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Abstract— We consider the channel estimation of a time-
slotted wireless communication system with a mobile user and
a base station, where the base station employs an M -element
(M > 1) antenna array. The uplink single-input multiple-
output (SIMO) channel is usually estimated by training sequence
within each time slot. To improve the estimation performance,
the channel estimate is often refined by projecting it to the
corresponding spatial signal subspace. However, this projection
will not work when the number of resolvable multipath rays is
larger than that of the antenna array elements, which makes
the channel matrix full row rank. In this paper, we formulate
the channel estimation under the space-time signal model for
this full-row-rank case, and propose a new method by space-
time signal subspace projection using both training and unknown
data sequences. To further improve the accuracy of the channel
estimate, the soft information fed back from the decoder can be
used. By involving this soft information, we propose another new
channel estimation method. This method approximately follows
the maximum likelihood (ML) criterion and is therefore referred
to as the approximated ML channel estimation. Numerical results
show that these methods can be performed separately or jointly
to improve the performance of channel estimation by training
sequences.

Index Terms—Channel estimation, maximum likelihood, signal
subspace projection, soft information, semi-definite relaxation

I. INTRODUCTION

It is known that packet based transmission is often used
in time-slotted wireless communications systems for IP-based
data services. In order to satisfy the specific requirements of
each user’s quality-of-service (QoS), such as the data rate,
the latency, and the bit error rate, an antenna array at each
base station is often employed. However, the associated uplink
wireless channel always varies in space and time along with
either movements of users or changes of surroundings, or
both. In this case, the QoS will depend on the performance of
channel estimation. It is obvious that higher QoS will require
higher accuracy of channel estimates.

With the use of the training sequence (or midamble codes)
within each time slot, the estimation of the uplink SIMO chan-
nel in the above systems can be straightforwardly performed

under the least square (LS) criterion. This leads to the LS
channel estimation. Notice that the SIMO channel may have
specific properties in some situations, which will be helpful to
improve the estimation performance. For instance, when the
number of resolvable multipath rays is smaller than either that
of the antenna array elements or the maximum delay of the
channel in symbol periods, the uplink SIMO channel matrix
becomes rank deficient. This rank deficiency is referred to
as the low-rank property. The LS channel estimation without
involving this low-rank property is called the unconstrained
LS (ULS) [1].

By employing the low-rank property of the SIMO channel
(see the analysis in [2], [3] and the references therein), the
reduced rank (RR) channel estimation methods [1], [3]–[5]
are proposed to improve the performance of the channel
estimation with reduced number of unknown parameters. In
the situations where angles and delays of multipath rays are
slowly varying, the training sequences of multiple slots can be
used to estimate these channel features by the multislot (MS)
channel estimation methods [5]–[7]. As shown in [5], [6], the
RR and MS methods are equivalent to the projection of the
whitened unconstrained LS channel estimate onto the spatial
or temporal signal subspace without employing the received
signal corresponding to the unknown data sequence within
each slot. To improve the performance of the spatial signal
subspace estimation and so as the channel estimation, the
received signal corresponding to the unknown data sequence
are employed by the signal subspace projection (SSP) method
[4]. However, these projection-based methods will not work
when the number of resolvable multipath rays is larger than
that of the antenna array elements, which makes the channel
matrix full row rank.

In this paper, we formulate the channel estimation under the
space-time signal model for this full-row-rank case, and pro-
pose a new method by space-time signal subspace projection,
where the received signal corresponding to both training and
unknown data sequences are employed to estimate the signal
subspace. Moreover, we show that the new method based on
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space-time signal subspace projection is intrinsically related
to the maximum likelihood (ML) estimation.

We next consider channel estimation by using soft infor-
mation. As we know, the turbo principle [21] related to the
well-known turbo code decoding algorithm has been widely
employed in practical applications such as turbo equalization
and turbo channel estimation [9]–[12], where the soft infor-
mation fed back from the decoder(s) are used as the additional
information to enhance the performance. With the use of
the soft information, the turbo equalization techniques [8]
achieve the near-optimal performance with lower complexity,
while the channel estimation methods, called the soft-based
channel estimation methods, provide significant performance
improvements over the receivers with either a single antenna
[9]–[11] or an antenna array [12], [13]. Specifically, in [13]
the MS method has been extended to exploit soft-valued
data for channel estimation. Although this extension has the
advantage of simple implementation [see (3.35) in [13]], it
does not consider the impact of the additional noise on the
estimation performance which arises from the data estimation
errors. Based on the same signal model for the soft-valued
data mentioned there and assuming that this additional noise
is Gaussian distributed, we here consider the SIMO channel
estimation that follows the approximate maximum likelihood
criterion, and propose an approximate ML estimation method.

The paper is organized as follows. In Section II we give
the signal model of a time-slotted system and the low rank
property of the channel matrix, and then derive the channel
estimator by the spatial signal subspace projection in the
context of maximum likelihood estimation. In Section III,
we propose a new channel estimation method by the space-
time signal subspace projection in the context of the ML
channel estimation. In Section IV, we propose approximate
ML channel estimation methods using soft information. The
Cramer-Rao bounds are derived in Section V. The simulation
results are given in Section VI. Section VII concludes the
paper.

II. PROBLEM FORMULATION

A. Signal Model

We here consider a time-slotted wireless communication
system composed of a mobile user and a base station, where
the base station employs an M -element antenna array. For the
uplink case, a data frame consisting of the training sequence
and the user’s data sequence, which is unknown to the receiver,
within each time slot is transmitted to the base station by the
mobile user. The discrete baseband signal received at the based
station array [6] is denoted by

y(t) =
∑

i

h(i)x(t− i) + v(t), (1)

where y(t) denotes the M × 1 received signal vector, x(t)
denotes the symbol transmitted at discrete time t [the dis-
crete time interval is equal to the sampling period, or the
period of the transmitted symbols], h(t) denotes the M × 1
channel impulse response vector, v(t) is the M × 1 array
noise vector and Gaussian distributed with zero mean and

the correlation matrix E[v(t)vH(t − t0)] = Qδ(t0), and
v(t) is assumed independent of x(t). Notice that when Q
is equal to σ2

vIM [IM denotes the M × M identity matrix],
the array noise is considered spatially white, otherwise the
array noise is colored with unknown interferences included.
By assuming the channel length of W symbol periods, and
letting x(t) , [x(t), x(t − 1), · · · , x(t − W + 1)]T and
H , [h1,h2, · · · ,hW ] with hi+1 , h(i), the received signal
(1) can be denoted by

y(t) = Hx(t) + v(t), (2)

where H denotes the M × W SIMO channel matrix and is
assumed to be invariant within each slot. By denoting the
training sequence as {xt(i), i = 1, . . . , Ñt} and the user data
sequence as {xd(i), i = 1, . . . , Ñd} and assuming that a guard
interval of W − 1 symbol periods follows each sequence, all
the samples y(t) within a slot can be represented by

Y = HX + V , (3)

or
{

Y t = HXt + V t,

Y d = HXd + V d,
, (4)

where Y = [Y t,Y d] = [y(1), · · · ,y(Ns)], X = [Xt,Xd],
V = [V t,V d] = [v(1), · · · , v(Ns)], Xt denotes the W ×Nt

training data matrix with the (m,n)th entry being xt(n−m+
1), and Xd denotes the W×Nd data matrix with the (m,n)th
entry being xd(n −m + 1). Notice that Xt is Toeplitz. It is
obvious that Nt = Ñt + W − 1, Nd = Ñd + W − 1, and
Ns = Nt + Nd = Ñt + Ñd + 2W − 2.

B. Low Rank Channel Model

As shown in [6], the multipath channel can be modeled as
a superposition of P resolvable path rays with the directions
of arrival θ = [θ1, · · · , θP ], the complex path gains α =
[α1, · · · , αP ], and the delays of path rays τ = [τ1, · · · , τP ].
This means that the channel matrix H in (2) can be expressed
as

H =
P∑

p=1

αpa(θp)g(τp) = F (θ)ΛGT (τ ), (5)

where F (θ) = [a(θ1), · · · ,a(θP )] denotes the array manifold,
Λ = diag(α) denotes the diagonal matrix composed of
the fading path gains, G(τ ) = [g(τ1), · · · , g(τP )] denotes
the delay pattern matrix with g(τp) = [g(−τp), g(Ts −
τp), · · · , g((W − 1)Ts − τp)]T , and g(t) represents pulse
shaping function. Denoting rmax = min{M, W} and the
rank of H , F and G as r0, rs and rt respectively, we
have r0 = min{rs, rt} according to (5). It is seen that when
r0 < rmax, H is rank-deficient and can be rewritten as the
product of two full rank matrix [1] [5]:

H = ABH , (6)

where A = [a1, · · · ,ar0 ] is a M × r0 matrix and B =
[b1, · · · , br0 ] is a W × r0 matrix.
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C. Channel Estimation by Signal Subspace Projection Using
Training and User Data Sequences

The channel estimation by the signal subspace projection
using training and user data sequences was proposed in [4],
where the array noise is assumed spatially white and Gaussian
distributed. Here we derive this channel estimation method in
the sense of maximum likelihood. According to (3), the log-
likelihood function of the received signal within a slot is given
by

