
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Equational Reasoning and Completion

Author(s) Klein, Dominik

Citation

Issue Date 2012-06

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/10560

Rights

Description Supervisor: Mizuhito Ogawa, 情報科学研究科, 博士

Equational Reasoning and Completion

by

Dominik Klein

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Mizuhito Ogawa

School of Information Science
Japan Advanced Institute of Science and Technology

June 2012

Abstract

Equations are a versatile and natural tool for various reasoning tasks. This
thesis investigates how to fully automate equational reasoning. Central to au-
tomation is Knuth and Bendix’ ground-breaking completion procedure. It was
originally formulated as an algorithm, and requires a user-provided reduction
order. We show that completion can be characterized as an optimization prob-
lem. Using this formulation, called Maximal Completion, algorithmic aspects can
be abstracted away by encoding the optimization problem to constraints. Full au-
tomation can be achieved by constructing a suitable order from the solution of
the constraint problem.

The success of Knuth and Bendix’ procedure has led to several adaptations to
related reasoning tasks, such as Inductionless Induction or Rewriting Induction.
We propose a new uniform framework based on constrained equalities. It allows
to easily formulate several completion procedures by simple parameter changes.
But more importantly it also makes it possible to adopt a similar approach as
above, namely reformulating these adaptations as optimization problems. A con-
venient side effect of this framework is that soundness proofs are simplified, since
necessary conditions are encoded in the constraint part.

Lastly we investigate confluence of Term Rewriting Systems (TRSs). Testing
confluence automatically is a central property not only for completion, but in
other applications as well, such as narrowing or type theory. We present a new
confluence criterion for non-left-linear and non-terminating TRSs. Since it re-
quires joinability of uncomputable extended critical pairs, we provide a new re-
sult on unification, which enables full automation of our criterion.

All results presented in this thesis have been implemented and experimentally
evaluated to show their practical effectiveness.

iii

Acknowledgments

I am much indebted to both Associate Professor Nao Hirokawa and Professor
Mizuhito Ogawa for supporting me throughout my studies, for their constant
encouragement, and for providing valuable advice. Nao Hirokawa introduced
me into the world of term rewriting, and supervised large parts of my research.
His attitude towards teaching and research has been a great inspiration, and
I would like to thank him for his guidance and, an education. I would also
like to thank Associate Professor Xavier Défago, who supervised my “minor
research project” in the PhD Program, and François Bonnet for his cooperation.
I feel very honoured and grateful that all referees, Associate Professor Takahito
Aoto, Professor Aart Middeldorp, Associate Professor Kazuhiro Ogata, Professor
Michio Oyamaguchi, and Assistant Professor Haruhiko Sato accepted to review
this thesis. Professor Aart Middeldorp and Sarah Winkler also provided valuable
comments on Maximal Completion, which helped to significantly improve the
presentation. Last but not least I would like to thank Hiroko and my family and
friends for their moral support.

v

Contents

1 Introduction 9
1.1 Equational Reasoning and its Challenges 9
1.2 Overview and Contributions . 16

2 Preliminaries 21
2.1 Abstract Rewriting . 21
2.2 Orders . 23
2.3 Terms and Substitutions . 25
2.4 Term Rewriting Systems . 27
2.5 Equational Problems . 31

3 Completion Procedures 35
3.1 Knuth-Bendix Completion . 35
3.2 Completion with Termination Tools 39
3.3 Multi-Completion . 40
3.4 Multi-Completion with Termination Tools 43
3.5 Inductive Proofs by Completion . 46

4 Maximal Completion 49
4.1 Maximality . 50
4.2 Automation . 52
4.3 Related Work . 55
4.4 Experiments . 58

5 Constrained Equalities 61
5.1 Constrained Equalities . 62
5.2 Constraints for Joinability Problems 64
5.3 Automation . 68
5.4 Experiments . 70
5.5 Related Work . 73

6 Confluence and Relative Termination 75
6.1 Confluence Criterion . 76
6.2 Correctness of the Criterion . 79
6.3 Joinability of Extended Critical Pairs 85

vii

Contents

6.4 Experiments . 90
6.5 Related Work . 92

7 Conclusion and Future Work 95

A Experimental Data for Chapter 4 97

B Experimental Data for Chapter 5 101

C Experimental Data for Chapter 6 105

D Maxcomp: Installation and Usage 107

References 110

Index 119

Publications 123

viii

Chapter 1

Introduction

This introduction consists of two parts. The first part provides an informal intro-
duction into equational reasoning based on term rewriting, and associated chal-
lenges and open problems. The second part gives an overview of the approaches
taken to tackle these challenges, and lists the contributions of this thesis.

1.1 Equational Reasoning and its Challenges

To express and reason about various facts, several formalisms exist. Very often,
such facts and relationships between them can be very naturally expressed as
equations. For example, addition on natural numbers can be axiomatized by the
equational system (ES):

1 : 0+ x ≈ x
2 : s(x) + y ≈ s(x + y)

We could now ask whether 1 + 0 equals 0 + 1, i.e. whether s(0) + 0 ≈ 0+ s(0)
follows from the given axioms. A proof can be constructed by equational reason-
ing:

9

Chapter 1: Introduction

lhs rhs

s(0) + 0 0+ s(0)

↔2 s(0+ 0) ↔1 s(0)

↔1 s(0)

where↔i stands for an application of equation i in either direction. There are two
major observations in the above proof: First, the equations of the axiomatization
were applied only from left to right, just directed steps →1 and →2 would have
been sufficient. We call a directed equation s ≈ t a rule (written s → t), sets of
rules a Term Rewriting System (TRS), and applications of rules to terms rewriting.
In the context of TRSs, we will write i to denote orientation from left to right, and
i′ for right to left.

The second major observation is that no semantic insight was needed: Instead
of deriving a proof, we can compute it. Thus, given a set of equations E , instead
of employing equational steps↔E , the goal is to orient the equations to a TRS R
and employ only→R. In the above example, the TRS {1, 2} suffices to efficiently
construct a proof for any valid equation. This is because it has three important
properties:

1. It is terminating: There exists no term s with infinite sequence s→ s1 → . . .

2. It is confluent: For all terms t, s, u such that t ∗← s→∗ u, there exists a term
v with t→∗ v ∗← u. Thus, the result of a computation does not depend on
the order of applications of rewrite rules.

3. The TRS is equivalent to the equational system, i.e. ↔∗E = ↔∗R. Thus two
terms are reachable by equational steps if and only if they are convertible
by rewriting.

Termination implies that for a given term, after finitely many steps, we reach a
term where no rule is applicable — the given term’s normal form. Confluence
implies that this normal form is unique. Equivalence ensures that reachability
by equational steps and reachability by directional steps coincide. We call a TRS
complete for an equational system, if it is terminating, confluent and equivalent to
the ES.

Unfortunately, not always can equational systems be turned into complete
TRSs by just merely orienting its equations to rules. Consider an axiomatiza-
tion of group-theory EG, consisting of

3 : 1 ∗ x ≈ x neutral element

4 : x−1 ∗ x ≈ 1 inverse element
5 : (x ∗ y) ∗ z ≈ x ∗ (y ∗ z) associativity

10

1.1 Equational Reasoning and its Challenges

and the proof of (x ∗ 1) ∗ x−1 ≈ 1. We have

(x ∗ 1) ∗ x−1 ↔5 x ∗ (1 ∗ x−1)

↔3 x ∗ x−1

↔3 1 ∗ (x ∗ x−1)

↔4 ((x−1)−1 ∗ x−1) ∗ (x ∗ x−1)

↔5 (x−1)−1 ∗ (x−1 ∗ (x ∗ x−1)

↔5 (x−1)−1 ∗ (x−1 ∗ x) ∗ x−1)

↔4 (x−1)−1 ∗ (1 ∗ x−1)

↔3 (x−1)−1 ∗ x−1 ↔4 1

Using the TRS {3, 4, 5} misses the proof, since then both (x ∗ 1) ∗ x−1 and 1 are
in normal form. The reason is that {3, 4, 5} is terminating, but neither confluent,
nor equivalent to the ES. The difficulty in finding a complete TRS is, that naively
trying to fix one of the three properties easily leads to violation of another. For
example {3, 4} is both terminating and confluent, but not equivalent to the ES.
{3, 3′, 4, 4′, 5, 5′} is confluent and equivalent to the ES, but clearly not terminating.

Completion

Given an ES, Knuth and Bendix’ [49] ground-breaking completion procedure sys-
tematically searches for an equivalent and complete TRS by orienting equations
to rules, while maintaining confluence by resolving local peaks. For example,
their procedure can construct the following complete TRS RG for group-theory:

1 : 1 ∗ x → x 6 : 1−1 → 1

2 : x−1 ∗ x → 1 7 : (x−1)−1 → x

3 : (x ∗ y) ∗ z→ x ∗ (y ∗ z) 8 : x ∗ x−1 → 1

4 : x−1 ∗ (x ∗ y)→ y 9 : x ∗ (x−1 ∗ y)→ y

5 : x ∗ 1→ x 10 : (x ∗ y)−1 → y−1 ∗ x−1

The proof of (x ∗ 1) ∗ x−1 ≈ x is trivial with the complete TRS, since

(x ∗ 1) ∗ x−1 →5 x ∗ x−1 →8 1 = 1.

So far we have only considered computing proofs for valid conjectures. To dis-
prove a conjecture s ≈ t for a given ES E , one has to verify the absence of equa-
tional steps to connect s and t, i.e. to show that s ↔∗E t is impossible. Since for
each side of a conjecture potentially infinitely many derivations exist, it is usually
not possible to exhaustively enumerate them.

11

Chapter 1: Introduction

One way to disprove a conjecture is to exploit the tight connection of equational
steps and logical entailment. A conjecture is a logical consequence of an ES E , if
and only if all algebraic models of E are also a model of the conjecture. Due to
Birkhoff’s theorem [14], both notions of logical entailment and connectedness by
equational steps are equivalent: A conjecture s ≈ t is a logical consequence of a
given ES E , if and only if s↔∗E t holds. Thus one way to disprove a conjecture is
to find a (counter-)model, and apply Birkhoff’s theorem:

Consider again the equations of the ES EG, and take the modelM with carrier
set GL2(R) of invertible 2× 2-matrices over the field of real numbers

GL2(R) =

{[
a b
c d

] ∣∣∣∣ a, . . . , d ∈ R and ad− bc 6= 0
}

with the standard matrix operations as interpretations of the function symbols,
namely: [

a b
c d

]
∗M

[
e f
g h

]
=

[
ae + bg a f + bh
ce + dg c f + dh

]
,[

a b
c d

]−1M
=

1
ad− bc

∗M
[

d −b
−c a

]
, and

1M =

(
1 0
0 1

)
.

ThenM is a valid model of EG, since for all A, B, C ∈ GL2(R) the three equations
A ∗M 1M = A, A−1M ∗M A = 1M, and (A ∗M B) ∗M C = A ∗M (B ∗M C) hold.

The conjecture x ∗ y ≈ y ∗ x is not true, since not every group is abelian. In
particular,M is a counter-model, because[

0 1
0 0

]
∗M

[
0 0
1 0

]
6=
[

0 0
1 0

]
∗M

[
0 1
0 0

]
.

While simpler counter-models for group-theory exist, the construction of a
counter-model is in general difficult to automate, as it requires semantic insight
into the ES — most Lie-groups are non-commutative.

On the other hand one can also make use of the following lemma, combining
Birkhoff’s theorem with completion: Given a complete TRS R for an ES E , a
conjecture s ≈ t is a logical consequence of E , if and only if the normal forms of
s and t w.r.t. R are syntactically equal. This very much simplifies the disproof of
x ∗ y ≈ y ∗ x: Both x ∗ y and y ∗ x are in normal form w.r.t. RG, and not syntac-
tically equal. Therefore we can immediately reject the conjecture — without the
need to explicitly construct a counter-model.

Note how all three properties of RG are essential: Confluence implies the
Church-Rosser property ↔∗RG

= →∗RG
· ∗
RG
←, by equivalence ↔∗EG

= ↔∗RG
holds,

12

1.1 Equational Reasoning and its Challenges

and termination ensures the existence of normal forms and together with conflu-
ence their uniqueness. Finally ↔∗EG

connects to logical entailment by Birkhoff’s
theorem.

