Ob(Cop) = Ob(C),

• For each X, Y ∈ Ob(C), Cop(X, Y ) = C(Y,X),

• For any Cop-arrows f : X → Y and g : Y → Z, their composite g ◦op f : X → Z in
Cop is the composite f ◦ g : Z → X in C,

• For each X ∈ Ob(Cop), the identity 1X in Cop is the identity arrow on X in C.

Note that (Cop)op = C. Informally, Cop is obtained from C by reversing all arrows, i.e.
interchanging the domain and the codomain of all arrows.

Formally a category can be defined as a two-sorted first order theory with equality with
variables X, Y, Z, . . . . for objects and f, g, h, . . . for arrows and four function symbols
dom, cod, ◦ and 1 with axioms

dom(1X) = X, cod(1X) = X,

f ◦ 1dom(f) = f, 1cod(f) ◦ f = f,

dom(g ◦ f) = dom(f), cod(g ◦ f) = cod(g),

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

More precisely, since g ◦ f is defined only when dom(g) = cod(f), we must append this
condition to each equation containing ◦.

Definition 2.3.12. Let S be a statement of a category. The dual of S, denoted by Sop,
is a statement obtained from S by recursively substituting

• f ◦ g for g ◦ f ,

• dom for cod,

• cod for dom.
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Then for any category C, Sop holds in C iff S holds in Cop. Thus we have the following
principle.

Proposition 2.3.13 (Duality principle). Let S be any statement of categories. If S holds
for all categories, then Sop holds for all categories.

Proof. Suppose that S holds for all categories. Let C be a category. Then S holds in
Cop, and thus Sop holds in C.

Similarly, for any concept or constructW defined in terms of the language of categories,
its dual, denoted by W op, is a concept or construct of categories obtained by applying the
above substitution to its definition.
A construct or concept is self dual iff W =W op.

2.3.2 Arrows

Unless otherwise noted, we fixed the base category C in the following arguments.

Definition 2.3.14. An arrow f : X → Y is an isomorphism if there is an arrow g : Y →
X such that g ◦ f = 1X and f ◦ g = 1Y . Such arrow g is called an inverse of f . We often
write f : X ∼= Y for an isomorphism f : X → Y .

Proposition 2.3.15. For any f : X → Y, g : Y → X and h : Y → X, if g ◦ f = 1X and
f ◦ h = 1Y , then g = h.

Proof. Suppose that g◦f = 1X and f◦h = 1Y . Then g = g◦1Y = g◦f◦h = 1X◦h = h.

Corollary 2.3.16. If g and h are inverses of an isomorphism f , then g = h.

Remark 2.3.17.

• By the corollary, an inverse of any isomorphism f is unique, and we write f−1 for
the inverse of f .

• The statement “f is and isomorphism” is self dual.

The following are obvious.

Proposition 2.3.18.

1. If f is an isomorphism, so is f−1.

2. If f : X → Y and g : Y → Z are isomorphisms, so is g ◦ f .

Definition 2.3.19. Objects A and B are isomorphic, denoted by A∼=B, if there is an
isomorphism f : A→ B between them.

Definition 2.3.20. An arrow f : X → Y is a monomorphism if for any g1, g2 : Z → X,
f ◦ g1 = f ◦ g2 implies g1 = g2.
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The dual concept of a monomorphism is that of an epimorphism.

Definition 2.3.21. An arrow f : X → Y is an epimorphism if for any g1, g2 : Y → Z,
g1 ◦ f = g2 ◦ f implies g1 = g2.

Examples 2.3.22. In Set, an arrow f : X → Y is

• an isomorphism iff f is bijective,

• a monomorphism iff f is injective,

• an epimorphism iff f is surjective.

We give a proof for the last fact since most textbooks on category theory give non-
constructive proofs. The proof is due to Hajime Ishihara.

Proposition 2.3.23. In Set, a function f : X → Y is an epimorphism iff f is surjective.

Proof. First, suppose that f is surjective. Let g1, g2 : Y → Z be functions such that
g1 ◦ f = g2 ◦ f . Let y ∈ Y . Since f is surjective, there is x ∈ X such that f(x) = y. Thus,
g1(y) = g1(f(x)) = g2(f(x)) = g(y), and therefore g1 = g2. Conversely, suppose that f is
an epimorphism. Define a set Z and functions g1, g2 : Y → Z by

Z = {{y} | y ∈ Y } ∪
{
ff−1{y} | y ∈ Y

}
,

g1(y) = ff−1{y},
g2(y) = {y}

for any y ∈ Y . Then, we have g1(f(x)) = ff−1{f(x)} = {f(x)} = g2(f(x)) for all x ∈ X.
Since f is an epimorphism, we have g1 = g2, and hence {y} = ff−1{y} for all y ∈ Y .
Thus f is surjective.

2.3.3 Construction in categories

Definition 2.3.24. An object A ∈ Ob(C) is an initial object of C if for any B ∈ Ob(C),
there is a unique arrow f : A→ B.

Proposition 2.3.25. An initial object of a category is unique up to isomorphism, i.e. if
A and B are initial objects in C, then A∼=B.

Proof. Suppose that A,B ∈ Ob(C) are initial objects. Then, there are arrows f : A→ B
and g : B → A, so we have g ◦ f : A → A and f ◦ g : B → B. Since 1A : A → A and
1B : B → B, we must have g ◦ f = 1A and f ◦ g = 1B by initiality. Therefore f is an
isomorphism, and thus A∼=B.

Notation. An initial object in a category, if it exists, is usually denoted by 0.

The dual notion of initial object is that of terminal object.
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Definition 2.3.26. An object A ∈ Ob(C) is a terminal object of C if for any B ∈ Ob(C),
there is a unique arrow f : B → A.

By the duality principle, a terminal object, if it exists, is unique up to isomorphism.

Notation. A terminal object in a category, if it exists, is usually denoted by 1.

Examples 2.3.27.

• In Set, the empty set ∅ is an initial object, and any one point set {∗} is a terminal
object.

• In the category C(P ) associated with a partially ordered class P , an initial object
is the least element and a terminal object is the largest element.

• In Rel, ∅ is both an initial and terminal object.

Definition 2.3.28. A product of objects A1, A2 is an object A1×A2 together with arrows

A1 A1 × A2
π1�� π2 �� A2 , called projections, such that for any pair of arrows f1 : T → A1

and f2 : T → A2 with a common domain, there is a unique arrow h : T → A1 × A2 such
that the following diagram commutes.

T
f1

�������������
f2

		�����������

h
��

A1 A1 × A2
π1�� π2 �� A2

Proposition 2.3.29. A product of two objects is unique up to isomorphism, i.e. if

A1 P
π1�� π2 �� A2 and A1 Q

π′
1��

π′
2 �� A2 are products of A1 and A2, then P ∼=Q.

Proof. Let A1 P
π1�� π2 �� A2 and A1 Q

π′
1��

π′
2 �� A2 be products of A1 and A2. Then

there are arrows f : P → Q and g : Q→ P such that the following diagram commutes.

P
π1



��
��

��
�� π2

���
��

��
��

�

f
��

A1 Q
π′
1��

π′
2 �� A2

P

π1

���������� π2

����������
g

��

Thus, we have π1 ◦ g ◦ f = π1 and π2 ◦ g ◦ f = π2, but we also have π1 ◦ 1P = π1 and
π2 ◦ 1P = π2. Therefore g ◦ f = 1P by uniqueness of such arrow. Similarly, we have
f ◦ g = 1Q. Thus f : P ∼=Q.

Notation. We write A1×A2 for the product of A1 and A2 and 〈f1, f2〉 for the unique arrow
h : T → A1 × A2 which corresponds to arrows f1 : T → A1 and f2 : T → A2. Note that
〈f1, f2〉 = 〈g1, g2〉 iff fi = gi (i = 1, 2); for 〈f1, f2〉 = 〈g1, g2〉 implies f = π1 ◦ 〈f1, f2〉 =
π1 ◦ 〈g1, g2〉 = g1 and similarly f2 = g2. The converse is trivial.
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The dual notion of product of two objects is that of coproduct of two objects.

Definition 2.3.30. A coproduct of objects A1, A2 is an object A1 + A2 together with

arrows A1 A1 + A2
σ1 �� σ2�� A2 , called injections, such that for any pair of arrows f1 :

A1 → T and f2 : A2 → T with common codomain, there is a unique arrow h : A1+A2 → T
such that the following diagram commutes.

A1 A1 + A2
σ1 �� σ2�� A2

T

f1
		�����������

f2�������������
h

��

By the duality principle, coproducts of two objects are unique up to isomorphism.

Definition 2.3.31. A category C has binary products (or coproducts) if the product
A× B (respectively coproduct A+B) exists for every pair of objects A and B of C.

Examples 2.3.32.

• In Set, the product of sets A and B is the Cartesian product A× B together with
projection functions. Their coproduct is the disjoint union A + B = ({1} ×A) ∪
({2} × B) together with injection functions σA : a �→ (1, a) and σB : b �→ (2, b).

• In Top, the product of topological spaces (X1, τ1) and (X2, τ2), where τi (i = 1, 2)
are topologies of X1 and X2, is the topological product (X1 ×X2, τ1 × τ2) together
with projection functions.

• In the category C(P ) associated with partially ordered class P , the product of
p, q ∈ P is themeet (or infimum) p∧q, and their coproduct is the join (or supremum)
p ∨ q.

The notion of a (binary) product and coproduct can be extended to a product of an
arbitrary set-indexed family of objects.

Definition 2.3.33. A products of a set-indexed family (Ai)i∈I of objects is an object,
denoted by

∏
i∈I Ai, together with a family of arrows

(
πi :

∏
i∈I Ai → Ai

)
i∈I such that for

any family of arrows (fi : T → Ai)i∈I , there is a unique arrow h : T →
∏

i∈I Ai such that
the diagram commutes

T
fi



										
h

��
Ai

∏
i∈I Aiπi

��

for each i ∈ I. Note that the empty product, i.e. a product in which I = ∅, is a terminal
object, and the product of a singleton family {A} is A itself.
The dual concept of product of a family is that of coproduct of a family. Its definition

can be obtained by reversing all arrows in the definition of a product of a family. Note
that the empty coproduct is an initial object, and the coproduct of a singleton family {A}
is A itself.
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Examples 2.3.34. In Set, the product of a family of sets (Ai)i∈I is the Cartesian product∏
i∈I Ai of the family together with a family of projections

(
πi :

∏
i∈I Ai → Ai

)
i∈I defined

by πi(f) = f(i) for all f ∈
∏

i∈I Ai and i ∈ I. The coproduct of a family (Ai)i∈I is the
disjoint sum

∑
i∈I Ai together with a family of injections

(
σi : Ai →

∑
i∈I Ai

)
i∈I defined

by σi(a) = (i, a) for all i ∈ I and a ∈ Ai.
In the category C(P ) associated with a partially ordered class P , the product (coprod-

uct) of a family of elements (pi)i∈I is the meet
∧

i∈I pi (respectively join
∨

i∈I pi).

Definition 2.3.35. A category C has (finite) products (coproducts) if a product (respec-
tively coproduct) of any family of objects indexed by any (finite) set exists in C.

Proposition 2.3.36. A category C has finite products if it has a terminal object and
binary products.

Proof. Suppose that C has a terminal object and binary products. It suffices to show
that C has a product of any finite sequence of objects. Let (Ai)i<n be a family of objects
in C where n ∈ N. The proof is by induction on n.
Basis: If n = 0, then the product of the family is a terminal object.
Induction step: Given a family of objects (Ai)i<n+1, by induction hypothesis, we have
a product

∏
i<nAi of the family (Ai)i<n with projections (qj :

∏
i<nAi → Ai)i<n. Let∏

i<nAi P
p1�� p2 �� An be the product of

∏
i<nAi and An. We show that P together

with a family of projections (πi : P → Ai)i<n+1 defined by

πi =

{
qi ◦ p1 if i < n,

p2 if i = n

is a product of (Ai)i<n+1. Let (fi : T → Ai)i<n+1 be a family of arrows in C. Then, there
is a unique arrow h : T →

∏
i<nAi such that fi = qi ◦ h for all i < n, so there is a unique

arrow u : T → P such that h = p1◦u and fn = p2◦u. Then we have fi = qi ◦h = qi ◦p1◦u
for each i < n, and hence the diagram

T
fi














u
��

Ai Pπi

��

commutes for each i < n + 1. Suppose that u′ : T → P is an arrow which makes the
above diagram commute for each i < n + 1. Then, we have fi = πi ◦ u′ = qi ◦ p2 ◦ u′ for
each i < n, so we must have p2 ◦ u′ = h by the uniqueness of h. Therefore u′ = u by the
uniqueness of u. Thus P is a product of (Ai)i<n+1.

Corollary 2.3.37. A category C has finite coproducts if it has an initial object and binary
coproducts.

Definition 2.3.38. An equaliser for a parallel pair of arrows A
f ��
g

�� B , i.e. two arrows

with common domain and codomain, is an object E together with an arrow e : E → A
such that
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1. the diagram E
e �� A

f ��
g

�� B commutes,

2. for any arrow h : T → A which makes the diagram T
h �� A

f ��
g

�� B commute,

there is a unique arrow u : T → E such that h = e ◦ u.

Dually, a coequaliser for a parallel pair of arrows A
f ��
g

�� B is an object Q together

with an arrow q : B → Q such that

1. the diagram A
f ��
g

�� B
q �� Q commutes,

2. for any arrow h : B → T which makes the diagram A
f ��
g

�� B
h �� T commute,

there is a unique arrow u : Q→ T such that h = u ◦ q.

Definition 2.3.39. A categoryC has equalisers (coequalisers) if an equaliser (respectively
coequaliser) for any parallel pair of C-arrows exists in C.

Example 2.3.40. In Set, an equaliser for functions f, g : A→ B is an insertion i : E ↪→ A
from the set E = {a ∈ A | f(a) = g(a)}. A coequaliser for functions f, g : A → B is
the quotient B/≡ of B with respect to the smallest equivalence relation ≡ on B which
contains a set R = {(f(a), g(a)) | a ∈ A}, i.e. ≡ is the reflexive, symmetric and transitive
closure of R. The function q : B → Q is the natural projection which sends each b ∈ B
to its equivalence class [b].

2.3.4 Functors and natural transformations

Definition 2.3.41. Let C and D be categories. A functor F : C → D consists of
functions F0 : Ob(C) → Ob(D) and F1 : Arr(C) → Arr(D) such that

1. for each f : A→ B in C, F1(f) : F0(A) → F0(B) in D,

2. for each pair of arrows X
f �� Y

g �� Z in C, F1(g ◦ f) = F1(g) ◦ F1(f),

3. for each A ∈ Ob(C), F1(1A) = 1F0(A).

Notation. For a functor F , the subscripts of F0 and F1 are usually omitted; we simply
write F (A) and F (f) for F0(A) and F1(f), or even FA and Ff .

Examples 2.3.42.

• For any category C, there is an obvious identity functor 1C : C → C such that
1C(A) = A and 1C(f) = f for all A ∈ Ob(C) and f ∈ Arr(C).

• Similarly, for any subcategory D of a category C, there is an insertion functor
I : D → C.
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• A functor F : C(P ) → C(Q) between categories associated with partially ordered
classes P and Q is just an order preserving function.

• Let C be a locally small category. For each A ∈ Ob(C), we have the hom-functor
HA : C → Set defined by HA(X) = C(A,X) for all X ∈ Ob(C) and for each
f : X → Y ∈ Arr(C), HA(f) : C(A,X) → C(A, Y ) is the function such that
HA(f)(g) = f ◦g for all g ∈ C(A,X). The functor HA is also denoted by Hom(A,−)
or hom(A,−) in other literature.

Definition 2.3.43. A functor F : Cop → D whose domain is an opposite category is
called a contravariant functor from C to D.

Example 2.3.44. Let C be a locally small category. For each A ∈ Ob(C), we have the
contravariant hom-functor HA : Cop → Set defined by HA(X) = C(X,A) for all X ∈
Ob(C) and for each f : Y → X ∈ Arr(C), HA(f) : C(X,A) → C(Y,A) is the function
such that HA(f)(g) = g ◦ f for all g ∈ C(X,A). The functor HA is also denoted by
Hom(−, A) or hom(−, A) in other literature.

Definition 2.3.45. Let F : C → D and G : D → E be functors. The composite of F
and G is a functor G ◦ F : C → E defined by G ◦ F (A) = GFA and G ◦ F (f) = GFf for
all A ∈ Ob(C) and f ∈ Arr(C). We often write GF for G ◦ F .

Definition 2.3.46. A functor F : C → D is called an isomorphism if there is a functor
G : D → C such that G ◦ F = 1C and F ◦ G = 1D. The categories C and D are said to
be isomorphic, denoted by C∼=D, if that there is an isomorphism F : C → D.

Definition 2.3.47. A functor F : C → D is said to be

• full if for each A,B ∈ Ob(C), its restriction

FA,B : C(A,B) → D(FA, FB)

is surjective.

• faithful if the above restriction is injective for each A,B ∈ Ob(C).

• dense if for any B ∈ Ob(D) there exists A ∈ Ob(C) such that FA∼=B.

• embedding if it is faithful and injective on objects.

Example 2.3.48.

• Every insertion functor I : D → C from a subcategory is an embedding. It is full
iff D is a full subcategory of C.