L(H,Q,Xd) = − log |Q| − 1
Ns
‖Y −HX‖2Q−1 , (7)

where ‖Y −HX‖2
Q−1 = tr[(Y −HX)HQ−1(Y −HX)]

and “tr” stands for trace of a matrix. As shown by [16], the
optimal estimate of Q can be obtained by maximizing (7) for
any given H and X , and is given by the following solution
when 1

Ns
(Y −HX)(Y −HX)H is positive definite:

Q̂ =
1

Ns
(Y −HX)(Y −HX)H . (8)

By substituting (8) and (6) in (7) and ignoring the constant,
the log-likelihood function can be reduced to [17]:

L(A,B,Xd)

=− log
∣∣∣(Y −ABHX)(Y −ABHX)H

∣∣∣
=− log

∣∣∣(Y t −ABHXt)(Y t −ABHXt)H

+(Y d −ABHXd)(Y d −ABHXd)H
∣∣∣

=− log
∣∣∣∣Nt

(
AB̃

H −Rct
R
− 1

2
xt

)(
AB̃

H −Rct
R
− 1

2
xt

)H

+NtQt + (Y d −ABHXd)(Y d −ABHXd)H
∣∣∣ , (9)

where B̃ = R
1
2
xtB, Qt = Ryt

− Rct
R−1

xt
RH

ct
, Rxt

=
1

Nt
XtX

H
t , Ryt

= 1
Nt

Y tY
H
t , Rct

= 1
Nt

Y tX
H
t .

As shown by [17], Qt → Q with probability 1 as Nt →∞,
which means that Qt Â 0 with probability 1 as Nt →∞. By
defining K = XH

d B and assuming Qt Â 0, the log-likelihood
function can be equivalently written as

L(A,B,K)

=− log |NtQt| − log
∣∣∣∣
(
ÃB̃

H − H̃
)(

ÃB̃
H − H̃

)H

+I +
1
Nt

(Ỹ d − ÃKH)(Ỹ d − ÃKH)H

∣∣∣∣
=− log

∣∣∣I + (Y A − ÃBH
A )(Y A − ÃBH

A )H
∣∣∣− log |NtQt|

=− log |NtQt| − log |I + Φ| , (10)

where

Y A = [H̃,
1√
Nt

Ỹ d], BH
A = [B̃

H
,

1√
Nt

KH ], (11)

Φ =
(
Y A − ÃBH

A

)H (
Y A − ÃBH

A

)

=
[
BH

A − Ã
†
Y A

]H

Ã
H

Ã
[
BH

A − Ã
†
Y A

]
+ Φ0, (12)

H̃ = Q
−H

2
t Rct

R
− 1

2
xt , Ỹ d = Q

−H
2

t Y d, Ã = Q
−H

2
t A,

Ã
†

= (Ã
H

Ã)−1Ã
H

being the pseudoinverse of Ã, Φ0 =
Y H

A Y A−Y H
A P ÃY A, and P Ã = Ã(Ã

H
Ã)−1Ã

H
denoting

the projection matrix onto the column space of Ã. It is obvious
that

Φ º Φ0 (13)

and the equality holds if and only if

BH
A = Ã

†
Y A. (14)

This means that the log-likelihood function denoted by (10)
can be maximized under the condition of (14). With the
definition of (11), (14) can be separately denoted by

B̃
H

= Ã
†
H̃ ⇒ B̃

H
= Ã

†
Q
−H

2
t Rct

R
− 1

2
xt , (15)

KH = Ã
†
Ỹ d, (16)

where Ã needs to be determined. Notice that the rank of P Ã

is r0 and the rank of Φ0 is rmax− r0. By substituting (14) in
(10), the maximum likelihood estimation (MLE) of Ã can be
obtained by minimizing the following objective function

log |I + Φ0| = log
rmax−r0∏

i=1

(1 + λi(Φ0)) , (17)

where {λi(Φ0)}rmax−r0
i=1 denote the eigenvalues of Φ0 in

descending order. Following the Poincaré separation theorem
[18], we can have

λi(Y AY H
A ) ≥ λi(Φ0) ≥ λr0+i(Y AY H

A ), (18)

where the second equality holds if and only if P Ã =
U ÃUH

Ã
, with U Ã denoting the matrix by the eigenvectors

corresponding to r0 leading eigenvalues of Y AY H
A , i.e.,

{λi(Y AY H
A )}r0

i=1. r0 can be estimated using Akaike infor-
mation criterion (AIC) [20] or minimum description length
(MDL) [19] criterion with the eigenvalues of H̃H̃

H
. With

P Ã and substituting (15) in (6), the channel estimate can be
obtained by the signal subspace projection:

Ĥs = ABH = Q
H
2

t P ÃQ
−H

2
t Rct

R−1
xt

. (19)

According to the definition of Qt given in (9) and substi-
tuting Y t in Qt, we can derive

Qt =
1
Nt

[
V tV

H
t − V tX

H
t (XtX

H
t )−1XtV

H
t

]
, (20)

E
(
Qt(i, j)

)
=

1
Nt
E

{
vtiv

H
tj − tr

[
XH

t (XtX
H
t )−1Xtv

H
tjvti

]}

=Q(i, j)
{

1− 1
Nt

tr
[
XH

t (XtX
H
t )−1Xt

]}

=Q(i, j)(1− W

Nt
), (21)

where E(·) denotes expectation, Qt(i, j) the (i, j)-th element
of Qt, and vti the ith row of V t. With the result shown above,
it is obvious that the estimate of Q can be denoted by

Q̂
.=

Nt

Nt −W
Qt. (22)
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When all the transmitted symbols are assumed to be known,
i.e., Nd = 0, (19) is reduced to that of the RR [5], which does
not employ the data sequence in channel estimation. Moreover,
we note that (19) is equivalent to projecting the prewhitened
LS estimate of the channel matrix to its spatial signal subspace
obtained by employing both training and the data sequences
within each slot. When M ≤ W and the number of resolvable
path rays is larger than that of the array elements, i.e., r0 = M ,
the channel estimate by (19) is reduced to

Ĥs = Ĥ = Rct
R−1

xt
, (23)

which coincides with the LS estimate. In this case, the spatial
signal subspace projection performed in (19) does not make
sense.

III. CHANNEL ESTIMATION BASED ON SPACE-TIME
SIGNAL SUBSPACE PROJECTION

A. Channel Estimation by Space-Time Signal Subspace Pro-
jection

Since the number of array elements is usually smaller than
the maximum length of the channel in symbol periods, it is
appropriate in practice to assume that M ≤ W . For example,
the scenario mentioned in [22] assumes that M ≤ 8 while
W could be as large as Wmax = 57Ts [Ts denotes symbol
period]. By stacking N contiguous discrete signal vectors of
(2), the received signal represented by a space-time signal
vector is denoted by

yE(t) = [yT (t),yT (t− 1), · · · ,yT (t−N + 1)]T

= HxE(t) + vE(t), (24)

where

xE(t) = [x(t), x(t− 1), · · · , x(t−N −W + 2)]T ,

vE(t) = [vT (t),vT (t− 1), · · · ,vT (t−N + 1)]T ,
(25)

and H denotes a MN × (W +N −1) Toeplitz channel matrix
by the matrix function SN (·) for simplicity of notation:

H = SN (H)

=




h1 · · · hW 0 · · · 0
0 h1 · · · hW · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 h1 · · · hW




. (26)

This function transforms a matrix to its corresponding block
Toeplitz matrix.

By using multiple samples of the received signal vector,
we can obtain the space-time correlation matrix. Eigendecom-
posing this correlation matrix will yield the space-time signal
subspace, which is spanned by the principal eigenvectors of the
matrix. Since this signal subspace is intrinsically the column
space of H, the condition for the existence of this signal
subspace is that H must be full column rank, or the rank
of H must be less than MN . To meet such a condition, it is
necessary to choose a suitable value for N . In the following
theorem we prove a lower bound of N to meet the condition.

Theorem 1: When M < W and the number of resolvable
path rays is larger than that of the array elements, i.e., r0 =
rs = M , the minimum value of N selected for the column
rank of H to be less than MN is N0 = bW−1

M−1c+ 1.
Proof: According to (5), H can be denoted as H =

F NΛNG, where F N = IN ⊗ F (θ), ΛN = IN ⊗ Λ,
G = SN (GT (τ )) and “⊗” denotes Kronecker product. When
rs = M , the rank of these three matrices are that rS =
rank(F N ) = MN , rank(ΛN ) = PN , and rT = rank(G) ≤
min{PN, W +N−1}. Since P ≥ M , the rank of H, denoted
as rH, is equal to min{rS , rT }. Denoting N0 = bW−1

M−1c + 1
and choosing N ≥ N0, we can have W + N − 1 < MN and
straightforwardly rH < MN .

As W is always chosen to be larger than the real length
of channel response to avoid interference from adjacent slots,
a smaller N , e.g., N = bW ′−1

M−1 c + 1 with W ′ < W , can be
used to reduce the dimension of the signal subspace and the
complexity of the method. Notice that larger N will lead to
greater dimension of noise subspace, which may not be helpful
to significantly improve the channel estimation performance.

