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Chapter 1

Introduction

Not all objects fall downward in a straight direction, a piece of paper or a leaf wavers
and flutters down in a seeming unpredictable motion when released from your hand. As
far as we know, the behaviour of a freely falling object in a vacuity apparatus, or heavy
object such as an apple falling from tree is easily and completely understood according
to classic physics. To the author’s knowledge, the common and spectacular freely falling
principle have not been completely resolved in physics, even this researches date back at
least to Isaac Newton[Newton, 1687] and James Maxwell[Maxwell, 1854].

Computer graphics researchers have a great ambition to mimic natural phenomena by
designing computer algorithms, including rendering, texture mapping, shading, animation
technologies, etc.. Recently physically-based simulations have been greatly developed, in-
cluding fluid simulation, rigid-body simulation and hair simulation, but the author found
that the familiar free fall simulation has been ignored and considered as an impossible
work due to its intricately inter-wind dynamics in computer graphics. In daily-life, ev-
eryone may notice that the free fall motion, sometimes looks like regular, sometimes is
so random that we cannot perceive the rules hidden in the particular phenomena. In the
common rigid-body simulation and existed game engines, an object is tackled by falling
in straight downward direction.

The complexity of free fall simulation lays in the coupling of forward motion to lat-
eral oscillations by surrounding fluid, and the productions and influences of the vortices
around the object. The problem of free falling motion involves multiple hydrodynamic
effects, including lift force, drag force and vortex shedding, exhibiting both regular and
chaotic behaviours. It is a challenging work that relevant to unsteady dynamics, meteo-
rology, flight aerodynamics, sedimentology, bubble rising and boiling, seed dispersal, and
all related visual simulations in computer graphics.
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(a) (b)

Figure 1.1: Free fall motions of freely falling leaves from tree (from YouTube video) and
falling flower petals (a snapshot of an on-line game scene)

1.1 Purpose and objective

Free fall motions (Figure 1.1), such as fluttering (oscillate from side to side) and tumbling
(rotate and drift sideways) for lightweight object or strong resistance of high Reynolds
number fluid, are spectacular and familiar but we lack physically based approach to
synthesize them in computer graphics and virtual reality applications. However, modelling
free fall motion is a extremely challenging work.

• First, any locomotion in air flow or other environments with high Reynolds numbers
represents a significant simulation and control challenge. The interaction between
object and the air is pretty complex. The forces generated by the interaction are
chaotic and hard to control.

• The motion is often unstable because of high sensitivity: a slight change of initial
angle of object makes significant effect into the result and type of falling motion.

• Furthermore, a specific shape of object also affects motion greatly.

In this research, different types of free fall motions are produced and controlled by initial
parameters, including initial released angle, size of object. The simulation is developed in
low computational cost for real time request, and provides reliable and natural paths of
free fall motion by comparing simulation results with different types of motions from video.

There are some traditional methods to obtain realistic motion synthesis: key frame con-
trol, physically-based simulation, motion capture. The author considers that all of these
approaches are not available in the following reasons:

• Creating motion by key frame control requires numerous efforts and expert ability
for animators;

• Even the physically-based simulation can make a reliable result but it only fits for
simple models. Until now, there is no numerical model which can resolve chaotic
motion and free fall motion in three dimensional space successfully.
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• Motion capture is not only expensive to use due to time consuming and difficult to
capture the required motion because of the complex dynamic in free fall motions
and dependence of specific circulation, but also is not possible to capture motion
data using 3D marker and difficult to control the cameras, especially in a chaotic
motion case.

In this work, the author presents new approaches combining both experimental and the-
oretical results about the topic in physics, and completely examines all motion types in
free fall motions of light-weight object to create reliable and natural motion trajectories
by using motion planning techniques in a real time environment.

1.2 Research background

Free fall simulation has a rich history in fluid mechanics but few realistic simulations have
been achieved in computer graphics.

1.2.1 Physical research

Every one must have observed that when a slip of paper falls through the
air, its motion though undecided and wavering at first, sometimes becomes
regular.

——James Clerk Maxwell, 1854

Scientific interest of free fall motion dates back to one and half century ago, James Maxwell
noticed the torque by gravity and lift forces when these forces do not act at the same
point[Maxwell, 1854], this is the first study of free falling phenomena. After this work,
some achievements have been obtained but the problem is still unsolved. Recently some
experimental researches and theoretical models have been proposed to analysis the phe-
nomena qualitatively and quantitatively. However, most of the models are based on the
two-dimensional or quasi-two-dimensional experimental setup.

Phase Diagram: The phase diagram for freely falling object with fluttering, tumbling,
and steady decent is measured [Willmarth et al., 1964]. They find that the motion de-
pends on six physical characteristics: diameter or the width of the object, thickness of
the object, density of the object, density of the fluid, kinematic viscosity of the fluid (air,
water, etc.) and gravity acceleration. The phase diagram is conducted using Reynolds
number and the dimensionless moment of inertia which are calculated by the six quanti-
ties. A more detailed phase diagram is proposed by [Field et al., 1997], they discover a
transitional chaotic motion regime between the tumbling and fluttering regimes. Most re-
cently, further experiments get other three basic free fall trajectories in three-dimensional
environment: zigzag, transitional helix and spiral[Zhong et al., 2011], which are below the
periodic fluttering regime in phase diagram.
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Experimental Researches: [Tanabe and Kaneko, 1994] builds a simple model of freely
falling paper by solving an ordinary differential equations (ODEs) based on Kutta-Joukowski
theorem, using two dimensional flow simulation to identify different regimes of free fall
motions. Then Berlmonte et al.[Belmonte et al., 1998] observes fluttering and tumbling
motions, they discover the fluttering dynamic of a falling object and the transition from
fluttering to tumbling motions occurs at a special dimensionless quantity: the Froude
number. Most recently, a complete investigation [Razavi, 2010] concerns about the re-
lationship between different parameters which affect the paths of free falling motions of
leaves based on more than six thousands three-dimensional experiments.

Numerical Simulations: There are some works about the numerical simulation of
free falling motion in two-dimensional condition. Andersen et al. [Andersen et al., 2005]
discuss about the direct numerical simulations of two-dimensional Navier-Stokes equation
and a fluid force model based on ODEs derived from experiments and simulations. They
analysis the transition between tumbling and fluttering and find an oscillation occurs at
bifurcation point. Most recently, researchers develop a Fourier pseudo-spectral method
to solve the two-dimensional Navier-Stokes equations coupled with equations which gov-
ern free fall motion of a object, and the simulation results are different corresponding
to Reynolds numbers[Kolomenskiy and Schneider, 2010]. There is still no convincing nu-
merical simulation approach which can explain the chaotic motion and free fall in three
dimensional spaces.

1.2.2 Graphical research

In general, motion capture creates more realism than what can be achieved
computationally, either through procedural (rule-based) animations or (physics-
and control law-based) animations. In either case, the challenge is to synthe-
size motions previously unrecorded.

——Jim Foley, Getting There: The Ten Top Problems Left[Foley, 2000]

The realistic visual simulations of natural phenomena are the principal mission of physically-
based simulation, which are also the significant research field in computer graphics. Over
the past decade, researchers have considered a free fall motion as object in the dynamic
of changing flow field (e.g. wind field) rather than in a quiescent flow.

Fluid Simulation: Fluid simulation is an important part of physically-based simulation
since fluids are ubiquitous and spectacular around us. The earliest work can date back to
1990 by Kass and Miller, and a stable fluids framework presented by Jos Stam [Stam, 1999]
made it possible to produce a stable presentation. Then Ron Fediw used a level-set based
simulation which facilitated fluid simulation become popular, many extensions and im-
provements were proposed. Fluid simulation is practicable for fire, smoke, sand and
particle-based explosions nowadays. In real time application, simulation framework is
often using Eulerian fluid simulation approaches based on semi-Lagrangian method.
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As other approaches, vortex filaments based simulation is presented by Angelidis which
gives artists full control over simulation result, and recently Weimann et al. model moving
obstacles with vortex shedding[Weissmann and Pinkall, 2010]. Smoothed Particle Hydro-
dynamics (SPH) originated from astro-physics was firstly introduced into real time simu-
lation of liquids by Müller[Müller et al., 2003], and later extended to handle multi-phase
fluids. Because SPH does not require a global correction step for the incompressibility
of fluid, the resulting compressibility artifacts are a research topic for the current fluid
simulation [Yu and Turk, 2010]. Lattice Boltzmann Methods (LBM) also become an al-
ternative because of its simplicity and efficiency, it was used for wind simulations with
interacting with rigid bodies [Wei et al., 2003], falling snow in real time, and simulations
of free surface flows. Another approach is Shallow Water Equations (SWE) which re-
duced the form of the Navier-Stokes equations, so that can be resolved efficiently because
of their two dimensional nature. SWE have been used for simulating splashes or coupled
to terrains and rigid bodies. Many effects can be achieved by applying a semi-Lagrangian
advection to the SWE with an implicit time integration scheme, such as bubble dynam-
ics and terrain erosion [Mei et al., 2007]. There are a variety of approaches exchanged
from Computational Fluid Dynamics (CFD) community in computer graphics like Vor-
tex Methods etc. [Koumoutsakos et al., 2008]. Recent works are popular to combine
grid-based and particle-base methods to obtain a good resolution result with lower com-
putation consume [Narain et al., 2010].

Falling Simulation: The research of complete free fall simulation is not so satisfying in
computer graphics. In the scarce physically-based simulations, Wei et al. [Wei et al., 2003]
used LBM method for wind simulation and rendered soap bubbles and a feather as re-
sults, this approach cannot obtain the designated motion trajectories, also it is very heavy
for simulating multiple objects due to the particle method consuming computational cost
(Bubble: CPU 2.8fps GPU 11.5fps; feather: CPU 0.76fps GPU 6.1fps). Other related
example-based approaches were based on Markov model [Reissell and Pai, 2001], cap-
tured videos [Aoki et al., 2004], segments of fluid Simulation [Shi et al., 2005], animated
trajectory by Maya[Vázquez and Balsa, 2008], sketch examples [Haiyan et al., 2010]. All
these simulations ignored the nature of free fall and considered the free fall motion as a
complete complex and unpredictable dynamics using stochastic processes or simple par-
ticles representation.