Challenges in Completion

Deciding validity of equations is undecidable in general. Thus it is not surprising
that we cannot always find a complete TRS for a given ES. But even if a complete
TRS exists, it is no trivial task to find it. Knuth and Bendix’ completion procedure
poses several challenges:

1. The procedure is formulated as an iterative algorithm, but its formulation
includes several indeterminism, which have to be resolved in an effective way
to achieve full automation.

2. The procedure assumes a reduction order as an input parameter to ensure
termination. It is in general a highly non-trivial task to find a suitable
reduction ordering a priori.

3. Its algorithmic formulation makes it very difficult to distinguish essential
properties from implementational details. This is especially a hindrance,
when trying to extend the procedure to resolve the above two issues.

Inductive Reasoning

Depending on the area of application, the notion of logical entailment and con-
nectedness via equational steps does not capture the properties one is interested
in. Consider the following axiomatization E@ of list-append, that almost verbatim
corresponds to code in functional programming languages:

1 : [] @ xs ≈ xs
2 : (x :: xs)@ ys ≈ x :: (xs @ ys)

The ES E@ does not logically entail the conjecture

3 : xs @ [] ≈ xs.

Take the model M with carrier set {0, 1}, and interpretations []M = 0, x ::M
xs = xs, and xs @M ys = ys. One can verify, thatM is indeed a model of E@. But
M is a counter-model of the conjecture, since 1 @M 0 = 0 6= 1.

When executing a program however, one can be sure that the data structures
operated on are lists, and thus any instance of the variables is constructed by
using the operator :: and the empty list []. Taking this into account, one can
prove the conjecture xs @ [] ≈ xs by induction on these constructor symbols.

13

Chapter 1: Introduction

For the proof, we distinguish two cases: If xs is instantiated as [], then trivially
[] @ [] = []. On the other hand, if xs has the form x :: xs′ where x and xs′ are
free, we have

lhs rhs

(x :: xs′) @ [] x :: xs′

↔2 x :: (xs′ @ [])

↔3 x :: xs′

Thus the conjecture does not hold in general, but it does hold on all ground in-
stances. Observations on the computation of this proof are similar to the intro-
ductory example of addition: Again, we used both equations from E@ and the
hypothesis only from left to right, we could have conducted the proof using
the TRS R@ = {1, 2, 3} instead. The main difference and difficulty compared
to completion is, that extra care is needed to ensure that the application of the
hypothesis is sound. For example, both rule 2 and rule 3 are applicable on the
left-hand side of (x :: xs′) @ [] ≈ x :: xs′. Using rule 3 however leads to unsound
reasoning, since it means self-application of the hypothesis. Another difference
is, that due to its application, we are rarely interested in disproving but rather
in proving conjectures. To compute a proof, one needs to ensure that all ground
instances of both sides of the conjecture are joinable by rewrite steps of the TRS,
and by sound application of rewrite steps using the hypothesis. Confluence of
the TRS together with the hypothesis can be a sufficient criterion to ensure that,
but it is not a necessary one, and in practice usually too strong.

Challenges in Inductive Reasoning

Inductive reasoning is considered to be even more challenging to automate than
standard equational reasoning. For a more in-depth treatment, we refer to [36],
but mention the following issues:

1. The proof strategy. Proofs usually have a recursive structure, yet it is not
clear when and how to soundly apply the hypothesis. Since confluence,
and even termination can be too strong properties to assume, it is also not
clear which rewrite strategy should be applied.

2. The need of lemmata. Very often, direct proof attempts fail, and must be
split up into several sub-goals, for which additional lemmata are needed.
Since this usually requires semantic insight, it is very challenging to identify
such sub-goals and generate appropriate lemmata automatically.

3. The lack of an expressive framework. Different inductive proof techniques
exist. But identifying their essential properties is difficult, as soundness is

14

1.1 Equational Reasoning and its Challenges

left-linear non-left-linear

terminating

non-terminating

Knuth & Bendix [49]

Rosen [64]
Huet [39]

Toyama [77]
van Oostrom [80]

Hirokawa & Middeldorp [38]

Gomi et al [33]
Sakai & Ogawa [65]

Decomposition Criteria
[5, 58, 76]

Jouannoud & Kirchner [44]

our criterion (Chapter 6)

Figure 1.1: A non-exhaustive overview of confluence criteria.

established by ensuring abstract joinability requirements on ground terms,
which are hard to express and reason about.

Confluence

Confluence is an important property in various domains. For TRSs, conflu-
ence is equivalent to the Church-Rosser property ↔∗ ⊆ →∗ · ∗←. Church and
Rosser [16] investigated this property to ensure consistency of combinatory logic
and the λ-calculus. Both form the foundation for the development of functional
programming languages such as SML [55], OCaml1 or Haskell [61]. Other areas
of application include narrowing [24, 42] and type safety [73].

From the perspective of equational reasoning, confluence together with ter-
mination ensures completeness. Both conditions impose severe restrictions on
the TRS, and naturally one wants to relax both of them. Relaxing the conflu-
ence condition is however almost impossible, since it is tied so closely to the
concept of orienting equations to rules. On the other hand confluence implies
↔∗R ⊆ →∗R · ∗R←. Even if termination does not hold, this still suggests a simple

1http://caml.inria.fr

15

Chapter 1: Introduction

semi-decision procedure by enumerating →n
R · m

R← with increasing n and m.
Suitable strategies to apply rewrite rules can help to reduce the size of the search
tree significantly. Thus it is more promising to relax the termination condition,
and identify criteria for confluence that do not rely on it.

Challenges to Develop Confluence Criteria

Knuth and Bendix [49] showed that confluence of terminating TRSs is decidable
by testing joinability of so-called critical pairs. For non-terminating TRSs, very
often syntactical criteria are employed, in particular left-linearity, i.e. each vari-
able in a left-hand side of a rule may occur only once. A famous result due to
Rosen [64] is that a left-linear TRS without critical pairs is confluent. However
the fact that the complete TRS RG for group-theory includes non-left-linear rules
already gives a hint that this is a too strong property to presuppose in practice.
We list as challenges:

1. Proving confluence of both non-left-linear and non-terminating TRSs remains
extremely difficult, and only few results exist. One reason is that none
of the notions and techniques, for example critical pairs, that are used in
showing confluence of terminating or left-linear TRSs are suitable in the
non-left-linear and non-terminating case.

2. Extending these notions can lead to new criteria, but often such extensions
face the problem of computability. For example, extending the notion of crit-
ical pairs quickly leads to infinite sets of equations that are uncomputable
in general. Thus, despite developing criteria, automation is hard to obtain.

1.2 Overview and Contributions

This thesis is structured as follows: Chapter 2 is an introduction to term rewriting
systems. First, abstract reduction systems are introduced. Properties such as
confluence and termination can already be defined on this abstract level, and
will be used when later specializing the notion of abstract reduction systems to
term rewriting systems. Also formally introduced are several kinds of equational
problems that will be treated in the later chapters, namely equational reasoning
and inductive reasoning.

Chapter 3 recalls existing completion procedures. The original Knuth-Bendix
completion procedure and Huet’s algorithm [40] are introduced, as well as its
reformulation by means of inference rules [12]. We also recollect approaches that
increase the power of the original algorithm by automatically finding a suitable
reduction ordering, such as Multi-Completion [51], Completion with Termination
Tools [83], and Multi-Completion with Termination Tools [68, 85].

16

1.2 Overview and Contributions

During the early 2000’s, significant progress has been made in automated con-
straint solving. In a lot of areas, encoding problems as boolean constraints and
solving them with SAT solvers has turned out to be more effective than the de-
velopment of dedicated algorithms, and have largely replaced traditional ap-
proaches. Here we mention bounded model checking [13] and termination anal-
ysis of TRSs [17, 26, 70, 88]. To obtain efficient encodings to SAT, the search
space of the underlying problem has to be known, and representable by a finite
number of constraints. Unfortunately, in the case of completion, the search space
that includes all complete TRSs is usually unknown in advance. Therefore it is
non-trivial to directly encode the completion problem as a satisfiability problem.

Inspired by the progress in satisfiability solving, also several tools for MaxSAT
solving appeared. Compared to SAT solving however, few of these systems have
seen application outside their very domain. In Chapter 4, we present maximal
completion. We characterize completion as an optimization problem, where the
goal is to find an optimal TRS among a set of (exponentially) many. This task
can be encoded as a maximal satisfiability problem and automatically solved by
a MaxSAT (or MaxSMT) solver. We relate maximal completion with existing
completion procedures, and compare our implementation Maxcomp with state-
of-the-art completion tools.

Maximality is the key ingredient in maximal completion. To apply maximality
in adaptations of completion for equational reasoning, we propose a framework
for equational reasoning based on constrained equalities in Chapter 5. This frame-
work is universal enough to formulate various joinability requirements for equa-
tional reasoning tasks, including the more complex requirements of methods for
inductive reasoning, such as inductionless induction and rewriting induction.
Most importantly it enables us to reformulate the various joinability conditions
as optimization problems and thus exploit maximality. Experiments for inductive
proof methods such as rewriting induction show practical effectiveness. Addi-
tionally the framework also allows to recover inter-reduction for completion that
was lost in the abstraction of maximal completion. Experimental evaluation how-
ever shows that for completion the approach used in maximal completion is more
efficient.

For non-terminating TRSs, several criteria exist to establish confluence. Fig-
ure 1.1 gives an non-exhaustive overview of confluence criteria on four classes
of TRSs related to our setting. Note here that criteria for non-terminating TRSs
can of course also be applied to terminating ones. Likewise those for non-left-
linear TRSs apply to left-linear ones as well. As mentioned, for terminating TRSs
confluence is decidable by testing joinability of critical pairs, which are induced
by overlaps. Criteria for the case of non-terminating and left-linear TRSs usually
build up on the orthogonality result by Rosen [64], either by a more precise analy-
sis of overlaps [35, 38, 39, 77, 80] or by employing relative termination. Approaches

17

Chapter 1: Introduction

for the case of non-termination and non-confluence can be roughly classified into
three categories:

1. By generalizing the notion of overlaps, one can formulate direct criteria [31,
65] that ensure confluence. Usually, strong syntactic restrictions are im-
posed to handle the very complex overlap analysis.

2. By decomposing the TRS [5, 25, 58, 59, 76] into smaller ones, one can employ
existing criteria to show confluence for each of them. Modularity of the
decomposition then ensures that the union remains confluent.

3. Criteria that relax termination requirements to relative termination. To ap-
ply equational reasoning for theories where no complete TRSs exists, Jouan-
naud and Kirchner gave a confluence criterion for the Church-Rosser mod-
ulo property [44] based on so called extended critical pairs. Later Geser [27]
analyzed their proof and gave a criterion based on purely syntactic critical
pairs.

In Chapter 6 we first recall some definitions and techniques, such as extended
critical pairs, to build our tool-set for later proofs. Then we introduce our conflu-
ence criterion for non-left-linear and non-terminating TRSs, which also relies on
relative termination. Similar to Jouannaud and Kirchner’s criterion, it requires to
check joinability of (uncomputable) extended critical pairs, but we show that for
certain classes of TRSs, joinability of (computable) syntactic critical pairs suffices.
We then compare our criterion with existing results, and provide experimental
data.

Contributions

As main contributions of this thesis we list:

1. Maximal completion. We show that completion can be characterized as an op-
timization problem. In contrast to existing procedures, our reformulation
does not contain any algorithmic aspect. It abstracts away from implemen-
tational details by encoding the completion requirements to constraints. It is
less reliant on heuristics to resolve indeterminism than existing procedures,
and suitable reduction orderings are constructed automatically based on
solutions of the constraint problem.

2. Constrained Equalities. This framework allows not only to uniformly ex-
press the joinability requirements of completion and several procedures
for inductive reasoning, but more importantly also makes it possible to
reformulate these procedures as optimization problems, similar to maxi-
mal completion. While for completion itself practically not as efficient as

18

1.2 Overview and Contributions

maximal completion, it provides a powerful technique to implement fully
automated inductive theorem provers. As a theoretical interest, it recovers
inter-reduction in completion, an optimization technique that is lost in the
abstraction used in maximal completion.