• The forgetful functor U : Top → Set, which assigns to each topological space
(X, τX) its underlying set X and to each continuous function f : X → Y its under-
lying function f , is faithful and dense, but not full.
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Definition 2.3.49. Let F,G : C → D be functors. A natural transformation η from F
to G is a family (ηA : FA→ GA)A∈Ob(C) of arrows of D such that for each f ∈ C(A,B)
the following diagram in D commutes.

FA
ηA ��

Ff
��

GA

Gf
��

FB
ηB �� GB

The functors F and G are call the domain and codomain of η respectively, and we write
η : F → G. For each A ∈ Ob(C), ηA : FA→ GA is called a component of η.

Example 2.3.50. For every functor F : C → D, there is an obvious identity natural
transformation 1F : F → F such that (1F )A = 1FA for each A ∈ Ob(C).

Definition 2.3.51. Let F,G,H : C → D be functors and let η : F → G and ε : G→ H
be natural transformations. The composite ε ◦ η of η and ε is a natural transformation
ε ◦ η : F → H whose component at A ∈ Ob(C) is εA ◦ ηA : FA→ HA.

Definition 2.3.52. A natural transformation η : F → G is called a natural isomorphism
if there is a natural transformation ε : G→ F such that ε◦η = 1F and η ◦ ε = 1G, and we
write η : F ∼=G for a natural isomorphism η : F → G. Functors F,G : C → D are said to
be naturally isomorphic, denoted by F ∼=G, if there is a natural isomorphism η : F → G
between them.

Proposition 2.3.53. A natural transformation η : F → G is a natural isomorphism iff
each component ηA : FA→ GA is an isomorphism.

Proof. The implication from left to right is obvious. For the converse, suppose that ηA is
an isomorphism for all A ∈ Ob(C). Define a family of D-arrows (εA : GA→ FA)A∈Ob(C)

by εA = ηA
−1 for each A ∈ Ob(C). It is easy to see that ε is a natural transformation

from G to F , and by the definition of ε, we have ε ◦ η = 1F and η ◦ ε = 1G.

2.3.5 Limits

Definition 2.3.54. Let C and J be categories with J small. A diagram of type J in C
is a functor D : J → C. A digram D : J → C is finite if Ob(J) and Arr(J) are finite sets.

Notations. For a diagram D : J → C, we follow the following conventions.

• The objects of J are denoted by the lowercase letters i, j, . . . and the arrows of J
are denoted by the lowercase Greek letters α, β, . . . .

• The values of a diagram are denoted by Di and Dα instead of D(i) and D(α).

• We write J0 and J1 instead of Ob(J) and Arr(J) respectively.
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Definition 2.3.55. A cone to a diagram D : J → C is a family (θj : C → Dj)j∈J0
of

C-arrows with domain C ∈ Ob(C) such that for each α : j → k in J, the diagram

C
θj

����
��

��
�

θk

���
��

��
��

�

Dj
Dα ��Dk

commutes. A morphism η : (θj : C → Dj)j∈J0 → (γj : C
′ → Dj)j∈J0 between cones to D

is a C-arrow f : C → C ′ such that for each j ∈ J0 the diagram

C

θj ���
��

��
��

�
f �� C ′

γj����
��

��
��

Dj

commutes. We have a category
Cone(D)

whose objects are all cones to D and whose morphism are all morphisms between such
cones with obvious compositions and identities.

Definition 2.3.56. A limit for a diagram D : J → C is a terminal object in Cone(D),
namely a cone (pj : L → Dj)j∈J0 such that for any cone (θj : C → Dj)j∈J0 to D, there is
unique C-arrow h : C → L such that the diagram

C

θj ���
��

��
��

h �� L

pj����
��

��
�

Dj

commutes for all j ∈ J0.

Examples 2.3.57.

• Let J be a category such that Ob(J) = {1, 2} and Arr(J) = ∅. Then, a diagram
D : J → C is a pair (D1, D2) of C-objects. A cone to D is a pair of C-arrows

D1 C
f1�� f2 �� D2 ,

and the limit of D is just a product

D1 D1 ×D2
π1�� π2 �� D2

of D1 and D2.

Similarly, a product of a set-indexed family of C-objects (Ai)i∈I is the limit of a
diagram D : J → C such that Ob(J) = I, Arr(J) = ∅ and Di = Ai for each i ∈ I.
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• The limit of the diagram D : 0 → C from the empty category is a terminal object

in C, and the limit of the diagram D : J → C, where J = • α ��

β
�� • , is an equaliser

for Dα and Dβ.

Corollary 2.3.58. Terminal objects, products and equalisers are all unique up to isomor-
phisms.

The dual notion of cone and limit are those of cocone and colimit.

Definition 2.3.59. A cocone from a diagram D : J → C is a family (θj : Dj → C)j∈J0

of C-arrows with codomain C ∈ Ob(C) such that for each α : j → k in J, the diagram

Dj
Dα ��Dk

C

θj ���
��

��
��

θk����
��

��
��

commutes. A morphism of cocones f : (ηj : Dj → C)j∈J0 → (γj : Dj → C ′)j∈J0 is a
C-arrow f : C → C ′ such that for each j ∈ J0 the diagram

Dj

C

ηj

����
��

��
��

f �� C ′

γj

���
��

��
��

�

commutes. We have a category
Cocone(D)

defined similarly as Cone(D). Then, a colimit of D is an initial object of Cocone(D),
namely a cocone (qj : Dj → L)j∈J0 from D such that for any cocone (ηj : Dj → C)j∈J0

from D, there is a unique C-arrow h : L→ C such that the diagram

Dj

L

qj

����
��

��
�

h �� C

ηj

���
��

��
��

commutes for all j ∈ J0.

The colimits of the digram given in Examples 2.3.57 are a (binary) coproduct, a co-
product of a family of objects, an initial object and a coequaliser respectively. By duality
principle, we have the following.

Corollary 2.3.60. Initial objects, coproducts and coequalisers are all unique up to iso-
morphisms.

Definition 2.3.61. A category C is (finitely) complete (or cocomplete) if the limit (re-
spectively colimit) of any (finite) diagram in C exists in C.
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Proposition 2.3.62. A category C is (finitely) complete iff it has (finite) products and
equalisers.

Proof. Since products and equalisers are limits, the implication from left to right is obvi-
ous.
Conversely, suppose that C has products and equalisers, and let D : J → C be a

diagram in C. Let
∏

j∈J0
Dj and

∏
α∈J1

Dcod(α) be products of the families (Dj)j∈J0
and(

Dcod(α)

)
α∈J1

with projections(
πj :

∏
j∈J0

Dj → Dj

)
j∈J0

,(
π′
α :
∏

α∈J1
Dcod(α) → Dcod(α)

)
α∈J1

respectively. For the following families of arrows(
πcod(α) :

∏
j∈J0

Dj → Dcod(α)

)
α∈J1

,(
Dα ◦ πdom(α) :

∏
j∈J0

Dj → Dcod(α)

)
α∈J1

we have arrows ϕ, ψ :
∏

j∈J0
Dj →

∏
α∈J1

Dcod(α) such that

π′
α ◦ ϕ = πcod(α),

π′
α ◦ ψ = Dα ◦ πdom(α)

for each α ∈ J1. Let e : E →
∏

j∈J0
Dj be an equaliser for ϕ and ψ, and let p = (pj :

E → Dj)j∈J0 where pj = πj ◦ e for each j ∈ J0. We claim that p is the limit of D.
First, we see that p is a cone to D. Since e is an equaliser for ϕ and ψ, we have

Dα ◦ pj = Dα ◦ πj ◦ e
= π′

α ◦ ψ ◦ e
= π′

α ◦ ϕ ◦ e
= πk ◦ e
= pk

for all α : j → k ∈ J1, and thus p is a cone to D.
Now, given any cone (θj : T → Dj)j∈J0

to D, let h : T →
∏

j∈J0
Dj be the unique arrow

such that θj = πj ◦ h for each j ∈ J0. Since (θj)j∈J0 is a cone to D, we have

π′
α ◦ ϕ ◦ h = πcod(α) ◦ h

= θcod(α)

= Dα ◦ θdom(α)

= Dα ◦ πdom(α) ◦ h
= π′

α ◦ ψ ◦ h
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for each α ∈ J1, and thus ϕ◦h = ψ◦h. Since e is an equaliser for ϕ and ψ, there is a unique
arrow u : T → E such that h = e◦u. Note that h = e◦u iff θj = πj ◦h = πj ◦e◦u = pj ◦u
for each j ∈ J0. So u : T → E is the unique arrow from cone (θj)j∈J0 to p. Thus p is the
limit of D.

By the duality principle, we have the following.

Corollary 2.3.63. A category C is (finitely) cocomplete iff it has (finite) coproducts and
coequalisers.

2.3.6 Adjunctions

Definition 2.3.64. Let C and D be categories. An adjunction between C and D consists
of functors F : C → D and G : D → C and a family of bijections

ϕA,B : C(A,GB)∼=D(FA,B)

indexed by A ∈ Ob(C) and B ∈ Ob(B) which is natural in both A and B. Here, ϕA,B is
natural in A if for any C-arrow f : A′ → A and B ∈ Ob(D) the diagram

C(A,GB)
ϕA,B ��

HGBf
��

D(FA,B)

HBFf
��

C(A′, GB)
ϕA′,B �� D(FA′, B)

commutes, where HGBf(h) = h ◦ f and HBFf(k) = k ◦ Ff for each h ∈ C(A,GB) and
k ∈ D(FA,B). This means that for each f ∈ C(A′, A) and h ∈ C(A,GB), the following
equation holds.

(2.3.6.1) ϕA′,B(h ◦ f) = ϕA,B(h) ◦ Ff.

Similarly, ϕA,B is natural in B if for any D-arrow g : B → B′ and A ∈ Ob(C), the
diagram

C(A,GB)
ϕA,B ��

HAGg

��

D(FA,B)

HFA g

��
C(A,GB′)

ϕA,B′
�� D(FA,B′)

commutes, where HAGg(h) = Gg ◦ h and HFAg(k) = g ◦ k for each h ∈ C(A,GB) and
k ∈ D(FA,B). This means that for each g ∈ D(B,B′) and h ∈ C(A,GB), the following
equation holds.

(2.3.6.2) ϕA,B′(Gg ◦ h) = g ◦ ϕA,B(h).

F is called the left adjoint and G is called the right adjoint of the adjunction. We write
〈F,G, ϕ〉 for the adjunction which consists of the left adjoint F , the right adjoint G, and
a natural bijection ϕ. We also write F �G to assert that F and G are the left and right
adjoint of an adjunction.
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Proposition 2.3.65. Let 〈F,G, ϕ〉 be an adjunction between C and D. Then

1. There is a natural transformation

η : 1C → GF

with the following universal property;

for any A ∈ Ob(C) and B ∈ Ob(D), and for any f ∈ C(A,GB), there is a unique
arrow g ∈ D(FA,B) such that the diagram

A

f ��















ηA �� GFA

Gg
��

GB

commutes.

2. There is a natural transformation

ε : FG→ 1D

with the following universal property;

for any B ∈ Ob(D) and A ∈ Ob(C), and for any g ∈ D(FA,B), there is a unique
arrow f ∈ C(A,GB) such that the diagram

FA

Ff
��

g

��
















FGB
εB �� B

commutes.

Proof. 1. For each A ∈ Ob(C), define

ηA = ϕA,FA
−1(1FA).

We claim that (ηA : A→ GFA)A∈Ob(C) is a natural transformation with required universal
mapping property.
First, note that the universal property of η is equivalent to the assertion that there

is a bijection g �→ ĝ : D(FA,B) → C(A,GB) such that ĝ = Gg ◦ ηA. To see this, let
g ∈ D(FA,B). Then we have

ĝ = Gg ◦ ηA
= Gg ◦ ϕA,FA

−1(1FA)

= ϕA,B
−1(g ◦ ϕA,FA(ϕA,FA

−1(1FA))) by (2.3.6.2)

= ϕA,B
−1(g ◦ 1FA)

= ϕA,B
−1(g).
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Thus, since ϕA,B is a bijection, so is g �→ ĝ.
To see that η is a natural transformation from 1C to GF , let f ∈ C(A,A′). Then we

have

ϕA,FA′(GFf ◦ ηA) = Ff ◦ ϕA,FA(ηA) by (2.3.6.2)

= Ff ◦ 1FA

= 1FA′ ◦ Ff
= ϕA′,FA′(ηA′) ◦ Ff by (2.3.6.1)

= ϕA,FA′(ηA′ ◦ f).

Since ϕA,FA′ is a bijection, we have GFf ◦ ηA = ηA′ ◦ f , i.e. the following diagram
commutes.

A

f
��

ηA �� GFA

GFf
��

A′ ηA′ �� GFA′

Hence η : 1C → GF is a natural transformation.
2. For each B ∈ Ob(D), define

εB = ϕGB,B(1GB).

We claim that (εB : FGB → B)B∈Ob(D) is a natural transformation with the required
universal mapping property.
First, as in the proof of 1, we show that the mapping f �→ f̃ : C(A,GB) → D(FA,B)

such that f̃ = εB ◦ Ff is a bijection. To see this, let f ∈ C(A,GB). Then we have

f̃ = εB ◦ Ff
= ϕGB,B(1GB) ◦ Ff
= ϕA,B(1GB ◦ f) by (2.3.6.1)

= ϕA,B(f).

Thus, the mapping f �→ f̃ is a bijection.
To see that ε is a natural transformation, let g ∈ D(B,B′). Then we have

g ◦ εB = g ◦ ϕGB,B(1GB)

= ϕGB,B′(Gg ◦ 1GB) by (2.3.6.2)

= ϕGB,B′(1GB′ ◦Gg)
= ϕGB′,B′(1GB′) ◦ FGg by (2.3.6.1)

= εB′ ◦ FGg.

Therefore, ε : FG→ 1D is a natural transformation.
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Definition 2.3.66. The natural transformations η : 1C → GF and ε : FG→ 1D are call
the unit and the counit of an adjunction respectively. For each g ∈ D(FA,B), the arrow
ĝ = Gg ◦ ηA ∈ C(A,GB) is called the (left) transpose of g across F �G, and for each
f ∈ C(A,GB), the arrow f̃ = εB ◦ Ff ∈ D(FA,B) is called the (right) transpose of f
across F �G.
Proposition 2.3.67. Let F �G be an adjunction between categories C and D with unit
η and counit ε. Then for any h ∈ C(A,GB) and k ∈ D(FA,B), we have

η̃A = 1FA, ε̂B = 1GB,(2.3.6.3)

(̂h̃) = h, (̃k̂) = k,(2.3.6.4)

εFA ◦ FηA = 1FA, GεB ◦ ηGB = 1GB,(2.3.6.5)

˜(ηA′ ◦ f) = Ff, ̂(g ◦ εB) = Gg,(2.3.6.6)

for all f ∈ C(A,A′) and g ∈ D(B,B′), and

(̃h ◦ v) = h̃ ◦ Fv, ̂(k ◦ Fv) = k̂ ◦ v,(2.3.6.7)

(̂u ◦ k) = Gu ◦ k̂, ˜(Gu ◦ h) = u ◦ h̃,(2.3.6.8)

for all v ∈ C(C,A) and u ∈ D(B → E).

Proof. The equations (2.3.6.3),(2.3.6.4) and (2.3.6.5) are obvious from the proof of Propo-
sition 2.3.65. For (2.3.6.6), we have

˜(ηA′ ◦ f) = εFA′ ◦ FηA′ ◦ Ff
= 1FA′ ◦ Ff
= Ff,

and

̂(g ◦ εB) = Gg ◦GεB ◦ ηGB

= Gg ◦ 1BG

= Gg.

For (2.3.6.7), we have

(̃h ◦ v) = εB ◦ Fh ◦ Fv
= h̃ ◦ Fv,

and

̂(k ◦ Fv) = Gk ◦GFv ◦ ηC
= Gk ◦ ηA ◦ v
= k̂ ◦ v.
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For (2.3.6.8), we have

(̂u ◦ k) = G(u ◦ k) ◦ ηA
= Gu ◦Gk ◦ ηA
= Gu ◦ k̂,

and

˜(Gu ◦ h) = εE ◦ F (Gu ◦ h)
= εE ◦ FGu ◦ Fh
= u ◦ εB ◦ Fh
= u ◦ h̃.

Definition 2.3.68. The equations (2.3.6.5) are called the triangular identities which
assert that the following diagrams commute.

GB

1GB �����������
ηGB �� GFGB

GεB
��

GB

FA
1FA

�����������

FηA
��

FGFA εFA

�� FA

There are several equivalent characterizations of adjunctions.

Proposition 2.3.69. Let C and D be categories. Then the following are equivalent.

1. There is an adjunction 〈F,G, ϕ〉.

2. There are functors F : C → D and G : D → C and a natural transformation η :
1C → GF such that for each f ∈ C(A,GB) there is a unique arrow g ∈ D(GA,B)
such that f = Gg ◦ ηA.

3. There exists a functor G : D → C and a family of pairs (〈A∗, ηA〉)A∈Ob(C) where
A∗ ∈ Ob(D) and ηA ∈ C(A,GA∗), such that for each f ∈ C(A,GB) there is a
unique arrow g ∈ D(A∗, B) such that f = Gg ◦ ηA.

4. There are functors F : C → D and G : D → C and a natural transformation ε :
FG→ 1D such that for each g ∈ D(FA,B) there is a unique arrow f ∈ C(A,GB)
such that g = εB ◦ Ff .