Some commercial CG tools, including Lightwave, Maya, etc., are actually loss of the
function of free fall animation, uses particle simulation for falling objects by modifying
drag and lift force parameters in wind field. In these cases, the motion paths are unpre-
dictable and not easy to be controlled and modified for required motions.

Example-based Motion Synthesis: Example-based or data-driven motion synthesis
is to combine the controllability of procedural animation or physically-based animation
with realistic appearance of recorded motion stream, such as motion capture. The first
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paper about automatically organizing the example motion clips into graphs for efficient
motion syntheses proposed a motion graph [Arikan and Forsyth, 2002]. Later Kovar et
al. build an extension motion graph using local search with branch and bound algorithm
[Kovar et al., 2002]. Comparing with other methods in character animation, the example-
based approaches have special advantages: on the one hand, the synthesized motion keeps
the visual reality as those in motion database; on the other hand, the motion synthesis
process is controllable.

Rather than character animation, motion graph is used in other physical based animation,
such as tree animation [Haevre et al., 2006] [Zhang et al., 2007]. These thesis builds upon
motion graph in synthesizing a freely falling motion.

Others: Other interesting related works are concerning the oscillations in motion synthe-
sis and unsteady dynamics, including rain streaks [Garg and Nayar, 2006], bubble rising
[Hong and Kim, 2003], kite flying [Okamoto et al., 2009]. In the paper [Desbenoit et al., 2006],
the authors referred five types primitive free fall motion for calculated the accumulated
leaves on ground, but they ignored the realistic trajectory synthesis of free falling motions.

As Jim Foley [Foley, 2000] said about the top ten unsolved problems in computer graph-
ics in 2000, ”Fill the gap between motion-capture animation and simulation/procedural
animation” was one of the problems. A simulation not only creates more realism but also
keep the controllability. For many complex natural phenomena including chaotic motion
as free fall, It is urgent to propose the approaches to fill the gap between physically-based
simulation and example-based animation. This work is one of the research challenges in
computer graphics.

1.3 Contributions

In the physically based simulations of computer graphics, free fall animation is a new topic
and useful in many physical simulations, especially, simulations of natural phenomenon.
When objects start falling, oscillations happen commonly but often are neglected in the
previous researches. This work is a pioneering work to introduce a motion synthesis ap-
proach, including motion classification, primitive motions and motion groups. This work
adopts a data-driven approach from a set of pre-computed motion databases. In our simu-
lation, fluttering, tumbling, chaotic motion types are defined based on the phase diagram,
and also the statistical results based on thousands of experiments and the numerical sim-
ulation of two dimensional fluid are connected in this work to present the nature of free
fall motions.

Comparing to related work in the research background, this work achieves a more re-
alistic free fall simulation in low computational cost. This is a challenging work which
tries to resolve chaotic trajectories and the trajectories in three dimensional by motion
synthesis approaches. This framework is compatible with the existed frameworks of rigid-
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body simulations. The animator or programmer can automatically synthesize the free fall
trajectory in a nature-like or what they wanted.

The key contributions of this thesis are as follows.

Trajectory Search Tree: The author has compared the trajectories of periodic flutter-
ing, tumbling and chaotic motion trajectories from actually measured data, and find that
there are two alternatives when the object arrives to a turning point, in the mean time,
chaotic motion happened if objects oriented vertically at turning points. In this condition,
we mix the motion segments of fluttering, considering that the chaotic trajectories is an
unstable and transitional regime between fluttering and tumbling motion.

Pre-computed Trajectory Database: Since the motion of free fall is complex, it
needs a plenty of memory cost consuming by using numerical simulations, which is not
appropriate for real time applications. Our approach is to calculate the position and ori-
entation off-line and stored into a database of motion segments. This database is used by
choosing proper feature vectors from on-line environments. Our database includes about
1200 motion segments including the data of positions and calculated orientations. The
orientation is depending on the interpolation of data by solving ordinary differential equa-
tions of a force model of free fall. The motion is generated by piecing together example
motions from the database.

Free Fall Motion Graph: This work has developed a specific motion graph based
on six primitive motions distributed in the phase diagram of free fall. We construct the
global motion path by selecting sequence of nodes from different primitive motions us-
ing discrete-time Markov chain model. By analysing the motion data of thousands of
experiments in previous work, we make a hypothesis about the motion selection which
never be presented neither physics nor computer graphic researches: There are 35 kinds
of the potential motion types for free fall motion in the case of period spiral phase for an
example. Also the probability of motion selection is created to get numerous realistic but
differential motion trajectories of free fall.

1.4 Overview and organisation

1.4.1 System overview

The configuration of our system is shown in Figure 1.2. The inputs of our system are
the initial conditions and parameters of a lightweight object with six degree of freedoms
(DOFs), including the physical characteristics of object and fluid wherein released (re-
lease height, mass, etc.). We transform the parameters to two important non-dimensional
numbers Re and I∗, and lookup the phase diagram of free fall to query the motion level
in which the primitive motion of the object is stable.
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After the motion level of primitive motion is decided, we first define the motion types
category based on the level. In all kinds of the motion types of the decided motion cate-
gory, a discrete time Markov chain model is adopted to choose the actual motion paths.
In our work, the motion trajectory is constructed from six motion sequences of primi-
tive motions. The free fall motion graphs are the used to synthesis the trajectories from
the designated motion segments. After optimization to the initial trajectories, final fall
paths are synthesized. Additionally, the falling motion in wind field is simulated using an
improved noise-based wind field approach.

Figure 1.2: System overview

1.4.2 Thesis organisation

The remaining chapters of the thesis is organized as follows:

• Chapter 2 gives the necessary knowledge in physics related to free falling motion,
including the analysis of the basic equations based on the Kutta-Joukowski theo-
rem. Then the phase diagram is introduced by important dimensionless quantities.
Finally a simple quasi-2D force model is described.

• Chapter 3 demonstrates the motion modelling of the free falling motion and explains
how to create free fall trajectory database for synthesizing the individual primitive
motions.

• Chapter 4 displays the new free fall motion synthesis approach using motion graph
and gives an unprecedented motion classification of free falling motions.

• Chapter 5 explains the free fall motion in wind field, the wind fields are implemented
by noise-based method.
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• Chapter 6 shows the experiments and simulation results of this work, comparing
the simulation results to the ground truth from experiments.

• Chapter 7 discusses the conclusion of this work, and outlines the future research
directions.

9



Chapter 2

Physical Acquisition

The basic knowledge of free fall phenomenon is described in this chapter. In theoretical
researches, the fundamental theorems of aerodynamics are simply introduced, and then
the two-dimensional ordinary differential equations based on the force model and its
improvements are explained. In experimental researches, a phase diagram is introduced
into this work through observing numerous experiments in previous works.

2.1 Introduction

Free fall is a complex phenomena that we cannot understand the motion completely until
now. In this chapter, the qualitative and quantitative specifications are introduced. As
the basic theorem of the fluid and rigid-boy in flow, the Navier-Stokes equations and
Kutta-Joukowski theorems are simply explained.

The Re-I∗ phase diagram based on numerous experiments is significantly important for
analysing the motions of specific object. Here, the physical meanings of the two dimen-
sionless quantities, Reynolds number and the dimensionless moment of inertia are given
in advance.

Even there still isn’t any proper numerical simulation of free falling in three dimension,
the simple phenomenological model in 2D or quasi-2D condition is useful and feasible. We
distinct the primitive motions of free fall by solving the ODEs. Also, in an extensional
model, Frouder number is introduced to explain the transition from fluttering to tumbling
motions.

2.2 Navier-Stokes equations

The governing equations for incompressible viscous fluid are given by:

∂~u

∂t
+ (~u · ∇)~u = −1

ρ
∇p+ ν∇2~u+ ~g (2.1)
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∇ · ~u = 0 (2.2)

where ν is the kinematic viscosity of the fluid, ρ is the density of the fluid and ~g is the grav-
itational acceleration. The equations are called Navier-Stokes equations, which describe
the fluid in terms of a continuous velocity field ~u and pressure p. Equation 2.1 dictates
the conservation of momentum, Equation 2.2 is the conservation of mass for dynamic of
fluid.

There also have a Lagrangian form of the Equation 2.1 using D
Dt

= ∂
∂t

+ ~u · ∇, so the
equation can be substituted by

D~u

Dt
= −1

ρ
∇p+ ν∇2~u+ ~g (2.3)

The above equation can be written by the Newton’s second law form as follows:

~g =
1

ρ
(fpressure + f viscosity + fadvection) (2.4)

There are three terms in the right side of the Equation 2.4. The first pressure term involves
the gradient of the pressure, the second viscosity term involves the second derivates of the
velocity with the viscosity constant accounting for the ”thickness” of the fluid(e.g., water
has much higher viscosity than air). In computer graphics, the semi-Lagrangian method
[Stam, 1999] computes the above equations by different terms separately to make a stable
and elegant algorithm.