With properly chosen N , the Toeplitz channel matrix can be
represented by the product of two full column rank matrices
in the same manner as that of (6)

H = ABH , (27)

where A is the MN ×rH matrix and B is with the dimension
of (W + N − 1)× rH.

According to (24), the signal received within a slot can be
represented by

{
Yt = SN (HXt) + Vt = HXT + Vt,

Yd = SN (HXd) + Vd = HXD + Vd,
(28)

where

Yt =




y(1) · · · y(Nt) 0 · · · 0
0 y(1) · · · y(Nt) · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 y(1) · · · y(Nt)




= SN (Y t) (29)

denotes the MN × Ňt block Toeplitz matrix of the re-
ceived signal corresponding to the training sequence, XT

is the Toeplitz training data matrix with its dimension of
(W +N−1)×Ňt and its (m,n)th entry being xt(n−m+1),
Vt = SN (V t) denotes the block Toeplitz noise matrix, and
similarly Yd = SN (Y d) with the dimension MN × Ňd, the
data matrix XD with the dimension (W + N − 1) × Ňt,
and Vd = SN (V d). Notice that Ňt = Nt + N − 1, and
Ňd = Nd + N − 1.

By denoting YA = [H̃, Ỹd], H̃ = SN ( 1√
Nt

Q
−H

2
t Ĥ)XT ,

Ỹd = 1√
Nt

(IN ⊗Q
−H

2
t )Yd, and P Ã as the projection matrix

of the subspace spanned by the rH principle eigenvectors of
YAYH

A , the channel estimation by space-time signal subspace
projection can be performed by

ĤS = (IN ⊗Q
H
2

t )P ÃSN (Q−H
2

t Ĥ). (30)
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The derivation of (30) is given in Appendix A.
Denoting the (i, j)-th block entry of H̃S by the M×1 vector

h̃i,j and employing the block Toeplitz structure of H, the new
estimate of H can be written as

Ĥst =
1
N

N∑
t=1

([h̃t,t, h̃t,t+1, · · · , h̃t,t+W−1]). (31)

Notice that in comparison with the method of LS chan-
nel estimation, the additional computational burden by the
space-time signal subspace projection lies at the computa-
tion of the correlation matrix YAYH

A , which is with the
order of O(M2N2Nd), and its corresponding eigendecom-
position for eigenvalues and eigenvectors has the complexity
of O(M3N3).

Furthermore, it is worthy to mention that some subspace
methods based on stacking multiple contiguous observations
and combining training and data signals have been already
proposed in [14] and [15], where the estimation is performed
on vectorized form of the channel matrix, i.e., h , vec(H) =
[hT

1 , · · · ,hT
W ]T . However, in these methods, the problem of

finding the optimal trade-off between the training sequence
based criterion and the blind subspace (of user data) criterion
is nontrivial and must be considered. Instead, this problem
can be circumvented by directly estimating the block Toeplitz
channel matrix.

B. Channel Estimation Using Multiple Slots

In the cases where the variation of the angle/delay pattern
{θ, τ} over L slots are smaller than the angular-temporal
resolution [6], and the fading path gains α that change
randomly slot by slot have the correlation matrix Rα =
E(ααH) = diag{[σ2

1 , · · · , σ2
P ]}, the channel matrix of the

l-th slot can be parameterized by [6]

H(l) = U sΓ(l)UH
t , (32)

where U s is the M × rs(L) matrix, UH
t is the W × rt(L)

matrix, both are full rank and remain constant within L slots,
and Γ(l) is the rs(L) × rt(L) full-rank matrix that varies
between slots.

With the use of all received samples, the multi-slot channel
estimation can be obtained by

Ĥmst(l) = Q
H
2

t P Ũs
H̃(l)P Ũt

R
−H

2
xt , (33)

where H̃(l) = Q
−H

2
t Rct

(l)R− 1
2

xt , P Ũs
and P Ũt

are projection
matrices of the spatial and temporal subspace defined by (77)
and (86) in Appendix B, respectively.

The derivation of (33) is given in Appendix B.
When rs = M , it is evident to see that P Ũs

= I ,
which means that this projection does not make sense. In this
case, combining the channel estimation by space-time signal
subspace projection proposed in the previous subsection with
the idea of the abovementioned multi-slot channel estimation
will lead to a new channel estimate:

Ĥmstt(l) = (IN ⊗Q
H
2

t )P Ã(l)SN (H̃(l)P Ũt
R
−H

2
xt ), (34)

where P Ã(l) is the projection matrix of the subspace spanned
by the rH(l) principle eigenvectors of YA(l)YH

A (l). Notice that

the channel estimate Ĥmstt(l) can be obtained from Ĥmstt(l)
in the same manner as (31).

IV. CHANNEL ESTIMATION USING SOFT INFORMATION

A. Approximated ML SIMO Channel Estimation

We here consider the problem of SIMO channel estimation
using the soft information. As shown by Fig. 1, in the frame-
work of a turbo receiver, the soft information is obtained from
the maximum a posteriori probability (MAP) decoder and fed
back for soft cancellation and minimum mean squared error
(SC-MMSE) equalization and channel estimation. According
to the signal model for soft iterative channel estimation [13],
the log-likelihood ratios (LLRs) λ1[b(t)] on the interleaved
coded bits b(t) can be exploited to refine the channel estimates
iteration by iteration. In the case that Gray mapping is used
for QPSK modulation, we have [8]

x̄d(t) =
1√
2

(
tanh

λ1[b(2t)]
2

+ i tanh
λ1[b(2t + 1)]

2

)
,

∆xd(t) = xd(t)− x̄d(t), t = 1, · · · , Ñd,

σ2
d(t) = E|∆xd(t)|2 = 1− |x̄d(t)|2,

where λ1[b(t)] = ln P (b(t)=+1)
P (b(t)=−1) .

Define X̄d = E(Xd), ∆Xd = Xd − X̄d, and ∆V d =
H∆Xd = [∆vd(1), · · · ,∆vd(Nd)]. The received signal
matrix (3) can be represented by two parts:

{
Y t = HXt + V t,

Y d = HX̄d + ∆V d + V d.
(35)

Here we assume that v(t) is spatially white with Q =
σ2

vIM , the user data symbols {xd(t)} are independent so
that XdX

H
d ≈ ÑdIW , and the sequence {∆xd(t)} is a

stationary white noise process with the zero mean and the
variance σ2

d (σ2
d = 1

Ñd

∑
t σ2

d(t)). These assumptions lead
to that E[∆xd(t)∆xH

d (t)] = σ2
dI , E[∆vd(t)] = 0, and

E[∆vd(t)∆vH
d (t)] = σ2

dRH , where RH = HHH . By
assuming that ∆vd(t) follows the M × 1 complex Gaussian
distribution, the approximate ML channel estimation can be
performed by maximizing the log-likelihood function

Ĥ =arg max
H

[
−Nt log |σ2

vI| −Nd log |σ2
vI + σ2

dRH | − 1
σ2

v

× ‖Y t −HXt‖2F − ‖Y d −HX̄d‖2(σ2
vI+σ2

d
RH)−1

]
.

(36)

It is seen that the objective function of (36) contains a log-
det function, which makes the problem nonlinear and non-
convex. In the following, we aim to solve this problem by
approximating RH in the two ways.

In the first way, we assume that RH = ρσ2
vI with ρ =

σ2
h/σ2

v denoting the antenna element SNR, the problem (36)
becomes

Ĥ = arg max
H

(
−‖Y t −HXt‖2F

σ2
v

− ‖Y d −HX̄d‖2F
σ2

v + ρσ2
vσ2

d

)
.

(37)
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It is obvious that the problem (37) can be analytically solved
with the closed form solution denoted by

Ĥs1 =
1

Ns
(NtRct

+ NdγR̄cd
)R−1

td , (38)

where γ = (1+σ2
dρ)−1, R̄cd

= 1
Nd

Y dX̄
H
d , Rtd = (NtRxt

+
NdγR̄xd

)/Ns, R̄xd
= 1

Nd
X̄dX̄

H
d , and the “s” in the subscript

of Ĥs1 stands for soft-based estimation. It is seen that this
method is similar to the method by using soft information in
[13] except the additional weighting factor γ. Notice that γ
is often less than or equal to 1, and the equality holds with
perfect a priori information.

In the second way, we replace RH by its estimate R̂H =
ĤĤ

H
, where Ĥ is the channel estimate obtained in the

previous iteration. The problem (36) thus becomes

Ĥ = arg min
H

(‖Y t −HXt‖2F + ‖Y d −HX̄d‖2G
)

(39)

and Ĥ is obtained by letting dL(H)/dH = 0 [L(H) is the
objective function of (39)], which leads to

NtHRxt + NdGHR̄xd
= C, (40)

where G = (I + σ2
d

σ2
v
R̂H)−1 and C = NtRct

+ NdGR̄
H
cd

=
[c1, · · · , cW ].

By defining c =
[
cT
1 , cT

2 , · · · , cT
W

]T
and using Lemma

4.3.1 in [25], (40) can be equivalently rewritten as

(NtR
T
xt
⊗ I + NdR̄

T
xd
⊗G)h = c, (41)

where h , vec(H).
Notice that Rxt

, R̄xd
, and G are always positive definite.