5. There exists a functor F : C → D and a family of pairs (〈B∗, εB〉)B∈Ob(D), where
B∗ ∈ Ob(C) and εB ∈ D(FB∗, B), such that for each g ∈ D(FA,B) there is a
unique arrow f ∈ C(A,B∗) such that g = εB ◦ Ff .
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Proof. (1) → (2) and (1) → (4) follows from Proposition 2.3.65. (2) → (3) and (4) → (5)
are obvious.
(3) → (2): Suppose that we are given a family of pairs (〈A∗, ηA〉)A∈Ob(C) with the

specified property. We define a functor F : C → D as follows. On object, we define
F (A) = A∗ for each A ∈ Ob(C). For each C-arrow f : A → A′, let f ∗ : FA → FA′ be
the unique D-arrow such that the diagram

A
ηA ��

f

��

GFA

Gf∗
��

A
ηA′ �� GFA′

commutes. Define F (f) = f ∗. Then for each A ∈ Ob(C), F (1A) is the unique arrow such
that the diagram

A
ηA ��

1A
��

GFA

GF (1A)
��

A
ηA �� GFA

commutes. By the uniqueness of such arrow, we must have F (1A) = 1FA. So F preserves
the identity. It is easy to see that F also preserves the composition of arrows by the similar
argument. Therefore F is a functor from C to D. By the definition of F , (ηA)A∈Ob(C) is
a natural transformation η : 1C → GF .
(2) → (1): Suppose that we are given functors F : C → D and G : D → C and a

natural transformation η : 1C → GF with the specified properties. For each A ∈ Ob(C)
and B ∈ Ob(D), define a function ϕA,B : C(A,GB) → D(FA,B) by

ϕA,B(h) = unique k : GA→ B such that h = Gk ◦ ηA

for each h ∈ C(A,GB). Clearly, ϕA,B is a bijection between C(A,GB) and D(FA,B).
It remains to show that ϕA,B satisfies (2.3.6.1) and (2.3.6.2). To see that (2.3.6.1) holds,
let f ∈ A′ → A and h ∈ C(A,GB). Then we have

ϕA′,B(h ◦ f) = unique k : GA→ B such that h ◦ f = Gk ◦ ηA′ .

However, we have also

G(ϕA,B(h) ◦ Ff) ◦ ηA′ = G(ϕA,B(h)) ◦GFf ◦ ηA′

= G(ϕA,B(h)) ◦ ηA ◦ f
= h ◦ f.

Thus, by the uniqueness, we must have ϕA′,B(h ◦ f) = ϕA,B(h) ◦ Ff . Therefore, ϕA,B

satisfies (2.3.6.1). Similarly, ϕA,B satisfies (2.3.6.2). So 〈F,G, ϕ〉 is an adjunction between
C and D.
(5) → (4) and (4) → (1) can be shown similarly.

47



Proposition 2.3.70. A functor has at most one right adjoint up to natural isomorphism,
i.e. for any functors F : C → D and G,G′ : D → C, if F �G and F �G′, then G∼=G′.

Proof. Let F : C → D and G,G′ : D → C be functors such that F �G and F �G′, and
let ε and ε′ be the counits of F �G and F �G′ respectively.
Then, for each B ∈ Ob(D), there exist unique arrows θB : GB → G′B and θ′B : G′B →

GB such that the diagrams

FGB

FθB
��

εB

��
















FG′B
ε′B �� B

FG′B

Fθ′B
��

ε′B

��
















FGB
εB �� B

commute. Hence we have

εB ◦ F (θ′B ◦ θB) = εB ◦ Fθ′B ◦ FθB
= ε′B ◦ FθB
= εB.

Thus, by the universal property of ε, we have θ′B ◦ θB = 1GB. Similarly, θB ◦ θ′B = 1G′B,
so θB is a bijection.
We show that θB form the components of natural isomorphism θ : G∼=G′. To this end,

let g ∈ D(B,B′). Then by the naturality of εB and ε′B, we have

ε′B′ ◦ F (G′g ◦ θB) = ε′B′ ◦ FG′g ◦ FθB
= g ◦ ε′B ◦ FθB
= g ◦ εB
= εB′ ◦ FGg
= ε′B′ ◦ FθB′ ◦ FGg
= ε′B′ ◦ F (θB′ ◦Gg).

Therefore, by the universal property of ε′, we have G′g◦θB = θB′◦Gg. Thus θ : G∼=G′.

Proposition 2.3.71. A left adjoint preserves colimit. Dually, a right adjoint preserves
limits.

Proof. Let F �G be an adjunction between C and D. We show that G preserves limits.
The fact that F preserves colimits can be shown similarly.
Let D : J → D be a diagram in D and let (θj : L → Dj)j∈J0 be the limit of D. We

must show that (Gθj : GL→ GDj)j∈J0 is a limit of the diagram GD : J → C.
Let (fj : A→ GD)j∈J0 be a cone to GD. Then, for each α : j → k ∈ J1, the diagram

A
fj



��
��

��
�� fk

���
��

��
��

�

GDj
GDα �� GDk
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commutes. Then, by (2.3.6.8), the diagram

FA
f̃j



��
��

��
�� f̃k

���
��

��
��

�

Dj
Dα �� Dk

commutes for each α : j → k ∈ J1. So (f̃j : FA→ Dj)j∈J0 is a cone to D. Thus, there is
a unique arrow h : FA→ L such that the diagram

FA
h ��

f̃j ���
��

��
��

� L

θj����
��

��
�

Dj

commutes for each j ∈ J0. Therefore, by (2.3.6.4) and (2.3.6.8), we have

fj = Gθj ◦ ĥ

for each j ∈ J0. Thus, ĥ : A → GL is a morphism of cones from (fj : A → GDj)j∈J0 to
(Gθj : GL → GDj)j∈J0. Given any C-arrow k : A → GL such that fj = Gθj ◦ k for each
j ∈ J0, we have

f̃j = θj ◦ k̃

for each j ∈ J0 by (2.3.6.8). Since θ is a limit of D, we must have k̃ = h. Therefore, k = ĥ,
so that ĥ is the unique morphism from (fj : A → GDj)j∈J0 to (Gθj : GL → GDj)j∈J0 .
Hence, (Gθj : GL→ GDj)j∈J0 is a limit of GD.

Definition 2.3.72. A functor F : C → D is an equivalence if there is a functor G : D →
C and natural isomorphisms η : 1C∼=GF and ε : FG∼=1D. In this case, G is called a
quasi-inverse of F .
The categories C and D are said to be equivalent, denoted by C � D, if there is an

equivalence F : C → D.

Proposition 2.3.73. The following are equivalent for a functor F : C → D.

1. F is an equivalence.

2. F is full and faithful, and there is a family of pairs (〈B∗, εB〉)B∈Ob(D) where B∗ ∈
Ob(C) and εB : FB∗∼=B.

First, we prove the following lemma.

Lemma 2.3.74. Let F : C → D be a full and faithful functor. For each A,A′ ∈ Ob(C)
and D-isomorphism g : FA∼=FA′, there is a unique C-isomorphism f : A∼=A′ such that
Ff = g.
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Proof. Let A,A′ ∈ Ob(C) and let g : FA∼=FA′ be a D-isomorphism. Since F is full
and faithful there are unique arrows f : A → A′ and f ′ : A′ → A such that Ff = g and
Ff ′ = g−1. Then F (f ′ ◦ f) = Ff ′ ◦ Ff = g−1 ◦ g = 1FA = F1A. Since F is faithful, we
have f ′ ◦ f = 1A and similarly, f ◦ f ′ = 1A′ . Therefore f is an isomorphism such that
Ff = g.

Proof of Proposition 2.3.73. Let F : C → D be an equivalence with the quasi-inverse
G : D → C and natural isomorphisms η : 1C∼=GF and ε : FG∼=1D.
Then (〈GB, εB〉)B∈Ob(D) is a family such that GB ∈ Ob(C) and εB : FGB∼=B. To see

that F is faithful, let f, f ′ ∈ C(A,A′), and suppose that Ff = Ff ′. Since η is a natural
transformation, we have

ηA′ ◦ f = GFf ◦ ηA = GFf ′ ◦ ηA = ηA′ ◦ f ′

Since ηA′ is an isomorphism, we have f = f ′. Therefore, F is faithful. Similarly, G
is faithful. To see that F is full, let A,A′ ∈ Ob(C) and g ∈ D(FA, FA′). Put f =
ηA′−1 ◦Gg ◦ ηA : A→ A′. Since η is a natural isomorphism, we have

GFf = ηA′ ◦ f ◦ ηA−1 = ηA′ ◦
(
ηA′−1 ◦Gg ◦ η

A

)
◦ ηA−1 = Gg,

and since G is faithful, we have Ff = g. Therefore F is full.
Conversely, suppose that F is full and faithful, and let (〈B∗, εB〉)B∈Ob(D) be a family

with B∗ ∈ Ob(C) and εB : FB∗∼=B. Define a functor G : D → C as follows: On objects,
we define G(B) = B∗ for each B ∈ Ob(D). To define an arrow part of G, let g : B → B′.
Since εB′−1 ◦ g ◦ εB : FB∗ → FB′∗ and F is full and faithful, there is a unique arrow
f : B∗ → B′∗ such that the diagram

FB∗

Ff
��

εB �� B

g

��
FB′∗ εB′ �� B′

commutes. We put Gg = f . Then, since the diagrams

FGB

F (Gg′◦Gg)
��

εB �� B

g′◦g
��

FGB′′ εB′′ �� B′

FGB

FG1B
��

εB �� B

1B
��

FGB
εB �� B

are commutative for any g : B → B and g′ : B′ → B′′, we have G(g′ ◦ g) = Gg′ ◦ Gg
and G1B = 1GB because F is full and faithful. Therefore G is a functor, and εB form the
components of natural isomorphism ε : FG∼=1D.
For each A ∈ Ob(C), since F is full and faithful and εFA is an isomorphism, there is a

unique isomorphism ηA : A → GFA such that F (ηA
−1) = εFA by the lemma. Then, for

any f : A→ A′, the diagram

FGFA

FGFf
��

F (ηA
−1) �� FA

Ff
��

FGFA′F (ηA′−1)�� FA′
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commutes. Since F is faithful, it follows that GFf ◦ηA = ηA′ ◦f . Thus ηA is a component
of a natural isomorphism η : 1C∼=GF .

Definition 2.3.75. A subcategory D of a category C is reflective in C if the insertion
functor I : D → C has a left adjoint L : C → D. The adjunction L� I is called a
reflection of C in D.
Dually, a subcategory D of a category C is coreflective in C if the insertion functor has

a right adjoint L : C → D. The adjunction I �L is called a coreflection of C in D.

Remark 2.3.76. By Proposition 2.3.69 (3), a subcategory D is reflective in C iff there is
a family of pairs (〈A∗, ηA〉)A∈Ob(C), where A

∗ ∈ Ob(D) and ηA ∈ C(A,A∗), such that
for any B ∈ Ob(D) and f ∈ C(A,B), there is a unique arrow g ∈ D(A∗, B) such that
f = g ◦ ηA. The similar remark applies to coreflections by Proposition 2.3.69 (5).

2.3.7 Galois Connections

Definition 2.3.77. An adjunction F �G between categories C(P ) and D(Q) associated
with partially ordered classes (P,≤P ) and (Q,≤Q), is called a Galois connection between
P and Q. In this case, F �G iff for any p ∈ P and q ∈ Q

(2.3.7.1) Fp ≤Q q ⇐⇒ p ≤P Gq.

Remark 2.3.78. Since a functor between partially ordered classes is just an order preserving
function (also called a monotone function), a Galois connection between partially ordered
classes P and Q consists of a pair of order preserving functions F : P → Q and G : Q→ P
which satisfy (2.3.7.1).

Definition 2.3.79. Let (P,≤) be a partially ordered class. A function cl : P → P is
called a closure operator on P if

p ≤ p′ ⇒ cl(p) ≤ cl(p′),(monotone)

cl(cl(p)) ≤ cl(p),(idempotent)

p ≤ cl(p).(expansive)

Dually, a function int : P → P is called an interior operator on P if it is monotone and
idempotent, and satisfies the following condition.

int(p) ≤ p.(contractive)

Proposition 2.3.80. Let F �G be a Galois connection between partially ordered classes
P and Q. Then

1. The composite GF : P → P is a closure operator on P , i.e. for all p, p′ ∈ P

p ≤ p′ ⇒ GFp ≤ GFp, p ≤ GFp, GFGFp ≤ GFp.
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2. The composite FG : Q→ Q is an interior operator on Q, i.e. for all p, p′ ∈ Q

q ≤ q′ ⇒ FGq ≤ FGq, FGq ≤ q, FGq ≤ FGFGq.

Proof. These are direct consequences of (2.3.7.1) and the fact that F and G are monotone
operators.

Proposition 2.3.81. Let F �G be an adjunction between categories C and D and let η
and ε be the unit and counit of F �G. Let C̃ and D̃ be full subcategories of C and D
respectively determined by

Ob(C̃) = {A ∈ Ob(C) | ηA : A∼=GFA} ,
Ob(D̃) = {B ∈ Ob(D) | εB : FGB∼=B} .

Then, the functor F restricts to an equivalence between C̃ and D̃, and G restricts to
an equivalence between D̃ and C̃.

Proof. It suffices to show that F restricts to F̃ : C̃ → D̃ and G restricts to G̃ : D̃ → C̃,
so that η and ε restrict to natural isomorphisms η : 1C̃ → G̃F̃ and ε : F̃ G̃→ 1D̃.

For any A ∈ Ob(C̃), by (2.3.6.5) and since in general functors preserve isomorphisms,
we have, εFA = (FηA)

−1. Thus, FA ∈ Ob(D̃) for all A ∈ Ob(C̃). Therefore, F̃ : C̃ → D̃.
Dually, G restricts to G̃ : D̃ → C̃.

Corollary 2.3.82. If F �G is a Galois connection between partially ordered classes P
and Q, then F restricts to an order preserving isomorphism between subclasses

{p ∈ P | p = GFp} and {q ∈ Q | FGq = q} ,

of P and Q, namely the classes of fixed points of the closure operator GF and the interior
operator FG respectively.
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2.4 Basic mathematical tools

This section introduces basic mathematical concepts which are frequently used in Chapter
3 and Chapter 4.
First, we define some notions associated with sets and binary relations between sets.

For any set S, Pow(S) denotes the class of subsets of S. For any subsets U, V ∈ Pow(S),
we define

U � V ⇐⇒ ∃a ∈ S [a ∈ U & a ∈ V ] .

The diagonal relation idX on X, the inverse relation r− ⊆ S×X of a relation r ⊆ X ×S,
and the composition r2 ◦ r1 ⊆ X ×Z of relations r1 ⊆ X × Y and r2 ⊆ Y ×Z are defined
as usual:

idX = {(x, x) | x ∈ X} ,
r− = {(a, x) ∈ S ×X | x r a} ,

r2 ◦ r1 = {(x, z) ∈ X × Z | (∃y ∈ Y )x r1 y & y r2 z}.

2.4.1 Four operators associated with a relation

For any relation r ⊆ X×S between sets, we can define four operators between Pow(X) and
Pow(S). Those operators together with their notations are heavily used in the following
chapters. See [21, Section 1.3] for further details of this notion.

Definition 2.4.1. Let X and S be sets and r ⊆ X×S be a relation. Then, there are four
monotone operators r, r−∗ : Pow(X) → Pow(S) and r−, r∗ : Pow(S) → Pow(X) between
partially ordered classes (Pow(X),⊆) and (Pow(S),⊆) defined by

rD = {a ∈ S | (∃x ∈ D) x r a} ,
r−∗D = {a ∈ S | (∀x ∈ X) x r a→ x ∈ D} ,
r−U = {x ∈ X | (∃a ∈ U) x r a} ,
r∗U = {x ∈ X | (∀a ∈ S) x r a→ a ∈ U}

for all D ∈ Pow(X) and U ∈ Pow(S).

Remark 2.4.2. Since rD =
⋃

x∈D r{x} and r−U =
⋃

a∈U r
−{a} for all D ∈ Pow(X) and

U ∈ Pow(S), the operators r and r− are completely determined by their restrictions to
singletons.

Notations.

• We often write r : X → S to assert that r is a relation r ⊆ X × S. Of course, there
is a danger of confusing the relation r with a function with domain X and codomain
S, but the context always makes clear whether r is a relation or a function.

• The composite of two operators associated with relations are denoted by juxtaposi-
tions, for example rr∗ denotes the composite of the operators r : Pow(X) → Pow(S)
and r∗ : Pow(S) → Pow(X) associated with a relation r ⊆ X × S. The composite
of two relations, e.g. r ⊆ X × Y and s ⊆ Y × Z, are always denoted by s ◦ r.
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• We often write rx for r {x} when the argument is a singleton set. Similar conventions
also apply to the other operators.

Proposition 2.4.3. Let X and S be sets and r ⊆ X × S be a relation. Then

rD � U ⇐⇒ D � r−V,(2.4.1.1)

D ⊆ r∗U ⇐⇒ rD ⊆ U,(2.4.1.2)

U ⊆ r−∗D ⇐⇒ r−U ⊆ D(2.4.1.3)

for all D ∈ Pow(X) and U ∈ Pow(S).