2.3 Kutta-Joukowski theorem

The reason why lift force is generated in flow field, is because of the pressure distribu-
tion of the upper and lower surface of an object. According to the Bernoulli’s equation
[Tritton, 1988],

1

2
ρq2 + p = constant along a streamline (2.5)

where ρ and q are the density and magnitude of the velocity (|~u|) of the fluid, p is
pressure. From Equation 2.5, the relationship between velocity and pressure is inverse,
i.e, the pressure becomes small if the velocity of flow is high and vice versa. In Figure 2.1
(b), above the upper surface of the object the streamlines are pushed together, the fluid
moves faster than the free flow speed. It deduces that the pressure of upper surface ptop
is reduced. Similarly, the pressure at the lower surface pbottom of the object is increased
because of low velocity ~ubottom. The pressures of two surface are different so that there
is a upward force on the object, which is called Lift (see Figure 2.2). Because of the
vorticity of the natural flow air, the Circulation is generated which can explain the
higher velocity at the upper surface of object.Let C be the closed curve of the object
contour, the circulation is defined as

Γ =

∮
c

~u · dx (2.6)
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(a)

(b)

Figure 2.1: Inviscid flow streamlines around object:(a) flow without circulation-unnatural
streamlines; (b) flow with circulation-natural streamlines

Figure 2.2: The exerted forces on a falling object in flow field

From Bernoulli’s equation, it implies that γ 6= 0. Figure 2.1 (a) notices that the flow
without circulation is in the condition γ = 0, which is unnatural.
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The Lift on an object can be calculated as

L =

∫ C

0

(pbottom − ptop)dx

=

∫ C

0

1

2
ρ(~u2

top − ~u2
bottom)dx

=
1

2
ρ

∫ C

0

(~utop − ~ubottom)(~utop + ~ubottom)dx

= ρ~u0

∫ C

0

(~utop − ~ubottom)dx

= −ρ~u0(

∫ 0

C

~utopdx+

∫ C

0

~ubottomdx)

= −ρ~u0Γ

(2.7)

The equation L = −ρUΓ is called the Kutta-Joukowski theorem, where U = ~u0 is the
velocity of the flow field. The following equation is also obtained for a symmetrical object
(e.g a leaf, a piece of paper).

L = lρπU2 sinα (2.8)

where l is the length of the object, α is the angle of attack in Figure 2.2. Equation 2.8
is useful for analysing the external forces on a free falling object in this thesis. The nu-
merical simulation model can deduce the ODEs based on this equation, I will explain the
model in Section 2.5.

Now the lift force can be calculated by the Equation 2.7, the external forces ~f by combining
gravity and lift force can replace ~g in the Navier-Stokes equations (Equations 2.1).Because
these equations is based on two-dimensional flow, it is more complicated and unsolved due
to turbulence in three dimensional conditions. So far, by solving Navier-Stokes equations
using particle-based approach (SPH, Semi-Lagrange Method, etc.), the approach is avail-
able but cannot get the realistic free fall trajectories. The work [Okamoto et al., 2009]
used a similar approach to simulate the wavering motion of kite in the sky, however, the
simulation results are not natural and realistic.

2.4 Free fall phase diagram

A falling object is characterized by the following quantities(See Appendix):

• h: height to release

• L: length of object

• a: length of the cross section of the object

• b: width of the cross section of the object
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• ρs: density of the object

• ρf : density of the fluid

• ν: kinematic viscosity of the fluid

• g: gravity acceleration

Namely, a is the width and b is thickness of the object; In the case of ellipse, L and a are
the major and minor axes; If circular, L = a is diameter. From these parameters, three
dimensionless quantities: the Reynolds number, Re; the aspect ratio of object, ε = b

a
; the

dimensionless moment of inertia, I∗ are calculated. In the subsection 2.4.1 and subsection
2.4.2, the physical characteristics of Reynolds number Re and the dimensionless moment
of inertia I∗, are two key quantities for building the phase diagram.

2.4.1 Reynolds number

To obtain the dimensionless form of the Navier-Stokes equations, the variables are given
as:

u′ =
~u

U
, t′ =

U

L
t, x′ =

1

L
, p′ =

1

ρU2
p (2.9)

where U is the velocity scale of the flow. Substituting Equation 2.9 into Equation 2.1 and
2.2 gives

U

L
∇′ · u′ = 0 (2.10)

U2

L

∂u′

∂t′
+
U2

L
u′ · ∇′ · u′ = −U

2

L
∆p′ +

νU

L2
∇′2u′ (2.11)

where ∇′ = ~x ∂
∂x′

+ ~y ∂
∂y′

+ ~z ∂
∂z′

. Hence,

∇′ · u′ = 0 (2.12)

∂u′

∂t′
+ u′ · ∇′ · u′ = −∆p′ +

1

Re
∇′2u′ (2.13)

Defining

Re =
UL

ν
(2.14)

Re is a dimensionless quantity called the Reynolds number, which is presented for the flow
patterns with different dynamic similarities. In Figure 2.3, for small Reynolds number
flow, the inertia of the flow is not important, the flow is smooth and straight forward; For
higher Reynolds number, inertia begins to play an important role and vortices are gen-
erated behind the object. At more higher Reynolds number, where inertia is dominant,
vortex shedding starts, i.e. the vortices are not stationary any more but detach from the
top and bottom of the object, which is known as Von Karman vortex street (Figure 2.3
(c)). At the highest Re, turbulence arises and the motions of flow behind object are filled
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with chaotic motions.

Commonly, the velocity scale U is approximated by the average descent velocity of the
falling object.

U ∼
√

(
ρs
ρf
− 1)gb (2.15)

Figure 2.3: The flow pattern around a cylinder of the different Reynolds numbers Re,
from [Bruce R. Munson, 2001]

2.4.2 The dimensionless moment of inertia

Willmarth et al.[Willmarth et al., 1964] proves that the dimensionless moment of inertia
I∗ of the falling object is a significant quantity to indicate the inertial resistance of the
object to rotate in free fall motions. I∗ is defined as the ratio of the moment of inertia
of a thin object and a quantity proportional to the moment of inertia of a rigid sphere of
fluid with diameter d.

I∗ =
I

ρfd5
(2.16)

where I is the moment of inertia of an object, which is calculated by

I =

∫
V

ρ(x, y, z)

 y2 + z2 −xy −xz
−xy z2 + x2 −yz
−xz −yz x2 + y2

 dxdydz (2.17)
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where ρ(x, y, z) is a density function of object.

This work only considers about the simple uniform mass distribution objects, the cal-
culation results of I∗ in the common cases of primitive geometries are given as follows

For disks,

I∗ =
πρsb

64ρfa
(2.18)

For plates with the rectangular cross section,

I∗ =
8ρs(a

2 + b2)b

3πρfa3
(2.19)

For plates with the elliptical cross section,

I∗ =
ρs(a

2 + b2)b

2ρfa3
(2.20)

In this work, these three cases are used to approximate the falling object geometries, for
examples, coin corresponding to the disk case, leaf corresponding to the elliptical case,
etc.

2.4.3 Phase diagram

About the three dimensionless quantities Re, I∗ and ε, ε is so small due to the light-weight
objects (thin objects) that we omit affect by the aspect ratio of the object(ε� 1).

The Re-I∗ phase diagram is introduced by [Willmarth et al., 1964] fifty years ago. To
date, the important works by ([Willmarth et al., 1964], [STRINGHAM and GUY, 1969],
[Field et al., 1997], [Zhong et al., 2011]) complemented the phase diagram to three di-
mensional cases (Figure 2.4).

The phase diagram shows the dynamical behaviours of free falling objects as a func-
tion of the two dimensionless parameters Re(abscissa) and I∗(ordinate). For increasing
Re and I∗, the trajectory becomes more planar, and tumbling motion (see Figure 2.4 (b))
happens entirely in the same 2D plane. For decreasing Re and I∗, the trajectory becomes
more circular, and the spiral motion is totally in three dimension (see Figure 2.4 (f)). If
Re < 102, the trajectory becomes steady.

In other words, the free fall motion becomes more sensitive with higher Re and smaller I∗.
This phenomena is related to the oscillations happened in multiple directions. When the
object starts falling in a flow, planar oscillation occurs firstly, and becomes unstable with
smaller I∗. For smaller I∗, a secondary oscillation grows in the normal direction of the
original falling plane. For higher Re, the oscillation in planar direction attenuates slowly.
The free fall motion is easier to oscillate and becomes unstable in the case of higher Re
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Figure 2.4: The Re-I∗ Phase Diagram of free fall motions, including six regimes:(a) steady
descent motion, (b) tumbling, (c) chaotic, (d) fluttering, (e) helix and (f) spiral motions.
The symbols in the diagram are verified by previous experimental works.

and smaller I∗.

The primitive motions of free falling are illustrated in Figure 2.5 and interpreted as follows.

• Steady Descent motion (SD) The object drops down straight forward in vertical
direction. As shown in Figure 2.4 (a), SD happens at smaller Re (Re < 102) regimes.

• Periodic Tumbling motion (PT) The object turns continuously end-over-end
and drifts in one direction at higher I∗ regime in phase diagram.

• Transitional Chaotic motion (TC) Chaotic motion is observed when the object
oscillates, the amplitude becomes larger and larger, finally turns into a tumbling
motion. It is the transitional motion between tumbling and fluttering motions.
Actually the regime of TC is at the medium Re and I∗, in the middle regime of the
tumbling and fluttering regimes (Figure 2.4 (c)).

• Periodic Fluttering motion (PF) Periodic fluttering is found at higher Re and
less lower I∗. The object oscillates from side to side with a well defined period.
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Figure 2.5: Measured trajectories of primitive motions from experiments, from left to
right: steady decent, periodic tumbling, transitional chaotic, periodic fluttering ob-
served by [Field et al., 1997], and transitional helix, periodic spiral motions observed by
[Zhong et al., 2011]. The color in the last two figures show the distance of the trajectories
in vertical direction.

• Transitional Helix motion (TH) The object falls in a helical path at a constant
speed. This transitional motion is found between the fluttering and spiral regimes
in the phase diagram (Figure 2.4 (e)).

• Periodic Spiral motion (PS) The object falls circularly in three dimensional
space at higher Re and lower I∗.

2.5 Numerical simulation in quasi-2D setup

2.5.1 Simple phenomenological model

In the paper [Tanabe and Kaneko, 1994], a simple phenomenological model is proposed
based on the force model including lift and drag forces in two dimensional case. Four
primitive motion patterns are found with different drag coefficients.