This means that NtR
T
xt
⊗ I + NdR̄

T
xd
⊗ G is also positive

definite and hence (41) has a unique solution. We denote this
unique solution as

ĥs2 = (NtR
T
xt
⊗ I + NdR̄

T
xd
⊗G)−1c. (42)

According to the abovementioned definition of h, the channel
matrix estimate Ĥs2 can be straightforwardly formed by the
terms of ĥs2.

Notice that the knowledge of RH is usually not available.
This means that assuming known RH may cause performance
loss with this ML channel estimator.

B. Approximate ML Channel Estimation Based on Semi-
definite Relaxation

To avoid the abovementioned problem, we here use the
first-order Taylor series expansion to approximate the log-det
function in (36), and then approach this ML channel estimation
problem by semidefinite relaxations (SDR).

Define
Qs , σ2

vI + σ2
dRH .

According to the derivation in [26], the first-order Taylor series
expansion of log |Qs| w.r.t R̂H is given by

log |Qs| ≈tr
[
(σ2

vI + σ2
dR̂H)−1(σ2

dRH − σ2
dR̂H)

]

+ log |σ2
vI + σ2

dR̂H |. (43)

By omitting the constants and substituting (43) in (36), the ML
SIMO channel estimation can be approximately performed by

Ĥ =arg max
H

{
−Ndtr[(σ2

vI + σ2
dR̂H)−1σ2

dRH ]− 1
σ2

v

×‖Y t −HXt‖2F − ‖Y d −HX̄d‖2Q−1
s

}
. (44)

Notice that

‖Y t −HXt‖2F =Nt‖HR
H
2

xt −Rct
R
− 1

2
xt ‖2F + Nttr(Qt),

(45)

and

‖Y d −HX̄d‖2Q−1
s

=Ndtr
[
Q−1

s (HR̄xd
HH − R̄cd

HH −HR̄
H
cd

+ Ryd
)
]

=Nd‖HR̄
H
2

xd
− R̄cd

R̄
− 1

2
xd
‖2

Q−1
s

+ Ndtr
(
Q−1

s Rvd

)
, (46)

where Ryd
= 1

Nd
Y dY

H
d , Rvd = Ryd

− R̄cd
R̄
−1
xd

R̄
H
cd

, Qt is
defined in (9), and the second term in (45) is a constant.

By substituting (45) and (46) in (44) and ignoring the
constant term, (44) can be equivalently written as

Ĥ =arg max
H

[
−Ndtr(R0RH)− Nt

σ2
v

‖HR
H
2

xt −Rct
R
− 1

2
xt ‖2F

−Nd‖HR̄
H
2

xd
− R̄cd

R̄
− 1

2
xd
‖2

Q−1
s
−Ndtr

(
Q−1

s Rvd

) ]
,

(47)

where R0 = σ2
d(σ2

vI + σ2
dR̂H)−1. Furthermore, (47) can

be equivalently rewritten as the following nonlinear and non-
convex optimization problem:

min
H,T 1,T 2,T 3

{
Nttr(T 1) + Nd[tr(R0RH) + tr(T 2 + T 3)]

}

subject to

(HR
H
2

xt −Rct
R
− 1

2
xt )

1
σ2

v

(HR
H
2

xt −Rct
R
− 1

2
xt )H ¹ T 1,

(HR̄
H
2

xd
− R̄cd

R̄
− 1

2
xd

)HQ−1
s (HR̄

H
2

xd
− R̄cd

R̄
− 1

2
xd

) ¹ T 2,

R
1
2
vdQ

−1
s R

1
2
vd ¹ T 3,

RH = HHH , Qs = σ2
vI + σ2

dRH ,

T i º 0, T i = T H
i , i = 1, 2, 3. (48)

Using the relaxation RH = HHH ⇒ HHH ¹ RH and
following Schur complement representation:

HHH ¹ RH ⇔
[

I HH

H RH

]
º 0, (49)

the optimization problem (48) can be reformulated into the
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following semidefinite programming (SDP):

min
H,T 1,T 2,T 3,RH

{
Nttr(T 1) + Nd[tr(R0RH) + tr(T 2 + T 3)]

}

subject to
 σ2

vIW (HR
H
2

xt −Rct
R
− 1

2
xt )H

HR
H
2

xt −Rct
R
− 1

2
xt T 1


 º 0,


 σ2

vI + σ2
dRH HR̄

H
2

xd
− R̄cd

R̄
− 1

2
xd

(HR̄
H
2

xd
− R̄cd

R̄
− 1

2
xd

)H T 2


 º 0,


σ2

vI + σ2
dRH R

1
2
vd

R
1
2
vd T 3


 º 0,

[
I HH

H RH

]
º 0,

T i º 0, T i = T H
i , i = 1, 2, 3. (50)

For the case of the first iteration, we have X̄d = 0 and the
SDP problem (50) is therefore reduced to

min
H,T 1,T 3,RH

{Nttr(T 1) + Nd[tr(R0RH) + tr(T 3)]}
subject to

 σ2
vIW (HR

H
2

xt −Rct
R
− 1

2
xt )H

HR
H
2

xt −Rct
R
− 1

2
xt T 1


 º 0,


σ2

vI + RH R
1
2
yd

R
1
2
yd T 3


 º 0,

[
I HH

H RH

]
º 0,

T i º 0, T i = T H
i , i = 1, 3. (51)

The SDP problems (50) and (51) can be efficiently solved
using any of the available modern interior point methods, such
as SeDuMi [24]. The channel estimate obtained by solving (50)
and (51) is denoted by Ĥs3.

C. Refining the Soft-Based ML Channel Estimate by Space-
Time Signal Subspace Projection

The above soft-based ML channel estimates can be further
refined by the space-time signal subspace projection [the
subscript “sist” stands for this projection]. By substituting
the estimate Ĥsi, i = 1, 2, 3, in (30), we obtain H̃si and
then H̃sist from (31). Notice that the pre-whitening matrix
is Q

1
2
N = 1

σv
INM and the rank of P Ã is considered as

rH = W + N − 1. In the case when the rank is underes-
timated, the projection may cause larger distortion than noise
suppression even though the quality of the original channel
estimate is good.

On the other hand, when the variation of the delay pattern
vector τ over L slots is smaller than the temporal resolution,
the channel estimate can be further refined by substituting
H̃sist, i = 1, 2, 3, into (34). We denote the method as “sistt”
and the corresponding channel estimate as H̃sistt, i = 1, 2, 3.
The temporal subspace projection matrix P Ũt

can be re-
constructed by refined channel estimate in each iteration.
According to the steps mentioned in Appendix B, P Ũt

is

constructed from

Rt(L) = H̃
H

L H̃L =
L∑

l=1

H̃
H

(l)H̃(l), (52)

where by the statistical property associated with H̃(l), H̃(l) =
Ĥs1(l)R

H
2

td (l) for Ĥs1(l) and H̃(l) = H̃s2(l) for Ĥs2(l)
with h̃s2(l) , vec(H̃s2) and

h̃s2(l) = (NtR
T
xt
⊗ I + NdR̄

T
xd
⊗G)

H
2 ĥs2(l). (53)

Because the statistical property of Ĥs3(l) is not known, the
channel estimate Ĥs3(l) can only be refined by the temporal
subspace projection related to the matrix of (52) for Ĥs1(l)
or Ĥs2(l).

V. CRAMER-RAO BOUNDS

A. Cramer-Rao Bound of SIMO Channel Estimation With
Training and Unknown Data Symbols

The mean square error (MSE) of channel estimation is lower
bounded by the Cramer-Rao bound (CRB). We here derive
the CRB for SIMO channel estimation with both the known
training symbols and unknown data symbols. We assume that
H = ABH and rH ≤ min{M, W} with A denoting a M ×
rH matrix and BH denoting a rH ×W matrix.

The corresponding CRB is given by

CRB(h) = tr
[
J−1

c D̃(D̃
H

D̃)†D̃
H

]
=tr

(
J−1

c P D̃

)
, (54)

where h = vec(H), P D̃ = D̃D̃
†
, D̃ = J

1
2
c D,

D = [B∗ ⊗ IM , IW ⊗A], Jc = NsR
T
x ⊗ Q−1 − (X∗

d ⊗
Q− 1

2 )P Ȟq
(XT

d ⊗ Q− 1
2 ), Rx = 1

Ns
(NtRxt

+ NdRxd
),

Rxd
= 1

Nd
XdX

H
d , Ȟq = (INd

⊗Q− 1
2 )Ȟ, and

Ȟ =




hH
1 · · · hH

W 0 · · · 0

0 hH
1 · · · hH

W · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 hH
1 · · · hH

W




H

. (55)

The derivation of (54) is given in Appendix C.