Proof. Let D ∈ Pow(X) and U ∈ Pow(S). Then

rD � U ⇐⇒ (∃a ∈ S) a ∈ rD& a ∈ U

⇐⇒ (∃a ∈ S) ((∃x ∈ X)x ∈ D& x r a) & a ∈ U

⇐⇒ (∃x ∈ X) x ∈ D& ((∃a ∈ S) x r a& a ∈ U)

⇐⇒ (∃x ∈ X) x ∈ D& x ∈ r−U

⇐⇒ D � r−U.

Thus (2.4.1.1) holds. Also we have

D ⊆ r∗U ⇐⇒ (∀x ∈ X)x ∈ D → x ∈ r∗U

⇐⇒ (∀x ∈ X)x ∈ D → ((∀a ∈ S)x r a→ a ∈ U)

⇐⇒ (∀a ∈ S) (∀x ∈ X)x ∈ D → (x r a→ a ∈ U)

⇐⇒ (∀a ∈ S) ((∃x ∈ X)x ∈ D& x r a) → a ∈ U

⇐⇒ (∀a ∈ S) a ∈ rD → a ∈ U

⇐⇒ rD ⊆ U.

Thus (2.4.1.2) holds. The proof of (2.4.1.3) is similar to that of (2.4.1.2).

Corollary 2.4.4. For any relation r ⊆ X × S, the operators r and r− are left adjoint to
r∗ and r−∗ respectively.

Proof. Since the operators r, r−, r∗ and r−∗ are all monotone, (2.4.1.2) and (2.4.1.3) assert
that the pairs (r, r∗) and (r−, r−∗) are Galois connections between partially ordered classes
(Pow(X),⊆) and (Pow(S),⊆). Hence r � r∗ and r− � r−∗.

Notation. We write r ·|· r−, r � r∗ and r− � r−∗ to refer to (2.4.1.1), (2.4.1.2) and (2.4.1.3),
respectively.

Corollary 2.4.5. For any relation r ⊆ X × S,

1. rr∗ and r−r−∗ are interior operators on Pow(S).

2. r∗r and r−∗r− are closure operators on Pow(X).
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3. The following equations hold.

r∗rr∗ = r∗, rr∗r = r, r−r−∗r− = r−, r−∗r−r−∗ = r−∗.

4. r and r− preserve unions, i.e.

r
⋃

i∈I Di =
⋃

i∈I rDi, r−
⋃

j∈J Uj =
⋃

j∈J r
−Uj

for any set-indexed families (Di)i∈I and (Uj)j∈J of subsets of X and S respectively.

5. r∗ and r−∗ preserve intersections, i.e.

r∗
⋂

i∈I Ui =
⋂

i∈I r
∗Ui, r−∗⋂

j∈J Dj =
⋂

j∈J r
−∗Dj

for any set-indexed families (Di)i∈I and (Uj)j∈J of subsets of X and S respectively.

Proof. (1) and (2) follow from Proposition 2.3.80. (3) is the triangular identities (2.3.6.5)
stated in terms of Galois connection between partially ordered classes.
(4) and (5) can be checked directly, but they also follow from the following observation:

Since the unions and intersections are joins and meets in (Pow(X),⊆) and (Pow(S),⊆),
and since r � r∗ and r− � r−∗, it follows from Proposition 2.3.71 that r and r− preserve
unions and r∗ and r−∗ preserve intersections.

Lemma 2.4.6. For any relations r ⊆ X × Y and s ⊆ Y × Z,

(s ◦ r)− = r−s−, (s ◦ r)∗ = r∗s∗, (s ◦ r)−∗ = s−∗r−∗.

Proof. For any V ∈ Pow(Z) and x ∈ X, we have

x ∈ (s ◦ r)− V ⇐⇒ (s ◦ r)x � V by s ◦ r ·|· (s ◦ r)−

⇐⇒ srx � V
⇐⇒ rx � s−V by s ·|· s−

⇐⇒ {x} � r−s−V by r ·|· r−

⇐⇒ x ∈ r−s−V.

Thus, (s ◦ r)− = r−s−. Also, we have

x ∈ (s ◦ r)∗ V ⇐⇒ (s ◦ r) x ⊆ V by (s ◦ r)�(s ◦ x)∗

⇐⇒ srx ⊆ V

⇐⇒ rx ⊆ s∗V by s� s∗

⇐⇒ {x} ⊆ r∗s∗V by r � r∗

⇐⇒ x ∈ r∗s∗V.

Thus, (s ◦ r)∗ = r∗s∗. The proof of (s ◦ r)−∗ = s−∗r−∗ is similar.
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Proposition 2.4.7. For any relations r ⊆ X × S and s ⊆ X × S, the following are
equivalent.

1. r = s as relations between X and S.

2. r = s as operators from Pow(X) to Pow(S).

3. r− = s− as the inverse relations of r and s respectively.

4. r− = s− as operators from Pow(S) to Pow(X).

5. r∗ = s∗.

6. r−∗ = s−∗.

Proof. The equivalence between (1), (2), (3), and (4) are immediate from the definitions
of inverse relation and the operators r, s, r− and s−. The equivalence (2) ↔ (5) and
(4) ↔ (6) follows from the fact that right and left adjoints are unique; see Proposition
2.3.70.

Definition 2.4.8. Let r ⊆ X × S be a relation.

1. r is total if r ∈ mv(X,S).

2. r is single-valued if (∀x ∈ X) (∀a, a′ ∈ S) x r a& x r a′ → a = a′.

A function is a total and single-valued relation.

Lemma 2.4.9. Let X be a set. For any D ∈ Pow(X), the following are equivalent.

1. D is a singleton.

2. (∀E ∈ Pow(X))D � E ⇐⇒ D ⊆ E.

Proof. Suppose that D = {x} for some x ∈ X . Then, for any E ∈ Pow(X), we have
{x} � E ⇐⇒ x ∈ E ⇐⇒ {x} ⊆ E. Conversely, suppose that D � E ⇐⇒ D ⊆ E for
all E ∈ Pow(X). Put E = D. Then we have D � D, so there is x ∈ D. Putting E = {x},
we have D ⊆ {x}. Therefore, D = {x}.

Proposition 2.4.10. A relation r ⊆ X × S is a function iff r∗ = r−.

Proof. By the above lemma, we have

r is a function ⇐⇒ (∀x ∈ X) (∃a ∈ S) x r a& (∀b ∈ S) x r b→ b = a

⇐⇒ (∀x ∈ X) (∃a ∈ S) rx = {a}
⇐⇒ (∀x ∈ X) (∀E ∈ Pow(S)) rx � E ↔ rx ⊆ E

⇐⇒ (∀x ∈ X) (∀E ∈ Pow(S))x ∈ r−E ↔ x ∈ r∗E

⇐⇒ r− = r∗.
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2.4.2 Suplattices and complete lattices

In this section, we introduce the notion of suplattice, complete lattice and frame. In this
thesis, complete lattices arise as lattices of open and closed subsets of basic pairs and
frames arise as lattices of open subsets of concrete spaces. This section is largely based
on [21, Section 0.3].

Definition 2.4.11. A suplattice is a partially ordered class (S,≤,
∨
) which has a join∨

i∈I ai for any set-indexed family (ai)i∈I of elements of S.
Dually, an inflattice is a partially ordered class (S,≤,

∧
) which has a meet

∧
i∈I ai for

any set-indexed family (ai)i∈I of elements of S.
A complete lattice is a partially ordered class (S,≤,

∨
,
∧
) which has a meet and join

for every set-indexed family of elements of S.
If S and S ′ are suplattices (or inflattices), a function h : S → S ′ which preserves all

joints (respectively meets), i.e. h
(∨

i∈I ai
)
=
∨
h (ai) (respectively h

(∧
i∈I ai

)
=
∧
h (ai))

for every set-indexed family (ai)i∈I , is called a homomorphism of suplattice (respectively
inflattice). A homomorphism h : S → S ′ is an isomorphism if there is a homomorphism
h′ : S ′ → S such that h′ ◦ h = 1S and h ◦ h′ = 1S′.
A frame is a partially ordered class (S,≤, T,∧,

∨
) which has the top T , i.e. an element

T ∈ S such that a ≤ T for all a ∈ S, the meet a∧ b for every a, b ∈ S and the join
∨

i∈I ai
for every set-indexed family of elements of S, such that meets distribute over joins, i.e.
a ∧

∨
i∈I ai =

∨
i∈I a ∧ ai for any a ∈ S and any set-indexed family (ai)i∈I of elements of

S. A frame homomorphism f : S → S ′ is a function which preserves top, and all binary
meets and set-indexed joins.

Remark 2.4.12. A suplattice is a partially ordered class which is cocomplete as a category.
Dually, an inflattice is a partially ordered class which is complete as a category. A frame
is a partially ordered class which is cocomplete and finitely complete as a category.

Definition 2.4.13. Let S be a partially ordered class and c : S → S be an operator on
S. We say that an element a ∈ S is c-fixed if a = c(a). If cl and int are closure and
interior operators on S respectively, we write

Sat(cl) = {a ∈ S | cl(a) = a} ,
Red(int) = {a ∈ S | int(a) = a}

for the class of cl-fixed elements and int-fixed elements of S respectively.

Remark 2.4.14. Since closure and interior operators are idempotent, we can define Sat(cl)
and Red(int) by

Sat(cl) = {cl(a) | a ∈ S} ,
Red(int) = {int(a) | a ∈ S} .
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Proposition 2.4.15. Let (S,≤,
∨
,
∧
) be a complete lattice, and let cl and int be closure

and interior operators respectively. Then for any set-indexed family (ai)i∈I of elements of
S, we have

cl
(∨

i∈I cl(ai)
)
= cl

(∨
i∈I ai

)
, cl

(∧
i∈I cl(ai)

)
=
∧

i∈I cl(ai),

int
(∧

i∈I int(ai)
)
= int

(∧
i∈I ai

)
, int

(∨
i∈I int(ai)

)
=
∨

i∈I int(ai).

Proof. We just give a proof for the closure operator. The proof for the interior operator
is dual.
For the first equation, since ai ≤

∨
i∈I ai for all i ∈ I, cl(ai) ≤ cl

(∨
i∈I ai

)
for all

i ∈ I by monotonicity of cl. Since this is equivalent to
∨

i∈I cl(ai) ≤ cl
(∨

i∈I ai
)
, we have

cl
(∨

i∈I cl (ai)
)
≤ clcl

(∨
i∈I ai

)
≤ cl

(∨
i∈I ai

)
by monotonicity and idempotency of cl.

Since cl is expansive, we have cl
(∨

i∈I cl (ai)
)
= cl

(∨
i∈I ai

)
.

For the second equation, since
∧

i∈I cl(ai) ≤ cl(ai) for all i ∈ I, cl
(∧

i∈I cl(ai)
)
≤

clcl(ai) ≤ cl(ai) for all i ∈ I by monotonicity and idempotency of cl. Therefore,
cl
(∧

i∈I cl(ai)
)
≤
∧

i∈I cl(ai), and hence cl
(∧

i∈I cl(ai)
)
=
∧

i∈I cl(ai) since cl is expan-
sive.

Proposition 2.4.16. Let (S,≤,
∨
,
∧
) be a complete lattice and c : S → S be a monotone

and idempotent operator on S. Then the class Fix(c) = {c(a) | a ∈ S} of all c-fixed
elements of S forms a complete lattice with a join

∨c and a meet
∧c defined by∨c

i∈I c(ai) = c
(∨

i∈I c(ai)
)
,

∧c
i∈I c(ai) = c

(∧
i∈I c(ai)

)
for any set-indexed family (ai)i∈I of elements of S.
If c is a closure operator, then

∧c coincides with
∧
, and if c is an interior operator,

then
∨c coincides with

∨
.

Proof. Let (ai)i∈I be a set-indexed family of elements of S. To prove the first equation,
it suffices to show that

c
(∨

i∈I c(ai)
)
≤ c(b) ⇐⇒ (∀i ∈ I) c(ai) ≤ c(b)

for all b ∈ S. Since c(ai) ≤
∨

i∈I c(ai) for all i ∈ I, c(ai) = cc(ai) ≤ c
(∨

i∈I c(ai)
)
for

all i ∈ I by monotonicity and idempotency of c. Therefore if c
(∨

i∈I c(ai)
)
≤ c(b), then

c(ai) ≤ c(b) for all i ∈ I. Conversely, if c(ai) ≤ c(b) for all i ∈ I, then
∨

i∈I c(ai) ≤ c(b),
and hence c

(∨
i∈I c(ai)

)
≤ cc(b) = c(b) by monotonicity and idempotency of c. The proof

for the meet
∧c is dual.

The second part of the proposition follows from the previous proposition.
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Chapter 3

Basic Pairs

A basic pair is a triple (X,�, S) where X and S are sets and �⊆ X × S is a relation. In
this chapter, we first see that this simple structure allows us to define the notion of open
and closed subsets both on X and S. Then we introduce the notion of map between basic
pairs, a relation pair, and define the notion of equality between these maps. Finally, we
introduce the category BP which consists of basic pairs and relation pairs between them.
This chapter is largely based on Chapter 2 of [21].

3.1 Basic Pairs

Definition 3.1.1. A basic pair is a triple (X,�, S) where X and S are sets and �⊆ X×S
is a relation. If � is the relation associated with a basic pair (X,�, S), we define

� = �, � = �−∗, ext = �−, rest = �∗,

int = ext�, A = � ext,

cl = rest�, J = � rest

for the operators �,�−∗: Pow(X) → Pow(S) and �−,�∗: Pow(S) → Pow(X).

Remark 3.1.2. By Corollary 2.4.5, int and J are interior operators on Pow(X) and Pow(S)
respectively, and cl and A are closure operators on Pow(X) and Pow(S) respectively. By
the triangular identities, we have the following equations.

� ext� = A� = � int = �, ext� ext = int� = extA = ext,

� rest� = J � = � cl = �, rest� rest = cl� = restJ = rest .

Notations. In the following, letters X ,Y , . . . denote basic pairs. If X denotes a basic pair,
then X, S and � denote the underlying sets and the relation of X , i.e. unless otherwise
noted, we assume that X = (X,�, S). Any subscripts, primes etc. added to the name of
a basic pair matches those of underlying sets and the relation, and any other operators
defined in terms of the relation. For example, X1 denotes a basic pair (X1,�1, S1), and �1

denotes the operator determined by �1. We shall omit subscripts of operators associated
with basic pairs, ext etc., whenever the context makes clear.
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Definition 3.1.3. Let (X,�, S) be a basic pair. A subset D ∈ Pow(X) is

• concrete open iff intD = D,

• concrete closed iff clD = D.

Dually, a subset U ∈ Pow(S) is

• formal open iff AU = U ,

• formal closed iff J U = U .

Notations. Since int and cl are an interior and closure operators on Pow(X) respectively,
and A and J are a closure and interior operators on Pow(S) respectively, we shall write

Red(int) = {intD ∈ Pow(X) | D ∈ Pow(X)}
Sat(cl) = {clD ∈ Pow(X) | D ∈ Pow(X)}
Sat(A) = {AU ∈ Pow(S) | U ∈ Pow(S)}
Red(J ) = {J U ∈ Pow(S) | U ∈ Pow(S)}

for the classes of concrete (formal) open (closed) subsets of Pow(X) and Pow(S) (See
Definition 2.4.13).

Proposition 3.1.4. Let (X,�, S) be a basic pair. For any D ∈ Pow(X) and U ∈ Pow(S)

1. D is concrete open iff (∃V ∈ Pow(S))D = extV ,

2. D is concrete closed iff (∃V ∈ Pow(S))D = restV ,

3. U is formal open iff (∃D ∈ Pow(X))U = �D,

4. U is formal closed iff (∃D ∈ Pow(X))U = �D.

Proof. We prove only (1). The proofs for the others are similar.
Let D ∈ Pow(X). If D is concrete open, then

D = intD = ext�D.

Conversely, if D = extU for some U ∈ Pow(S), then

intD = int extU = extU = D.

Proposition 3.1.5. Let (X,�, S) be a basic pair. Then the operators ext : Pow(S) →
Pow(X) and � : Pow(X) → Pow(S) restrict to isomorphisms between complete lattices
Sat(A) and Red(int). Dually, the operators rest : Pow(S) → Pow(X) and � : Pow(X) →
Pow(S) restrict to isomorphisms between complete lattices Red(J ) and Sat(cl).
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Proof. Since ext��, by Corollary 2.3.82, ext and � restrict to bijections between Sat(A)
and Red(int). Dually, since �� rest, � and rest restrict to bijections between Red(J ) and
Sat(cl).
It remains to be shown that those operators preserve joins and meets. We just show

that ext preserves joins and meets of Sat(A). The proofs for the other operators are
similar. Recall that, by Proposition 2.4.16, joins and meets of Sat(A) and Red(int) are
given by ∨

i∈I AUi = A
⋃

i∈I Ui,
∧

i∈I AUi =
⋂

i∈I AUi,∨
j∈J intDj =

⋃
j∈J intDj,

∧
j∈J intDj = int

⋂
j∈J Dj

for any set-indexed families (Ui)i∈I and (Dj)j∈J of subsets of S and X respectively. To
see that ext preserves joins, let (Ui)i∈I be a set-indexed family of subsets of S. Then we
have

ext
∨

i∈I AUi = extA
⋃

i∈I Ui

= ext
⋃

i∈I Ui

=
⋃

i∈I extUi

=
∨

i∈I extUi

=
∨

i∈I extAUi.