3. A new confluence criterion for non-left-linear and non-terminating TRSs. Our
criterion is based on moderate syntactic restrictions and relative termina-
tion, and requires joinability of extended critical pairs. In order to overcome
the uncomputability of extended critical pairs, we provide a new result on
equational unification, and with it, our confluence criterion can be fully auto-
mated.

4. All of the above approaches have been implemented and experimentally
evaluated to show their effectiveness. Moreover, we provide the free com-
pletion tool Maxcomp, which is based on maximal completion.

All results are included in the papers [4, 46, 47].

19

Chapter 2

Preliminaries

In this chapter we formally introduce term-rewriting, and the equational prob-
lems that we will tackle. We restrict us to the essential definitions and properties
needed for the later chapters. For full proofs and a more gentle, comprehen-
sive introduction to term-rewriting we refer to [10, 60, 75], and [9] (the latter in
German).

2.1 Abstract Rewriting

A (binary) relation → on a set A is a subset of A× A. Given two relations →1
and→2 on A, the composition→1 · →2 is defined as

{(x, z) ∈ A | there exists y ∈ A such that x →1 y and y→2 z}.

Definition 2.1.1. An Abstract Rewrite System (ARS) A = (A, 〈→α〉α∈I) is a tuple
consisting of a set A and a set of relations →α on A, where I is a set of labels. We say
→α is a reduction relation labeled with α. The reduction relation→A of A is defined as

→A =
⋃
α∈I
→α.

We sometimes write→ instead of→A, if A is clear from the context. In the fol-
lowing definitions, we assume I to be a singleton and simply write A = (A,→).

21

Chapter 2: Preliminaries

One motivation to introduce labels is that it is sometimes useful to consider
(A, 〈→α〉α∈I) as a representation of (A,→). In particular the decreasing diagram
technique [79] used in Chapter 6 will make use of this.

Definition 2.1.2. Let A = (A,→) be an ARS. We define the following notions:

→0 = {(a, a) | a ∈ A} identity

→i+1 = →i · → (i + 1)-fold composition

→+ =
⋃
i>0

→i transitive closure

→= = →0 ∪ → reflexive closure

→∗ = →0 ∪ →+ transitive reflexive closure
← = {(b, a) | (a, b) ∈ →} inverse relation
↔ = → ∪ ← symmetric closure
↔+ = (↔)+ transitive symmetric closure
↔∗ = (↔)∗ reflexive transitive symmetric closure
↓ = →∗ · ∗← join relation

We will make use of the following terminology:

• We will write a → b if (a, b) ∈ →, and say that a rewrites to b and b is a
reduct of a.

• We say that a and b are joinable, if a ↓ b.

We now define the central notions of confluence and termination for ARSs and
investigate their relation with normal forms.

Definition 2.1.3. Let A = (A,→) be an ARS.

1. a ∈ A is in normal form (w.r.t. →), if there exists no b such that a→ b.

2. b is a normal form of a, if a →∗ b, and b is in normal form. If a has a unique
normal form b, we write a↓A for b. In some contexts, we will ambiguously write
a↓A to denote a specific normal form. The set of normal forms of A is written
NF(A) or NF(→), if A is clear from the context.

3. A is normalizing, if for every a ∈ A there exists a b ∈ A such that b is a normal
from of a.

4. A is uniquely normalizing, if for every a ∈ A there exists exactly one b ∈ A
such that b is a normal form of a.

5. A is terminating, if there exists no infinite sequence a0 → a1 → a2 → a3 → . . .

22

2.2 Orders

Definition 2.1.4. Let A = (A,→) be an ARS.

1. A is Church-Rosser if↔∗ ⊆ ↓ .

2. A is confluent if ∗← · →∗ ⊆ ↓ .

3. A is locally confluent (or weakly Church-Rosser) if← · → ⊆ ↓ .

Lemma 2.1.5. A relation→ is confluent if and only if it is Church-Rosser.

Termination localizes the confluence condition.

Lemma 2.1.6 (Newman [56]). A terminating ARS A is confluent if and only if it is
locally confluent.

Definition 2.1.7. An ARS A is complete, if it is confluent and terminating.

Confluence and unique normal forms are connected:

Lemma 2.1.8. Let A be an ARS.

• Suppose A is confluent. Then each a ∈ A has at most one normal form.

• Suppose A is complete. Then A is uniquely normalizing.

Completeness of an ARS A provides a way to test a↔∗A b.

Theorem 2.1.9. Let A be a complete ARS. Then a↔∗A b if and only if a↓A = b↓A.

2.2 Orders

A binary relation → on A is well-founded, if there exists no infinite sequence
a0 → a1 → a2 → · · · of elements. One might wonder, why we call it well-
founded and not, like ARSs (A,→) without infinite sequence a0 → a1 → a2 →
. . ., terminating. It is convenient to use a separate terminology here, since we
later specialize ARSs to term rewriting systems (TRSs), and employ certain kinds
of well-founded orders to automatically show termination of TRSs.

Definition 2.2.1. A binary relation on A is

1. a strict order, if it is irreflexive and transitive

2. a preorder, if it is reflexive and transitive and

3. a partial order, if it is reflexive, transitive and anti-symmetric.

23

Chapter 2: Preliminaries

Definition 2.2.2. A > strict order on A is

1. a total order, if for all a, b ∈ A we have a > b, b > a or a = b.

2. a well-founded order, if > is well-founded and

3. a well-order, if it is both total and well-founded.

We introduce two extensions of strict orders. The first is the lexicographic
extension.

Definition 2.2.3. Let > be a strict order on A. The lexicographic extension >lex on
An is defined as: (s1, . . . , sn) >lex (t1, . . . , tn) if and only if there exists some i with
0 ≤ i < n such that sj = tj for all 1 ≤ j ≤ i and si+1 > ti+1.

The lexicographic extension preserves well-foundedness.

Theorem 2.2.4 ([10]). Let > be a strict ordering. The lexicographic extension >lex is
well-founded if > is well-founded.

The second extension is based on multisets.

Definition 2.2.5. Let A be a set. A multiset M over A is a function M : A → N.
A multiset M is finite, if there are only finitely many x such that M(x) > 0. The set
of all finite multisets over A is denoted byM(A). Let a1, . . . , an be elements of A. We
write {{a1, . . . , an}} for the multiset M defined as follows: M(a) denotes the size of the
set {i | 1 ≤ i ≤ n, ai = a}. Let M and N be multisets. The following operations are
defined:

• x ∈ M, if M(x) > 0

• M ⊆ N, if M(x) ≤ N(x) for all x ∈ A.

• M ∪ N stands for x 7→ M(x) + N(x), and

• M \ N stands for x 7→ max{0, M(x)− N(x)}.

Definition 2.2.6. Let > be an order on A. The multiset extension >mul of > is defined
onM(A) as:

M >mul N if and only if there exists X, Y ∈ M(A) such that
a) {{ }} 6= X ⊆ M,
b) N = (M \ X) ∪Y, and
c) for every y ∈ Y there exists an x ∈ X with x > y

Theorem 2.2.7 ([10]). Let > be a strict ordering. The multiset extension >mul is well-
founded if and only if > is well-founded.

24

2.3 Terms and Substitutions

2.3 Terms and Substitutions

Definition 2.3.1. A signature F is a countable set of function symbols, where each
f ∈ F is associated with a natural number denoting its arity (the number of arguments).
We write f (n) when we want to explicitly express that the arity of f is n. A function
symbol of arity zero is called a constant.

Definition 2.3.2. Let F be a signature and V be a countable set of variables with
F ∩ V = ∅. The set of terms T (F ,V) over F and V is the smallest set such that

• V ⊆ T (F ,V), and

• if f (n) ∈ F and t1, . . . , tn ∈ T (F ,V), then f (t1, . . . , tn) ∈ T (F ,V).

When denoting specific function symbols f, g, . . . we will use a gothic (sans-
serif) font, and for variables x, y, . . . we will use italics.

Definition 2.3.3. Let t ∈ T (F ,V) be a term. Var(t) denotes the set of variables
occurring in t:

Var(t) =

{t} if t is a variable

n⋃
i=1

Var(ti) if t = f (t1, . . . , tn)

Similarly, Fun(t) denotes the set of function symbols (including constants) of t:

Fun(t) =

∅ if t is a variable

{ f } ∪
n⋃

i=1

Fun(ti) if t = f (t1, . . . , tn)

Definition 2.3.4. For t ∈ T (F ,V) the set of positions Pos(t) is defined as

Pos(t) =
{
{ε} if t is a variable
{ε} ∪ {i.q | 1 ≤ i ≤ n, q ∈ Pos(ti)} if t = f (t1, . . . , tn)

Here ε denotes the empty string. A position is thus a sequence of integers separated by
the . symbol. The position ε is the root position. The root symbol of t is defined as:

root(t) =

{
t if t is a variable
f if t = f (t1, . . . , tn)

A position describes the path from the root to a specific subterm.

Definition 2.3.5. Let t be a term and p ∈ Pos(t). The subterm t|p of t at position p is
defined as:

t|p =

{
t if p = ε

ti|q if p = i.q and t = f (t1, . . . , ti, . . . , tn)

25

Chapter 2: Preliminaries

We define PosF (t) as the set {p ∈ Pos(t) | root(t|p) ∈ F}. With t[u]p we denote the
operation of replacing the subterm t|p of t at p with the term u:

t[u]p =

{
u if p = ε

f (t1, . . . , ti[u]q, . . . , tn) if p = i.q and t = f (t1, . . . , tn)

A term u is called a subterm of a term t, if there exists a position p ∈ Pos(t), such that
u = t|p. Given positions p, q, and o, we write p\q for o if p = q.o. Let x be a variable.
We will write |t|x for

∣∣{p | p ∈ Pos(t) and t|p = x}
∣∣, i.e. the number of occurrences of

x in t.

Definition 2.3.6. A term t is

• a ground term if Var(t) = ∅. Instead of T (F ,∅) we sometimes write T (F) to
denote the set of all ground terms over the signature F , and

• linear if each variable appears only once, i.e. if for all x ∈ Var(t), we have |t|x = 1.

The size |t| of a term is defined as |Pos(t)|, that is the number of functions
symbols and variables occurring in it.

Definition 2.3.7. Let F be a signature, and let � denote a special constant symbol,
called the hole. A context over the union of the signature and the hole F ∪ {�} is a
term C, such that C contains exactly one hole, i.e.

∣∣{p ∈ Pos(t) | t|p = �}
∣∣ = 1. The

application C[t] of a context C on a term t is defined as:

C[t] =

{
t if C = �

f (t1, . . . , C′[t], . . . , tn) if C = f (t1, . . . , C′, . . . , tn)

Here C′ denotes a context.

Definition 2.3.8. Let F be a signature, and V be a countable set of variables, such that
F ∩ V = ∅. A substitution σ over T (F ,V) is a function V → T (F ,V), such that
the domain Dom(σ)

Dom(σ) = {x ∈ V | σ(x) 6= x}

is finite. When referring to a specific substitution σ, we sometimes write it as

{x1 7→ t1, x2 7→ t2, . . . , xn 7→ tn}

using the finiteness of the domain. The application σ(t) of a substitution σ on a term t is
defined as follows:

σ(t) =

{
σ(t) if t ∈ V
f (σ(t1), . . . , σ(tn)) if t = f (t1, . . . , tn)

26

2.4 Term Rewriting Systems

We say σ(t) is an instance of t. The composition στ of two substitutions σ and τ

is defined as (στ)(x) = σ(τ(x)). A substitution σ : V → V is called a variable
substitution, and a bijective variable substitution is called a variable renaming. A
substitution σ with σ(x) ∈ T (F ,∅) for all x ∈ Var(t) is called a ground substitution
on t. A substitution σ is a ground substitution on an equation s ≈ t, if it is both a
ground substitution on s and on t. Finally, we will often write tσ instead of σ(t).

Definition 2.3.9. Let s and t be terms. We define the following notions:

• s and t are syntactically unifiable if there exists a substitution σ with σ(s) = σ(t).

• If σ(s) = σ(t) holds for a substitution σ, then we call σ a unifier of s and t.

• A unifier σ of s and t is a most general unifier (mgu) if for every unifier τ of s
and t there exists some substitution ρ such that ρσ = τ.

Syntactical unifiability is decidable ([10, 63]), and unifiable terms admit an
mgu, which is unique up to variable renamings. We will extend the notion of
unifiability to equational unifiability in Chapter 6, where these extensions and
several of their properties will be used. When speaking of unifiability and uni-
fiers, we usually mean syntactic unifiability and syntactic unifiers, unless noted
otherwise.