B. Cramer-Rao Bound of Multislot SIMO Channel Estimation
With Training and Unknown Data Symbols

For the multislot case, we derive the CRB of the SIMO
channel estimation for L → ∞. According to the channel
model of multislot channel estimation (32), the CRB normal-
ized by L, for L →∞, is given by

CRB(h) =tr
{
(P Ut

⊗ P Us
)E[J−1

c (l)]
}

, (56)

where E[J−1
c (l)] = 1

L

∑L
l=1 J−1

c (l), Jc(l) = NsR
T
x (l) ⊗

Q−1 − (X∗
d(l)⊗Q− 1

2 )P Ȟq(l)(X
T
d (l)⊗Q− 1

2 ).
The derivation of (56) is given in Appendix D.
In addition, it can be easily derived that when Nd = 0, i.e.,

user’s data is not employed in channel estimation, (56) reduces
to the one as shown in [6].
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C. Approximated Cramer-Rao Bound of Channel Estimation
With Training and Soft Information

For the case where soft symbols are available, we derive
the CRB for the joint {xd(t)}Ñd

t=1 and H estimation.
By assuming that ∆x̃d = [∆xd(1), · · · ,∆xd(Ñd)] obeys

the Gaussian distribution with zeros-mean and variance σ2
dI

and denoting x̄d = [x̄d(1), · · · , x̄d(Ñd)], the log-likelihood
function for the joint channel and user data symbol estimation
can be expressed as

Ls(H, x̃d) =− 1
σ2

d

‖x̃d − x̄d‖2F −
1
σ2

v

‖Y −HX‖2F . (57)

For simplicity, denote Ls(H, x̃d) as Ls(β) and β̂ as any
estimator of β̃, where β and β̃ are the same as those defined
in (90) and (91). According to [28], we can have that

cov(β̂)− J−1

β̃
º 0, (58)

where

J β̃ = E




(
∂Ls(β)

∂β̃
T

)H (
∂Ls(β)

∂β̃
T

)
 =

[
Jβ 0
0 JT

β

]
, (59)

and

Jβ =

[
DH(NsR

T
x ⊗ 1

σ2
v
IM )D DH(X∗

d ⊗ 1
σ2

v
IM )Ȟ

ȞH(XT
d ⊗ 1

σ2
v
IM )D 1

σ2
v
ȞHȞ+ 1

σ2
d

IÑd

]
.

(60)

By following the same steps from (94) to (98), we can obtain
the CRB for the channel estimation using soft information by

CRB(h) =tr
(
J−1

c P D̃

)
, (61)

where Jc = NsR
T
x⊗ 1

σ2
v
IM−(X∗

d⊗ 1
σ2

v
IM )PH(XT

d⊗ 1
σ2

v
IM )

and PH = Ȟ( 1
σ2

v
ȞHȞ+ 1

σ2
d

IÑd
)−1ȞH .

VI. NUMERICAL RESULTS

We here conduct several numerical experiments to state
the performance of the proposed channel estimation methods.
To compare these methods with the existing ones, we use
mean square error (MSE) and bit error rate (BER) as the
performance metrics. In all the experiments, we consider that a
uniform linear array with half-wavelength spacing is employed
at the base station, and assume that the space-time wireless
channel varies slot by slot but stays constant within each slot.
We also assume Gray mapped QPSK symbols for training
sequence as well as unknown data sequence. The pulse shaping
function g(t) is assumed to be the raised cosine impulse
response with the roll-off factor of 0.22.

In the first experiment, we consider the uplink SIMO
channel estimation of a wireless communication system with a
single user and a base station, where the base station antenna
array has four elements, i.e., M = 4 and the received signal
samples within one slot (L = 1) are used for the estimation.
The frame structure is chosen according to the UMTS-TDD
standard [22], where the length of training sequence, user data
sequence, and guard interval are set to Ñt = 456, Ñd = 1952,
and Ng = 96, respectively. The wireless channel is generated

following the stochastic model for the bad urban case used in
[5] (there are two independent clusters and each cluster has ten
resolvable multipath rays) and the maximum channel length
is set to Wmax = 57Ts under the UMTS-TDD standard [22].
This means that the rank of H is r0 = M . In the experiment,
the spatially and temporally white Gaussian noise (STWGN)
is considered. 5000 channel realizations are performed for
each case and the MSE of channel estimation is evaluated
by E[‖Ĥ(k) −H‖2F ]/E[‖H‖2F ].

In Fig. 2, we plot the MSE and BER curves obtained
by various channel estimation methods versus the input per-
antenna-element SNR (or element SNR). These channel esti-
mation methods include ULS by (23), RR by [5], the signal
subspace projection method by (19), our proposed space-time
signal subspace projection method by (31), which in Fig.
2 are abbreviated by ULS, RR, SSP, and ST, respectively.
These abbreviations will be used in the subsequent figures.
The dimension of the associated space-time signal subspace is
determined by Theorem 1, where N is chosen as bW−1

M−1c+ 1
with W = Wmax for ST, or W = 30 for lower complexity.
The case of W = 30 is abbreviated as ST2.

From Fig. 2, we can see that the MSE of our proposed ST
method outperforms ULS method by a factor of 4.5dB. It can
be also seen from Fig. 2 that at high SNR, the MSE of the RR
and SSP method are larger than that of the ULS method. This
is because the channel rank is underestimate by either AIC
or MDL information criterion when r0 = M . Furthermore,
the effect of distortion caused by the rank estimation error is
larger than noise suppression when the SNR is high (see the
analysis in [5]). Fig. 2 shows that the BER performance with
RR and SSP are almost the same and slightly worse than that
with ST. The BER improvements with ST over ULS and RR
are about 0.7dB and 0.2dB, respectively, at BER = 10−5.

In the second experiment, the number of antenna elements,
the channel length, and the length of user data sequence are
set by M = 8, W = Wmax, and Ñd = 1952, respectively,
while the length of training sequence ranges from 114 to
456, and the rest parameters are the same as that in the first
experiment. In this experiment we compare the MSE and BER
performances of all the abovementioned estimation methods
with different length of training sequence. The SNR is set to
20dB and 5000 channel realizations are performed to evaluate
the performance. The simulation results are plotted in Fig. 3.

From Fig. 3, it is seen that the SSP and the ST method
can achieve almost the same BER performance of the ULS
with shorter length of the training sequence, and the BER
of the ST method with 270 training symbols almost reaches
that of the ULS with 456 training symbols. This means that
about 40% training symbols can be saved without loss of BER
performance.

In the third experiment, the signal samples within two slots
(L = 2) are used for channel estimation, where the variation
of the angle/delay pattern over L = 2 slots are assumed
constant, the total length of training plus data sequences within
one slot is set to Ñt + Ñd = 2408, and the rest parameters
are the same as that in the first experiment. Additionally,
we consider the length of training sequence within each
slot as a parameter, which has two values Ñt = 114 and
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Ñt = 228. Furthermore, we assume that the array noise
is spatially correlated and Gaussian distributed (SCGN) [in
the presence of unknown interference] with the covariance
Qm,l = σ2

v0.9|l−m| exp[−jπ(l − m) sin θ] and θ = π/3. In
the experiment, we compare the performance of ULS by (23),
MS [6], ST by (31), and the signal subspace projection method
for multiple slots by (34). For simplicity, the last method
is abbreviated by MSTT. In the experiment, 8000 channel
realizations are used for each case.

The MSE curves of these methods are plotted in Fig. 4a.
From the figure, we see that when Ñt = 114 ST and MSTT
outperforms ULS by about 9.5dB and 10dB, respectively,
while when Ñt = 228 ST and MSTT outperform ULS by
more than 8dB and 9dB, respectively. However, the MSE of
the MS method decreases slowly as SNR becomes larger and
merges into that of the ULS method. This phenomena occurs in
the same manner as that in the first experiment. Recall that the
channel estimation accuracy with the the methods by temporal
subspace projection, such as MS, depends on the length of
training sequence. This means that when the number L of
the slots increases, more additional training sequences can be
used to estimate the associated temporal subspace. However,
for the cases of smaller L, e.g., L = 1, 2, as in the second and
the third experiments, the temporal signal subspace can not
be correctly estimated, such that the corresponding projection
will deteriorate the initial channel estimate.

The corresponding BER curves are plotted in Fig. 4b.
The black solid line is considered as the lower BER bound
corresponding to the perfectly known Q and H . It is seen
from the figure that ST outperforms ULS by about 1.3dB
and 0.5dB at BER = 10−5 with Ñt = 114 and Ñt = 228,
respectively. However, all the other methods perform worse
than the ULS method at BER = 10−5. This is caused by
the deteriorated channel estimates from inaccurate temporal
subspace projection.

In the fourth experiment, the length of the training and
user data sequences are set to Ñt = 114 and Ñd = 972,
respectively, while L ranges from 1 to 15. The rest of the
parameters are the same as that in the first experiment. Also
the array noise is assumed to be spatially correlated Gaussian
(SCG) distributed. In the experiment, we compare the MSE
and BER performance of the MS method [6], the ST method
by (31), the MSTT method by (34), and the signal subspace
projection method based on multiple slots by (33). The last
one is abbreviated as MST. The element SNR is set to
20dB. 8000 channel realizations are performed to evaluate the
performance. The performance curves with these methods are
plotted in Fig. 5.

From Fig. 5, we can see that the MSE and the BER of
the multislot based methods decrease by increasing L, and ST
outperforms MS and MST in BER when L is small (L ≤
2). The MST method performs slightly better than the MS
method, and the MSTT method outperforms the MS method
with the same L. This means that the ST and MSTT methods
are more appropriate to fast fading channels comparing to the
MS method.