For the meets in Sat(A), we have

ext
∧

i∈I AUi = ext
⋂

i∈I � extUi

= ext�
⋂

i∈I extUi

= int
⋂

i∈I extUi

=
∧

i∈I extUi

=
∧

i∈I extAUi.

3.2 Relation Pairs

In this section, we introduce the notion of a relation pair between basic pairs and define
the notion of equality on them.

Definition 3.2.1. Let X1 and X2 be basic pairs. A relation pair from X1 to X2 is a pair
(r, s) of relations r ⊆ X1 ×X2 and s ⊆ S1 × S2 such that

�2 ◦r = s◦ �1,

where ◦ is the composition of relations. That is, (r, s) is a pair of relations which makes
the following diagram commute.

X1

r

��

�1 �� S1

s

��
X2

�2 �� S2
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We write (r, s) : X1 → X2 to assert that the pair (r, s) is a relation pair between basic
pairs X1 and X2.

By Lemma 2.4.6 and Proposition 2.4.7, we have several equivalent characterizations for
relation pairs.

Proposition 3.2.2. For any basic pairs X1 and X2, the following are equivalent:

1. (r, s) : X1 → X2 is a relation pair,

2. rx � ext b ⇐⇒ �x � s−b for all x ∈ X1 and b ∈ S2,

3. � rx = s�x for all x ∈ X1,

4. r− ext b = ext s−b for all b ∈ S2,

5. r∗ rest b = rest s∗b for all U ∈ Pow(S2),

6. �r−∗D = s−∗�D for all D ∈ Pow(X1).

Proof. (1 ↔ 2) In general, for any relations R : X → Y and S : Y → Z we have

x (S ◦R) z ⇐⇒ Rx � S−z

for all x ∈ X and z ∈ Z. Thus, we have

(r, s) is a relation pair ⇐⇒ �2 ◦r = s◦ �1

⇐⇒ x (�2 ◦r) b↔ x (s◦ �1) b for all x ∈ X1 and b ∈ S2

⇐⇒ rx � ext b↔ � x � s−b for all x ∈ X1 and b ∈ S2.

The equivalence between (1), (3), (4), (5) and (6) follows from Lemma 2.4.6 and Propo-
sition 2.4.7.

Remark 3.2.3.
By Proposition 3.1.4, it follows from (3), (4), (5) and (6) that

• s preserves formal closed subsets, i.e. s is formal closed.

• r− preserves concrete open subsets, i.e. r− is concrete open.

• r∗ preserves concrete closed subsets, i.e. r∗ is concrete closed.

• s−∗ preserves formal open subsets, i.e. s−∗ is formal open.

At this point, we introduce the notion of continuous relation between basic pairs, which
is a natural generalization of the notion of continuous function between topological spaces.
We will see that a continuous relation gives rise to a relation pairs, and conversely the
relation r of any relation pair (r, s) : X → Y is a continuous relation.
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Definition 3.2.4. Let X1 and X2 be basic pairs. A relation r ⊆ X1 ×X2 is continuous if

r− ext b = int(r− ext b)

for all b ∈ S2.

Proposition 3.2.5. Let X1 and X2 be basic pairs and let r ⊆ X1 × X2 be a relation.
Then, the following are equivalent.

1. r is continuous.

2. There is a relation s ⊆ S1 × S2 such that

rx � ext b ⇐⇒ �x � s−b

for all x ∈ X1 and b ∈ S2, i.e. (r, s) is a relation pair from X1 to X2.

Proof. Assume 1. Define a relation s ⊆ S1 × S2 by

a s b ⇐⇒ a ∈ �r− ext b

for all a ∈ S1 and b ∈ S2. Then

r is continuous ⇐⇒ (∀b ∈ S2) (∀x ∈ X1)x ∈ r− ext b↔ x ∈ int r− ext b

⇐⇒ (∀b ∈ S2) (∀x ∈ X1) rx � ext b↔ �x � �r− ext b

⇐⇒ (∀b ∈ S2) (∀x ∈ X1) rx � ext b↔ �x � s−b.

Conversely, if (r, s) : X1 → X2 is a relation pair, then r− is concrete open by Remark
3.2.3, and hence it is continuous.

Definition 3.2.6. Let X1 and X2 be basic pairs. Two relation pairs (r1, s1), (r2, s2) :
X1 → X2 are said to be equivalent (or equal), denoted (r1, s1) ∼ (r2, s2), if

�2 ◦r1 =�2 ◦r2.

Clearly, ∼ is an equivalence relation on the relation pairs from X1 to X2. We shall often
identify an equivalence class of relation pairs with its arbitrary representative.

There are many characterizations for equal relation pairs. We list some of them below.

Proposition 3.2.7. For any relation pairs (r1, s1), (r2, s2) : X1 → X2, the following are
equivalent.

1. (r1, s1) ∼ (r2, s2), 2. All square commutes,

X1

r1
��

r2
��

�1 �� S1

s1
��

s2
��

X2
�2 �� S2
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3. �2 r1 = �2 r2,

4. s1�1 = s2�1,

5. r−1 ext2 = r−2 ext2,

6. ext1 s
−
1 = ext1 s

−
2 ,

7. �2r
−∗
1 = �2r

−∗
2 ,

8. s−∗
1 �1 = s−∗

2 �1,

9. r∗1 rest2 = r∗2 rest2,

10. rest1 s
∗
1 = rest1 s

∗
2.

Proof. By the definitions of relation pairs, equal relation pairs, Lemma 2.4.6 and Propo-
sition 2.4.7.

By the triangular identities, we have still more characterizations of equal relation pairs.

Proposition 3.2.8. For any relation pairs (r1, s1), (r2, s2) : X1 → X2, the following are
equivalent.

1. (r1, s1) ∼ (r2, s2),

2. cl2 r1D = cl2 r2D for all D ∈
Pow(X1),

3. cl2 r1x = cl2 r2x for all x ∈ X1,

4. s1 J 1 = s2 J 1,

5. r−1 int2 = r−2 int2,

6. A1 s
−
1 U = A1 s

−
2 U for all U ∈

Pow(S2),

7. A1 s
−
1 a = A1 s

−
2 a for all a ∈ S2,

8. int2 r
−∗
1 = int2 r

−∗
2 ,

9. s−∗
1 A1 = s−∗

2 A1,

10. r∗1 cl2 = r∗2 cl2,

11. J 1 s
∗
1 = J 1 s

∗
2.

Proof. By the previous proposition, the triangular identities and Remark 2.4.2.

3.3 The category of basic pairs (BP)

Basic pairs and relation pairs between them naturally form a category.

Proposition 3.3.1. Basic pairs and the equivalence classes of relation pairs between them
form a category BP.

Proof. The composition of relation pairs (r1, s1) : X1 → X2 and (r2, s2) : X2 → X3 is
defined by

(r2, s2) ◦ (r1, s1) = (r2 ◦ r1, s2 ◦ s1).
The identity morphism on a basic pair X is (idX , idS), where idX and idS are diagonal
relations on X and S.
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For any relation pairs (r1, s1) : X1 → X2 and (r2, s2) : X2 → X3, the two squares in the
diagram below commute, and hence so does the outer rectangle.

X1

r1
��

�1 �� S1

s1
��

X2

r2
��

�2 �� S2

s2
��

X3
�3 �� S3

Therefore, the composite (r2◦r1, s2◦s1) is a relation pair from X1 to X3. The composition
respects the equivalence of relation pairs. In fact, if (r1, s1) and (r′1, s

′
1) are equivalent

relation pairs from X1 to X2, and if (r2, s2) and (r′2, s
′
2) are equivalent relation pairs from

X2 to X3, then

�3 ◦r2 ◦ r1 = �3 ◦r′2 ◦ r1
= s′2◦ �2 ◦r1
= s′2◦ �2 ◦r′1
= �3 ◦r′2 ◦ r′1.

Therefore (r1 ◦ r2, s1 ◦ s2),∼ (r′1 ◦ r′2, s′1 ◦ s′2). The composition is associative since the
composition of relations is associative. The identity law is obvious.

The following expresses, in a categorical term, the symmetry of basic pairs.

Proposition 3.3.2. The category of basic pair is isomorphic to its own dual, i.e.

BP∼=BPop.

Proof. The isomorphism (−)− : BP → BPop is defined by,

(X,�, S)− = (S,�−, X)

for each basic pair (X,�, S), and

(r, s)− = (s−, r−)

for each relation pair (r, s) : X1 → X2. Then (S,�−, X) is a basic pair. If (r, s) : X1 → X2

is a relation pair, then �2 ◦r = s◦ �1, which is equivalent to r−◦ �−
2 =�−

1 ◦s−. Thus
(r, s)− is a relation pair from X−

2 to X−
1 . Also, we have

(idX , idS)
− = (id−S , id

−
X) = (idS, idX)
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for the identity on X , and

((u, v) ◦ (r, s))− = ((u ◦ r), (v ◦ s))−

= ((v ◦ s)−, (u ◦ r)−)
= (s− ◦ v−, r− ◦ u−)
= (s−, r−) ◦ (v−, u−)
= (r, s)− ◦ (u, v)−

for any relation pairs X1
(r,s) �� X2

(u,v) �� X3 . Therefore (−)− is a contravariant functor
from BP to BP. Moreover, we have X−− = X for any basic pair X and (r, s)−− = (r, s)
for any relation pair (r, s). Therefore, (−)− is its own inverse, and hence BP∼=BPop.

Finally, we give sufficient conditions for two basic pairs to be isomorphic in BP.

Proposition 3.3.3. For any basic pairs X 1 and X 2 if

1. X1 = X2 and int1 = int2 or

2. S1 = S2 and J 1 = J 2,

then X 1
∼=X 2.

Proof. 1. Suppose that X = X1 = X2 and int1 = int2. Since

ext2 b = int2 ext2 b = int1 ext2 b

for all b ∈ S2, and similarly, ext1 a = int2 ext1 a for all a ∈ S1, idX is a continuous relation
from X 1 to X 2 and from X 2 to X 1. Hence, there exist relations s ⊆ S1×S2 and v ⊆ S2×S1

such that (idX , s) and (idX , v) are relation pairs. Trivially, they are mutual inverse. Thus
X 1

∼=X 2.
2. Since we have BP∼=BPop, if S1 = S2 and J 1 = J 2, then X−

1
∼=X−

2 by 1. Therefore
X 1

∼=X 2 by Proposition 3.3.2.
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Chapter 4

Concrete Spaces

The notion of concrete space is obtained from that of basic pair by adding the conditions
that the set S of a basic pair X forms a base for a topology. Thus a concrete space
is just a topological space. However, a map between concrete spaces is a relation pair
which satisfies certain conditions which, in a sense, preserves the structure of a concrete
space. So the notion of concrete space differs from that of topological space. In this
chapter, we introduce the notion of concrete space, convergent subset and ideal point
of a basic pair and convergent relation pair between basic pairs. We see that concrete
spaces and convergent relation pairs form a coreflective subcategory CSpa of BP. We
also introduce the notions of weak separation axiom T0 and sobriety of basic pairs, and
consider relations between BP and the subcategory of T0 basic pairs and between the
category of sober concrete spaces and that of sober topological spaces. In particular, we
see that the notion of concrete space and topological space coincide when we restrict our
attention to sober concrete spaces and convergent relation pairs.
Except for Section 4.6, this chapter is largely based on Chapter 3 and Chapter 4 of [21].

4.1 Concrete spaces

Definition 4.1.1. A concrete space is a basic pair X = (X,�, S) which satisfies the
following two conditions:

(B1) ext a ∩ ext b = ext(a ↓ b),

(B2) X = extS

for all a, b ∈ S where
a ↓ b = {c ∈ S | ext c ⊆ ext a ∩ ext b}.

Note that in (B1) and (B2), the inclusions from right to left always hold.

The notion of a concrete space is exactly that of a small ct-space by Aczel [4].

Definition 4.1.2. For any basic pair X , define a preorder ≤ on S by

a ≤ b ⇐⇒ ext a ⊆ ext b
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for all a, b ∈ S. For any U, V ∈ Pow(S), define sets
⏐�U and U ↓ V by⏐�U = {a ∈ S | (∃c ∈ U) a ≤ c} ,

U
⏐�V =

⏐�U ∩
⏐�V.

We often write
⏐� a for

⏐�{a}. Note that a
⏐� b = ⏐� a ∩ ⏐� b and ⏐� a = A a.

Lemma 4.1.3. For any basic pairs X ,

1.
⏐�(⋃

i∈I Ui

)
=
⋃

i∈I
⏐�Ui,

2.
(⋃

i∈I Ui

)
↓W =

⋃
i∈I (Ui ↓W )

for any W ∈ Pow(S) and set-indexed family (Ui)i∈I of Pow(S).

Proof. Let W ∈ Pow(S) and let (Ui)i∈I be a set-indexed family of Pow(S).
1. For any a ∈ S, we have

a ∈
⏐�(⋃

i∈I Ui

)
⇐⇒ (∃b ∈ S) (∃i ∈ I) b ∈ Ui & a ≤ b

⇐⇒ (∃i ∈ I) a ∈
⏐�Ui

⇐⇒ a ∈
⋃

i∈I
⏐�Ui.

2. By 1 and the definition of ↓, we have(⋃
i∈I Ui

)
↓ W =

⏐�(⋃
i∈I Ui

)
∩
⏐�W

=
(⋃

i∈I
⏐�Ui

)
∩
⏐�W

=
⋃

i∈I
(⏐�Ui ∩

⏐�W )
=
⋃

i∈I (Ui ↓ W ) .

We list some of the equivalents of the condition (B1).

Proposition 4.1.4. For any basic pair X , the following are equivalent.

1. ext a ∩ ext b = ext (a ↓ b) for all a, b ∈ S,

2. extU ∩ extV = ext (U ↓ V ) for all U, V ∈ Pow(S),

3. ext a ∩ ext b is open for all a, b ∈ S,

4. extU ∩ extV is open for all U, V ∈ Pow(S),

5. intD ∩ intE = int (D ∩ E) for all D,E ∈ Pow(X).
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Proof. (1 → 2) For any U, V ∈ Pow(S), we have

extU ∩ extV =
⋃

a∈U ext a ∩
⋃

b∈V ext b

=
⋃

a∈U,b∈V (ext a ∩ ext b)

=
⋃

a∈U,b∈V ext (a ↓ b)
= ext

⋃
a∈U,b∈V (a ↓ b)

= ext (U ↓ V ) .

(2 → 1) 1 is just a restriction of (2) to the singletons of S.
(1 → 3) For any a, b ∈ S, we have ext a ∩ ext b = ext (a ↓ b) = int ext (a ↓ b). Thus
ext a ∩ ext b is open.
(3 → 4) For any U, V ∈ Pow(S), we have

extU ∩ extV =
⋃

a∈U ext a ∩
⋃

b∈V ext b =
⋃

a∈U,b∈V (ext a ∩ ext b) .

Since a union of opens is open, extU ∩ extV is open.
(4 → 5) Since int = ext�, we have

intD ∩ intE = int (intD ∩ intE) = int (D ∩ E)

for any D,E ∈ Pow(X) by Proposition 2.4.15.
(5 → 1): Since � preserves ∩, we have

ext a ∩ ext b = int ext a ∩ int ext b

= int (ext a ∩ ext b)

= ext (� ext a ∩� ext b)

= ext (A a ∩ A b)

= ext (a ↓ b)

for any a, b ∈ S.

By Proposition 4.1.4.5, (B1) is equivalent to saying that the class of open subsets,
namely Red(int), is closed under the finite intersections. Also, (B2) says that X is in
Red(int). Moreover, since intersections distribute over unions, meets distribute over all
joins in Red(int). Thus, in a concrete space the class of open sets Red(int) forms a frame.

4.2 Convergent subsets, ideal points

The notions of convergent subset and ideal point of a basic pair are obtained by abstracting
the notion of point of a space to that of subset of a space as follows: every point x ∈ X
of a concrete space X must satisfy x ∈ ext a& x ∈ ext b → x ∈ ext(a ↓ b) and x ∈ extS,
that is {x} � ext a& {x} � ext b → {x} � ext(a ↓ b) and {x} � extS. Moreover, this is
equivalent to a, b ∈ � x → �x � (a ↓ b) and � x � S. These observation motivates the
following definitions.
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Definition 4.2.1. Let X be a basic pair. A subset D ∈ Pow(X) is called a convergent
subset of X if

(D1) D � ext a&D � ext b→ D � (a ↓ b),

(D2) D � extS

for all a, b ∈ S. The class of convergent subsets of X will be denoted by Conv(X ).
A subset α ∈ Pow(S) is called an ideal point of X if

(P1) α � S,

(P2) a, b ∈ α→ α � (a ↓ b),

(P3) α = J α

for all a, b ∈ S. The class of ideal points of X will be denoted by Pt(X ). Note that, by
the condition (P3), every ideal point is formal closed.

Remark 4.2.2. Since clD � ext a ⇐⇒ D � ext a, it follows that

D ∈ Conv(X ) ⇐⇒ clD ∈ Conv(X ).

The following proposition summarizes the remark preceding the above definition.

Proposition 4.2.3. For any basic pair X , the following are equivalent.

1. X is a concrete space.

2. {x} ∈ Conv(X ) for all x ∈ X.

3. �x ∈ Pt(X ) for all x ∈ X.