In X-Y plane (Figure 2.6), (x, y), θ are the position and angle of the center of mass
of a falling object. (u, v) and ω are the linear and angular velocities of the object, obvi-
ously, u = ẋ, v = ẏ, ω = θ̇. Let m be the mass of the object, calculated by the density
and aspect parameters, for example, a rectangular paper m = ρsLab. The A⊥ and A‖ are
the drag coefficients in perpendicular and parallel directions to the falling object.

The drag forces at the center of mass in the perpendicular and parallel directions of

18



Figure 2.6: The force model including lift and drag forces in 2D, modified figure from
[Tanabe and Kaneko, 1994]

the object are calculated as follows:

F⊥ = −mA⊥(vcosθ − usinθ)
F‖ = −mA‖(vsinθ + ucosθ)

(2.21)

In X-Y coordinate,

Fx = −F⊥sinθ + F‖cosθ

Fy = F⊥cosθ + F‖sinθ

Fθ = −mA⊥ωL/12

(2.22)

According to Equation 2.8 in the Section Kutta-Joukowski’s theorem, the lift force is
given by

Lx = kLρfπV
2cosβcosα

Ly = −kLρfπV 2cosβsinα

Lθ = −L2πV 2cosβsinβ/4

(2.23)

where V =
√
u2 + v2, α = arctan(u/v), β = α + θ and

if sign(v)sinβ ≥ 0, k = 1
if sign(v)sinβ < 0, k = −1
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Combining the Equation 2.21, Equation 2.22 and Equation 2.23 by the Newton’s sec-
ond law, the ODEs governing the motion of falling object are achieved:

u̇ = −(A⊥sin
2θ + A‖cos

2θ)u+ (A⊥ − A‖)sinθcosθv − kLπρfV 2cosβcosα/m

v̇ = −(A⊥cos
2θ + A‖sin

2θ)v + (A⊥ − A‖)sinθcosθu+ kLπρfV
2cosβsinα/m

ω̇ = −A⊥ω − 3πρfV
2cosβsinβ

(2.24)

Four primitive motions are found with the change of parameters A⊥, f(= A⊥
A‖

), ρ, L,

corresponding to the regimes in Figure 2.4 in two dimension (Figure 2.7). From this figure,

Figure 2.7: 2D phase diagram at ρ = 0.1 and L = 1.0m. For larger f the regions can
clearly be distinguished. As f gets smaller, the chaotic region becomes narrower and
finally disappear at f ≈ 1.0. Modified from [Tanabe and Kaneko, 1994]

we know that different primitive motion trajectories can be approximately calculated from
Equation 2.24, so that we will explain how to synthesis primitive motion trajectories in
Chapter 3 by solving the ODEs.

2.5.2 Phenomenological model extension

Belmonte et al. [Belmonte et al., 1998] present a simple experiment on flat strips dropped
in a quasi-2D experimental setup. The strips are set with the same thickness b = 0.1-
0.2cm, and width w = a = 0.75cm. They observed two fundamental motions: side-to-side
rotation (tumbling) and end-over-end (fluttering). They defined the Froude number given
by the ratio of characteristic times of the downward motion and the rotational flutter.

Fr =

√
m

ρsL2w
(2.25)
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From experiments, when the angle of a falling object θ > π/2, the free fall motion
changes from fluttering to tumbling motions while Frc = 0.67 ± 0.05 (see Figure 2.8 (c)
and (d)). Different with the Tanabe’s phenomenological model, the drag force is proved

Figure 2.8: collage of consecutive free falling motions in video fields for strips falling in
water: (a) L=5.1 cm, m=2.9 g (Fr=0.37); (b) L=4.1 cm, m=2.7 g (Fr=0.45); (c) L=2.0
cm, m=1.4 g (Fr=0.65); (d) L=1.0 cm, m=0.7 g (Fr=0.89) [Belmonte et al., 1998]

to be quadratic in velocity through experiments. Here we use the same notations in the
subsection 2.5.1. First the force equations in the perpendicular and parallel direction to
the falling object are redefined.

F⊥ = −A⊥ρwLV 2cos(α− θ)
F‖ = −A‖ρwLV 2sin(α− θ)
Fθ = −AθρwLV 4ω2

(2.26)

where Aθ = 0.0674, so the ODEs (Equation 2.24) is modifies to the form as follows.

u̇ = (A⊥sinγsinθ − A‖cosγcosθ + 4π|sinγ|cos(α± π

2
))
V 2

Fr

v̇ = −(A⊥sinγcosθ + A‖cosγsinθ − 4π|sinγ|sin(α± π

2
))
V 2

Fr
− 1

Fr

ω̇ = ±Aθ
12ω2

Fr2
− 6πV 2sin(2γ)

(2.27)

where γ = α − θ. It is proven that the transition from fluttering to tumbling is decided
by the Froude Number Fr. This extensional model reproduce the transition, and present
the Fr similarity of the free fall motions more clearly.
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Chapter 3

Motion Modeling

Motion modeling is an essential step for free fall motion synthesis. In order to synthe-
size the global path of a falling object, we need to obtain primitive motions which are
the feature characteristics of free fall. Data-driven method is adopted in this work as
pre-computed database technique. These motion synthesis approaches are often used in
character animation, nevertheless, this research firstly considers complex natural phenom-
ena as autonomous motion by capturing physical features.

3.1 Introduction

In this chapter, we discuss the simulation steps in building pre-computed trajectory
database for primitive motion synthesises. This issue in motion modelling are threefold:
motion segmentation and clustering, motion database and primitive motion synthesis,
each of which is discussed in the following section respectively.

Notice that here talk about the motion modelling of six primitive motions of free fall
motions, which are described in the previous chapter, i.e. steady descent, tumbling,
chaotic, fluttering, helix and spiral motions. We classify similar motions into motion
groups labelled with different group specification. The motion classification and motion
graph about motion modelling will be interpreted in Chapter 4.

3.2 Motion segmentation and clustering

3.2.1 Motion segmentation

It is not easy to build a trajectory database of free fall motion because capturing the
accurate trajectories of light-weight objects from reality seems to be infeasible, the main
reasons are as follows.

• The free fall motion used to be fast (release form 1.5 meter height, about 1 second)
and wide-ranged with long distance. Even using the high-speed cameras, multiple
cameras need to be set and the analysis work is tedious and labour-consuming .

22



• Also, the motion sometimes goes to chaotic motion, the captured data will not be
available for common use and the results are inaccurate.

• It is impossible to use 3D markers in acquisition system due to the light-weight
attribute of falling object.

Here, we apply three approaches to obtain motion segments and choose the best alterna-
tive by comparing with each other.

Fluid simulation

To solve the Navier-Stokes equations, stable fluid with Semi-Lagrange [Stam, 1999] and
Smoothed Particle Hydrodynamics (SPH) [Müller et al., 2003] are fine alternatives. Con-
sidering the vortex field in the flow, the vortex particle is used to represent the swirling
area on the basic flow[Park and Kim, 2005]. The trajectory of a particle starts from trac-
ing the vortex particle from frame to frame by following velocity vectors until last frame
or the boundary has been reached.

Figure 3.1: Rising smoke simulation by using vortex particles, which are the colourized
dots in the right figure. [Park and Kim, 2005]

Although it is a common way to use the similar approaches in most recent works for
falling simulation in gaseous fluid([Shi et al., 2005], [Vázquez and Balsa, 2008]), we do
not adopt this approach, because

1. It cannot capture the nature of free fall motions, not be able to detect all the
primitive motions in our phase diagram.

2. The angular velocity of object cannot be achieved correctly.

3. Required motion trajectories are difficult to be satisfactorily captured.
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Phenomenological model

In Chapter 2, we explained the ODEs Equation 2.24 based on Kutta-Joukowski theorem.
The Equation 2.24 is modified into the following clear form.

ẍ = −(A⊥sin
2θ + A‖cos

2θ)ẋ+ (A⊥ − A‖)sinθcosθẏ − kLπρfV 2cosβcosα/m

ÿ = −(A⊥cos
2θ + A‖sin

2θ)ẏ + (A⊥ − A‖)sinθcosθẋ+ kLπρfV
2cosβsinα/m

θ̈ = −A⊥θ̇ − 3πρfV
2cosβsinβ

(3.1)

where V 2 = ẋ2 + ẏ2, (x, y, θ) are the position and orientation of a falling object. We em-
ploy the standard fourth-order Runge-Kutta algorithm to solve the second-order ordinary
differential equations Equation 3.1 using the variables x, y, θ, ẋ, ẏ, θ̇. The initial condition
is set to be x0 = xr, y0 = yr, θ0 = θr. (xr, yr, θr) are the released position and the initial
angle of the object. The solved result of fluttering motion is shown in Figure 3.2.

Figure 3.2: The fluttering trajectory solved by ODEs, A⊥ = 4.1, A‖ = 0.9

The turning points (Figure 3.2) are used to segment the result curves. Because at turning
points, the distance in x direction comes to the maximum and the angle turns to opposite
orientation, so the following constraints are required:

ẋ = 0, θ̇ = 0 (3.2)

Harmonic functions

Because of the symmetry of the fluttering motion, the frequency of oscillatory component
of vertical velocity is twice of the horizontal velocity component. According to the mea-
sured data of experiments, we use harmonic functions to describe the generally complex
planar motions.
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Figure 3.3: Measured Data by [Andersen et al., 2005], ẋ velocity in x direction(top); ẏ
velocity in y direction

The harmonic functions are defined as follows:

xt = x0 −
Ax
Ω
sin(Ωt)

yt = y0 − Ut−
Ay
2Ω

cos(2Ωt)

(3.3)

where Ax and Ay are the amplitudes of vertical and horizontal velocities caused by the
oscillation of falling object due to the viscous flow around. Ω describes the angular fre-
quency of the motion. U is calculated by Equation 2.15 in Chapter 2. From Equation
3.2, the turning points of the trajectory are given at time-steps ti = 2k+1

2Ω
π, k ∈ Z ≥ 0.