In the next two (fifth and sixth) experiments, the length
of the training sequence, the user’s data sequence, and the

guard interval are set to Ñt = 92, Ñd = 400, and Ng = 39,
respectively, in each slot. The number of the antenna array
elements is chosen as M = 4. The covariance matrix of the
spatially correlated Gaussian noise is assumed to be the same
as that in the second experiment. The block multipath fading
channels for both rank deficient (rH < M ) and full row rank
(rH = M ) cases are generated according to the parameter
setting of the following two cases, respectively.

Case 1 (rH < M ): There are P = 6 path rays with the
direction of arrivals θ = [ 1

18 , 1
18 , 1

18 , 1
18 ,− 1

6 ,− 1
6 ]π, the mean

path power Rα = 0.39× diag{[1, 0.63, 0.40, 0.2, 0.25, 0.06]},
the relative path delays τ = [0, 0.2, 0.4, 0.6, 15, 17.2]Ts, and
the maximum temporal channel length Wmax = 23Ts.

Case 2 (rH = M ): There are P = 9 resolvable path
rays with the directions of arrivals θ = [−40◦,−38◦,−35◦,
−8◦,−4◦, −2◦, 18◦, 20◦, 25◦], the mean path power Rα =
diag{ 4

41 [1, 1
2 , 1

4 , 3, 3
2 , 5

4 , 2, 1
2 , 1

4 ]}, the relative path delays τ =
[0, 1.2, 2.2, 5.8, 6.2, 7.2, 10.2, 11.2, 12.6]Ts, and the maximum
temporal channel length Wmax = 23Ts.

To compare the average performance of channel estimation
with the associated CRB, we generate 50 channel realizations
with randomly varying complex path gains for each case of
the parameter settings, and perform 100 Monte Carlo runs for
each realization.

In the fifth experiment, we plot the CRB and the MSE
curves of two channel estimation methods versus SNR for the
cases of using single slot data samples. The two corresponding
methods are SSP by (19) and ST by (31). The CRB is calcu-
lated according to (54). In Fig. 6 and Fig. 7, the average MSE
and CRB for the estimation with these 50 channel realizations
versus SNR are plotted under the channel parameters’ setting
of Case 1 and Case 2 .

From these two figures, we can see that the SSP and
ST methods achieve almost the same MSE in the low rank
case (Case 1) and the gap between the CRB and MSE
curves is roughly 6dB with the both SSP and ST methods.
However, in the full rank case (Case 2), the gap for the ST
method is reduced to about 1dB, while the gap for the SSP
method becomes larger as the SNR increases. The performance
comparison with the SSP method shows that the ST method
is robust to the full rank case.

In the sixth experiment, the channel parameter settings are
the same as that in the fifth experiment, the element SNR is
set to 20dB, L varies from 1 to 60, and all the signal samples
are used. We plot in Fig. 8 the MSE and CRB curves of
the channel estimation methods versus L, where the CRB is
calculated by (56) using multiple slots.

Fig. 8a demonstrates for the low rank case, i.e., rH < M ,
the MSE’s of the MST, MS, and MSTT methods, where the
former two approach the CRB closely as L increases, while the
last one suffers from the plateau. This is due to the projection
matrix P Ã(l) in (34), which is estimated with only one slot-
based signal samples. For the full row rank case, Fig. 8b shows
that increasing L is not helpful to improve the performance
of the MST and MS methods since the information criterion
for rank estimation does not estimate the rank accurately with
full rank matrix.

In all previous experiments, we didn’t consider the soft-
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symbols constructed by using the decoder feedback. In the
following three experiments, we evaluate the effect of the
soft information on the performance of the channel estimation
methods. We assume that a frame of 8000 random binary
equiprobable information symbols are coded by a four-state
convolutional code with generators (7, 5) and then permuted
by a random interleaver. The coded bits are mapped on to
8000 QPSK symbols and then arranged to L = 20 slots. The
length of the training sequence is set to Ñt = 92. We choose
N = bWmax−1

M−1 c+ 5 to specify the noise subspace with larger
dimension. We here only consider the parameters’ setting of
Case 2 in the simulation.

In the seventh experiment, we consider the effect of the
mutual information between the coded bits b(t) and the corre-
sponding LLR sequence λ1[b(t)] on the performance of chan-
nel estimation. According to [30], the relationship between
b(t) and λ1[b(t)] is represented by λ1[b(t)] = σ2

2 b(t) + σv(t),
where the random variable v(t) obeys standard normal distri-
bution. Then the relationship between the mutual information
I and σ is given by [30]

I = 1− 1√
2πσ

∫ +∞

−∞
e
−(ξ−σ2/2)2

2σ2 log2(1 + e−ξ)dξ. (62)

Based on these two relations, we can obtain λ1[b(t)] with
b(t) given and I set to a certain value of interest. By using
the artificial LLR sequence as the decoder feedback in the
turbo system [11], we can evaluate the effect of this mutual
information on the performance of channel estimation. The
MSE with the approximate ML methods by (38), (42), (51),
their refinements H̃sist, i = 1, 2, 3, based on signal subspace
projection, and the approximate CRB by (61) are plotted in
Fig. 9, which are abbreviated by si, sist, i = 1, 2, 3, and CRB.
We use R̂H = Ĥs1Ĥ

H

s1 when solving Ĥs2, and approximate
the unknown variance of ∆xd(t), i.e., σ2

d, by using a long
artificial LLR sequence when calculating the CRB. The SNR
is set to 3dB.

From Fig. 9, it can be seen that the performance of channel
estimation is improved with the increased mutual information.
When I = 0, the s3 method outperforms the other two methods
by MSEĤs3

/MSEĤsi
' 1dB, i = 1, 2. This is because the

data part Y d make contributions in the s3 method whereas the
other two methods are not able to use this data part. When
I = 1, these three methods are equivalent since there is no ap-
proximation when the whole symbols are known. Furthermore,
we can see that the performance improvements of the sist
methods over the si methods are MSEĤsi

/MSEĤsist
' 1.4dB

with I = 0 and 0.3dB with I = 1. This reduction by the
ST subspace projection is due to the fact that the soft-based
channel estimation methods keep improving the performance
as the mutual information approaches 1.0, whereas the space-
time signal subspace remains unchanged.

In the eighth experiment, we consider the impacts of ap-
proximating RH by its estimation on the channel estimates
Ĥs1 and Ĥs2, respectively. The SNR is set to 3dB. The
mutual information is set to 0.6. Since replacing RH by
R̂H = ĤĤ in (36) will make the channel estimation
performance dependent on the initial channel estimate Ĥ , we
plot in Fig. 10 the MSE versus the MSE of initial channel

estimate. It can be seen from Fig. 10 that the MSE of the
channel estimate Ĥs2 is almost constant even though the MSE
of the initial channel estimate varies from 0 to 0.5. Moreover,
there is little impact of the initial channel estimation error on
the MSE of Ĥs1 for given SNR ρ. These imply that the two
methods are not so sensitive to the error of the initial channel
estimate.

In the nine experiment, we analyze the performance of
channel estimation in terms of BER versus SNR with the
iterative receivers described in Section IV. The channel es-
timates Ĥsi, Ĥsist and Ĥsistt with i = 3 are considered.
Ĥ obtained in the previous iteration is used to calculate R0.
In Fig. 11, we plot the BER curves at the first, the second,
and the fourth iterations for the s3, the s3st, the s3stt methods,
respectively, which are abbreviated by s3-j, s3st-j, and s3stt-
j [j denotes the iteration number]. The corresponding MSE
curves are plotted in Fig. 12.

From Fig. 11, we see that s3st receiver performs slightly
better than the s3 receiver and the gap between the s3st
receiver and the one with exact channel knowledge is less than
2dB at the fourth iteration at BER = 10−5. The performance
of the s3stt receiver is the best among those methods presented,
and is close to the known-channel lower bound (with less than
0.3dB gap at the fourth iteration at BER = 10−5). From
Fig. 12, we can see that the performance improvement of
the channel estimation methods are significant at the second
iteration, and the gap between the first and the second iteration
are more than MSE1/MSE2 = 5.6dB. However, after the 2nd
iteration, the performance improvement is not significant.

Notice that the frequency domain decision-feedback equal-
ization (FD-DFE) method [31], [32] is used to estimate the
data sequence for the first to the fourth experiments, while
the soft-cancelation minimum mean square equalization (SC-
MMSE) method is used for the ninth experiment.

VII. CONCLUSION

In this paper, we have proposed a new channel estima-
tion methods based on space-time signal subspace projection,
which is suitable for even full row-rank channel matrix or fast
changing channels. Under the assumption that the variance of
the delay/angle pattern can be ignored during multiple slots,
we extend the channel estimation method to employing the
signal samples from multiple slots. By following the approx-
imated maximum likelihood criterion, we have also proposed
an approximate ML channel estimation method using the soft
information fed back from the iterative decoder. Simulation
results show that all these proposed methods are efficient and
outperform the existing ones.
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APPENDIX A
DERIVATION OF (30)

The log-likelihood function of (28) can be expressed as

L(H,Q,Xd) =− log |QN | −
1

Ňs

{
‖Yt − SN (HXt)‖2Q−1

N

+‖Yd −HXD‖2Q−1
N

}
, (63)

where QN = Ns

Ňs
IN ⊗Q and Ňs = Ňt + Ňd.