Proposition 4.2.4. For any basic pair X , the bijections � : Sat(cl) → Red(J ) and
rest : Red(J ) → Sat(cl) restrict to bijections between the classes of closed convergent
subsets and Pt(X ).

Proof. For any D ∈ Conv(X ), since D � ext a ↔ a ∈ �D for all a ∈ S and �D ∈
Red(J ), we have �D ∈ Pt(X ). Conversely, for any α ∈ Pt(X ), since α � S ↔ restα �
extS and a ∈ α ↔ ext a � restα by (P3), we have restα ∈ Conv(X ). The restrictions
of � and rest to the class of closed convergent subsets and Pt(X ) are bijective: if D ∈
Conv(X ) is closed, then rest�D = clD = D, and conversely, � restα = J α = α for any
α ∈ Pt(X ).

A closed convergent subset (or equivalently an ideal point) of a concrete space X can
be characterized by a filter on Red(int) fixed by a closed subset D of the set X .

Definition 4.2.5. Let X = (X,�, S) be a concrete space. A filter on Red(int) is a
subclass F of Red(int) such that
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(F1) ∃D ∈ F ,

(F2) D ∈ F &D ⊆ E =⇒ E ∈ F ,

(F3) D,E ∈ F =⇒ D ∩ E ∈ F

for all D,E ∈ Red(int). A filter F on Red(int) is fixed by a subset D ⊆ X if

E ∈ F ⇐⇒ D � E

for all E ∈ Red(int).

Note that if F is a filter on Red(int) fixed by a set D ∈ Pow(X), then F can be written
as F = {extU | extU � D,U ∈ Pow(S)}.

Lemma 4.2.6. If a filter F on Red(int) is fixed by subsets D1 and D2 of X, then clD1 =
clD2.

Proof. Let D1 and D2 be subsets of X fixing F . Then, since ext a ∈ Red(int) for all a ∈ S,
we have D1 � ext a ⇐⇒ D2 � ext a for all a ∈ S, i.e. a ∈ �D1 ⇐⇒ a ∈ �D2 for all
a ∈ S; hence �D1 = �D2. Thus clD1 = clD2.

Proposition 4.2.7. In every concrete space X , there is bijective correspondence between
any two of the following:

1. a filter F on Red(int) fixed by D ∈ Sat(cl),

2. a closed convergent subset of X,

3. an ideal point of X .

Proof. By Proposition 4.2.4, it suffices to show the correspondence between (1) and (2).
First, it is straightforward to see that D ∈ Sat(cl) is a closed subset of X fixing a
filter on Red(int) iff D satisfies the conditions (D1) and (D2) of convergent subset of
X. Moreover, the mapping D �→ {extU | extU � D,U ∈ Pow(S)} which assigns to every
closed convergent subset D a filter on Red(int) fixed by D is injective by the above lemma,
and hence it is bijective.

4.3 Convergent relation pairs

A convergent relation pair is a relation pair which satisfies certain conditions. Of particular
interest is a convergent relation pair between concrete spaces, since it can be characterized
by the preservation of the convergent subsets of its domain, or by the preservation of the
frame structure of the concrete open subsets of its codomain.

Definition 4.3.1. A relation pair (r, s) : X 1 → X 2 between basic pairs is convergent if

(C1) r− ext (a ↓ b) = ext (s−a ↓ s−b),
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(C2) r− extS2 = extS1

for all a, b ∈ S2.

Remark 4.3.2. In (C2), the inclusion from left to right always holds, since

r− extS2 = ext s−S2 ⊆ extS1.

Moreover, assuming (B1), the inclusion from left to right in (C1) holds: for since ext(a ↓
b) ⊆ ext a, we have r− ext (a ↓ b) ⊆ r− ext a = ext s−a, and similarly r− ext (a ↓ b) ⊆
ext s−b. Hence, we have

r− ext (a ↓ b) ⊆ ext s−a ∩ ext s−b = ext
(
s−a ↓ s−b

)
by (B1). Since any relation pair (r, s) satisfies �2 ◦r = s◦ �1, the conditions (C1) and
(C2) are equivalent to the following:

ext s− (a ↓ b) = ext
(
s−a ↓ s−b

)
,

ext s−S2 = extS1.

Moreover, (C1) and the first of the above are equivalent to their formulation with subsets;
for example (C1) is equivalent to

r− ext (U ↓ V ) = ext
(
s−U ↓ s−V

)
,

for, assuming (C1), we have

r− ext (U ↓ V ) = r− ext
⋃

a∈U,b∈V (a ↓ b)
=
⋃

a∈U,b∈V r
− ext (a ↓ b)

=
⋃

a∈U,b∈V ext (s−a ↓ s−b)
= ext

⋃
a∈U,b∈V (s−a ↓ s−b)

= ext
(⋃

a∈U s
−b ↓

⋃
a∈V s

−b
)

= ext
(
s−U ↓ s−V

)
by Lemma 4.1.3. The converse is trivial.

Proposition 4.3.3. For any convergent relation pair (r, s) : X 1 → X 2, rD ∈ Conv(X2)
for all D ∈ Conv(X1).

Proof. Let (r, s) : X 1 → X 2 be a convergent relation pair and let D ∈ Conv(X1). Then
we have

rD � ext a& rD � ext b ⇐⇒ D � r− ext a&D � r− ext b

⇐⇒ D � ext s−a&D � ext s−b

⇐⇒ D � ext
(
s−a ↓ s−b

)
by (D1)

⇐⇒ D � r− ext (a ↓ b) by (C1)

⇐⇒ rD � ext (a ↓ b)
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for any a, b ∈ S2, and hence rD satisfies (D1). Since D satisfies (D2) and we have

D � extS1 ⇐⇒ D � r− extS2 by (C2)

⇐⇒ rD � extS2,

rD satisfies (D2). Thus rD ∈ Conv(X2).

Proposition 4.3.4. For any relation pair (r, s) : X 1 → X 2 between basic pairs, r
preserves convergent subsets iff s preserves ideal points, i.e. rD ∈ Conv(X2) for all
D ∈ Conv(X1) iff sα ∈ Pt(X2) for all α ∈ Pt(X1).

Proof. Let (r, s) : X 1 → X 2 be a relation pair. Suppose that r preserves convergent
subsets, and let α ∈ Pt(X1). Then, by Proposition 4.2.4, we have sα = sJ α =
s� restα = � r restα ∈ Pt(X2). Conversely, suppose that s preserves ideal points, and let
D ∈ Conv(X1). Then cl rD = rest� rD = rest s�D ∈ Conv(X2). Thus, rD ∈ Conv(X2)
by Remark 4.2.2.

For a relation pair between concrete spaces, the converse of Proposition 4.3.3 holds as
we see below. Thus the preservation of convergent subsets (or ideal points) characterizes
convergent relation pairs. In the following, we list several equivalent characterizations for
convergent relation pairs between concrete spaces.

Proposition 4.3.5. For any relation pairs (r, s) : X 1 → X 2 between concrete spaces, the
following are equivalent.

1. (r, s) is convergent, i.e. it satisfies (C1) and (C2).

2. (r, s) satisfies

(C1’) rx � ext a& rx � ext b→ rx � ext (a ↓ b),
(C2’) rx � extS2

for all x ∈ X1 and a, b ∈ S2.

3. (r, s) satisfies

(E1) r− (extU ∩ extV ) = r− extU ∩ r− extV ,

(E2) r−X2 = X1

for all U, V ∈ Pow(S2).

4. D ∈ Conv(X1) implies rD ∈ Conv(X2).

5. α ∈ Pt(X1) implies sα ∈ Pt(X2).
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Proof. (1) → (4) and (4) ↔ (5) follows from Proposition 4.3.3 and Proposition 4.3.4
respectively. Since all singletons are convergent in a concrete space, we have (4) → (2).
For (1) ↔ (2), since X 1 and X 2 are concrete spaces, we have

(C1’) ⇐⇒ r− ext a ∩ r− ext b = r− ext (a ↓ b)
⇐⇒ ext s−a ∩ ext s−b = ext s− (a ↓ b)
⇐⇒ ext

(
s−a ↓ s−b

)
= ext s− (a ↓ b) by (B1)

⇐⇒ (C1)

for all a, b ∈ S2, and also

(C2’) ⇐⇒ X1 = r− extS2

⇐⇒ extS1 = ext s−S2 by (B2)

⇐⇒ (C2).

Similarly, for (2 ↔ 3), we have

(C1’) ⇐⇒ r− extU ∩ r− extV = r− ext (U ↓ V )

⇐⇒ r− extU ∩ r− extV = r− (extU ∩ extV ) by (B1)

⇐⇒ (E1)

for all U, V ∈ Pow(S2), and also

(C2’) ⇐⇒ X1 = r− extS2

⇐⇒ X1 = r−X2 by (B2)

⇐⇒ (E2).

Remark 4.3.6. (E1) and (E2) say that r− preserves finite intersections and the top of the
frame Red(int). Also it is easy to see that r− preserves arbitrary set-indexed joins of
Red(int). Hence, a relation pair (r, s) : X 1 → X 2 between concrete spaces is convergent
iff r− is a frame homomorphism from Red(int2) to Red(int1). Note that any relation
pair (f, s) : X 1 → X 2 between concrete spaces where f is (the graph of) a function is
necessarily convergent as f− always preserves finite intersections and the top of Red(int2).

4.4 The category of concrete space (CSpa)

Concrete spaces and convergent relations pairs naturally form a category.

Proposition 4.4.1. Concrete spaces and (the equivalence classes of) convergent relation
pairs between them form a subcategory CSpa of category BP.
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Proof. We must show that every equivalence class of convergent relation pairs in CSpa
is an equivalence class of relation pairs in BP. To see this, it suffices to show that for
any equivalent relation pairs (r, s), (u, r) : X1 → X2 between concrete spaces, if (r, s) is
convergent, so is (u, v). But since (r, s) ∼ (u, v) iff r− ext2 = u− ext2, the conclusion
follows from Proposition 4.3.5 (2).
It remains to be shown that the composition of convergent relation pairs is convergent

and identity morphisms are convergent. The latter is trivial. To see the former, let
(r, s) : X 1 → X 2 and (u, v) : X 2 → X 3 be convergent relation pairs. Then we have

(u ◦ r)− ext (a ↓ b) = r−u− ext (a ↓ b)
= r− ext

(
v−a ↓ v−b

)
= ext

(
s−v−a ↓ s−v−b

)
= ext

(
(v ◦ s)−a ↓ (v ◦ s)−b

)
for any a, b ∈ S3, and

(u ◦ r)− extS3 = r−u− extS3

= r− extS2

= extS1.

Thus, the composite (u ◦ r, v ◦ s) is convergent.

The following suggests that in CSpa, an appropriate notion of point of a concrete space
X is not an element of X but an ideal point.

Proposition 4.4.2. In CSpa, there is a bijective correspondence

Pt(X ) ∼= CSpa(1,X )

for any concrete space X , where 1 is a concrete space such that 1 =
(
{∗}, id{∗}, {∗}

)
.

Proof. Let X be a concrete space and let (r, s) : 1 → X be a convergent relation pair.
Since r preserves convergent subsets and r is completely determined by r{∗}, we can
define a mapping θ : CSpa(1,X ) → Pt(X ) by θ(r) = � r{∗}. Obviously, θ respects the
equality of relation pairs. It is also injective. Conversely, for any α ∈ Pt(X ), defined a
relation rα ⊆ {∗} × X by rα = {∗} × restα. Then rα is trivially continuous since any
subset of {∗} is open in 1. Therefore, there is a relation s ⊆ {∗} × S such that (r, s) is a
relation pair from 1 to X . Then (r, s) is convergent; since r is clearly a total relation, it
satisfies (C2). Moreover, we have

∗ ∈ r−α ext a ∩ r−α ext b ⇐⇒ a, b ∈ � rα{∗}
⇐⇒ a, b ∈ α

⇐⇒ α � (a ↓ b)
⇐⇒ ∗ ∈ r−α ext (a ↓ b)

for any a, b ∈ S, so (r, s) satisfies (C1). Since α is formal closed, we have θ(rα) =
� restα = α. Therefore the mapping θ is surjective, and hence it is bijective.
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4.5 T0 spaces and Sobriety

We introduce the notion of weak separation axiom T0 and sobriety of basic pairs and
concrete spaces, and consider a relation between BP and the subcategory of T0 basic
pairs and a relation between the category of sober concrete spaces and that of sober
topological spaces.

4.5.1 T0 basic pairs

Definition 4.5.1. A basic pair X is T0 if

� x = � y ⇒ x = y

for all x, y ∈ X.

Let BP0 be a full subcategory BP whose objects are T0 basic pairs.

Proposition 4.5.2. BP and BP0 are equivalent.

Proof. For any basic pair X , define a relation ≡0 on X by

x ≡0 x
′ ⇐⇒ �x = �x′

for all x, x′ ∈ X. Clearly, ≡0 is an equivalence relation on X. For any basic pair X , define
a basic pair X̃ = (X̃, �̃, S) by

X̃ = X/ ≡0,

[x] �̃a ⇐⇒ a ∈ �x

for any [x] ∈ X̃ and a ∈ S. Note that �̃ is well-defined by the definition of ≡0. Evidently,

X̃ is T0. Since we have

a ∈ J U ⇐⇒ ext a � restU

⇐⇒ (∃x ∈ X) a ∈ �x ⊆ U

⇐⇒ (∃x ∈ X) a ∈ �̃ [x] ⊆ U

⇐⇒ ẽxta � r̃estU

⇐⇒ a ∈ J̃U

for any a ∈ S and U ∈ Pow(S), it follows that J = J̃ . Thus, by Proposition 3.3.3,

there exists a relation r ⊆ X × X̃ such that (r, idS) : X → X̃ is an isomorphism. Write

ηX = (r, idS). Then we have a family (〈X̃ , ηX 〉)X∈Ob(BP) such that X̃ ∈ Ob(BP0) and

ηX : X ∼= X̃ . Moreover, since BP0 is full in BP, the insertion functor I : BP0 → BP
is full and faithful. Therefore, by Proposition 2.3.73 (in the dual formulation), I is an
equivalence between BP0 and BP.
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4.5.2 Sober concrete spaces

Definition 4.5.3. Concrete space X is sober if for any D ∈ Conv(X ) there is a unique
x ∈ X such that clD = cl{x}.

Proposition 4.5.4. A concrete space X is sober iff for any α ∈ Pt(X ) there is a unique
x ∈ X such that α = �{x}.

Proof. Note that clD = cl{x} ⇐⇒ �D = �{x} in Definition 4.5.3; the equivalence
follows from Proposition 4.2.4.

Note that a sober space characterized by the condition of the above proposition is called
a weakly sober space in [5].
Let CSpas be the full subcategory of CSpa whose objects are sober concrete spaces.

Let Top be the category whose objects are concrete spaces and whose morphisms are
continuous functions between concrete spaces, where a function f : X1 → X2 between
concrete spaces X 1 and X 2 is continuous if

(∀x ∈ X) (∀b ∈ S2) f(y) ∈ ext b→ (∃a ∈ S1)
[
x ∈ ext a& ext a ⊆ f− ext b

]
i.e. if f is a continuous relation from X 1 to X 2. Let Tops be a full subcategory of Top
whose objects are sober concrete spaces.

Proposition 4.5.5. Tops and CSpas are isomorphic.

We first prove the following lemma.

Lemma 4.5.6. A concrete space X is sober if and only if for any concrete space Y =
(Y,�Y , T ) and convergent relation pair (r, s) : Y → X , there is a unique function f : Y →
X such that (f, s) ∼ (r, s).

Proof. Let X be a concrete space, and suppose that X is sober. Let Y be a concrete space
and (r, s) : Y → X be a convergent relation pair. Note that since (r, s) is convergent, we
have s�{y} ∈ Pt(X ) for each y ∈ Y . Since X is sober, there exists a unique x ∈ X such
that �{x} = s�{y}. Define a function f : Y → X by

f(y) = unique x ∈ X such that �{x} = s�{y}

for each y ∈ Y . Then, we have

� f(y) = s�{y} = � r{y}

for any y ∈ Y . Therefore (f, s) ∼ (r, s). Given any function g : Y → X such that
(g, s) ∼ (r, s), then � g(y) = s�{y} for all y ∈ Y , and hence g(y) = f(y) for all y ∈ Y
by sobriety of X . Therefore f = g.
Conversely, let α ∈ Pt(X ). By Proposition 4.4.2, there is a unique convergent relation

pair (r, s) : 1 → X such that α = � r{∗}. Thus there is a unique function f : {∗} → X
such that � f(∗) = � r{∗}. Suppose that there is x ∈ X such that �x = α. Then
g : ∗ �→ x is a function g : {∗} → X such that (g, s) ∼ (r, s), so we must have x = g(∗) =
f(∗). Therefore X is sober.
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Proof of Proposition 4.5.5. Define a functor F : Tops → CSpas by

F (X ) = X

for each concrete space X , and

F (f) = (f, s)

for each continuous function f : X 1 → X 2, where in (f, s), f is the graph of function f
and s ⊆ S1 × S2 is a relation defined by

a s b ⇐⇒ ext a ⊆ f− ext b

for all a ∈ S1 and b ∈ S2. Then (f, s) is a relation pair by Proposition 3.2.5, and it
is also convergent by Remark 4.3.6. Thus (f, s) : X 1 → X 2 is a morphism in CSpas.
That F preserves the composition and the identity is obvious from the definition of the
composition and identity of CSpa.
Conversely, define a functor G : CSpas → Tops by

G(X ) = X

for each concrete space X and

G(r, s) = unique g : X1 → X2 such that (g, s) ∼ (r, s)

for each convergent relation pair (r, s) : X 1 → X 2. Note that such g exists by the above
lemma. Then G preserves compositions of morphisms. To see this, let (r, s) : X 1 → X 2

and (u, v) : X 2 → X 3 be morphisms of CSpas, and let f = G(r, s) and g = G(u, v). Since
the composition respects the equality of relation pairs, we have (g ◦f, v ◦s) = (u◦ r, v ◦s).
Then, have G((u, v) ◦ (r, s)) = G(u ◦ r, v ◦ s) = g ◦ f = G(u, v) ◦ G(r, s). Since diagonal
relations on a set are identity functions, G preserves identities. Now, the object part of F
and G are trivially bijective. By the definition of F and G, we have GF (f) = f for any
continuous function f . Also, we have FG(r, s) ∼ (r, s) for any convergent relation pair
(r, s), i.e. GF (r, s) = (r, s) as a morphism in CSpas. Therefore, F and G are mutual
inverses. Thus Tops

∼=CSpas.

