
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 計算幾何学問題に対するメモリ制約付きアルゴリズム

Author(s) 小長谷, 松雄

Citation

Issue Date 2012-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/10416

Rights

Description Supervisor:浅野哲夫, 情報科学研究科, 修士



Memory-constrained Algorithm for Geometric
Problems

Matsuo Konagaya (1010022)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 6, 2012

Keywords: algorithm, constant-space algorithm, memory-constrained
algorithm, computational geometry, workspace.

In this thesis we consider memory-constrained algorithms which are al-
gorithms using restricted memory space in addition to read-only arrays
storing input data. Recently, CPUs have got faster and memory devices
have got cheaper than before. So, many applications use much storage
for processing. On the other hand, intelligent devices such as iPad and
digital camera have been popular. These devices can perform many high-
functional applications in spite of their small sizes. Usually, thier work
space is limited. So, we need space efficient algorithms.

We consider a situation that we can use only constant workspace to
solve some problems. It is called a constant-space algorithm. This kind
of algorithms have been studied for 30 years by the name of log-space
algorithm. But, many results of log-space algorithm are theoretical, and
too complicated to implement them. On the other hand, our purpose
involves to design implementable algorithms with constant workspace.

Being able to use only constant-space is the hardest condition in memory-
constrained algorithms. It is possible that we can achieve a faster algorithm
if we can use more workspace. Therefore, we also try to design algo-
rithms to use O(s) space, where s is an adjustable parameter specifying
the workspace. If we use algorithms with space-time tradeoffs, we can con-
figure size of space used by the algorithms. Usually, algorithms run faster

Copyright c© 2012 by Matsuo Konagaya

1



using larger storage. On the contrary, they take a long time to perform if
we save the memory space.

Throughout this paper, we assume that input data are stored in a read-
only array. The array is not allowed to reorder elements in the array. We
should not reorder and delete any elements in the input array on which
different algorithms are performed in parallel. For example, a picture image
is an input of digital camera. We should not rewrite the input data.

In this paper, we propose space-efficient algorithms for two geometric
problems. One of them is a constant-space algorithm to compute farthest-
point Voronoi diagram for a given set of n points. It runs in O(n2) time
with constant workspace. The other is a space-efficient algorithm with
space-time tradeoffs for the line segment intersection problem. We also
show that there is a good algorithm with space-time tradeoffs if a given set
consists of only vertical and horizontal line segments.

The farthest-point Voronoi diagram for a set of n points is a partition
of the plane into convex regions, FV R(p1), . . . , FV R(pk), such that any
point in FV R(pi) is farther from point pi than from any other point in the
given set. Known algorithms for the problem run in O(n log n) time with
O(n) workspace.

The farthest-point Voronoi diagram can be used to solve the other prob-
lems, such as smallest enclosing circle problem. This problem is to find the
smallest circle enclosing all given points in the plane. To find the smallest
enclosing circle for a point set S, we construct the farthest-point Voronoi
diagram for S, which is denoted by FV (S), and enumerate all Voronoi ver-
tices and edges. Usually, FV (S) is described by a doubly-connected edge
list (DCEL) with O(n) space. Once we construct the data structure, we
can enumerate all Voronoi vertices in O(1) time per vertex in S. However,
the construction takes O(n log n) time using O(n) workspace.

Our algorithm behaves just like DCEL. That is, we can enumerate all
Voronoi vertices and Voronoi edges, and we can follow boundaries of a
Voronoi region using constant workspace. The key fact is that only those
points on the convex hull of S have Voronoi regions. Convex hull is the
smallest polygon containing all the points in S. Therefore, for each vertex
on the convex hull of S, we compute corresponding Voronoi vertices and
edges. It takes O(n2) time to enumerate all the Voronoi vertices and edges

2



per vertex on the convex hull of S.
The line segment intersection problem is to find all the intersecting pairs

for a given set of n line segments in the plane. The problem is one of the
most fundamental problems in computational geometry. Thus, there are
many researches for the problem. Bentley and Ottman’s algorithm by plane
sweep techinique runs in O((n+K) log n) time and O(K) workspace, where
K is the number of the intersecting line segment pairs. It is known as the
first non-trivial algorithm for the problem. More efficient algorithm which
runs in O(n log n + K) time with O(n) space was obtained by Balaban.
The space-efficient algorithm proposed by Chan and Chen works in O((n+
K) log2 n) time and O(log2 n) extra space. The algorithm is based on an
in-place algorithm, which uses an array storing input data as a workspace
and O(1) extra space. Note that a brute-force algorithm runs in O(n2)
time using only O(1) space.

The proposed algorithm consists of two steps. Let S be a given set
of n line segments in the plane. In the first step, we partition S into
subsets S1, . . . , Sdn/se, each contains at most s line segments, and find the
intersecting pairs within each subset Si. Then, we take two subsets Si and
Sj, and find line segment pairs intersecting each other among Si ∪ Sj.

To find intersections within a given set, we use the Balaban’s algorithm.
It is similar to a plane sweep method, which a vertical line moves left to
right in a plane. We can find all intersecting pairs in O(s log s + Ki) time,
where Ki is the number of intersecting pairs within Si.

But, our algorithm has a problem in the second step. It finds intersec-
tions not only among Si ∪ Sj, but also within Si and Sj. Therefore, one
intersection appears many times in our algorithm.

We modify our algorithm in the second step as follows. After the first
step, it constructs a data structure for Si. And then, for each segment
sj ∈ S \ Si, it finds all the intersections with line segments in Si.

The data structure is called CSW data structure, which is quasi-optimal
data structure for simplex range search proposed by Chazell, Sharir, and
Welzl. Once we have the data structure, algorithm can find K line seg-
ments in Si intersecting with a line segment in O(n1+ε/s1/2 + K) time. Its
construction takes in O(s(1+ε)2) time, where ε denotes a positive constant
chosen arbitrary small.

3



If given line segments are either horizontal or vertical, then we can obtain
an ideal space-efficent algorithm in O((n2/s) log s + K) using O(s) space.
Even though the input contains line segments with only c kinds of slopes,
we can design an algorithm with space-time tradeoffs in an analogous way.

4


