
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
自己反映的逐次プログラミング言語の効率的なコンパ

イル手法について

Author(s) 佐伯, 豊

Citation

Issue Date 1997-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1055

Rights

Description Supervisor:渡部 卓雄, 情報科学研究科, 修士



An E�cient Implementation Technique for a

Sequential Reective Language

Yutaka Saeki

School of Information Science,

Japan Advanced Institute of Science and Technology

February 14, 1997

Keywords: reection, scheme, reuse, modularization, compiler, meta-level

architecture.

1 Introduction

The goal of this work is to establish an e�cient implementation technique for a sequen-

tial reective language Flect | a language that is capable of extending its semantics in

modular way.

In this work, we try to satisfy the following requirements.

1. The user should be able to program/understand reective features easily.

In the 'traditional' methodology of de�ning reective languages (i.e., construction

using meta-circular interpreters), it is generally di�cult for users to understand all

the mechanism of language construct. We need a good abstraction for reective

programming.

2. Meta-level modules should be composable.

Practically, the programmer might want to apply several extensions to the language

at the same time. To help this, there must be a facility to compose metalevel

modules.

3. The implementation of the language should be e�cient.

Implementing the language by constructing a tower of meta-circular interpreters is

not satisfactory.

The key idea of our work is to provide a semantics of the language using two kinds

of objects. We represent each object as a set of modules that realize the states of the

language, so behavior of each object (i.e., semantics of the language) is given by its

modules.

Copyright c 1997 by Yutaka Saeki

1



2 Our Approach

As an approach to satisfy the requirements we described above, we will give four facilities

to Flect.

� We provide a way for user to describe a semantics of the language as meta-level

modules, and user can use them to extend the language.

� We classi�ed meta-level modules to two categories, so that we can compose them

safety.

� In implementation, we could represent the construct of a semantics of Flect as �rst-

class object, because we provide it as set of modules, so it is possible to pass the

structure during an execution of Flect program, and could provide a facility for user

to extend the language in a dynamic extent.

� We divide the structure that represents a semantics of the language from a compiled-

code and made it possible to extend them by compiled meta-level modules, so we

can apply reective facilities to the compiled code.

2.1 Semantic Modules

In Flect, we expressed an extension of the language as the inclusion of new states of

computation to the language. For example, we can regard an environment of interpreter

as a state of system that is running on the interpreter.

Conceptually, we can say that each module is the evaluator of interpreter that is

divided with some states into the independent and composable representation, namely

meta-level module. In Flect, we can provide a exible structure of language, because

Flect can treat some parts of interpreter that specialized to some state, and user can

compose them at run time to extend the language.

Users give a characteristic of each modules by a structure that constructed with states

of computation and operations for the states. These operations are executed at atomic

computation and compound computation.

� Atomic computation is that can complete its work in single step.

� Compound computation is that needs partial computation for its entirely computa-

tion.

Set of modules belongs to each object actualize the action of each object, so we can explain

each object as interpreters. One is that specialized to states of controls (control-object)

and the other is that specialized to rest states (reective-object).

2



2.2 Reection

Flect is a kind of reective language. A reective system can understand/compute its

structure and behavior at run time. Giving the facility of reection to OS or program-

ming languages, it is possible to construct the advanced and complex systems, like mobile

computing systems or distributed systems, with more systematic manner. Especially,

much kind of reective languages is implemented and the e�ectiveness of giving the re-

ective facility for programming languages is proved. Reective languages allow the user

to write a program that can change the language's semantics against the various run-time

contexts.

2.3 Reection in Flect

A system is said to be causually connected to its domain if the internal structures and

the domain they represent are linked in such a way that if one of them changes, this leads

to a corresponding e�ect upon the other.

To provide the reective facility, there must be the causually-connection between a

model of system and the system itself.

We prepare some interface for user to access each object with following operations.

� Put some modules that have already declared into an object

� De�ne modules and include it in the context of program

� Access to the states of objects

With these operations, we can say that there is a causually-connection. Because, each

object represents a model of Flect, and set of modules that belongs to one of objects is the

representation of the object, so we can change a behavior of objects by these operations,

so user becomes to be able to change the language's semantics indirectly by the operations

enumerated above.

2.4 Module Composition

We have provided a mechanism to compose each module safety, because we separate a

semantic structure that represents control ow from the other structure, and provide

a facility to extend Flect during a user-specialized dynamic extent. We can use some

extension as we need, and can eliminate some of them if it seems to cause some conict.

2.5 Structure of Flect System

We constructed the system of Flect by Flect-to-Scheme translator, run-time system and

compiler of Scheme. We used MacGambit2.2 system as a compiler for the translated code

and as a run-time environment.

It is di�cult to implement a reective system e�ciently, because the semantic model

of reective language is usually given with a tower of meta-circular interpreter, so the

3



overhead of interpretation is caused. Therefore, we implemented Flect system as compiler.

We arranged system to treat a semantics of Scheme immediately, (treatment of variables,

dispatching with a type of expression, etc.) and separate a structure that represents the

semantics of Flect into modules that can be compiled independent, so we can compile a

part of source code by a compiler of Scheme, and improved its performance.

3 Conclusion

The characteristics of Flect system are that each module could be reused. For this, we

provide following facilities in Flect and succeed to actualize the reusability.

� We have presented the model of reective language, as the system that has modi�-

able semantics represented by meta-level modules.

� We gave a design of a language of the style and implemented this as a compiler.

� We could give user a tidy way to describe the modi�cation, because we provide a

unit of extension as a module.

� We have provided a framework for safety composition of meta-level modules.

� We have provided a facility to give an extension for a dynamic extent.

4