4.6 Relation between BP and CSpa

We show that CSpa is a coreflective subcategory of BP; see Definition 2.3.75 for the
notion of coreflection.

Theorem 4.6.1. CSpa is coreflective in BP.
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Proof. Given a basic pair X , define a basic pair X by

X =
(
Fin(X),�,Fin(S)

)
,

where

D�A ⇐⇒ (∀a ∈ A)D � extX{a}

for each D ∈ Fin(X) and A ∈ Fin(S). We show that X a concrete space. To this end, let

A,B ∈ Fin(S) and D ∈ Fin(X). Since A ∪B ∈ {A}
⏐̄⏐�{B} for all A,B ∈ Fin(S), we have

D ∈ ext{A} ∩ ext{B} ⇐⇒ (∀a ∈ A ∪B)D � extX{a}
⇐⇒ D ∈ ext{A ∪ B}

=⇒ D ∈ ext
(
{A}

⏐�{B}
)
.

So X satisfies (B1). Since D ∈ ext ∅ for all D ∈ Fin(X), X satisfies (B2).
Define a relation pair (p, q) : X → X by

Dpx ⇐⇒ x ∈ D,

A q a ⇐⇒ a ∈ A

for all D ∈ Fin(X), x ∈ X,A ∈ Fin(S) and a ∈ S. The pair (p, q) is indeed a relation
pair; for we have

D (�X ◦p) a ⇐⇒ D � extX{a}
⇐⇒ D� {a}
⇐⇒ (∃A ∈ Fin(S))D�A& a ∈ A

⇐⇒ D
(
q ◦ �

)
a

for any D ∈ Fin(X) and a ∈ S.
Now, given any relation pair (r, s) : Y → X where Y = (Y,�Y , T ) is a concrete space,

define a convergent relation pair (k, h) : Y → X by

y k D ⇐⇒ D ⊆ r{y},
b hA ⇐⇒ ext b ⊆

⋂
a∈A extY s

−{a}

for all D ∈ Fin(X), y ∈ Y,A ∈ Fin(S) and b ∈ T . We show that (k, h) is indeed
a convergent relation pair, and moreover, it is a unique convergent relation pair which
makes the following diagram commute.

Y
(r,s)

���
��

��
��

��
�

(k,h)

��

X (p,q)
�� X
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First, since Y satisfies (B1), we have

y (h◦ �Y)A

⇐⇒ y ∈
⋂

a∈A extY s
−{a}

⇐⇒ y ∈
⋂

a∈A r
− extX{a}

⇐⇒ (∀a ∈ A) r{y} � extX{a}
⇐⇒ (∃D ∈ Fin(X))D ⊆ r{y} & (∀a ∈ A)D � extX{a}
⇐⇒ (∃D ∈ Fin(X)) y k D & D�A
⇐⇒ y

(
� ◦ k

)
A

for any y ∈ Y and A ∈ Fin(S), and hence (k, h) is a relation pair. Since we have

y ∈ extY h
−{A} ∩ extY h

−{B}

⇐⇒ y ∈
(⋂

a∈A extY s
−{a}

)
∩
(⋂

b∈B extY s
−{b}

)
⇐⇒ y ∈

⋂
a∈A∪B extY s

−{a}
⇐⇒ y ∈ extY h

− {A ∪B}

=⇒ y ∈ extY h
−
(
A
⏐�B)

for any y ∈ Y and A,B ∈ Fin(S), (k, h) satisfies (C1). Since ∅ ∈ Fin(X), we have
∅ ⊆ r{y} for any y ∈ Y , i.e. y k ∅. So k is total, and thus (k, h) satisfies (C2). Since we
have

y (�X ◦p ◦ k) a
⇐⇒ (∃D ∈ Fin(X))D ⊆ r{y} & D � extX{a}
⇐⇒ r{y} � extX{a}
⇐⇒ y (�X ◦r) a

for any y ∈ Y and a ∈ S, the diagram commutes.
Given any convergent relation pair

(
k̄, h̄

)
: Y → X which makes the above diagram

commute, we have

y (h◦ �Y)A ⇐⇒ y ∈
⋂

a∈A extY s
−{a}

⇐⇒ y ∈
⋂

a∈A k̄
−p− extX{a}

⇐⇒ y ∈ k̄−
⋂

a∈A p
− extX{a}

⇐⇒ (∃D ∈ Fin(X)) y k̄ D& (∀a ∈ A)D � ext{a}
⇐⇒ (∃D ∈ Fin(X)) y k̄ D&D�A
⇐⇒ y

(
� ◦ k̄

)
A

for any y ∈ Y and A ∈ Fin(S). Hence
(
k̄, h̄

)
∼ (k, h), and so (k, h) is a unique morphism

in CSpa which make the diagram commute.
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Chapter 5

Categorical constructions in BP and
CSpa

In this section, we show that BP and CSpa are both complete and cocomplete by con-
structing (co)products and (co)equalisers in both categories. The constructions of co-
equalisers of BP and CSpa and products of CSpa is not straightforward. This has
already been observed in the construction of coequalisers for the category of set-presented
formal topologies [20]. The crucial point of the construction in both cases is in showing
that a certain class is set-generated in the sense of Definition 2.2.1. Instead of directly
constructing a generating subset, we exploit the notion of a generalized geometric theory
[6] (cf. Section 2.2) to show that the class has a generating subset.

5.1 Completeness and cocompleteness of BP

The main result of this section is the following.

Theorem 5.1.1. BP is cocomplete.

Note that by Proposition 3.3.2, we immediately obtain the following.

Corollary 5.1.2. BP is complete.

By Corollary 2.3.63, it suffices show that BP has arbitrary small coproducts and co-
equalisers. In the following two sections, we give construction of coproducts and coequalis-
ers in BP.

5.1.1 Coproducts

In this section, we show that BP has arbitrary small, i.e. set-sized, coproducts.

Proposition 5.1.3. BP has small coproducts.
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Proof. Given a set-indexed family (Xi)i∈I of basic pairs, define a basic pair
∐

i∈I Xi =
(
∑

i∈I Xi,�Σ,
∑

i∈I Si) by

(i, x) �Σ (j, a) ⇐⇒ i = j & x �i a

for all (i, x) ∈
∑

i∈I Xi and (j, a) ∈
∑

i∈I Si. Also, define a family of relation pairs(
(ri, si) : Xi →

∐
i∈I Xi

)
i∈I by

x ri (j, x
′) ⇐⇒ i = j & x = x′,

a si (j, a
′) ⇐⇒ i = j & a = a′

for all i ∈ I, x ∈ Xi, (j, x
′) ∈

∑
i∈I Xi, a ∈ Si and (j, a′) ∈

∑
i∈I Si. We claim that

∐
i∈I Xi

is a coproduct of (Xi)i∈I . Since we have

x(si◦ �i)(j, a) ⇐⇒ x �i a& i = j

⇐⇒ x(�Σ ◦ri)(j, a)

for any x ∈ Xi and (j, a) ∈
∑

i∈I Si, (ri, si) is a relation pair from Xi to
∐

i∈I Xi for each
i ∈ I. Given any family of relation pairs ((ui, vi) : Xi → Y)i∈I where Y = (Y,�Y , T ),
define a relation pair (k, h) :

∐
i∈I Xi → Y by

(i, x) k y ⇐⇒ xui y,

(i, a) h b ⇐⇒ a vi b

for all (i, x) ∈
∐

i∈I Xi, y ∈ Y, (i, a) ∈
∐

i∈I Si and b ∈ T . Since we have

(i, x) (�Y ◦k) b ⇐⇒ (∃y ∈ Y ) (i, x) k y & y �Y b

⇐⇒ (∃y ∈ Y )x ui y & y �Y b

⇐⇒ x (�Y ◦ui) b
⇐⇒ x (vi◦ �i) b

⇐⇒ (∃a ∈ Si)x �i a & a vi b

⇐⇒ (∃a ∈ Si) (i, x) �Σ (i, a) & (i, a) h b

⇐⇒ (i, x) (h◦ �Σ) b

for any (i, x) ∈
∑

i∈I Xi and b ∈ T , (k, h) is indeed a relation pair. Since we have

x (�Y ◦k ◦ ri) b ⇐⇒ (i, x) (�Y ◦k) b
⇐⇒ (∃y ∈ Y ) (i, x) k y & y �Y b

⇐⇒ (∃y ∈ Y ) x ui y & y �Y b

⇐⇒ x (�Y ◦ui) b

for any i ∈ I, x ∈ Xi and b ∈ T , the following diagram commutes

Xi
(ri,si) ��

∐
i∈I Xi

Y
(ui,vi)

��























(k,h)

��
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for each i ∈ I. Finally, given any relation pair (k′, h′) which makes the above diagram
commute, we have

(i, x) (�Y ◦k′) b ⇐⇒ x (�Y ◦k′ ◦ ri) b
⇐⇒ x (�Y ◦ui) b
⇐⇒ x (�Y ◦k ◦ ri) b
⇐⇒ (i, x) (�Y ◦k) b

for any (i, x) ∈
∑

i∈I Xi and b ∈ T . Therefore (k′, h′) ∼ (k, h), and hence (k, h) is a
unique morphism which makes the diagram commute.

As a corollary, BP has an initial object and a terminal object. They are given by
0 = (∅, ∅, ∅), and by duality 1 = 0.

5.1.2 Coequalisers

Proposition 5.1.4. BP has coequalisers for any parallel pair of morphisms.

Proof. Given any parallel pair of relation pairs X1

(r1,s1)��

(r2,s2)
�� X2 , define a class Q by

Q =
{
U ∈ Pow(S2) | ext1 s−1 U = ext1 s

−
2 U
}
.

Then, Q is the class of models of the following theory of rank 2 over the set S2.{
a→

∧
x∈ext1s−1{a}

∨
b∈s2�{x} b | a ∈ S2

}
∪
{
a→

∧
x∈ext1s−2{a}

∨
b∈s1�{x} b | a ∈ S2

}
.

Therefore, the class Q has a generating subset G by Theorem 2.2.13. We show that

X2

(idX2
,∈)

�� G = (X2,�G, G)

is a coequaliser for (r1, s1) and (r2, s2), where

x �G U ⇐⇒ x ∈ ext2 U

for all x ∈ X2 and U ∈ G, and ∈ is the standard set membership relation.
First, since we have

x (�G ◦idX2)U ⇐⇒ x �G U

⇐⇒ x ∈ ext2 U

⇐⇒ (∃a ∈ S2)x �2 a & a ∈ U

⇐⇒ x (�2 ◦ ∈)U
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for any x ∈ X2 and U ∈ G, (idX2 ,∈) is a relation pair. Next, since we have

x (∈ ◦s1◦ �1)U ⇐⇒ x ∈ ext1s
−
1 ∈−{U}

⇐⇒ x ∈ ext1s
−
1 U

⇐⇒ x ∈ ext1s
−
2 U

⇐⇒ x (∈ ◦s2◦ �1)U

for any x ∈ X1 and U ∈ G, the diagram X1

(r1,s1)��

(r2,s2)
�� X2

(idX2
,∈)
�� G commutes. Given any

relation pair (k, h) : X2 → Y = (Y,�Y , T ) which makes the diagram X1

(r1,s1)��

(r2,s2)
�� X2

(k,h) �� Y

commute, define a relation pair (k̄, h̄) : G → Y by

k̄ = k,

U h̄ b ⇐⇒ U ⊆ h−{b}

for all U ∈ G and b ∈ T . Note that h−{b} ∈ Q for all b ∈ T by the commutativity of the
diagram. Since G generates Q, we have

x
(
�Y ◦k̄

)
b ⇐⇒ x (�Y ◦k) b
⇐⇒ x (h◦ �2) b

⇐⇒ (∃ a ∈ S2) x �2 a & a h b

⇐⇒ (∃ a ∈ S2) x �2 a & a ∈ h−{b}
⇐⇒ (∃ a ∈ S2) (∃U ∈ G) x �2 a & a ∈ U ⊆ h−{b}
⇐⇒ (∃U ∈ G) x ∈ ext2 U & U ⊆ h−{b}
⇐⇒ (∃U ∈ G) x �G U & Uh̄ b

⇐⇒ x
(
h̄◦ �G

)
b

for any x ∈ X2 and b ∈ T , and so (k̄, h̄) is a relation pair. Since k = k ◦ idX2 = k̄ ◦ idX2 ,
the diagram

X2

(idX2
,∈)

�� G

Y
(k̄,h̄)
��(k,h)

		������������

commutes. Finally, since (idX2 ,∈) is an epimorphism, (k̄, h̄) is a unique relation pair
which makes the above diagram commute.

5.2 Completeness and cocompleteness of CSpa

In this section, we show completeness and cocompleteness of CSpa. For cocompleteness,
the same construction of coproducts and coequalisers for BP carries over to CSpa. For
completeness, we show that CSpa has equalisers and arbitrary products.
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5.2.1 Cocompleteness

In this section we show completeness of CSpa by observing the following fact.

Proposition 5.2.1. The insertion functor I : CSpa → BP creates colimits, i.e. the
colimits in CSpa are exactly the colimits in the underlying category BP.

To see this, it suffices to show that the coproduct, coequaliser and the unique morphisms
constructed in Propositions 5.1.3 and 5.1.4, respectively, satisfy (B1), (B2), (C1) and (C2)
when the objects and morphisms involved in the construction satisfy them. We verify each
construction in the following two lemmas.

Lemma 5.2.2. For any set-indexed family (X i)i∈I of concrete spaces, the basic pair∐
i∈I X i =

(∑
i∈I Xi,�∐,

∑
i∈I Si

)
and the family of relation pairs

(
(ri, si) : X i →

∐
i∈I X i

)
i∈I

constructed in Propositions 5.1.3 is a coproduct of (X i)i∈I .

Proof. First, we show that
∐

i∈I Xi satisfies (B1) and (B2). To this end, let (i, x) ∈∑
i∈I Xi and (j, a), (k, b) ∈

∑
i∈I Si. Since Xi satisfies (B1), we have

(i, x) ∈ ext∐{(j, a)} ∩ ext∐{(k, b)} ⇐⇒ x ∈ exti{a} ∪ exti{b}& i = j = k

⇐⇒ x ∈ exti(a
⏐�
i
b) & i = j = k

⇐⇒ (i, x) ∈ ext∐
(
(j, a)

⏐�∐(k, b)
)
,

and hence
∐

i∈I Xi satisfies (B1). Now let (i, x) ∈
∑

i∈I Xi. Since Xi satisfies (B2), there
exists a ∈ Si such that x �i a, and hence (i, x) �∐ (i, a). Thus

∐
i∈I Xi satisfies (B2).

Next, we see that each injection (ri, si) : Xi →
∐

Xi satisfies (C1) and (C2). To this end,
let (j, a), (k, b) ∈

∑
i∈I Si and x ∈ Xi. Since

∐
Xi satisfies (B1), we have

x ∈ r−i ext∐{(j, a)} ∩ r−i ext∐{(k, b)} ⇐⇒ (i, x) ∈ ext∐{(j, a)} ∩ ext∐{(k, b)}
⇐⇒ (i, x) ∈ ext∐((j, a)

⏐�∐(k, b))

⇐⇒ x ∈ r−i ext∐((j, a)
⏐�∐(k, b))

and hence (ri, si) : Xi →
∐

Xi satisfies (C1). Also, for any x ∈ Xi, we have xri(i, x), and
thus (ri, si) : Xi →

∐
Xi satisfies (C2).

Now, given any family of convergent relation pairs ((ui, vi) : Xi → Y)i∈I where Y =
(Y,�Y , T ), let (k, h) :

∐
i∈I Xi → Y be a relation pair constructed in Proposition 5.1.3.