Comparing the phenomenological model and harmonic functions approaches, both of these
approaches are segmented by the turning points (Figure 3.4), by tuning parameters A⊥
and A‖ in Equation 3.1; Ax, Ay, U,Ω in the Equation 3.3.

The controllability of phenomenological model is weaker than harmonic functions because
it is difficult to get a qualified trajectory from phenomenological model (Figure 3.5). The
required trajectory segments are queried possibly and quickly by harmonic functions. The
disadvantage of harmonics function is no orientation info by the equations. In the next
step, we interpolate the angle of object by combining these two approaches.

3.2.2 Segments clustering

After the step of segmentation, there are numerous of segments obtained by changing pa-
rameters Ax, Ay, U,Ω in Equation 3.3 in a designated step (Figure 3.6). We use K-means
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Figure 3.4: Six primitive motion trajectories, from left to right: steady descent, fluttering,
chaotic, tumbling, helix and spiral motion(measured data from [Andersen et al., 2005] and
[Zhong et al., 2011]). The red points are distinguished as turning points.

clustering algorithm by open software KMlocal, Version: 1.7.3[Mount, 2005] for clustering
segment data using feature vectors.

The input segments set (Si|i = 1, 2...N),N is the number of segments, are classified based
on the value of feature vectors of each segment from the start feature point P 0

i to the
end feature point P 1

i . Feature vectors set V {Vi = P 1
i − P 0

i , i = 1, 2...N} (Figure 3.5) are
assigned into K classes using K-means algorithm.

3.3 Pre-computed trajectory database

After segments clustering process, we store positions pki and orientations qki of the i-th
feature points in k-th segments in segments set S into trajectory database (Figure 3.7).
{(pki , qki )|i = 1, 2...M}, M is the number of frames of the segment Sk, is the point info per
segment.

About the orientation of falling object, we use the calculated results of phenomenological
model for interpolation. Let {(p1

i , q
1
i )|i = 1, 2...Q} is the calculated segment after clus-

tering with Q frames and the feature Vector V ∗. We calculate the feature Vector Vk of
segment Sk.

If the angle of Vk is less than the angle of V ∗, i.e, arctan( pky
1−pky0

pkx1−pkx0
) ≤ arctan(

p1y∗−p0y∗
p1x∗−p0x∗

),

then we find point j (1� j < Q), let Vj ≤ Vk < Vj+1.

We interpolate qk with {q1
i |i = 1, 2...j} by comparing positions {pki |i = 1, 2...M} and

{p1
i |i = 1, 2...j} using linear interpolation.
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Figure 3.5: The trajectory by solving Equation 3.1 , A⊥ = 4.6, A‖ = 0.15

If the angle of Vk > V ∗, we divide the segment Sk into smaller parts and let the an-
gle feature vector of every parts is not larger than the angle of V ∗, then use the same
process of linear interpolation.

3.4 Motion synthesis of primitive motions

In this section, we give the details how to synthesis the primitive motions of free fall (Fig-
ure 3.4): steady descent, tumbling, fluttering, chaotic, helix and spiral motions, which are
incorporated into making the initial trajectories for given input about the object and fluid.

According to the measured data in Figure 3.4, we utilize a set of additional qualifiers
for each word to characterize a primitive motion, as shown in Table 3.1. There are slide
left, slide right in two dimensional plane, and turn left, turn right, front, back in three
dimensional space. Notice that the difference between the helix and spiral motions is the
curvature of the trajectory, even though they have the same motion qualifiers.

Table 3.1: motion repertoire table

motion aspects motion qualifiers
steady descent downward

fluttering glide left & glide right
chaotic glide left & glide right | glide left

tumbling (glide left & glide left)|(glide right & glide right)
helix turn left & turn right, front, back
spiral turn left & turn right, front, back
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Figure 3.6: Four trajectories calculated by Equation 3.3, top-left: Ax = 47.6, Ay =
14.5, U = 9.1,Ω = 9.8; top-right: Ax = 72.1, Ay = 14.5, U = 18.2,Ω = 9.8; bottom-
left: Ax = 46.6, Ay = 26.0, U = 21.2,Ω = 7.13; bottom-right: Ax = 46.6, Ay = 26.0, U =
21.1,Ω = 9.38.

3.4.1 Trajectory search tree

In this subsection, the motion trajectories of fluttering, tumbling and chaotic motions
are synthesized by a tree structure which conforms to the experimental measured data.
We compare the trajectories of chaotic motion, periodic fluttering and tumbling motions
in experiments. Because the airflow behind the free fall object reveals vortex shedding,
turbulence and other complex motions, the object comes to turning points, where the
angular velocity becomes 0 and the velocity in the oscillation direction also be 0 but in
vertical direction be a maximum value. The object faces to two alternatives of sliding left
or sliding right (fluttering or tumbling motion).

In Figure 3.8, we create a trajectory search tree, where start point is set as root and
turning points as nodes. The edge between nodes is the motion segments from motion
sequences. Note that the chaotic motion is defined by using different kinds of nodes, in
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Figure 3.7: part of pre-computed trajectory database

Start

gl gr

gl gr gl gr

Figure 3.8: The first two levels of a small trajectory search tree.

other words, chaotic motion is the transition region between periodic fluttering and peri-
odic tumbling motion in phase diagram. It is noticed that chaotic motion happens when
the angle at turning points comes to orient vertically, the dynamic is much more sensitive
to experimental environment (including flow movement) than in the periodic regions (PF
& PT in phase diagram). A sample structure of fluttering, chaotic, tumbling motion is
shown in Figure 3.9.

3.4.2 Unified harmonic functions

When projecting the motion paths into XY plane which are measured by [Zhong et al., 2011],
we notice that the curves of six primitive motions have characteristic shapes: steady de-
scent motion trajectory is likely to be one point; fluttering, tumbling and chaotic motion
trajectories are in a straight line; Spiral motion trajectory is similar to circle and helix
motion trajectory is similar to eight petals rose curve, as shown in Figure 3.10. In the
XY plane, free fall motion is consisted with two parts of motions:

1. Rotation about the vertical falling direction

2. A harmonic elliptical oscillation which oscillates in both x and y direction simulta-
neously.
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Figure 3.9: The tree structures of fluttering, chaotic, tumbling created by traversal of four
levels search tree, which are corresponding to the trajectories in Figure 3.4

Figure 3.10: Measured curves projected to the XY plane, (1) steady descent; (2) flutter-
ing& chaotic& tumbling; (3) spiral; (4) helix

All the curves are expressed as following equation:

xt = Aecos(Ωt)(1 + εesin(kΩt))

yt = Aesin(Ωt)(1 + εesin(kΩt))

zt = h− Ut
(3.4)

where Ae is the amplitude of elliptical oscillation generated in XY plane orientation. εe
is the aspect ratio of the short axis and long axis of oscillation ellipse. k is the ratio of
the elliptical oscillation to the period of rotation of the falling object. Ω is the angular
frequency of the falling motion.

Deduced from the Equation 3.4, a simple form of free fall trajectory is as follows.

• εe → 0, k = 1 7→Spiral motion

• Ae → 0, k → 0 7→Steady descent motion

• εe 6= 0, k = 4 7→Helix motion

corresponding to the Figure 3.10.
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3.4.3 Implementation result

In Figure 3.11, we compare the synthesized trajectory with the measured data, and prove
that the interpolated angles from Equation 3.1 make the simulation result more realistic.

Figure 3.11: Comparison synthesized trajectory (Red) with measured data (Black) of
fluttering motion, and the result of no orientation (left) and interpolated orientation
(right). The arrow lines are feature vectors.

Because of the nature of chaotic motion, we synthesize the motion randomly with feature
vector V = rV0 and amplitude of oscillation Ae = rA0. r is a random number between
1/10 and 10 calculated by Box-Muller method, the angle of V0 is the initial feature vector
researched by the release angle of the object from trajectory database, and A0 is the initial
amplitude of object oscillation given in the Chapter 4.

After building pre-computed trajectory database, six primitive motions are possible to
be synthesized using trajectory search tree and unified harmonic functions (Figure 3.12).
Feature vectors (Figure 3.11) are the main key for searching trajectory database to obtain
the motion segments.
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Figure 3.12: Six measured trajectories (top, worked by [Field et al., 1997]
[Andersen et al., 2005] [Zhong et al., 2011]) and synthesized trajectories by our work (bot-
tom) of the primitive motions in free fall which are described in the phase diagram, (a)
steady decent, (b) fluttering, (c) chaotic, (d) tumbling, (e) helix and (f) spiral motions
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Chapter 4

Motion Synthesis

In this chapter, our focus is on the free fall motion in three-dimensional environment.
We try to find out the rule how to connect primitive motions together to represent the
realistic motion paths. First we introduce the specific motion classification for free falling
motions. Given the Reynolds number and the dimensionless moment inertia, we indi-
cate the possible permutations of primitive motions. After then, the free fall graph is
constructed for combining the motions. Finally, we give some details of implementation
to obtain a realistic and natural simulation. Most of our analysis work here is based on
the experimental data of [Razavi, 2010], which carries out more than 6000 experiments
of falling leaves.

4.1 Motion classification

In Chapter 3, the primitive motions {Li|S1, S2, ...Sk} (Sk is k-th segment in primitive mo-
tion Li) are synthesized by motion segments Sn from pre-computed trajectory database.
Because primitive motions are the basic motions in free fall through various experimental
works, the motion groups {Gi|1 ≤ i ≤ 6} are used to represent the basic and similar
motions of free fall motion.