2.4 Term Rewriting Systems

Definition 2.4.1. Let→ be a relation on terms. It is

• monotonic (or closed under contexts) if C[s] → C[t] holds for all s and t with
s→ t and all contexts C,

• stable (or closed under substitutions) if sσ → tσ holds for all s and t with
s→ t and all substitutions σ,

• a rewrite relation if it is monotonic and stable,

• a rewrite order if it is a strict order, monotonic and stable, and

• a reduction order if it is a well-founded rewrite order.

Definition 2.4.2. A Term Rewriting System (TRS) is a tuple (F ,R) consisting of a
signature F and a set R ⊆ T (F ,V)× T (F ,V) of rewrite rules. A rewrite rule (`, r)
must satisfy

• ` 6∈ V , and

• Var(`) ⊇ Var(r).

27

Chapter 2: Preliminaries

We write ` → r instead of (`, r). The rewrite relation→R of a TRS (F ,R) is defined
as: s→R t if there exists a position p ∈ Pos(s), a substitution σ, and a rule `→ r ∈ R
such that s = s[`σ]p and t = s[rσ]p. We say s →R t is a rewrite step. A rule `′ → r′

is a variant of a rule `→ r, if there exists a variable renaming σ, such that `σ = `′ and
rσ = r′.

By definition, s →R t implies the existence of a position p ∈ Pos(s), a rule
` → r ∈ R such that s = s[`σ]p and t = s[rσ]p. When we want to make the
position and/or rule explicit, we will write s

p−→`→r t, s
p−→R t or s →`→r t.

We often omit F when referring to a TRS, simply write R and assume, unless
otherwise noted, the signature of R to consist of all function symbols occurring
in R.

Definition 2.4.3. Let `→ r be a rule of the TRS R. It is called

• left-linear if ` is linear,

• right-linear if r is linear,

• linear if both ` and r are linear,

• collapsing, if r ∈ V , and

• erasing if not each variable that occurs in the left-hand side also occurs at least
once in the right-hand side.

Note that all properties of ARSs, in particular confluence and termination trade
over to TRS when treating a TRS R with signature F as an ARS over the set of
terms and relation →R, i.e. as the ARS (T (F ,V),→R). In general, confluence
and termination or TRSs are undecidable [41, 10]. But several sufficient criteria
to detect confluence of a TRS exist, which are based on overlaps:

Definition 2.4.4. Let R1 and R2 be TRSs. Then an overlap of R1 on R2 is a tuple
(`1 → r1, p, `2 → r2)σ consisting of a position p ∈ PosF (`2), a substitution σ, and
variants of rules `1 → r1 ∈ R1 and `2 → r2 ∈ R2, such that following conditions hold:

• Var(`1, r1) ∩ Var(`2, r2) = ∅,

• `2|p 6∈ V ,

• if `1 → r1 is a renaming of `2 → r2, then p 6= ε, and

• `2|p and `1 unify with mgu σ.

This overlap induces the critical pair `2σ[r1σ]p ← o → r2σ. A critical pair is trivial,
if `2σ[r1σ]p = r2σ. Given a TRSs R1 and R2, the set of critical pairs generated by
all overlaps of R1 on R2 and all overlaps on R2 on R1 is written as CP(R1,R2).
We write CP(R) for CP(R,R). A TRS R is non-overlapping if CP(R) = ∅. A
non-overlapping and left-linear TRS is called orthogonal.

28

2.4 Term Rewriting Systems

We remark that a more general notion of overlap and critical pair exists that
subsumes the above definition. We will make use of this more general notion
when introducing our confluence criterion in Chapter 6. Since we do consider
these notions non-standard, we will not treat them here but define and discuss
them when needed in Chapter 6.

The following result by Knuth and Bendix shows decidability of confluence for
terminating TRSs.

Theorem 2.4.5 (Knuth and Bendix, [49]). Let R be a terminating TRS. Then R is
confluent if and only if all critical pairs are joinable, that is CP(R) ⊆ ↓R.

For non-terminating TRSs, the most famous result is due to Rosen:

Theorem 2.4.6 (Rosen, [64]). Every orthogonal TRS is confluent.

Similarly, criteria exist to detect termination of a TRS. Several are based on
reduction orders.

Theorem 2.4.7. A TRS R is terminating if and only if there exists a reduction order >
with ` > r for all `→ r ∈ R.

We will introduce three orders to show termination. They are all instances of
simplification orders.

Definition 2.4.8. The strict subterm relation B ⊆ T (F ,V)× T (F ,V) is defined as:
sB t if there exists a position p 6= ε such that s|p = t.

Definition 2.4.9. A rewrite order > is a simplification order if B ⊆ >.

Simplification orders ensure termination:

Theorem 2.4.10 ([20, 21]). Let F be a finite signature and V a countable set of variables.
Every simplification order on T (F ,V) is a reduction order.

In the following, a precedence on F is a strict ordering on F .

Definition 2.4.11. A status τ is a function that maps every f ∈ F to either mul or
lexπ. Here π is a permutation on {1, . . . , n}, where n is the arity of f .

Let > be a partial order on T (F ,V), and f ∈ F be of arity n. The partial order >τ(f)

is defined on sequences of length n of terms as follows.

(s1, . . . , sn) >
τ(f) (t1, . . . , tn) is defined as{
{{s1, . . . , sn}} >mul {{t1, . . . , tn}} if τ(f) = mul
(s1, . . . , sn) >lex (tπ(1), . . . , tπ(n)) if τ(f) = lexπ.

29

Chapter 2: Preliminaries

Definition 2.4.12. Let F be a signature, V a countable set of variables, � be a well-
founded precedence, and τ be a status. The recursive path order >rpo⊆ T (F ,V) ×
T (F ,V) is defined as as s >rpo t if s has the form f (s1, . . . , sn) and

1. si = t or si >rpo t for some 1 ≤ i ≤ n, or

2. t = g(t1, . . . , tm), s >rpo ti for all 1 ≤ i ≤ m, and either

a) f � g or

b) f = g and (s1, . . . , sn) >
τ(f)
rpo (t1, . . . , tm).

When requiring τ(f) = mul for all function symbols, the order is called the
multiset path order (MPO). It was originally introduced by Dershowitz [21]. The
lexicographic path order (LPO), introduced by Kamin and Lévy [45], is obtained
by requiring τ(f) = lexπ for all function symbols. The recursive path order
combines these two ideas of showing termination of TRSs.

Theorem 2.4.13 ([75]). Let F be a signature, V be a countable set of variables, � be a
well-founded precedence, and τ be a status on F . Then >rpo is a simplification order on
T (F ,V).

The next order is due to Knuth and Bendix [49]. Below N denotes the natural
numbers.

Definition 2.4.14. A weight function for a signature F is a tuple (w, w0), where w is
a function w : F → N and w0 ∈ N is a constant such that w0 > 0 and w(c) ≥ w0 for
all constants c ∈ F . Given a signature F and a weight-function (w, w0), the weight of
a term t ∈ T (F ,V) is defined as:

w(t) =

w0 if t ∈ V

w(f) +
n

∑
i=1

w(ti) if t = f (t1, . . . , tn)

A weight function (w, w0) is admissible for a precedence � if f � g for all function
symbols g whenever f is a unary function symbol with w(f) = 0.

In the next definition we write Fn for the set of all n-ary function symbols.

Definition 2.4.15. Let� be a well-founded precedence and (w, w0) an admissible weight
function. The Knuth-Bendix order (KBO) is defined as s >kbo t if |s|x ≥ |t|x for all
x ∈ V and either

1. w(s) > w(t), or

2. w(s) = w(t) and one of the following conditions hold:

30

2.5 Equational Problems

a) there is a function symbol f ∈ F 1, a variable x and an integer n such that
s = f n(x) and t = x, or

b) s = f (s1, . . . , sn), t = f (t1, . . . , tn), and there exists an i with 1 ≤ i ≤ n
such that s1 = t1, . . . , si−1 = ti−1 and si >kbo ti, or

c) s = f (s1, . . . , sn), t = g(t1, . . . , tn) and f � g.

Theorem 2.4.16 ([49]). Let � be a well-founded precedence on F , and (w, w0) an ad-
missible weight-function. Then >kbo generated by � and (w, w0) is a simplification
order.

Sorted Term Rewriting Systems

Definition 2.4.17. Let S be a non-empty set of sorts. An S-sorted signature is a
countable set of function symbols F , where each f ∈ F of arity n is associated with the
function signature sig(f) ∈ Sn+1, where sig is a function sig : F → S∗.

Here components from 1 to n of sig provide the sort of each argument, and
the n + 1-th component is the sort of the result of the function. We will write
f : s1 × · · · × sn → sn+1 when f has the signature (s1, . . . , sn+1).

Definition 2.4.18. An S-sorted set A is a family of sets {As}s∈S. For an S-sorted set
V of variables with Vs ∩ Vt = ∅ for all s 6= t, let T (F ,V)s denote the set of terms with
sort s over F and V , defined inductively by

x ∈ Vs

x ∈ T (F ,V)s

f ∈ F f : s1 × · · · × sn → s ti ∈ T (F ,V)si

f (t1, . . . , tn) ∈ T (F ,V)s

This yields the S-sorted set T (F ,V) =
⋃

s∈S T (F ,V)s. We associate with each term
its sort, i.e. the sort of a term t is s, if t ∈ T (F ,V)s. An S-sorted TRS R is a TRS
where for each rule `→ r ∈ R, the terms ` and r are of the same sort.

All notions for unsorted TRSs are lifted to sorted TRSs by limiting terms to
well-sorted ones. Sorts are distinguished frequently in inductive theorem prov-
ing. In examples however we often consider TRSs with only one sort, and identify
them with TRSs.

2.5 Equational Problems

Definition 2.5.1. Let s and t be terms over T (F ,V). An equation is a pair of terms
(s, t). We usually write s ≈ t. A set of equations is called an equational system (ES).

Definition 2.5.2. Let F be a signature. A tuple A = (A, { fA} f∈F) is called an F -
algebra. Here

31

Chapter 2: Preliminaries

• A 6= ∅ is a set, called the carrier or universe

• { fA} f∈F is a family of functions, called interpretations of the function sym-
bols. Each f is assigned a function fA : An → A, where n is the arity of f .

Let α : V → A be a variable assignment. An F -algebra together with a variable
assignment induces an evaluation [α]A(t) of a term t as follows

[α]A(t) =

{
α(t) if t ∈ V
fA([α]A(t1), . . . , [α]A(tn)) if t = f (t1, . . . , tn)

Definition 2.5.3. Let s ≈ t be an equation over a signature F .

• An F -algebra A = (A, { fA} f∈F) models s ≈ t, written A |= s ≈ t, if
[α]A(s) = [α]A(t) for all variable assignments α.

• An F -algebra A is a model of an ES E , written A |= E , if A |= s ≈ t for all
s ≈ t ∈ E .

• The equation s ≈ t follows from an ES E (is valid, is true in an ES E), written
E |= s ≈ t, if A |= s ≈ t for all algebras A with A |= E .

• The relation ≈E ⊆ T (F ,V)× T (F ,V) is defined as s ≈E t if E |= s ≈ t.

• Given an ES E , and an equation s ≈ t, the question whether s ≈ t follows from E
is called the word problem.

Definition 2.5.4. The equational step relation→E ⊆ T (F ,V)× T (F ,V) is defined
as s →E t if there exist a position p ∈ Pos(s), a substitution σ, and an equation
u ≈ v ∈ E such that s = s[uσ]p and t = s[vσ]p. Here E is an ES. We say s ≈ t can be
deduced from E , if s↔∗E t.

Theorem 2.5.5 (Birkhoff [14]). Let E be an ES, and s ≈ t an equation. E |= s ≈ t if
and only if s↔∗E t.

Using Birkhoff’s theorem, one can already construct a semi-decision proce-
dure for s ↔∗E t, since ↔∗E is recursively enumerable. In practice however, this
approach does not work due to the sheer size of possible derivations. For exam-
ple if two terms s and t are connected by ten equational steps, and if in each step
four equations are applicable, the search tree has already 410 = 1048576 nodes.
Here, equivalent complete TRSs come in handy.