We must show that (k, h) is convergent. To this end, let a, b ∈ Y and (i, x) ∈
∑
Xi. Since

ui satisfies (C1), we have

(i, x) ∈ k− extY{a} ∩ k− extY{b} ⇐⇒ x ∈ u−i extY{a} ∩ u−i extY{b}
⇐⇒ x ∈ u−i extY(a

⏐� b)
⇐⇒ (i, x) ∈ k− extY(a

⏐� b).
Hence (k, h) satisfies (C1). To see that (k, h) satisfies (C2), let (i, x) ∈

∑
Xi. Since

x ∈ Xi and (ui, vi) satisfies (C2), there exists y ∈ Y such that xui y, and thus (i, x) k y.
Therefore ui satisfies (C2).
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Lemma 5.2.3. For any pair of convergent relation pairs X1

(r1,s1)��

(r2,s2)
�� X2 between concrete

spaces, the basic pair and the morphism

X2

(idX2
,∈)

�� G = (X2,�G, G)

constructed in Propositions 5.1.4 is a coequaliser for (r1, s1) and (r2, s2).

Proof. First, we show that G satisfies (B1) and (B2). Since (r1, s1) and (r2, s2) satisfy
(C1), we have

ext1 s
−
1 (U ↓ V ) = ext1 s

−
1 U ∩ ext1 s

−
1 V

= ext1 s
−
2 U ∩ ext1 s

−
2 V

= ext1 s
−
2 (U ↓ V )

for any U, V ∈ Q, and so (U ↓ V ) ∈ Q for any U, V ∈ Q. Hence, since X2 satisfies (B1)
and G generates Q, we have

x ∈ extG{U} ∩ extG{V } ⇐⇒ x ∈ ext2 U ∩ ext2 V

⇐⇒ x ∈ ext2(U ↓ V )
⇐⇒ (∃a ∈ S2)x �2 a & a ∈ U ↓ V
⇐⇒ (∃W ∈ G) (∃a ∈ S2)x �2 a & a ∈ W ⊆

(
U
⏐�

2
V
)

⇐⇒ (∃W ∈ G)x ∈ ext2W &W ⊆
(
U
⏐�
2
V
)

=⇒ (∃W ∈ G) x �G W &W ∈
(
{U}

⏐�
G{V }

)
⇐⇒ x ∈ extG

(
{U}

⏐�
G{V }

)
for any U, V ∈ G and x ∈ X2. Therefore G satisfies (B1). For any x ∈ X2, there exists
a ∈ S2 such that x ∈ ext2{a} by (B2) for X2. Since S2 ∈ Q and G generates Q, there
exists U ∈ G such that a ∈ U , and thus x �G U , and so G satisfies (B2). Since the first
component of the relation pair (idX2 ,�) is the diagonal relation, it satisfies (C1) and (C2).
Suppose that we are given a concrete space Y = (Y,�Y , T ) and a convergent relation

pair (k, h) : X2 → Y which makes the diagram

X1

(r1,s1)��

(r2,s2)
�� X2

(k,h) �� Y

commute, let (k̄, h̄) : G → Y be a relation pair which is defined as in the proof of
Proposition 5.1.4. Then, since k̄ = k and (k, h) satisfies (C1) and (C2), (k̄, h̄) satisfies
(C1) and (C2).

Thus we obtained the following result.

Theorem 5.2.4. CSpa is cocomplete.
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5.2.2 Completeness

The main result of this section is as follows:

Theorem 5.2.5. CSpa is complete.

We show the above theorem by showing that CSpa has equalisers and arbitrary prod-
ucts. The construction of equalisers and products are given in the following two sections.
By Proposition 2.3.62, the existence of these two suffices for completeness of CSpa. In
the construction, we exploit the notion of an ideal point (cf. Definition 4.2.1). The idea
is to lift the notion of a point of a space to that of an ideal point, i.e. we perform con-
struction of equalisers and products well-known in Top in terms of concrete spaces and
ideal points. However, since the class of ideal points of a concrete space is not known to
form a set, the resulting object is usually a class-size concrete space. We deal with this
difficulty by using the notion of a generalized geometric theory.

Equalisers

Proposition 5.2.6. BP has equalisers for any parallel pair of morphisms.

Proof. Given any pair of convergent relation pairs X1

(r1,s1)��

(r2,s2)
�� X2 , define a class E by

E = {α ∈ Pt(X1) | s1α = s2α} .

Then, E is the class of models of the following theory of rank 2 over the set S1.{
a→

∧
b∈s1a

∨
c∈s−2 b c | a ∈ S1

}
∪
{
a→

∧
b∈s2a

∨
c∈s−1 b c | a ∈ S1

}
∪
{∨

a∈S1
a
}

∪
{∧

{a, b} →
∨

c∈(a↓b) c | a, b ∈ S1

}
∪
{
a→

∨
x∈ext a

∧
c∈�x c | a ∈ S1

}
.

Hence, the class E has a generating subset G by Theorem 2.2.13. Define a basic pair and
a relation pair as in

E = (G,�E , S1)
(e,idS1

)
�� X1

where �E and e are defined by

α �E a ⇐⇒ a ∈ α,

α e x ⇐⇒ �x ⊆ α

for all α ∈ G, a ∈ S1 and x ∈ X1. First, we show that E is a concrete space. Since
G ⊆ Pt(X1), E satisfies (B2). To see that E satisfies (B1), note that

(5.2.2.1) (a
⏐�
1
b) ⊆ (a

⏐�
E b)
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holds: if c ∈ (a ↓ b) and α ∈ extE{c}, then c ∈ α = J α by (P3), and so ext c � restα.
Hence ext a ∪ ext b � restα, and so a, b ∈ α, i.e. α ∈ (a ↓E b). Thus, we have

α ∈ extE{a} ∩ extE{b} ⇐⇒ a, b ∈ α

⇐⇒ α � (α ↓1 b)
=⇒ α � (α ↓E b)
⇐⇒ α ∈ extE

(
a
⏐�
E b
)

for any α ∈ G and a, b ∈ S1 by (P2) and (5.2.2.1). Therefore E satisfies (B1). Next, we
show that (e, idS1) is a convergent relation pair. Since we have

α (�1 ◦e) ⇐⇒ (∃x ∈ X1) x ∈ ext a& �x ⊆ α

⇐⇒ a ∈ J α

⇐⇒ α (idS1◦ ∈) a

for any α ∈ G and a ∈ S1, (e, idS1) is a relation pair, and it is straightforward to see that
(e, idS1) satisfies (C1) and (C2) by the definition of Pt(X1). We claim that (e, idS1) : E →
X1 is an equaliser for (r1, s1) and (r2, s2). First, since the second component of (e, idS1) is

idS1 , the diagram E
(e,idS1

)
�� X1

(r1,s1)��

(r2,s2)
�� X2 trivially commutes. Given any convergent relation

pair (k, h) : Y → X1 which makes the diagram Y (k,h) �� X1

(r1,s1)��

(r2,s2)
�� X2 commute, define a

relation pair (k̄, h̄) : Y → E by

y k̄ α ⇐⇒ α ⊆ h�{y},
h̄ = h

for all y ∈ Y and α ∈ G. Note that h�{y} ∈ E for all y ∈ Y by Proposition 4.3.5 and
the commutativity of the diagram. Since G generates E, we have

y(�E ◦k̄)a ⇐⇒ (∃α ∈ G)α ⊆ h�{y} & a ∈ α

⇐⇒ a ∈ h�{y}
⇐⇒ y (h◦ �Y) a

for any y ∈ Y and a ∈ S1, and so (k̄, h̄) is a relation pair. Convergence of (k̄, h̄) follows
from convergence of (k, h) and 5.2.2.1. Finally, since the right component of (e, idS1)◦(k̄, h̄)
and (k, h) are equal, the diagram

Y
(k̄,h̄)

��

(k,h)

		������������

E
(e,idS1

)
�� X1

commutes. The uniqueness of (k̄, h̄) follows from the fact that (e, idS1) is a monomorphism.
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Products

Proposition 5.2.7. CSpa has small products.

Proof. Let (Xi)i∈I be a family of concrete spaces indexed by a set I. Define a class P by

P =
{∑

i∈I α(i) ⊆
∑

i∈I Si | α ∈
∏

i∈I Pt(Xi)
}

Then, P is the class of models of the following theory of rank 1 over the set
∑

i∈I Si.{∨
a∈S1

(i, a) | i ∈ I
}

∪
{∧

{(i, a), (i, b)} →
∨

c∈(a
⏐�

i
b)
(i, c) | a, b,∈ Si, i ∈ I

}
∪
{
(i, a) →

∨
x∈exti a

∧
c∈�i x

(i, c) | a ∈ Si, i ∈ I
}
.

Hence, the class P has a generating subset G by Theorem 2.2.13. Define a basic pair∏
i∈I Xi = (G,�Π, SΠ) by

SΠ = Fin
(∑

i∈I Si

)
,

α �Π A ⇐⇒ A ⊆ α

for all i ∈ I, α ∈ G and A ∈ SΠ. Also, define a family
(
(ri, si) :

∏
i∈I Xi → Xi

)
i∈I of

relation pairs by

α pi x ⇐⇒ �i x ∈ α(i),

A qi a ⇐⇒ (i, a) ∈ A

for all i ∈ I, α ∈ G, x ∈ Xi, A ∈ SΠ and a ∈ Si. First, we see that
∏

i∈I Xi satisfies (B1)
and (B2). Since ∅ ∈ SΠ, we have α �Π ∅ for any α ∈ G, and so

∏
i∈I Xi satisfies (B2).

Also, since A ∪ B ∈ {A} ↓Π {B} for any A,B ∈ SΠ, we have

α ∈ extΠ{A} ∩ extΠ{B} ⇐⇒ A ∪ B ⊆ α

⇐⇒ α ∈ extΠ{A ∪B}
=⇒ α ∈ extΠ

(
{A}

⏐�
Π
{B}

)
for any A,B ∈ SΠ and α ∈ G, and hence

∏
i∈I Xi satisfies (B1). Next, we see that (pi, qi)

is a convergent relation pair for all i ∈ I. Since we have

α (�i ◦pi) a ⇐⇒ (∃x ∈ Xi)�i x ⊆ α(i) & x ∈ exti a

⇐⇒ a ∈ J i α(i)

⇐⇒ α �Π {(i, a)}
⇐⇒ (∃A ∈ SΠ)α �Π A& (i, a) ∈ A

⇐⇒ α (qi◦ �Π) a
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for any α ∈ G and a ∈ Si, (pi, qi) is a relation pair for each i ∈ I. To see that (pi, qi) is
convergent, let a, b ∈ Si and α ∈ G. Then

α ∈ p−i exti{a} ∩ p−i exti{b} ⇐⇒ a, b,∈ α(i)

⇐⇒ α(i) � (a ↓ b)
⇐⇒ α(i) ∈ p−i exti (a ↓ b) .

Hence (pi, qi) satisfies (C1). The condition (C2) for (pi, qi) follows from (P1) and (P3) for
α(i) for each i ∈ I.
Given any family ((ui, vi) : Y → Xi)i∈I of convergent relation pairs, where Y = (Y,�Y

, T ), define a relation pair (k, h) : Y →
∏

i∈I Xi by

y k α ⇐⇒ α ⊆
∑

i∈I vi �{y}
b hA ⇐⇒ ext{b} ⊆

⋂
(i,a)∈A extY v

−
i {a}

for all y ∈ Y, α ∈ G, b ∈ T and A ∈ SΠ. We show that (k, h) is a convergent relation pair.
To this end, let y ∈ Y and A ∈ SΠ. Then, we have

y (h◦ �Y)A ⇐⇒ (∃b ∈ T ) y ∈ ext{b}& ext{b} ⊆
⋂

(i,a)∈A extY v
−
i {a}

⇐⇒ y ∈
⋂

(i,a)∈A extY v
−
i {a}

⇐⇒ (∀(i, a) ∈ A) a ∈ vi �{y}
⇐⇒ A ⊆

∑
i∈I vi �{y}.

Since
∑

i∈I vi �{y} ∈ P by Proposition 4.3.5 and A is finitely enumerable, we have

y (h◦ �Y)A ⇐⇒ A ⊆
∑

i∈I vi �{y}
⇐⇒ (∃α ∈ G)A ⊆ α ⊆

∑
i∈I vi �{y}

⇐⇒ (∃α ∈ G)α �Π A&α k y

⇐⇒ y (�Π ◦k)A.
Thus (k, h) is a relation pair. Since we have

y ∈ extY h
−{A} ∩ extY h

−{B}

⇐⇒ y ∈
(⋂

(i,a)∈A extY v
−
i {a}

)
∩
(⋂

(j,b)∈B extY v
−
j {b}

)
⇐⇒ y ∈

⋂
(i,a)∈A∪B extY v

−
i {a}

⇐⇒ y ∈ extY h
− {A ∪ B}

=⇒ y ∈ extY h
− (A⏐�

Π
B
)

for any A,B ∈ SΠ and y ∈ Y , (k, h) satisfies (C1). Also, for any y ∈ Y , since∑
i∈I vi �{y} ∈ P , there exists α ∈ G such that α ⊆

∑
i∈I vi �{y}. Therefore y k α,

and hence (k, h) satisfies (C2). Since we have

y(�i ◦pi ◦ k)a ⇐⇒ (∃α ∈ G) y k α&α (�i ◦pi) a
⇐⇒ (∃α ∈ G) (i, a) ∈ α ⊆

∑
i∈I vi �{y}

⇐⇒ (i, a) ∈
∑

i∈I vi �{y}
⇐⇒ y (vi◦ �Y) a
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for any y ∈ Y and a ∈ Si, the diagram

Y
(ui,vi)

��			
			

		
		

		
	

(k,h)

��
Xi

∏
i∈I Xi

(pi,qi)
��

commutes for each i ∈ I. Finally, suppose that (k̄, h̄) : Y →
∏

i∈I Xi is a convergent
relation pair which makes the above diagram commute. Since (k̄, h̄) satisfies (C1), we
have

y(h◦ �Y)A ⇐⇒ y ∈
⋂

(i,a)∈A extY v
−
i {a}

⇐⇒ y ∈
⋂

(i,a)∈A k̄
−p−i exti{a}

⇐⇒ y ∈ k̄−
⋂

(i,a)∈A p
−
i exti{a}

⇐⇒ (∃α ∈ G) y k̄ α& (∀(i, a) ∈ A) a ∈ α(i)

⇐⇒ (∃α ∈ G) y k̄ α&A ⊆ α

⇐⇒ y
(
�Π ◦k̄

)
A

for any y ∈ Y and A ∈ SΠ, and hence (k̄, h̄) ∼ (k, h). Therefore, (k, h) is a unique
morphism in CSpa which makes the above diagram commute.

As a corollary, CSpa has a terminal object, which is given by 1 =
(
{∗} , id{∗}, {∗}

)
,

where {∗} is any singleton.
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Chapter 6

Concluding remarks

With completeness and cocompleteness of BP and CSpa, we can now undertake the
actual development of general topology, for example the construction of product and
quotient spaces, in the setting of basic pairs and concrete spaces that is analogous to
the classical general topology. Currently, very little work has been done on the actual
development of general topology using the notion of basic pair and concrete space; this
must be done to test the validity of these notions.
Other aspects of basic pairs and concrete spaces which must be developed further are

categorical relations between BP and CSpa, and their formal counterparts, basic topolo-
gies and formal topologies with binary positivity predicate (also called balanced formal
topologies) respectively; see [23] for the notions of basic topology and formal topology with
binary positivity predicate. It is well-known that there exist embeddings from BP and
CSpa to those of basic topologies and balanced formal topologies respectively, however, it
is not known whether there are functors from these formal counterparts to BP and CSpa
which form adjoints with those embeddings. We even hope to see that those adjunctions
restrict to equivalences between BP and CSpa and certain subcategories of basic topolo-
gies and balanced formal topologies respectively, as in the case of the categories of formal
topologies and constructive topological spaces [4].
As the final remark, we present one way of viewing the notion of concrete space.

Impredicatively, it can easily be seen that every concrete space X is isomorphic to a
sober space, namely the space of its ideal points (Pt(X ),�, S). Thus one can think of a
concrete space as a predicative way to deal with such class-size sober concrete space
whose class of points has a generating subset, namely a set G ⊆ Pt(X ) such that
(∀α ∈ Pt(X )) (∀a ∈ S) a ∈ α → (∃β ∈ G) a ∈ β ⊆ α. Indeed, one can easily see that

every concrete space X is isomorphic to a concrete space X̃ = ({� x | x ∈ X} ,�, S) and
{�x | x ∈ X} is a generating subset of Pt(X ), and that every convergent relation pair
(r, s) : X 1 → X 2 extends to a continuous class function f : Pt(X1) → Pt(X2) between
sober spaces (Pt(X1),�, S) and (Pt(X2),�, S) given by f(α) = sα for α ∈ Pt(X1). Con-
versely, with every class-size sober concrete space X = (X,�, S) where X is a class,
S is a set and there is a generating subset G of Pt(X ), one can associate a concrete
space (G,�, S) whose space of ideal points is impredicatively isomorphic to (X,�, S).
Moreover, by identifying each sober space (X,�, S) with the space of its ideal points,
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every continuous function f : Pt(X1) → Pt(X2) between sober spaces (Pt(X1),�, S1) and
(Pt(X2),�, S2) with generating subsets G1 ⊆ Pt(X1) and G2 ⊆ Pt(X2) respectively gives
rise to a convergent relation pair (r, s) : (G1,�, S1) → (G2,�, S2) where

a s b ⇐⇒ (∀α ∈ G1) a ∈ α → b ∈ f(α),

α r β ⇐⇒ β ⊆ sα

for a ∈ S1, b ∈ S2, α ∈ G1 and β ∈ G2. Thus, one can say that the theory of concrete
space is a predicative theory of set-generated sober topological spaces.
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