For a free fall motion M , M{M = m1 ‖ m2 ‖ ...mi} is annotated with a label, which is
set to be Li, where Li is primitive motion corresponding to the motion repertoire table
Table 1 in Chapter 3. We define that, L1: steady descent motion(SD);L2: fluttering mo-
tion(PF); L3: chaotic motion(TC); L4: tumbling motion(PT); L5: helix motion(TH); L6:
spiral motion(PS), as shown in Figure 4.1.
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Figure 4.1: Motion classification, blue: motion classes; green: motion groups; Brown:
motion segments

Based on thousands of experiments that 300 elliptical papers are released from 125cm
height to the ground, the free fall trajectories are classified into 7 motion classes (Table
4.1).

Table 4.1: Motion classes table

Class 1 L4

Class 2 L3 → L6, L3, L4 → L6

Class 3 L1 → L2, L1 → L6

Class 4 L4 → L6, L3

Class 5 L2 → L6

Class 6 L4, L6

Class 7 L1

Because the classification is only based on the primitive motions {L1, L2, L4, L6}, the two
transitional motions, i.e. chaotic and helix primitive motions, are not clearly distinguished
in the experiments of [Razavi, 2010]. The reasons could be speculated as that the chaotic
motion looks like permutation of fluttering and tumbling motions and helix motions are
similar to spiral motions. The difference between the transitional motions and other mo-
tion is also extremely apparent due to no periodicity in transitional motions. In spite of
the uncompleted taxonomy, the experimental results are valid for our basic analysis.
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Figure 4.2: Motion classes in linked nodes including transitional motions

In Figure 4.2, seven motion groups are recorded which are illustrated in different colors.
The arrow of the lines means the motion transition between different primitive motions.
If the arrow pointed itself, it means the motion happened independently. For example,
the green link means that the object first tumble and then flutter in a order; the black
link means that only steady descent happened. In these experiments, Re is about 102,
and I∗ is 10−3, so the main motion is PS by looking up the phase diagram. From the
motion classification from experimental data, we conclude a hypothesis as follows.

Hypothesis 4.1 If M{M = m1 ‖ m2 ‖ ... ‖ mi} is a free fall motion in 3D, then
mi ∈ {Lj|1 ≤ j ≤ 6} and the subscript sequence {j1, j2, ..ji} should be an increasing
sequence.

To prove this hypothesis, we analysis it qualitatively. When an object starts falling
from released point, the vortexes are generated gradually behind the object due to the
vorticity of around flow. The free fall motion becomes more and more sensitive to the
internal forces, including drag and lift forces. According to the Subsection 2.4.3 (Re− I∗
Phase diagram) in Chapter 2, the sensitivity obeys the change while increasing Re and
decreasing I∗ . So we consider that it is impossible changing from spiral motion into
steady descent motion. Unfortunately, the quantitative explanation of this hypothesis is
still unsolved [Zhong et al., 2011].

Another way to verify the hypothesis, the free fall motion can be obviously observed
by experiments. From thousands of experiments in the work [Razavi, 2010], the hypoth-
esis fits the experimental data perfectly. In our experiments of the Chapter 5, we also
prove the validity of the hypothesis.

From the hypothesis, the number of combinations of all primitive motions is revealed
by,

N =

i≤k∑
i=1

Ci
k, k ∈ Z, k ∈ [1, 6] (4.1)

where k is the level of the main primitive motion by looking up phase diagram.
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4.2 Markov chain model

In Section 4.1, we make it clear that the free fall motion trajectory is the connection of
primitive motions from motion groups. We focus on how to decide the mi for the motion
M . The first-order discrete-time Markov chain model is proposed for solving this issue.

Markov chain is a class of stochastic processes that are distinguished by Markov property
and often applied in biology, engineering and economics [Kijima, 1997]. Let consider a
discrete-time stochastic process {Xn} with N0 ∈ Z ≡ i ∈ [1, 6] as the state space, which
is corresponding to motion groups {Gi|1 ≤ i ≤ 6} (Figure 4.1). Markov property asserts
that the distribution of random variable Xn+1 in process {Xn} depends only the current
state Xn = in, other than the whole history {X0 = i0, ...Xn = in}.

P [Xn+1 = j|Xn = in] = P [Xn+1 = j|X0 = i0, ...Xn = in] (4.2)

where j, i0, ..., in ∈ N0. The stochastic process {Xn} is called a Markov chain. Let the

Figure 4.3: Markov chains model

state space N0 be the motion groups G and process {Xn} on {Xt} discrete time set, the
transition probability pij = P [Xt+1 = Lj|Xt = Li] is the conditional probability from
primitive motion Li to primitive motion Lj. The transition matrix is given as P = (pij)
(Figure 4.3). Because the process {Xt} is stochastic, the matrix requires:

pij ≥ 0, and
∑

j pij = 1 i, j ∈ [1, 6]

Also according to the hypothesis in Section 4.1, P has the following form.

P =

(
Q R
0 T

)
i×j

(4.3)

Then, we discuss about the realization of Markov chain {Xt} and transition matrix P
calculation.
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In order to obtain the process {Xt}, the model starts with initial state at time t0 = 0.
Then the iteration step is executed, for the state Li at time t to state Lj at t + 1,
the calculation depends on the probabilities at the i-th row of transition matrix P , i.e,
Pi = (pij|j = 1, 2..., 6).

The state transition probabilities for the transition matrix P are found by counting the
state transitions happened in the experimental data. Let set Ni is the number of all
transitions from state Li in the experimental data, Nij is the number of transitions state

Li to state Lj, the probability is given as pij =
Nij
Ni

.

The advantages of using to first-order discrete time Markov chain model is as follows.

• Comparing to the high order Markov chain model and dynamic Bayesian network,
for example, second order Markov model P [Xn+1 = j|Xn−1 = in−1, Xn = in, the
transitions betweens primitive motions {Xt, t ∈ T} do not have common parameters
for different primitive motions due to the high-level representation of motions. Also,
the next motion is only related to the current state.

• The state space is based on the primitive motions rather than segments or points
in a trajectory, the characteristic features of each primitive motion are apparent, so
that it is effortless to obtain the valid transition matrix from experimental data for
realistic simulation of free falling motions.

• The computation cost for the model is light for real-time simulation as on-line
operation.

4.3 Graph construction

The special free fall motion graph (Figure 4.4) is based on the approach of motion graph
in the work [Kovar et al., 2002]. This structure is a completed directed graph, in other
words, each node of a object graph is connected to other nodes in the same graph. We
use G = (V,E) to represent this structure, V is the node set; E is the edge set.

Every frame in these motion sequences of primitive motions can be seemed as the node in
the motion graph; the edge between nodes is a transition splice in sequences. We search
the graph only in one-way from top to down as the order according to the hypothesis in
Section 4.1. Consequently, it is impossible that free fall motions become tumbling after
spirally falling as an example.
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Figure 4.4: Free fall motion graph, a motion path represents a collection of splices between
sequences (top) two example motions are represented by the directed graph.

The transition probability is attached to the edge between nodes using the discrete time
Markov chain model (Section 4.2).

4.4 Implementation of motion synthesis

In this section, the details of the implementation are described.

4.4.1 Motion specification

From previous steps, we already know the primitive motions used in the motion synthesis,
The amplitude and deviation of each motion are demonstrated based on the experimental
data from [Razavi, 2010] in this section.

• each motion group is distributed in normal distribution of Gaussian functions (Fig-
ure 4.5).

f(r) = Ae−( r−B
C

)2 (4.4)
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Figure 4.5: Spatial distribution of 7 motion classes (top) ((A, B, C) are (20.7, 76.42,
23.34), (43.16,75.42,18.69), (110.2, 26.41, 13.83), (19.02, 49.27, 16.69), (9.14, 31.36, 23.21),
(7.26, 44.22, 20.34), (7.25, 16.99, 11.47) for Class 1∼7) and primitive motions (bottom),
horizontal axis is the deviation from released position (cm); vertical axis is the quantity
of the object, the released height is 125cm

• If the free fall motions include the tumbling motion, the spatial deviations are linear
relationship with the release height h. The reason is that the tumbling motion have
the largest deviation in all primitive motions due to its on-side declining motion.

d(h) = d1h+ d2 (4.5)

where d1 ∼ 1, d2 ∼ 0.

• Because the spatial deviation Di, i ∈ [1, 6] is independent to the size of the shape of
a falling object, the aspect ratio of width and length a

L
is important for deciding the
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spatial deviation of falling motion. Assuming the relationship between aspect ratio
and deviation is linear, we simply calculate the deviations of fluttering, chaotic,
helix and spiral motions.

Di =
kBiL

a
(4.6)

where Bi is the mean in Gauss distribution of each primitive motion (Equation 4.4),
k is the deviation coefficient.

• About the tumbling motion, the frequency of tumbling motion is give as Ω ∼
√
b/a,

and then the initial amplitude of tumbling motion is

A0 =
d(h)U

hΩ
(4.7)

where d(h)is the result of Equation 4.5, U is the average falling velocity.

By the Equation 4.6 and Equation 4.7, the amplitudes of primitive motions as a function
of released height and object aspects are available for the motion synthesis.

4.4.2 Angular Optimization

Interpolation between segments

When we connect two motion sequences in different primitive motions, C0 continuity is
kept easily but C1 continuity is also necessary in this case. We make the motion smooth
by using spherical linear interpolation for and linear interpolation for positions. We choose
the smoothing domain to be ±n frames around connection point between two segments
A and B.

{(pAi , qAi )|i = Q− n+ 1, ..., Q},{(pBj , qBj )|j = 1, 2, .., n}

where Q is frame number of segment A. The transition frames are defined between A
and B. The k-th (0 ≤ k < n) frame in the transition region are calculated as follows:

pk = α(k)pAQ+k−n+1 + (1− α(k))pBk+1

qk = slerp(qAQ+k−n+1, q
B
k+1, α(k))

(4.8)

where slerp is the spherical linear interpolation function. In order to keep C1 continuity
between segments, the specific function α(k) need to satisfy the constraints:

α(0) = 1, α(n) = 0, α̇(0) = α̇(n) = 0

The following is a cubic polynomial which satisfies these constraints.