Definition 2.5.6. Let E be an ES andR be a TRS over a signature F and set of variables
V . The TRS R is equivalent to E if↔∗R =↔∗E .

To test equivalence of ↔∗R and ↔∗E , it suffices to check equivalence only w.r.t.
to equations and rules:

32

2.5 Equational Problems

Lemma 2.5.7. Let E be an ES and R a TRS over a signature F and set of variables V .
Then R is equivalent to E if and only if `↔∗E r holds for every `→ r ∈ R, and s↔∗R t
holds for every s ≈ t ∈ E .

We will use the following notion throughout the rest of this thesis.

Definition 2.5.8. A TRS R is complete for an ES E , if R is complete and equivalent
to E .

We now arrive at a central theorem, that builds the foundation for equational
theorem proving.

Theorem 2.5.9. Let R be a complete TRS for E . Then E |= s ≈ t iff s↓R = t↓R.

Proof.

E |= s ≈ t
iff s↔∗E t by Theorem 2.5.5 (Birkhoff)
iff s↔∗R t by equivalence of R and E
iff s↓R = t↓R by Theorem 2.1.9

Definition 2.5.10. Let E be an ES over a signature F and set of variables V , and
s ≈ t an equation. Then s ≈ t is an inductive theorem of E , written E `i s ≈ t, if
E |= sσg ≈ tσg for all ground substitutions σg on s ≈ t.

Using Birkhoff’s theorem, one can reduce the question E `i s ≈ t of inductive
validity to the question whether sσg ↔∗E tσg holds for all substitutions σg that
are ground both on s and t. However unlike for completion as in Theorem 2.5.9,
there exists no definitive single characterization of a suitable TRS R for inductive
theorem proving. The question on how to express the requirements of a suitable
TRS R that ensures joinability on ground terms of a conjecture s ≈ t will be the
subject of Chapter 5.

33

Chapter 3

Completion Procedures

Given an equational set E , completion procedures try to construct a complete
(confluent and terminating) TRS R that is equivalent for E . By Theorem 2.4.5,
confluence is decidable for terminating TRSs. Completion procedures thus try to
first compute a terminating candidate TRS, and then test its confluence. There-
fore ensuring termination is of central importance. All extensions of the original
procedure have in common that they focus on and try to increase the capability
of showing termination. In this chapter we briefly recall these extensions and
illustrate their workings with small examples.

3.1 Knuth-Bendix Completion

Knuth and Bendix’ completion procedure was the first to employ critical pairs to
find a complete TRS. It was originally formulated in procedural form, which is
listed as Algorithm 1.

The procedure takes as input not only an equational system E but also a re-
duction order >, and operates on a set of equations Ei, initially E , and a set of
rules Ri, initially empty. In each iteration, an equation from Ei is selected by a
selection heuristic. Then both sides of the equation are rewritten to some normal
form with respect to the current Ri. If the normal forms are syntactically equal,
the equation is removed from Ei, and the iteration continues. Otherwise, if the

35

Chapter 3: Completion Procedures

chosen normal forms for each side are incomparable, the algorithm stops with
failure. If they are comparable in the ordering however, the original equation
is removed from Ei, the normalized equation is oriented, and critical pairs w.r.t.
the new rule and Ri are added to Ei. The new rule is added to Ri and the next
iteration starts.

Algorithm 1 Knuth-Bendix Completion
Input: an equational system E and a reduction order >
Output: a TRS R or FAIL

1: procedure KB-Complete

2: R0 := ∅
3: E0 := E
4: i := 0
5: while Ei 6= ∅ do
6: select s ≈ t ∈ Ei
7: s′ ≈ t′ := s↓Ri

≈ t↓Ri
8: if s′ = t′ then
9: Ri+1 := Ri

10: Ei+1 := Ei \ {s ≈ t}
11: else
12: if s′ > t′ then
13: `→ r := s′ → t′

14: else
15: if t′ > s′ then
16: `→ r := t′ → s′

17: else
18: FAIL

19: end if
20: end if
21: Ri+1 := Ri ∪ {`→ r}
22: Ei+1 := Ei ∪ CP(Ri ∪ {`→ r}, {`→ r})
23: end if
24: i := i + 1
25: end while
26: return R
27: end procedure

One should remark here, that when normalizing the selected equation (line 7),
several possible normal forms can exist, since Ri is terminating, but needs not to
be confluent. Also, according to the original description of the algorithm in [49],
after constructing the new rule `→ r, all left and right hands sides of rules from
Ri are rewritten to a normal form to remove redundant rules. This is called

36

3.1 Knuth-Bendix Completion

inter-reduction. However, one needs extra care in this case, since applying inter-
reduction before normalizing the selected equation (i.e. in-between line 6 and
line 7) leads to an incorrect algorithm. Huet [40] was the first to give a full proof
of soundness of the algorithm including inter-reduction.

Theorem 3.1.1. Let E be an ES, and > a reduction order. If KB-Complete(E ,>)

terminates with output R, then R is a complete TRS for E .

We give a brief example to illustrate the mechanisms of the algorithm, and also
one of its weaknesses. To keep track of rules and equations, when referring to a
rule originating from an indexed equation j : s ≈ t, we write j to denote s → t,
and j′ to denote t → s. However we omit the counter i of the Knuth-Bendix
algorithm for brevity.

Example 3.1.2. Consider the ES E consisting of the equalities:

1 : s(p(x)) ≈ x 2 : p(s(x)) ≈ x 3 : s(x) + y ≈ s(x + y)

and the lexicographic path order > with precedence + � s � p. Suppose we select
the first rule. Since there are no critical pairs of rule 1 on itself, we have E = {2, 3}
and R = {1}. We continue by selecting the second rule, which leads to E = {3} and
R = {1, 2}. Since the critical pairs s(x) ≈ s(x) and p(x) ≈ p(x) between 1 and 2 are
trivial, we can ignore them, continue and select rule 3. There is one critical pair between
rule 1 and rule 3

4 : x + y ≈ s(p(x) + y)

which is in normal form w.r.t. R. Thus E = {4} and R = {1, 2, 3}. We select equation
4, and obtain three new critical pairs:

5 : p(x + y) ≈ p(x) + y 6 : (x + y) + z ≈ s((p(x) + y) + z)
7 : s(x + y) ≈ s(x) + y

Suppose rule 5 is selected. Then R = {1, 2, 3, 4′, 5′} is complete. After two iterations
where equations 6 and 7 are selected, rewritten to identical normal forms and removed
from E , we arrive at E = ∅ and the algorithm succeeds. It should be noted, that rule 4′

is redundant, since both sides of it rewrite to identical normal form by R = {1, 2, 3, 5′}.

It can be observed in Example 3.1.2 that the algorithm has some inefficiency,
since it does not apply inter-reduction to remove redundant rules from the cur-
rent TRS in every iteration. As mentioned, one has to be careful when rewriting
rules of a TRS by itself, as it might affect soundness, cf. [75]. Bachmair et al. [12]
made this condition explicit, by reformulating the procedure into a set of infer-
ence rules KB, which operate on a tuple (E ,R) of an equational set and a TRS. To
formulate the condition of soundness, the encompassment order is used.

37

Chapter 3: Completion Procedures

Deduce

E ,R
E ∪ {s ≈ t},R if s R← · →R t

Orient

E ∪ {s ≈ t},R
E ,R∪ {s→ t} if s > t

Delete

E ∪ {s ≈ s},R
E ,R

Simplify

E ∪ {s ≈ t},R
E ∪ {u ≈ t},R if s→R u

Compose

E ,R∪ {s→ t}
E ,R∪ {s→ u} if t→R u

Collapse

E ,R∪ {s→ t}
E ∪ {u ≈ t},R if s A−→R u

Figure 3.1: Inference rules KB of Knuth-Bendix completion

Definition 3.1.3. The encompassment quasi order w is defined as s w t if there exist a
position p ∈ Pos(s) and a substitution σ, such that s|p = tσ. Its strict part A is defined
as s A t if s w t and t 6w s. We will write s A−→R t if s→`→r t for some `→ r ∈ R and
s A `.

Note that the strict part of the encompassment order is well-founded.

Definition 3.1.4. Let KB be the set of inference rules depicted in Figure 3.1. A comple-
tion procedure takes as input an ES E and a reduction order >, and generates a run
with E0 = E and R0 = ∅. Here, a run is a sequence

(E0,R0) `KB (E1,R1) `KB (E2,R2) `KB (E3,R3) `KB . . .

where for all i ≥ 0 the first component Ei is an equational system, the second component
Ri is a TRS and (Ei+1,Ri+1) is reachable from (Ei,Ri) by one of the inferences.

The output of the procedure is formulated as persistent sets.

Definition 3.1.5. The sets of persistent equations Eω and persistent rules Rω are
defined as

Eω =
⋃
i≥0

⋂
j≥i

Ej and Rω =
⋃
i≥0

⋂
j≥i

Rj.

38

3.2 Completion with Termination Tools

Definition 3.1.6. The run generated by a completion procedure on E fails if Eω 6= ∅.
A run is fair if

CP(Rω) ⊆
⋃
i≥0

Ei.

Theorem 3.1.7. Suppose a completion procedure generates a non-failing and fair run on
E . Then Rω is complete for E .

Thus Theorem 3.1.7 applies not just to one particular algorithm, but to every
procedure that applies the inferences sequentially in a fair manner. Actual imple-
mentations of course need to turn the procedure into some algorithmic form, and
usually implementations are similar to the original Knuth-Bendix completion or
Huet’s procedure [40].

3.2 Completion with Termination Tools

Knuth-Bendix completion requires to fix the ordering a priori. However the or-
ders we presented in Chapter 2 are sometimes simply too weak to prove termi-
nation of a TRS. Consider for example the ES with just one equation

f(x) ∗ g(y) ≈ g(y) ∗ f(x)

This equation appears for example in theories of commuting group endomor-
phisms [74]. Orienting the equation in either direction results in a complete TRS.
But one can verify that there exists no LPO, MPO or KBO that allows to orient
this rule. However much progress has been made in showing the termination
of term rewriting systems automatically. Here we especially mention the depen-
dency pair method [8, 30, 37] and matrix interpretations [23]. Both methods are
able to show termination in the example.

Wehrman et al. [83] suggested to not fix a reduction order in advance, but in-
stead to test termination of the TRS componentR during completion and use→+

R
as the ordering. In practice, the test for termination can be done by a dedicated
termination tool. Note that →+

R is a reduction order whenever R is terminat-
ing. Based on this idea, they formulated a framework for completion based on
inference rules, depicted in Figure 3.2.

The notion of run, fairness and failure can be extended in a straight-forward
manner for the inference rules KBT. Initially the component C is empty.

Theorem 3.2.1 ([83]). Suppose a completion procedure generates a non-failing and fair
run with KBT on input E . Then Rω is complete and equivalent for E .

One might wonder why ensuring termination of Ri is not sufficient and why
adding a dedicated component C is necessary. The role of C is to incrementally

39

Chapter 3: Completion Procedures

Deduce

E ,R, C
E ∪ {s ≈ t},R, C

if s R← · →R t

Orient

E ∪ {s ≈ t}, C
E ,R∪ {s→ t}, C ∪ {s→ t} if C ∪ {s→ t} is terminating

Delete

E ∪ {s ≈ s},R, C
E ,R, C

Simplify

E ∪ {s ≈ t},R, C
E ∪ {u ≈ t},R, C

if s→R u

Compose

E ,R∪ {s→ t}, C
E ,R∪ {s→ u}, C

if t→R u

Collapse

E ,R∪ {s→ t}, C
E ∪ {u ≈ t},R, C

if s A−→R u

Figure 3.2: Inference rules KBT of Completion with Termination Tools

construct an order. Whenever a step (Ei,Ri, Ci) `KBT (Ei+1,Ri+1, Ci+1) is applied,
the inclusion Ci ⊆ Ci+1 holds by definition, and thus we have →+

Ci
⊆ →+

Ci+1
.

However due to the rule Collapse, Ri ⊆ Ri+1 does not necessarily hold and thus
→+
Ri
⊆ →+

Ri+1
also does not hold in general. The question whether changing

the order in a non-incremental manner still yields a correct procedure was for-
mulated as problem #35 in the RTA list of open problems1, and finally answered
negatively in [69].