Using similar steps for deriving (7)-(10), we can have

L(H,Q,Xd)

=− log
∣∣∣∣SN

(
ĤXt −HXt

)
SN

(
ĤXt −HXt

)H

+NtQt + (Yd −HXD)(Yd −HXD)H
∣∣ , (64)

where

Qt = [Yt − SN (HXt)] [Yt − SN (HXt)]
H

− SN

(
ĤXt −HXt

)
SN

(
ĤXt −HXt

)H

is an NM ×NM dimensional block Toeplitz matrix with the
(i, j)-th block

Qi,j

=
1
Nt

[0i−1,Y t −HXt, 0N−i][0j−1,Y t −HXt, 0N−j ]H

− 1
Nt

[0i−1, (Ĥ −H)Xt, 0N−i][0j−1, (Ĥ −H)Xt, 0N−j ]H

=
1
Nt

[0i−1,V t, 0N−i][0j−1,V t, 0N−j ]H

− 1
Nt

[0i−1,V tP xH
t

, 0N−i][0j−1,V tP xH
t

, 0N−j ]H

=

{
Qt i = j

1
Nt

V t

(
Ĩi−j − P xH

t
Ĩi−jP xH

t

)
V H

t i 6= j
. (65)

In (65), Ĩi is the Nt × Nt dimensional matrix with the left
lower i-th diagonal entries of 1 and other entries of 0, P xH

t
=

XH
t (XtX

H
t )−1Xt, 0i denotes the M × i zero matrix, and

i, j ∈ 1, · · · , N . Following the standard theory in statistics
under the stated assumptions [see Theorem 2.3 in [23]], we
obtain {

1
Nt

V t

(
Ĩi−j − P xH

t
Ĩi−jP xH

t

)
V H

t → 0
Qt → Q

,

with probability 1 as Nt →∞, (66)

which implies that Qt → IN ⊗ Qt and Qt Â 0, with
probability 1 as Nt → ∞. Replacing Qt by IN ⊗ Qt and
assuming Qt Â 0, (63) can be equivalently written as

L(H,Q,Xd)

=− log
∣∣∣∣
[
SN (ĤXt)−HXT

] [
SN (ĤXt)−HXT

]H

+ NtIN ⊗Qt + (Yd −HXD)(Yd −HXD)H

=− log |NtIN ⊗Qt| − log
∣∣∣I + (YA − ÃBH

A )

·(YA − ÃBH
A )H

∣∣∣
=− log |NtIN ⊗Qt| − log |I + ΦN | (67)

where Ã = 1√
Nt

(IN ⊗Q
−H

2
t )A,

BH
A = [BHXT ,BHXD], YA = [H̃, Ỹd],

H̃ = SN (
1√
Nt

Q
−H

2
t ĤXt)

= SN (
1√
Nt

Q
−H

2
t Ĥ)XT , (68)

Ỹd = 1√
Nt

(IN ⊗Q
−H

2
t )Yd, and ΦN = (YA−ÃBH

A )H(YA−
ÃBH

A ). Using the same steps as (12)-(18), we see that the
log-likelihood function (67) can be maximized when

BH
A = Ã†YA, (69)

ΦN = YH
A (I − P Ã)YA,

P Ã = U ÃUH
Ã , (70)

where Ã† = (ÃHÃ)−1ÃH , P Ã = ÃÃ† denotes the
projection matrix of the column space of Ã, U Ã denotes
the eigenvectors corresponding to rH leading eigenvalues of
YAYH

A , and the rank rH can be estimated using AIC [20]
or MDL [19] information criterion from these eigenvalues.
Substituting the equations in (68) to (69) yields

BHXT = Ã†SN

(
1√
Nt

Q
−H

2
t Ĥ

)
XT

=⇒BH = Ã†SN

(
1√
Nt

Q
−H

2
t Ĥ

)
(71)

when XT XH
T is invertible. Substituting (71), A =

√
Nt(IN⊗

Q
H
2

t )Ã, and (70) in (27) yields (30).

APPENDIX B
DERIVATION OF (33)

The log-likelihood function can be denoted as

L(H(1),Xd(1), · · · ,H(L),Xd(L),Q)

=− log |Q| − 1
LNs

L∑

l=1

(
‖Y t(l)−H(l)Xt‖2Q−1

+‖Y d(l)−H(l)Xd(l)‖2Q−1

)
. (72)

Denote

BH(l) = Γ(l)UH
t , BH

L = [BH(1), · · · ,BH(L)]
Y tL = [Y t(1), · · · ,Y t(L)], XtL = IL ⊗Xt,

Y dL = [Y d(1), · · · ,Y d(L)],

XdL = Diag(Xd(1), · · · ,Xd(L)), KL = BH
L XdL,

(73)

where “Diag” transforms its argument matrices to a block
diagonal matrix. (72) can be equivalently written as

L(H(1),Xd(1), · · · ,H(L),Xd(L),Q)

=− log |Q| − 1
LNs

(
‖Y tL −U sB

H
L XtL‖2Q−1

+‖Y dL −U sKL‖2Q−1

)
. (74)
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Using the similar derivation steps presented in Section II-C,
we can have the ML solution

Γ(l)Ũ
H

t = Ũ
†
sH̃(l), (75)

KL = Ũ
†
sỸ dL ⇒ BH(l)Xd(l) = Ũ

†
sỸ d(l) (76)

P Ũs
= Ũ sŨ

†
s = U Ũs

UH
Ũs

, (77)

Qt =
1
L

L∑

l=1

[
Ryt

(l)−Rct
(l)R−1

xt
RH

ct
(l)

]
, (78)

where Ũ t = R
1
2
xtU t, Ũ s = Q

−H
2

t U s,
Ỹ dL = Q

−H
2

t Y dL, Ỹ d(l) = Q
−H

2
t Y d(l),

Qt = 1
L

∑L
l=1

[
Ryt

(l)−Rct
(l)R−1

xt
RH

ct
(l)

]
, U Ũs

denotes the eigenvectors corresponding to the rs leading
eigenvalues of Y ALY H

AL, Y AL = 1√
L

[H̃L, 1√
Nt

Ỹ dL], and
H̃L = [H̃(1), · · · , H̃(L)].

Let

A(l) = U sΓ(l), AN = [AT (1), · · · ,AT (L)]T

Y tL = [Y T
t (1), · · · ,Y T

t (L)]T ,

Y dL = [Y T
d (1), · · · ,Y T

d (L)]T ,

KdL = [XH
d (1)B(1), · · · ,XH

d (L)B(L)]H . (79)

The log-likelihood function (72) can be equivalently written
as

L(H(1),Xd(1), · · · ,H(L),Xd(L),Q)

=− 1
L

log |QL| −
1

LNs

(
‖Y tL −ANUH

t Xt‖2Q−1
L

+‖Y dL − (IL ⊗U s)KdL‖2Q−1
L

)
. (80)

where QL = IL ⊗ Q denotes the spatial covariance of the
noise. Following the steps in Section II-C and substituting
(76) in (80), we can have

L(H(1),Xd(1), · · · ,H(L),Xd(L),Q)

=− log
∣∣∣∣Nt

(
AN Ũ

H

t −RctL
R
− 1

2
xt

)(
AN Ũ

H

t −RctL
R
− 1

2
xt

)H

NtQLt +
[
Y dL − (IL ⊗U sŨ

†
s)Ỹ dL

]

·
[
Y dL − (IL ⊗U sŨ

†
s)Ỹ dL

]H
∣∣∣∣

=− log |NtIL ⊗Qt| − log |I + RT + RD| (81)

where QLt = IL ⊗ Qt, RctL
= 1

Nt
Y tLXH

t and Ỹ dL =

(IL ⊗Q
−H

2
t )Ỹ dL, Qt is the same as defined in (78),

RD =
[
IL ⊗ (I − P Ũs

)
]
Ỹ dLỸ

H

dL

[
IL ⊗ (I − P Ũs

)
]H

,

(82)

RT =
[
H̃L − ÃN Ũ

H

t

] [
H̃L − ÃN Ũ

H

t

]H

=
[
ÃN − H̃LŨ

H†
t

]
Ũ

H

t Ũ t

[
ÃN − H̃LŨ

H†
t

]H

+ H̃LH̃
H

L − H̃LP Ũt
H̃

H

L , (83)

H̃L = [H̃
T
(1), · · · , H̃

T
(L)]T , ÃN = (IL ⊗ Q

−H
2

t )AN ,
and P Ũt

= Ũ
H†
t Ũ

H

t . Let P Ũt0
= U Ũt

UH
Ũt

and U Ũt

denotes the eigenvectors corresponding to rt leading eigen-
values of H̃

H

L H̃L, rt ≤ min(LM, W ). It is evident that
H̃LP Ũt0

H̃
H

L º H̃LP Ũt
H̃

H

L by using eigenvalue decom-
position and then we have

I + RT + RD º I + RD + H̃LH̃
H

L − H̃LP Ũt0
H̃

H

L ,
(84)

where the equality holds if and only if

ÃN =H̃LŨ
H†
t ⇒ Ũ sΓ(l) = H̃(l)Ũ

H†
t , (85)

P Ũt
=P Ũt0

. (86)

In other words, the ML solution to (72) can also be approached
by (85)-(86). Γ(l) that satisfies (75) and (85) simultaneously
can be obtained by

Γ(l) = Ũ
†
sH̃(l)Ũ

H†
t . (87)

Substituting (87), U t = R
− 1

2
xt Ũ t, and U s = Q

H
2

t Ũ s in (32)
yields (33).