α(t) = 2t3 − 3t2 + 1 (4.9)
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Orientation modification

It is difficult to obtain the orientation of a falling object in three dimensional case. The
modification of the orientations are proposed empirically by looking up the follow diagram
(Figure 4.6). There are six rotation patterns:

Figure 4.6: The relationship between rotation patterns and width-length ratio

A fall perpendicular

B flutter in width axis → rotation in width axis → rotation in length axis

C flutter in width axis

D flutter in width axis → rotation in length axis

E irregular

F flutter in diagonal axis → rotation in diagonal axis

Where we use rectangle geometry to approximate objects, the width axis and length axis
are the lines through center of mass parallel to the direction of width or length. Notice
that some rules are concluded from the diagram.

1. when both length and width are small, steady descent motion always happen.

2. most motion starts form fluttering in width axis

3. rotation in length axis is the most stable motion. if the length of falling object is the
same with the width axis, rotation in diagonal will become the most stable motion.
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The thresholds V 1, V 2, V 3 in the figure are defined as: V 1 = V 2/2 means that if the
length or width is bigger than V 1, the object starts oscillating. V 2 is Froude Number
defined in Section 2.5.2. V 3 is the value of boundary between fluttering regime and chaotic
regime in the Re− I∗ phase diagram (Section 2.4.3).
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Chapter 5

Falling in Wind

The free falling behaviours are sensitive to the wind conditions, because of the dynamics
of free fall and the wind flow. Up to this point, the natural and feasible motion synthesis
of an object freely falling in quiescent flow is proposed, the influences of wind field to the
falling object are interpreted in this chapter. The mathematical modeling of the wind is
still a challenging task for the high degree of complexity in computer graphics, it is active
research field including many simulations, for example the waving of trees and grasses,
and cloth simulations.

To obtain the wind field, the direct and straight approaches are the simulation of the
turbulent flow simulation in boundary condition by solving differential equations using
Fourier filter [Shinya and Fournier, 1992] [Stam and Eugene, 1993]. The other methods
is to simulate the motion in wind field using noise functions (fractional Brownian motion)
[Ota et al., 2004] [O.Khorloo and N.Chiba, 2011]. Comparing these flow-based method
and noise-based method, the flow-based method provides physically accurate and realistic
results but needs high computation cost, the noise-based method is much simpler than the
flow-based method and suitable for real time simulation. The disadvantage of noise-based
method is losing a physical accuracy. To overcome this problem, the physically-based
analysis of wind characteristics is necessary.

This work improves the noise-based approach of [O.Khorloo and N.Chiba, 2011] using
the specific spectrum synthesis technique based on inverse Fourier transforms. Our ap-
proach expand a two-dimensional wind field to the varying height in terms of logarithmic
wind law to achieve an efficient real-time free fall simulation.

5.1 1/fβ Noise

Fractional Brownian motion (fBm), also known as 1/fβ noise, is observed in various nat-
ural phenomena. In computer graphics, fBm is a convenient tool in simulation of fractal
images, including mountains, clouds [Peitgen and Saupe, 1988].
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The common fBm generation method is the spectral synthesis method (also known as
the Fourier filtering method), which is based on the spectral representation of a stochas-
tic process X(t). In a finite time domain t ∈ (0, T ) , X(t) is represented as:

X(t) =

∫ ∞
−∞

F (f)e2πitfdf (5.1)

where f is the frequency and F (f) is the Fourier transform of X(t).

F (f) =

∫ T

0

X(t)e−2πitfdt (5.2)

t is measured in seconds, and f is measured by hertz. Equation 5.1 and Equation 5.2
are two different representation of the same Fourier transform, called inverse and forward
Fourier transform respectively.

|F (f)|2df is the total energy of X(t) in the frequency domain from f to f + df , so the
average power of X is given by

1

T

∫ ∞
−∞
|F (f)|2df (5.3)

S(f) = 1
T
|F (f)|2 is the power spectral density function of X(t). When time t goes to

infinity, the limit of S(f) is spectral density function.

fBm is represented if the density function has the following form,

S(f) =
1

fβ
(5.4)

where β is between 1 and 3. The cases of white noise (β = 0) and random walk process
(or Brownian motion, β = 2 ) are well understood in mathematics and physics. The other
1/fβ noise (Figure 5.1) remains mystery in history but found common in nature.

Notice that, in higher dimensions, S(f) is given by

S(f1, ..., fn) =
1

(
√∑n

i=1 f
2
i )β+n−1

(5.5)

where n is the dimensional number.
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(a)

(b)

Figure 5.1: fBm representation of wind in this work (β = 5/3), mean wind velocity U (a)
U=4.0m/s (b) U=2.0m/s. The abscissa is time(s), the ordinate is wind speed(m/s).
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5.2 Wind field

5.2.1 Wind field implementation

Wind is a complex natural phenomena because of different boundary layers and wind
shears. Let the velocity of wind is V = (Vu, Vv, Vw), Vu, Vv, Vw describe the wind velocity
components along the x, y and z axes of the coordinate system in the free fall simulation.
U(h) is the mean wind velocity at height h. According to the logarithmic wind law
[Thuillier and Lappe, 1964], the mean wind velocity is calculated as:

U(h) =
u∗
k

ln(
h

z0

) (5.6)

where u∗ is the friction velocity (m/s), k is the von Karman’s constant (k = 0.40). z0 is
the roughness parameter (meter), conceptually it is the height where V goes to 0. h is
the height of object above ground (meter). The value of z0 is different in terms of the
types of terrain of the ground (Table 5.1). The fBm method is possible to represent the

Table 5.1: Roughness parameters for different terrains[Ray et al., 2006]

Terrain Roughness parameter z0

snow 2 0.003
grass 3 0.008
few trees 4 0.1
many trees, few buildings 0.25
forest 0.5
center of cities with tall buildings 3.0

wind nature [Olesen et al., 1984]. The spectral density function of wind field is given as
follows based on Kolmogoroff’s law.

nSu(n)

u2
∗

= Cf−2/3φ2/3 (5.7)

where n is the frequency, f is the reduced frequency, f = nh/U(h). φ = εkh/u3
∗, ε is the

dissipation rate according to Kolmogoroff’s law. C is a constant, C = α(2πk)−2/3, α is
determined experimentally to be 0.5, so C is 0.3 for spectra in u directions and C=0.4 for
v and w wind directions.

Modifying the Equation 5.7 by the definition of f = nh/U(h),

Su(n) = u2
∗(
U(h)φ

h
)2/3 C

n5/3
(5.8)
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In order to get the representation of fBm like S(f) = A/fβ (A is the amplitude of different
wind component direction (u, v, w) ), we adopt the same approximations of Au, Av, Aw
with [O.Khorloo and N.Chiba, 2011].

Au = u∗(
U(h)

h
)2/3, β = 5/3

Av = 0.88Au

Aw = 0.55Au

(5.9)

u∗ is calculated by Equation 5.6.

To obtain the wind velocities, we apply inverse Fourier transform (Equation 5.1) to Equa-
tion 5.5 in the form using FFTW code [Frigo, 1999].

Sp(f1, ..., fn) = Ap

(
√∑n

i=1 f
2
i )β+n−1

Here, p is wind direction (u, v, w).

5.2.2 Implementation results

The results of one-dimensional wind field are shown in Figure 5.1 with the mean wind
velocityU(h) = 4.0m/s and U(h) = 2.0m/s, h = 2.0m, z0 = 0.3m.

The results of two-dimensional wind field are shown in Figure 5.2 with the mean wind
velocityU(h) = 4.0m/s. The grid size in Figure 5.2 is 100× 100.

The results of three-dimensional wind field are shown in Figure 5.3 with the mean wind
velocityU(h) = 4.0m/s. The grid size in Figure 5.3 is 50× 50× 50.
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Figure 5.2: Two-dimensional wind field, HEIGHT is the distance (m) above ground. The
color used in figure represents velocity length comparing mean wind velocity U(bottom,
red: V > 2U ; pink: U < V ≤ 2U ; blue: U/2 < V ≤ U ; black: V ≤ U/2), wind direction
is along x-axis.
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About the computation performance of the wind field implementation, the computation
cost of two-dimensional wind field is shown in Table 5.2.

Table 5.2: Computation cost of 2D wind field

100× 100 500× 500 1000× 1000 2000× 2000
8ms 129ms 542ms 2221ms

The computation cost of three-dimensional wind field is shown in Table 5.3.

Table 5.3: Computation cost of 3D wind field

50× 50× 50 70× 70× 70 100× 100× 100 150× 150× 150
170ms 473ms 1363ms 4586ms

In order to achieve accurate real-time free fall simulation in a wind field, we prefer to
choose the two-dimensional wind field calculation. For the wind-field of different heights,
the wind velocity relationship is obtained from Equation 5.6.

V (h1)

V (h2)
≈ U(h1)

U(h2)
=

ln(h1)− ln(z0)

ln(h2)− ln(z0)
(5.10)

In Figure 5.2, the wind fields of different heights (Height=2.0m, 1.5m, 1.0m, 0.7m) are
calculated using Equation 5.10, which are based on the 2D wind field of h = 2.0m.
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Figure 5.3: Three-dimensional wind field, the color used in figure represents velocity
length comparing mean wind velocity U(bottom, red: V > 2U ; pink: U < V ≤ 2U ; blue:
U/2 < V ≤ U ; black: V ≤ U/2)
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5.3 Wind-object interaction

The external forces when an object freely falling in wind are mainly wind force and colli-
sion among the objects. In the motion synthesis of free fall in still flow (Chapter 4) , the
influence of drag, lift, gravity forces are already considered. Furthermore, the frequency
of collisions among falling objects is fairly low by the observations from experiments, so
that we neglect the influences of collisions. In this section, the wind-object interaction
focuses on tackling wind field into synthesized trajectory.