To practically apply the inferences, Wehrman et al. proposed an algorithm very
similar to Huet’s [40].

3.3 Multi-Completion

As seen, in Knuth-Bendix completion, a fixed order is expected as an input pa-
rameter, and in completion with termination tools the order is constructed on-
the-fly by orienting equations into a terminating TRS. If an equation can be ori-
ented in both directions, a choice between the corresponding orders has to be
made. Therefore in both procedures failure or success heavily depends on the
choice of the reduction order.

1http://rtaloop.mancoosi.univ-paris-diderot.fr

40

3.3 Multi-Completion

Example 3.3.1. Consider the following ES E from [72], consisting of

1 : (x + y) + z ≈ x + (y + z) 2 : f(x + y) ≈ f(x) + f(y)

Let >1 be the lexicographic path order with precedence f � +, and >2 the lexicographic
path order with precedence + � f. A run with >1 succeeds with the complete and
equivalent TRS {1, 2}. However a run with >2 fails, since then Eω is not empty.

In general it is not trivial to make a suitable choice for an order in advance.
To practically apply completion with termination tools, Wehrman et al. [83] de-
veloped a heuristical best-first search strategy to select one orientation if both
are possible. In the case of unorientable equations, backtracking is employed to
recover failed attempts. One drawback of such an approach is that a complete
TRSs is easily missed if infinitely many orientable equations are generated as in
Example 3.3.1, or if the best-first heuristic dos not apply for the ES in question.

Orient

N ∪ {〈s : t, L1, L2, L3 ∪ L〉}
N ∪ {〈s : t, L1 ∪ L, L2, L3〉}

if L 6= ∅, L3 ∩ L = ∅ and s >i t for all i ∈ L

Delete

N ∪ {〈s : s,∅,∅, L〉}
N

if L 6= ∅

Rewrite-1
N ∪ {〈s : t, L1, L2, L3〉}

N ∪
{
〈s : t, L1\L, L2, L3\L〉,
〈s : u, L1 ∩ L,∅, L3 ∩ L〉

}
if 〈` : r, L, ·, ·〉 ∈ N, (L1 ∪ L3) ∩ L 6= ∅, t→`→r u, and t and
` are variants

Rewrite-2
N ∪ {〈s : t, L1, L2, L3〉}

N ∪
{

〈s : t, L1\L, L2\L, L3\L〉,
〈s : u, L1 ∩ L,∅, (L2 ∪ L3) ∩ L〉

}
if 〈` : r, L, ·, ·〉 ∈ N, (L1 ∪ L2 ∪ L3) ∩ L 6= ∅, and t →`→r u,
and t A `

Deduce

N
N ∪ {〈s : t,∅,∅, L ∩ L′〉}

if 〈` : r, L, ·, ·〉 ∈ N, 〈`′ : r′, L′, ·, ·〉 ∈ N, L ∩ L′ 6= ∅, and
s `→r← · →`′→r′ t

Figure 3.3: Inference rules MKB of Multi-Completion

41

Chapter 3: Completion Procedures

A natural idea to handle Example 3.3.1 is to run Knuth-Bendix completion with
several orders in parallel. Due to the sheer number of possible orders, this is
usually not efficient. For example a signature with n function symbols induces n!
total precedences and thus at least n! possible lexicographic path orderings, and
even more if we count non-total precedences. Much performance can be gained,
if operations involving equations and rules that are shared among runs with
different orders have to be performed only once. Kurihara and Kondo [51] first
introduced this idea, and central to its practical applicability is the introduction
of a specialized data structure, a node.

Definition 3.3.2. Let I be a set of indices, and >1, . . . ,>n be n reduction orders. A node
is a tuple 〈s : t, L1, L2, L3〉, where s : t is an ordered pair of terms, L1, L2 and L3 are
mutually disjoint subsets of I that satisfy the following two conditions. For 1 ≤ i ≤ n:

1. s >i t whenever i ∈ L1, and

2. t >i s whenever i ∈ L2.

A node 〈s : t, L1, L2, L3〉 is identified with 〈t : s, L2, L1, L3〉.

In practice, one could for example choose for the orders >1, . . . >n the lexico-
graphic path orders generated by all possible precedences.

Definition 3.3.3. Let n = 〈s : t, L1, L2, L3〉 be a node and i ∈ I an index. The E-
projection and R-projection E[n, i] and R[n, i] of node n onto i are defined as

E[n, i] =

{
{s ≈ t} if i ∈ L3

∅ otherwise
R[n, i] =

{s→ t} if i ∈ L1

{t→ s} if i ∈ L2

∅ otherwise

They are extended to a set of nodes N by

E[N, i] =
⋃

n∈N
E[n, i] R[N, i] =

⋃
n∈N

R[n, i]

Inferences similar to Knuth-Bendix completion can be formulated. Here the
inferences MKB, depicted in Figure 3.3, operate on nodes.

Definition 3.3.4. A run of multi-completion is a sequence of sets of nodes S =
N0 `MKB N1 `MKB . . . with N0 = {〈s : t,∅,∅, I〉 | s ≈ t ∈ E} such that Ni+1
is reachable from Ni by on of the inferences of MKB.

One can project a run of multi-completion to a run of Knuth-Bendix comple-
tion as follows. Given a run S of multi-completion and index i ∈ I of the run,
the projection KB[S, i] is generated as follows: First, every set of nodes Nj is pro-
jected to the tuple (E[Nj, i], R[Nj, i]). Then we yield a sequence of configurations,

42

3.4 Multi-Completion with Termination Tools

where each (E[Nj+1, i], R[Nj+1, i]) is reachable from (E[Nj, i], R[Nj, i]) either by
a step of Knuth-Bendix completion or by an equivalent step, i.e. both config-
urations are identical. Now all such equivalent steps with (E[Nj, i], R[Nj, i]) =
(E[Nj+1, i], R[Nj+1, i]) are removed to obtain the projection KB[S, i].

Lemma 3.3.5. Let S be a run of multi-completion, and i ∈ I. Then KB[S, i] is a run of
completion with KB.

Definition 3.3.6. An MKB-completion procedure is a program that takes as input an ES
E and an indexed set of orders I, and generates a run of multi-completion S. The set of
persisting nodes Nω is defined as

Nω =
⋃
j≥0

⋂
k≥j

Nk.

A run of MKB fails, if KB[S, i] fails for all i ∈ I. An MKB-completion is fair, if it is
finite and KB[S, i] is non-failing for some some i ∈ I or if it is infinite and KB[S, i] is
either fair or failing for all for all i ∈ I.

The above definition follows [86] and differs from [51] to ensure soundness and
completeness properties similar to Knuth-Bendix completion. We refer to [86] for
a more in-depth discussion.

Theorem 3.3.7. Let E be an ES, and I an indexed set of reduction orders. Let S =
N0 `MKB N1 `MKB . . . be a non-failing, fair run of MKB-completion. Then there exists
an i ∈ I such that R[Nω, i] is complete and equivalent for E .

3.4 Multi-Completion with Termination Tools

Implementations of Multi-completion do not suffer from the indeterminism of
the inference Orient of Knuth-Bendix completion and completion with termi-
nation tools. On the other hand, the latter significantly enhances the power
of completion by making a larger class of reduction orders available. It was
shown in [68] how these two approaches can be combined with the inference
rules MKBTT, depicted in Figure 3.4.

While multi-completion considers indices of runs with different reduction or-
ders, here runs of parallel completion procedures are directly identified by bit-
strings. Whenever an equation can be oriented both ways, the run is split by
creating two copies of all nodes and attaching a 0 resp. 1 to each of them. In-
tuitively a node 〈s : t, R1, R2, E, C1, C2〉 is a tuple containing the equation itself,
the set R1 which collects all bitstrings where the equation is oriented s → t, and
the set R2 which collects those where t → s. Similar to KBT, the sets C1 and C2
collect constraints for R1 and R2 to ensure the implied orders are constructed in

43

Chapter 3: Completion Procedures

Orient

N ∪ {〈s : t, R1, R2, E, C1, C2〉}
split(N) ∪ {〈s : t, R1 ∪ Rlr, R2 ∪ Rrl, E′, C1 ∪ Rlr, C2 ∪ Rrl〉}
with Elr, Erl ⊆ E such that

• Elr ∪ Erl 6= ∅,

• P = Elr ∩ Erl ,

• E′ = E\(Elr ∪ Erl)

• C[N, p] ∪ {s→ t} terminates for all p ∈ Elr,

• C[N, p] ∪ {t→ s} terminates for all p ∈ Erl ,

• Rlr = (Elr\Erl ∪ {p0 | p ∈ P}, and

• Rrl = (Er\Elr) ∪ {p1 | p ∈ P},

and splitp(N) replaces every p ∈ P in any label in N by p0 and p1.

Delete

N ∪ {〈s : s,∅,∅, E,∅,∅〉}
N

Gc

N ∪ {〈s : t,∅,∅,∅,∅〉}
N

Rewrite-1
N ∪ {〈s : t, R1, R2, E, C1, C2〉}

N ∪
{
〈s : t, R1\R, R2, E\R, C1, C2〉,
〈s : t, R1 ∩ R,∅, E ∩ R, C1, C2〉

}
if 〈` : r, R, · · · 〉 ∈ N, t→`→r u, t and ` are variants, R ∩ (R1 ∪ E) 6= ∅

Rewrite-2
N ∪ {〈s : t, R1, R2, E, C1, C2〉}

N ∪
{
〈s : t, R1\R, R2\R, E\R, C1, C2〉,
〈s : t, R1 ∩ R,∅, (R2 ∪ E) ∩ R,∅,∅〉

}
if 〈` : r, R, · · · 〉 ∈ N, t→`→r u, t A ` and R ∩ (R1 ∪ R2 ∪ E) 6= ∅

Deduce

N
N ∪ {〈s : t,∅,∅, R ∩ R′,∅,∅〉}

if there exist nodes 〈` : r, R, · · · 〉, 〈`′ : r′, R′, · · · 〉 ∈ N such that
s `→r← · →`′→r′ t and R ∩ R′ 6= ∅

Subsume

N ∪
{
〈s : t, R1, R2, E, C1, C2〉, 〈s′ : t′, R′1, R′2, E′, C′1, C′2〉

}
N ∪ {〈s : t, R1 ∪ R′1, R2 ∪ R′2, E′′, C1 ∪ C′1, C2 ∪ C′2〉}

if E′′ = (E\(R′1 ∪ R′2 ∪ C′1 ∪ C′2))∪ (E′\(R1 ∪ R2 ∪ C1 ∪ C2)) and s
and s′, and t and t′ are variants

Figure 3.4: Inference rules MKBTT of Multi-Completion w/ Termination-Tools

44

3.4 Multi-Completion with Termination Tools

an incremental manner. The set E contains the indices of those runs, where the
equation s ≈ t has been deduced, but not been oriented or rewritten to identity
yet.

Soundness can be established in a similar way as done for multi-completion.
For precise definitions and proofs, we refer to [67], and instead we illustrate how
the inferences of MKBTT operate on the ES of Example 3.1.2.

Example 3.4.1 (continued from Example 3.1.2). Initially, three nodes are created:

1 : 〈s(p(x)) : x,∅,∅, {ε},∅,∅〉
2 : 〈p(s(x)) : x,∅,∅, {ε},∅,∅〉
3 : 〈s(x) + y : s(x + y),∅,∅, {ε},∅,∅〉

After three applications of Orient, we yield the following set of nodes. Note that orient-
ing node 3 causes a split.

1 : 〈s(p(x)) : x, {0, 1},∅,∅, {0, 1},∅〉
2 : 〈p(s(x)) : x, {0, 1},∅,∅, {0, 1},∅〉
3 : 〈s(x) + y : s(x + y), {0}, {1},∅, {0}, {1}〉

Applying Deduce to nodes 1 and 3 and to nodes 2 and 3 yields two new nodes:

4 : 〈x + y : s(p(x) + y),∅,∅, {0},∅,∅〉
5 : 〈p(s(x) + y) : x + y,∅,∅, {1},∅,∅〉

Applying Orient on 4 and 5, modifies these nodes to

4 : 〈x + y : s(p(x) + y),∅, {0},∅,∅, {0}〉
5 : 〈p(s(x) + y) : x + y, {1},∅,∅, {1},∅〉

The inference Deduce on nodes 4 and 2, and on node 5 and 1 yield one new node:

6 : 〈p(x) + y : p(x + y),∅,∅, {0, 1},∅,∅〉

Then Orient modifies this equation to

6 : 〈p(x) + y : p(x + y),∅, {0}, {1},∅,∅〉

Now Rewrite-2 can be applied twice on node 4, first using node 6 and then node 1, and
finally Delete removes node 4 entirely. We can now consider the run indexed by 0. The
E-projection of index 0 consists of the equations of those nodes, where 0 appears in the
E-component (fourth component) of a node — it is empty.