APPENDIX C
DERIVATION OF (54)

To facilitate the derivation, we rewrite the log-likelihood
function of joint channel estimation and unknown data symbol
detection as

Ls(Q,H, x̃d)

=−Ns log |Q| − ‖Y t −HXt‖2Q−1 − ‖yd − Ȟx̃d‖2INd
⊗Q−1

=−Ns log |Q| − ‖y − (XT ⊗ IM )(IW ⊗A)b‖2INs⊗Q−1

=−Ns log |Q| − ‖y − (XT ⊗ IM )(B∗ ⊗ IM )a‖2INs⊗Q−1

(88)

where x̃d = [xd(1), · · · , xd(Ñd)]T is the unknown data
sequence, h = vec(H), y = vec(Y ), a = vec(A), and
b = vec(BH).

We define q = vec(Q), β =
[
aT , bT , x̃T

d

]T

, q̃ =
[
qT , qH

]T
, β̃ =

[
βT ,βH

]T

, r =
[
q̃T , β̃

T
]T

, and r̂ is
any unbiased estimator of r. Ls(Q,H, x̃d) is replaced by
Ls(q,β). According to [28], we have:

cov(r̂)− J−1
r º 0, (89)

where “cov” is the notation to denote covariance matrix and

Jr = E

[(
∂Ls(q,β)

∂rT

)H (
∂Ls(q,β)

∂rT

)]
. (90)
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Define

J q̃ = E

[(
∂Ls(q,β)

∂q̃T

)H (
∂Ls(q,β)

∂q̃T

)]
,

J q̃β̃ = E

[(
∂Ls(q,β)

∂q̃T

)H
(

∂Ls(q,β)

∂β̃
T

)]
,

J β̃q̃ = E




(
∂Ls(q,β)

∂β̃
T

)H (
∂Ls(q,β)

∂q̃T

)
 ,

J β̃ = E




(
∂Ls(q,β)

∂β̃
T

)H (
∂Ls(q,β)

∂β̃
T

)
 . (91)

We have J q̃β̃ = 0, J β̃q̃ = 0, and

J β̃ =

[
Jβ 0
0 JT

β

]
,

Jβ =

[
DH(NsR

T
x ⊗Q−1)D DH(X∗

d ⊗Q−1)Ȟ
ȞH(XT

d ⊗Q−H)D ȞH
q Ȟq

]

= DH

[
NsR

T
x ⊗Q−1 (X∗

d ⊗Q−1)Ȟ
ȞH(XT

d ⊗Q−H) ȞH
q Ȟq

]
D, (92)

where D = ∂h
∂βT

1
= [B∗ ⊗ IM , IW ⊗A], β1 =

[
aT , bT

]T

,

Rx = 1
Ns

(NtRxt + NdRxd
), Rxd

= 1
Nd

XdX
H
d , Ȟq =

(INd
⊗Q− 1

2 )Ȟ, (·)∗ denotes the complex conjugate and

D =

[
D 0
0 I

]
.

According to the definition of (91), the associated terms of Jr

in (90) can be reduced, such that

Jr =

[
J q̃ J q̃β̃

J β̃q̃ J β̃

]
=

[
J q̃ 0
0 J β̃

]
. (93)

Notice that the rank of the MW × (W + M)rH matrix D is
(W + M − rH)rH [1], and that Jβ, J β̃, and Jr will be rank
deficient when D is not full column rank.

Based on the results in [27] and [28], the CRB of the
channel estimation can be derived as

CRB(h) =
∂h

∂rT
J†r

(
∂h

∂rT

)H

= [0,D, 0]J†r[0,D, 0]H , (94)

where ∂h
∂rT = [0,D, 0], and J†r is a Moore-Penrose pseudoin-

verse notation of Jr. According to the definition of Moore-
Penrose pseudoinverse, J†r can be denoted by

J†r =




J−1
q̃ 0 0

0 J†β 0

0 0 JT†
β


 . (95)

Denoting J1 = DH(NsR
T
x ⊗ Q−1)D, J2 = DH(X∗

d ⊗
Q−1)Ȟ, J3 = ȞH

q Ȟq, P Ȟq
= ȞqJ

−1
3 ȞH

q , Jc = NsR
T
x ⊗

Q−1− (X∗
d⊗Q− 1

2 )P Ȟq
(XT

d ⊗Q− 1
2 ), and J4 = DHJcD,

we have

J†β =

[
J†4 −J†4J2J

−1
3

−(J†4J2J
−1
3 )H J−1

3 + J−1
3 JH

2 J†4J2J
−1
3

]
. (96)

Notice that (96) is derived by substituting

P J4 = J4J
†
4 = D̃

H
D̃(D̃

H
D̃)† = P

D̃
H ,

P J4J1 = P
D̃

H D̃
H

J
− 1

2
c (RT

x ⊗Q−1)D = J1,

P J4J2 = J2, (97)

in the associated Moore-Penrose pseudoinverse matrix, where
D̃ = J

1
2
c D and P

D̃
H = D̃

H
D̃

H†
is the projection matrix.

Substituting (96) in (94), the CRB of channel estimation can
be obtained by

CRB(h) =tr
(
DJ†4D

H
)

. (98)

(54) can be obtained by substituting J4 in (98).

APPENDIX D
DERIVATION OF (56)

According to the channel model of multislot chan-
nel estimation (32), the unknown parameters are β1 =[
uT

s ,uT
t ,υT

1 , · · · ,υT
L,

]T
, where us = vec(U s), ut =

vec(UH
t ), υl = vec(Γ(l)), and H(l) = U sΓ(l)UH

t . Let
h = vec[H(1), · · · ,H(L)] and D = ∂h

∂βT
1

. According to [28]
and the steps in the previous section, we have:

CRB(h) = tr
{

DJ†4D
H

}
, (99)

where

J4 =

[
Juu Juv

JH
uv Jvv

]
,

Juu =
L∑

l=1

{
D̃

H

l Rp(l)D̃l

}
,

Jvv =diag
{[

D̃
H

v1Rp(1)D̃v1, · · · , D̃
H

vLRp(L)D̃vL

]}
,

Juv =
[
D̃

H

1 Rp(1)D̃v1, · · · , D̃
H

L Rp(L)D̃vL

]
, (100)

Rp(l) = I− 1
Ns

(R−T
2

x (l)X∗
d(l)⊗I)P Ȟq(l)(X

T
d (l)R− ∗2

x (l)⊗
I), D̃l = (

√
NsR

T
2
x (l)⊗Q− 1

2 )[(U∗
t Γ

T (l))⊗I, I⊗(U sΓ(l))],
and D̃vl = (NsR

T
x (l)⊗Q−1)

1
2 (U∗

t ⊗U s). According to the
properties for the pseudoinverse of a partitioned matrix [29],
the blocks of J†4 corresponding to Juu, Juv , and JH

uv are
O(1/L). It follows that the channel estimation error uniquely
depends on {υl}L

l=1 as L →∞. Hence, the CRB normalized
by L, for L →∞, is given by

CRB(h) =
1
L

L∑

l=1

tr
{

(U∗
t ⊗U s)(D̃

H

vlRp(l)D̃vl)−1

·(UT
t ⊗UH

s )
}

. (101)

Substituting Rp(l) and D̃vl in (101) yields (56).
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Fig. 1: The system framework: {d(t)}, {c(t)}, and {b(t)} are
sequences of information symbols, code bits, and interleaved
code bits, respectively; xt(t; l) and yt(t; l) are the t-th training
symbol in the l-th slot and the corresponding sample at the
receiver; user data symbols xd(t; l) and yd(t; l) are similarly
defined; Π and Π−1 denotes interleaver and deinterleaver;
λ1[b(t)] (λ2[c(t)]) and Λ1[b(t)] (Λ2[c(t)]) denotes a priori
LLR and a posteriori LLR for b(t) (c(t)), respectively.
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Fig. 2: The MSE and BER of channel estimation without soft
information versus SNR for single slot 4× 57 channel matrix
and STWGN.
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Fig. 3: The MSE and BER of channel estimation without soft
information versus the length of training sequence for single
slot 8× 57 channel matrix and STWGN.
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Fig. 4: The MSE and BER of channel estimation without soft
information versus SNR for L = 2 slots 4×57 channel matrix
and SCGN.
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Fig. 5: The MSE and BER of channel estimation without soft
information versus L for SNR = 20dB, 4×57 channel matrix
and SCGN.
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Fig. 6: The MSE and CRB of the channel estimation without
soft information by signal subspace projection for the channel
parameters’ setting of Case 1.
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Fig. 7: The MSE and CRB of the channel estimation without
soft information by signal subspace projection for the channel
parameters’ setting of Case 2.
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Fig. 8: The MSE and CRB of the channel estimation without
soft information for multiple slots
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