Let set u(p, h, t) is a 2D wind field at height position p and h (Equation 5.10), the wind
velocity at point p0 = (x0, y0, z0) is u(p0, z0, t0) = (ux, uy, uz) (ux, uy, uz are corresponding
to the u,v,w components in Equation 5.9).

About the computed trajectory of falling objects in still flow, we set the curve to be
a function f(t), f(t) is a set of points per frame in time domain. At time t0, f(t0) is a
quaternion (p0, θ0) about position and orientation.

Figure 5.4: Wind-object interaction

After time step δt, f(t0 + δt) is at point p′. The next point after p0 is set to be at p1,

p̂0p1 = ̂u(p0, z0, t0) + p̂0p′ (Figure 5.4). If p1 does not coincide with any grid node of wind
field, assuming the neighbouring 2D grid nodes around p1 are Pi(0 ≤ i ≤ 3), the wind
velocity at p1 is calculated by the linear interpolation of ui at Pi. After the iterations,
new trajectory f ′(t) of falling object in wind is synthesized.
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About the rotation under the influence of wind, we notice that falling object(like leaf
and paper pieces) is subjecting to change angle in a wind field. To achieve the realistic
effects, we apply the noise function into the orientation calculation (Equation 5.11).

θ(t) = WN(t) (5.11)

where N(t) =
√
u2
x + u2

y + u2
z is from the fBm noise function at Section 5.2.1, and W is

the maximum motion angle, which is designated by animator. The rotation axes of the
falling objects is obtained by looking up the Figure 4.6.
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Chapter 6

Experimental Results

This chapter verifies the Hypothesis 4.1 by the experiments, the simulation results by our
approaches give a realistic and natural simulation in real-time environment.

6.1 Experiment setup

126 simple experiments of free falling objects have been done for verifying the hypothesis
4.1 in Section 4.1. we record the results of primitive motions {Li}, for example, the mo-
tion transits from L1 to L6 in the falling processes.

These experiments are executed by an experimenter releasing the varied objects from
hand in air (Figure 6.1), including three ellipse papers (a=2cm, L=5, 6, 8cm), three
round papers (radius: 2cm, 3.5cm, 5cm), two square papers(a=1, 2cm), three rectangle
papers(a=1cm, L=3, 5, 8cm), two leaves(L=5, 8cm). The motions are captured by high
speed camera Casio’s EX-F1, which can shoot video in 300fps, 600fps and up to 1200fps.

Figure 6.1: Released objects in experiments
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We find that it is difficult to capture the free fall motion because some trajectories have
long distance far away from the camera. Because of this, about one-fourth of the experi-
ments failed. The following motion classes are clarified from the observation of captured
videos using the label {Li|1 ≤ i ≤ 6}.

Table 6.1: Motion classes table from simple experiments

Class 1 L2 → L5, L2 → L6

Class 2 L2

Class 3 L1 → L4

Class 4 L3 → L6, L3

Class 5 L2 → L6

Class 6 L4, L5

It is obvious that all the classes in Table 5.1 are content with the hypothesis. And the
classes are similar to the motion classes Table 4.1 by [Razavi, 2010]. Figure 6.2, Figure 6.3
and Figure 6.4 are experimental results. Notice that the videos captured by high speed
shoot are low-resolution, it is not suitable for image processing.

Figure 6.2: Sequential snapshots of releasing paper in air
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Figure 6.3: Sequential snapshots of released leaf in air

Figure 6.4: Sequential snapshots of released coin in water

6.2 Simulation results

From input parameters as shown in Section 2.4, the main primitive motion Li is defined
by looking up phase diagram using the calculated I∗ and Re. According to the Hypoth-
esis 4.1, the global path synthesis starts from a random primitive motion Lj(i < j), and
transformed to the next primitive motion which are estimated by Markov model in Section
4.2. The amplitudes of primitive motions are solved in Subsection 4.4.1 and the synthesis
of the primitive motion are selected from trajectory database in Chapter 3. About the
evaluation of this work, comparison with ground truth from video is a direct and efficient
way. Although the limit of chaotic motions exists, the characteristics of free fall motion
are well captured in this simulation satisfying observations and theoretical analysis.

As simulation results, we supply three cases of free falling motions as shown in Table
6.2.
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Table 6.2: Attributes of the falling objects
object shape fluid size Re I∗

aluminium circle water a = 2.0cm, b = 0.15cm 3.55× 103 10−2

leaf ellipse air L = 7.3cm, a = 4.2cm, b = 0.03cm 1.2× 104 6.3× 10−3

paper ellipse air L = 8.0cm, a = 2.0cm, b = 0.01cm 6.8× 103 2.2× 10−3

Figure 6.5: Comparison of our simulation with the real free fall of one Japanese yen coin
in water

While the example shown in Figure 6.5 suggests that our result is realistic, it is vari-
able for not only air but all fluids where the object fall freely. As shown in the left
image, an aluminium circular disk had fallen in the water from 50 cm height. A regular
fluttering motions are observed. According the initial parameter in Table 1, I∗ = 10−2

, and Re = 3.55 × 103. By looking up the phase diagram, the main motion prototype
is fluttering (PF). Then using the free fall motion graph and Markov chain model, we
get the positions and orientations from motion sequences constituted by pre-computed
database, and the result is shown in the right figure.

Figure 6.6 shows a leaf falls in air from 200cm height, the perpendicular falling, tumbling
and helix motions are found here. We calculated I∗ = 6.3× 10−3 and Re = 1.2× 104, so
the main motion is transitional helix motion. The connection of three primitive motions
observed is well fit in our model. Between the connections among each motion sequences,
the segment interpolation result is presented in the right figure.

Figure 6.7 shows a red paper falling in air, and I∗ = 2.2 × 10−3 and Re = 6.8 × 103,
which is approximately spiral motion in the phase diagram. And the real motion is seg-
mented into tumbling and spiral motions, which have verified the hypothesis in Chapter
4. According to the orientation modification in optimization, the falling object fits type
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Figure 6.6: Comparison of our simulation rslut with the real free fall of a leaf released
from 2.0m height

B and the simulation is flutter in length and rotation in length axes.

In Figure 6.11, the free fall motion paths are coupled with different wind fields. The
black dots in the figure are the control points for Bezier curves synthesis. (a) is in a low
wind field, so the motion paths is similar with the reference in Figure 6.9. In (b) and (c)
conditions, the influences of wind are apparent.

Figure 6.12 shows the simulation results of the free fall motion in two types of wind
fields, which are corresponding to the conditions of Figure 6.11(b) and (c). We found
that the tumbling motion disappears under wind field and the object goes far away.

All examples (Figure 6.8, Figure 6.9, Figure 6.10, Figure 6.11, Figure 6.12) were im-
plemented in C++ on an Intel Core i7 CPU 3.20 GHz and 12.0 GB RAM in real time
(around 50fps). Because most parts of our method are executed off-line, the on-line mo-
tion synthesis and optimization process are rarely memory consuming, so our simulation
is realistic and predictable, so it is feasible for interactive applications.
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Figure 6.7: Comparison of our simulation with the real free fall of a red ellipse paper in
air released from 3.1m height

Figure 6.8: Comparison of our simulation result with video for falling coin
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Figure 6.9: Comparison of our simulation result with video for falling leaf

Figure 6.10: Comparison of our simulation result with video for falling paper
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(a) (b)

(c)

Figure 6.11: Free fall motion paths in different wind field, mean wind velocity U(a):
U = 1.0m/s;(b): U = 3.0m/s (c): U = 5.0m/s). Wind direction is from right to left.
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(a) (b)

(c)

Figure 6.12: Final synthesized free fall motion in different wind field. (a) no wind as
reference; (b) mean wind velocity is 3.0m/s; (c) 5.0m/s. Wind direction is from right to
left.
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Chapter 7

Summary

7.1 Research conclusion

This work presents a framework for generating free fall motion by data-driven motion
synthesis and precomputed trajectory database. This research is the first research about
the physical details of free fall motion and proposed an efficient motion synthesis approach
to achieve realistic and predictable free fall simulation.

This work tackles regular geometries, including rectangular, circular, and elliptical ob-
jects with constant densities. For irregular geometry and uneven density distribution
objects, it is complicated to consider the influence to the motion by the geometry and
density distribution modifications. When a paper or plastic object falls freely, the change
of shape also happens during the motion, which we omitted in the framework.

7.2 Future directions

This work adopted the data-driven approach and pre-computed method, and combined
the ODEs and example data from experiments. It is a significant challenge in computer
graphics to fill the gap between physically-based simulation and example-based animation.
The important issue is to create a new realistic and low-cost model for visual simulations.

In the future, it is possible to imply the current simulation results as patterns in fluid
simulation by pattern based method [Yuan et al., 2011]. Because the free fall is a common
phenomena for light-weight object, it will be promising to coupling the simulation into
game industry and other simulations in computer graphics.

The simulation of the oscillations is an intriguing topic which could happen in differ-
ent directions while the object has high degree-of-freedom. The quantitative analysis of
the oscillation in free fall will be another feasible approach of motion synthesis.
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Appendix
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notation meaning
A⊥ drag coefficient in perpendicular direction
A‖ drag coefficient in parallel direction
Aθ drag coefficient of angular velocity
Ax amplitude of horizontal velocity
Ay amplitude of vertical velocity
Ae amplitude of elliptical oscillation
εe aspect ratio of elliptical oscillation
Re Reynolds number
h release height
L length of falling object
a width of falling object
b thickness
ρs density of falling object
ρf density of flow
ν kinematic viscosity of flow
g gravity acceleration
z0 roughness parameter of terrain
Fr Froude number
L lift force
ω angular frequency
x x position
y y position
z z position
m mass
V volume of falling object
θ angle of falling object
u velocity in x direction
v velocity in y direction
I moment of inertia
I∗ dimensionless moment of inertia
U velocity of flow
ε aspect ratio
p pressure
k von Karman’s constant 0.4
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Spatial derivations of motion groups [Razavi, 2010]
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