The R-projection of a node n with respect to index 0 is defined as {s→ t} if p ∈ R1, as
{t → s} if p ∈ R2 and ∅ otherwise. Thus the union of R-projections of all nodes yields
the TRSR = {1, 2, 3, 6}. Moreover one can verify that the run indexed by 0 is fair, since
since all non-trivial critical pairs of R have been considered. Thus R is complete.

45

Chapter 3: Completion Procedures

Note how in completion with MKBTT of Example 3.4.1, several equations
(equations 1, 2, 3 and 6) are shared among the runs. When the completion of
an equational system is more complex than in the considered example, this ef-
fects a significant performance gain. Moreover MKBTT allows to fully use the
progress made in research about automated termination analysis, and yields a
very powerful procedure.

In the example, the sequence of selection of nodes and inferences on them leads
quickly to a complete TRS. Two issues remain in this framework. The first one
is that when practically applying this framework, the indeterminism of node-
selection has to be resolved. Similar to the choice of the reduction order, the
question which node to select when, can have an influence both on the outcome
of the algorithm itself and on its performance. Secondly, the incorporation of
implementational details, the data structure node, makes the formulation of the
inferences more complex, and the extraction of the essential soundness properties
of completion non-trivial.

3.5 Inductive Proofs by Completion

Methods to prove inductive theorem can roughly be classified into three cate-
gories. Explicit methods [15] construct an explicit induction scheme that is ad-
justed specifically for the equational system and the conjecture in question. Proofs
by consistency [18] do not rely on an induction scheme at all. Instead they start
a proof attempt directly and try to find a suitable induction scheme during the
proof. Lastly, implicit induction techniques are somewhat between the two above.
They are direct adaptations of completion to the setting of inductive theorem
proving. While no explicit induction scheme is generated a priori, an induction
scheme is implicitly provided by a syntactic order. Since the order changes the
induction scheme, the choice of it affects the outcome of a proof attempt, quite
similar to completion.

Due to the deep connection with completion we solely focus on the latter. For
an overview of methods based on proofs by consistency, and a more in-depth
discussion about the differences to implicit methods we refer to [18]. We remark
that [18] refers to methods using proofs by consistency as inductionless induction.
The terminology inductionless induction has been used by multiple authors in
several different manners.

We will use the terminology inductionless induction in a different fashion
than [18]. With it we refer to one specific implicit proof method due to Gram-
lich [34]. It greatly illustrates the connection between Knuth-Bendix completion
and inductive proof methods. The second result we recall here is rewriting induc-
tion. Although there is no direct historical connection, it can be seen as a refine-
ment of Gramlich’s method. Several extensions to rewriting induction have been

46

3.5 Inductive Proofs by Completion

Delete

E ∪ {s ≈ s},H
E ,H

Simplify

E ∪ {s ≈ t},H
E ∪ {u ≈ t},H if s→R∪H u

Expand

E ∪ {s ≈ t},H
E ∪ Expd(R, {s→ t}),H∪ {s→ t} if {s→ t} is R-expandable

Figure 3.5: Inference rules of Rewriting Induction

proposed [1, 2], which allow to construct powerful inductive theorem provers.
Multi-completion also has been adapted to be used with rewriting induction [66].
Such extensions however are beyond the scope of this thesis.

Before continuing, we first recall some definitions related to inductive theo-
rems.

Definition 3.5.1. A term t is R0-inductively-reducible, if for all ground substitutions
σg on t, the term tσg is R0-reducible. A TRS R is left-R0-inductively-reducible, if for
all rules `→ r ∈ R, the term ` is R0-inductively-reducible.

Below when writing R0 `i H for TRS R and H the latter is regarded as an ES.
The next theorem is the basis of inductionless induction.

Theorem 3.5.2 ([34]). Let R = R0 ∪ H be a terminating, and left-R0-inductively-
reducible TRS. If CP(R0,H) ⊆ ↓R, then R0 `i H.

It is not difficult to design inference rules for inductive proofs based on The-
orem 3.5.2 that delete identities, rewrite equations or add critical pairs, see [34].
We skip such a calculus however and proceed to rewriting induction [62]. It re-
laxes the joinability conditions of inductionless induction. Instead of requiring
all critical pairs to be joinable, joinability of only a specific subset suffices.

We recall some additional definitions. Given a TRS R, the set D = {root(`) |
` → r ∈ R} is the set of defined function symbols (of R). The set C = F \ D
is the set of constructor symbols. A term t = f (c1, . . . , cn) is basic, if f ∈ D and
ci ∈ T (C,V) for all 1 ≤ i ≤ n. We write B(t) for the set of all basic positions
{p ∈ Pos(t) | t|p is basic}. A TRS is quasi-reducible if no ground basic term is in
normal form. Let R0 be a quasi-reducible TRS with defined function symbols D
and constructor symbols C, and let E be an ES. We say that R is R0-expandable
if for every ` → r ∈ R there exists a basic (w.r.t. D and C) position in `. We
write Expd(R0,R) for the set of all critical pairs originating from overlaps (`1 →

47

Chapter 3: Completion Procedures

r1, p, `2 → r2)µ of R0 on R, where p is a fixed (depending on `1 → r1) basic
position in `2.

Before continuing, we remark the following. Quasi-reducibility ensures that all
instantiations of variables can be considered to be solely built upon constructor
symbols. However quasi-reducibility rarely holds for unsorted TRSs. Thus one
often assumes TRSs to be sorted when reasoning with inductive theorems. We
will follow this approach throughout this thesis.

Theorem 3.5.3 ([62]). Let R and H be TRSs such that R is quasi-reducible and R∪H
is terminating. If Expd(R,H) ⊆ ↓R∪H then R `i H.

Inference rules for Rewriting Induction are depicted in Figure 3.5. We write
(E ,H) (E ′,H′) when applying an inference rule of Figure 3.5. The reflexive
transitive closure of application of such rules is depicted by ∗. Using Theo-
rem 3.5.3 one can show correctness of deriving proofs by this inference system.

Theorem 3.5.4 ([62]). Let R be a quasi-reducible TRS, E a set of equations and > a
reduction order with R ⊆ >. If there exists a sequence of inferences and a TRS H such
that (E ,∅) ∗ (∅,H), then R `i H.

To conclude this section, we give an example to show how a proof of a valid
conjecture is obtained using the inference rules in Figure 3.5.

Example 3.5.5. Consider the TRS R consisting of

1 : 0+ y→ y 2 : s(x) + y→ s(x + y)

with sorts 0 : nat, s : nat → nat and + : nat× nat → nat. Let the set of conjectures E
consist of the next equation.

3 : (x + y) + z ≈ (x + y) + z

The proof starts by ({3},∅). After expansion at the leftmost, innermost basic position
we reach ({4, 5}, {3}) where 4 and 5 are the equations:

4 : y1 + z ≈ 0+ (y1 + z) 5 : s(x2 + y2) + z ≈ s(x2) + (y2 + z)

Both sides of equation 4 and 5 rewrite to identical normal form by the TRS {1, 2, 3}.
Therefore by several steps of the rules Simplify and Delete we have ({4, 5}, {3}) ∗
(∅, {3}). Thus R `i E .

48

Chapter 4

Maximal Completion

In Chapter 3 we presented the original Knuth-Bendix completion procedure and
several extensions. Searching for a complete TRS, these procedures face a kind of
dilemma: With simplicity of the framework comes a decrease in power, and with
more power comes an increase in the complexity of the framework due to incor-
poration of algorithmic and implementational details. The underlying reason is
that all extensions essentially rely on the original algorithmic design of Knuth-
Bendix’ procedure to ensure soundness. This design imposes a certain way how
to construct the search space, and a dedicated search algorithm to resolve all
indeterminism.

During the early 2000’s, much progress has been made in the area of con-
straint solving. Problems such as SAT, which are NP-hard and were thought to
be intractable, turned out to be effectively solvable in many instances. Highly
optimized algorithms, usually extensions of the DPLL-procedure [19], enabled
applications in other domains, where encoding the problem to constraints and
using a constraint solver has surpassed the development of dedicated algorithms.
Such an approach is usually more efficient, and moreover allows to abstract im-
plementational details from a framework as constraints. For example many tech-
niques to automatically show termination of a TRS can be encoded as an instance
of SAT.

To encode a problem as an instance of SAT, the search space has to be made

49

Chapter 4: Maximal Completion

explicit in order to be representable by a finite number of constraints. Unfor-
tunately, due to the complexity of the completion problem, it is non-trivial to
explicitly give the search space that includes all desirable complete TRSs. But we
present a new framework for completion by giving an encoding to a maximality
problem over constraints. This allows to separate the soundness properties of
completion from the search problem. Since the search space is represented in-
directly by maximality constraints, no dedicated algorithm is needed any more,
and implementational details are no longer part of the framework. Therefore it
can be formulated in a much simpler way than existing powerful completion pro-
cedures, even though all existing completion procedures can be expressed in our
framework by choosing suitable parameters. Experimental evaluation of a proto-
type implementation shows that the procedure can cope with and often surpasses
existing state-of-the-art tools. Moreover due to its modularity, the framework can
benefit from any future progress in MaxSAT or MaxSMT.

To formulate our framework we first look again at the completion procedure
itself, and reformulate it as a maximality problem in Section 4.1. We show how
to automate this formulation by giving an encoding to maximality constraints in
Section 4.2, and we relate our framework to existing procedures in Section 4.3.
Finally we evaluate our approach experimentally in Section 4.4.

4.1 Maximality

The task of completion is to find a complete TRS with respect to some given
system of equalities. This notion of completeness is captured in the next lemma.

Lemma 4.1.1. A TRS R is complete for an ES E if and only if R is terminating,
R ⊆ ↔∗E , and E ∪ CP(R) ⊆ ↓R.

Proof. For the “if”-direction, by Knuth and Bendix’ confluence criterion [49] (The-
orem 2.4.5), confluence of R follows from CP(R) ⊆ ↓R and termination of R.
Moreover, E ⊆ ↓R and R ⊆ ↔∗E yield ↔∗R = ↔∗E . The “only if”-direction is
immediate from↔∗E =↔∗R ⊆ ↓R.

Lemma 4.1.1 yields a simple completion procedure. Let E be an ES. We assume
that two parameter functions R and S are given and the next two conditions hold
for every ES C: S(C) is a set of equalities in↔∗E , and R(C) is a set of terminating
TRSs R with R ⊆ ↔∗E .

Definition 4.1.2. Given ESs E and C, the procedure ϕ is defined as

ϕ(C) =
{
R if E ∪ CP(R) ⊆ ↓R for some R ∈ R(C)
ϕ(C ∪ S(C)) otherwise

Note that ϕ(C) is neither unique nor defined in general.

50

4.1 Maximality

Theorem 4.1.3. ϕ(E) is a complete TRS for an ES E , if it is defined.

The procedure ϕ repeatedly expands C (initially E) by S(C) until R(C) contains
a complete TRS for E . For its success the choice of R(C) and S(C) is crucial. Let
t↓R denote a fixed normal form of t with respect to R. We say that a TRS R is
over an ES C if R ⊆ C ∪ C−1. The set of all terminating TRSs over C is denoted by
T(C). We propose to use

R(C) = MaxT(C)
S(C) =

⋃
R∈R(C)

{s↓R ≈ t↓R | s ≈ t ∈ E ∪ CP(R) and s↓R 6= t↓R}

Here Max computes all maximal sets of rewrite rules (called maximal TRSs) in
its given family of TRSs, and this is the reason that we call our method maximal
completion. Part (b) in the next lemma explains why non-maximal TRSs in T(R)
can be ignored safely.

Lemma 4.1.4. Let E be an ES. The following claims hold:

(a) Let R and R′ be TRSs such that R ⊆ R′ ⊆ ↔∗E with R′ terminating. Then R′ is
complete for E if R is complete for E .

(b) E ∪ CP(R) ⊆ ↓R for some R ∈ T(C) iff E ∪ CP(R) ⊆ ↓R for some R ∈ R(C).

Proof. (a) Due to completeness of R, we have E ∪ CP(R′) ⊆ ↓R. The claim fol-
lows together with →R ⊆ →R′ . (b) The ‘only if’-direction is straightforward
from the first claim, and the converse is trivial.

We illustrate maximal completion with an example.

Example 4.1.5. Consider the ES E consisting of the equalities:

1 : s(p(x)) ≈ x 2 : p(s(x)) ≈ x 3 : s(x) + y ≈ s(x + y)

We compute ϕ(E) with the above S(C) and R(C).

(i) R(E) consists of two TRSs {1, 2, 3} and {1, 2, 3′}. Since the join-condition of ϕ

does not hold, we have ϕ(E) = ϕ(E ∪ S(E)). Here S(E) consists of two equalities:

4 : x + y ≈ s(p(x) + y) 5 : p(s(x) + y) ≈ x + y

(ii) R({1, . . . , 5}) consists of the two TRSs {1, 2, 3, 4′, 5} and {1, 2, 3′, 4′, 5}. Again
the join-condition does not hold. Thus, ϕ({1, . . . , 5}) = ϕ({1, . . . , 9}), where

6 : (x + y) + z ≈ s((p(x) + y) + z) 7 : p((s(x) + y) + z) ≈ (x + y) + z
8 : p(x) + y ≈ p(x + y) 9 : p((x + y) + z) ≈ (p(x) + y) + z

51

Chapter 4: Maximal Completion

(iii) R({1, . . . , 9}) consists of four TRSs including the TRS R of

{1, 2, 3, 4′, 5, 6′, 7, 8, 9′}

which satisfies the join-condition. Thus, ϕ({1, . . . , 9}) = R.

Hence, ϕ(E) = R and it is a complete TRS for E .

Very often a complete TRS resulting from maximal completion contains many
superfluous rules. It is known that this problem is resolved by computing re-
duced TRSs (cf. [40]). A TRS R is reduced if ` ∈ NF(R \ {`→ r}) and r ∈ NF(R)
for all rules `→ r ∈ R. We write R̂ for the reduced TRS

{`→ r ∈ R̃ | ` ∈ NF(R̃ \ {`→ r})}

where R̃ = {`→ r↓R | `→ r ∈ R}. The TRS R̂ fulfills the desired property:

Lemma 4.1.6. If a TRS R is complete for E , then R̂ is complete for E .

Proof. Using the fact that R̂ is complete and↔∗R =↔∗R̂ (see [54]).

Example 4.1.7 (continued from Example 4.1.5). We have R̃ = {1, . . . 9}. The left-
hand sides of rules 5 and 7 are reducible by rule 3, and the left-hand sides of rules 4′, 6′

and 9′ are reducible by rule 8. Rules i = 1, 2, 3, 8 are in normal form with respect to
R̃ \ {i}. Thus the reduced version R̂ is {1, 2, 3, 8}.

As Example 4.1.5 illustrates, maximality dismisses undesirable complete TRSs
like empty or singletons in T(C). This is one major source of efficiency in max-
imal completion. We refer to the subsequent two sections for further discussion
on R(C) and S(C).

4.2 Automation

We describe how to automate the approach of Section 4.1.

4.2.1 Computing Maximal Terminating TRSs

Since termination is undecidable, for automation we compute maximal elements
in the set of TRSs over a given C, for which we can show termination with re-
duction orders automatically. However, since there are exponentially many TRSs
over C in general, it is impractical to check termination of each of them to com-
pute maximal elements. We present a solution using MaxSAT solving.

In the last years, SAT/SMT-encodings of termination conditions based on exist-
ing subclasses of reduction orders have been extensively investigated, and today

52

4.2 Automation

they are well-established. Here we mention recursive path orders [52, 17], Knuth-
Bendix orders [88] and orders based on matrix interpretations [23]. Importantly,
all of them can test the existence of a reduction order > that satisfies arbitrary
Boolean combinations of order constraints:

C ::= s > t | > | ⊥ | ¬ C | C ∨ C | C ∧ C

We exploit this fact to encode a maximal termination problem into a maximal
satisfiability problem. Even though NP-hard in general, nowadays solving can
be efficiently done by SMT solvers.

Computing maximal terminating TRSs is done iteratively: Given a set of equal-
ities C, assume we already found k maximal terminating TRSs R1, . . . ,Rk over C.
In the following we write

Maximize S subject to ϕ

for the problem of finding an assignment (here an order) that maximizes the
number of satisfied elements in the set S while satisfying ϕ. We construct the
following optimization problem ψ:

Maximize {(s > t) ∨ (t > s)}s≈t∈C subject to
k∧

i=1

∨
`→r∈(C∪C−1)\Ri

` > r

Since each ` > r can be encoded w.r.t. a particular class of reduction orders to
Boolean constraints, ψ can be treated as an instance of MaxSAT/MaxSMT. A
solution yields a maximal subset of oriented equalities from C, that forms a ter-
minating TRS Rk+1 and is different from all R1, . . . ,Rk. If ψ is unsatisfiable, we
found all maximal terminating TRSs over C (w.r.t. the considered reduction or-
der) and return {R1, . . . ,Rk}. Otherwise, we re-encode ψ w.r.t. Rk+1 for another
MaxSAT/MaxSMT-instance.

One might wonder, why one has to maximize all possible rules subject to

k∧
i=1

∧
`→r∈(C∪C−1)\Ri

` > r.

Intuitively one might think that

k∧
i=1

∨
`→r∈Ri

¬(` > r)

is sufficient. However, note that ¬(` > r) holds, if ` > r does not hold in the
considered order, and this does not mean that r > `. While such an encoding is
sound, it does generate TRSs that are not always maximal terminating. In the fol-
lowing example, we assume that our constraint encodings are further translated
to test the existence of a lexicographic path order.

53

Chapter 4: Maximal Completion

Example 4.2.1 (continued from Example 4.1.5). Recall the ES E consisting of:

1 : s(p(x)) ≈ x 2 : p(s(x)) ≈ x 3 : s(x) + y ≈ s(x + y)

We have found no maximal TRS yet, thus k = 0. The corresponding constraint is:

Maximize {(1∨ 1′), (2∨ 2′), (3∨ 3′)} subject to >

This constraint can be further translated into a problem over boolean constraints, that
tests the existence of a suitable lexicographic path order such that all the termination con-
straints are satisfied. The LPO with precedence + � s maximizes the above constraints,
as it yields the TRS R1 = {1, 2, 3}. To find another maximal TRS R2, we encode the
following constraint problem:

Maximize {(1∨ 1′), (2∨ 2′), (3∨ 3′)} subject to (1′ ∨ 2′ ∨ 3′)

A valid solution to this maximality constraint is the TRS R2 = {1, 2, 3′}, induced from
the LPO with precedence s � +. For the next constraint problem

Maximize {(1∨ 1′), (2∨ 2′), (3∨ 3′)} subject to (1′ ∨ 2′ ∨ 3′) ∧ (1′ ∨ 2′ ∨ 3)

the “subject to”-part is not satisfiable, so no terminating TRS can satisfy this constraint.
In particular, there exists no LPO that satisfies it. Thus all maximal terminating TRSs
have been computed. Now suppose we would have instead used the other encoding:

Maximize {(s > t) ∨ (t > s)}s≈t∈C subject to
k∧

i=1

∨
`→r∈Ri

¬(` > r)

Then, after computing R1 and R2 similar as above, we have the following constraint.

Maximize {(1∨ 1′), (2∨ 2′), (3∨ 3′)}
subject to (¬1′ ∨ ¬2′ ∨ ¬3′) ∧ (¬1′ ∨ ¬2′ ∨ ¬3)

If one takes the LPO with empty precedence, both sides of equation 3 are incomparable.
Thus the constraint is satisfiable, and we obtain the TRSR = {1, 2}. This TRS is indeed
terminating, but it is not maximal terminating.

Finally, in our implementation we do not compute all maximal terminating
TRSs. This is because there still may be exponentially many maximal terminating
TRSs. Instead, we fix a number K to stop the enumeration of maximal terminat-
ing TRSs whenever the number reaches K. This is motivated by the following
observation: Assume that there exists a complete TRS R ∈ R(C), but we fail to
select it. Since R is a terminating TRS over C ∪ S(C), by Lemma 4.1.4 (a) there
exists a maximal terminating, complete TRS R′ ∈ R(C ∪ S(C)) with R ⊆ R′.
Thus when missing the complete TRS R in one iteration, there is still a chance to
select R′ in the next one.

54

4.3 Related Work

4.2.2 Filtering Equalities

Our implementation of the parameter function S(C) follows closely the proposed
one of Section 4.1, but adds a few small operations as described below.

When orienting equalities to rules, some equalities tend to generate a lot of
critical pairs. This is why Knuth-Bendix completion employs selection heuristics
(cf. [10, 83, 85]) that select only certain kinds of equalities. We also heuristically
select equalities, since otherwise the number of critical pairs grows too fast and
our implementation fails to handle it. In order to address it, we first normalize
the equalities to filter out all those whose size exceeds a bound d. Then, we select
the n smallest equalities. If they are not uniquely defined, i.e. there are several
equalities of the same size, we simply select equalities in the order in which they
were generated. We formulate this filtering. For a set of equalities C, we write
C<d to denote all equalities s ≈ t of C with |s|+ |t| < d. Moreover we write C�n
for the set of the n smallest equalities in C. With these notations, S(C) can be
described as follows:

S(C) =
⋃

R∈R(C)

(
{s↓R ≈ t↓R | s ≈ t ∈ E ∪ CP(R) and s↓R 6= t↓R}<d�n

)

4.3 Related Work

We relate our procedure ϕ to existing completion methods described in Chap-
ter 3. Due to their algorithmic nature precise simulations are difficult, but we
capture their main features. We say that S is an inter-reduced version of a termi-
nating TRS R, if S is a terminating reduced TRS whose rules are obtained by
rewriting rules in R by R itself.

• Knuth-Bendix Completion. Let > be a reduction order for the Knuth-
Bendix completion procedure and for the orientable part {` → r ∈ C ∪
C−1 | ` > r} we write C>. The Knuth-Bendix completion procedure (cf.
Section 3.1) can be simulated by ϕ if one uses

R(C) = {C>} and S(C) = {s↓R′ ≈ t↓R′}

where R′ is an inter-reduced version of C> and s ≈ t ∈ C ∪ CP(R′).

• Multi-completion. As mentioned in Section 3.3, Multi-completion uses a
class of reduction orders >1, . . . ,>n to run Knuth-Bendix completion in par-
allel, and typically the class is the set of all possible recursive path orders.
Its run can be simulated in our method as follows:

R(C) = {C>1 , . . . , C>n} and S(C) = {s↓R′ ≈ t↓R′}

55

Chapter 4: Maximal Completion

where, R′ is an inter-reduced version of C>i and s ≈ t ∈ C ∪ CP(R′). A
naive implementation of this approach fails due to the large number of
compatibility checks as well as computations of normal forms. As illus-
trated in Chapter 3, the specialized data structure node allows to share these
computations among the orders.

• Completion with termination tools. As introduced in Section 3.2, this pro-
cedure does not require a reduction order as an input parameter, because
during its process a necessary reduction order is constructed on the fly:

R(C) = {R} and S(C) = {s↓R′ ≈ t↓R′}

where, R is a TRS over C whose termination is shown by a termination tool,
R′ is an inter-reduced version of R, and s ≈ t ∈ C ∪ CP(R′). Unlike a
fixed single reduction order, a termination tool can find a number of ter-
minating TRSs over C, which avoids failure of Knuth-Bendix completion.
The main drawback of this procedure is similar as with multi-completion,
and in n [83] a heuristic for the best-first search strategy is suggested to se-
lect one of the terminating TRSs. Nevertheless, this approach significantly
extends the power of Knuth-Bendix completion, and has been adopted in
their completion tool Slothrop.

• Multi-completion with termination tools (cf. Chapter 3.4). The method
replaces reduction orders in multi-completion by a termination tool:

R(C) = {R1, . . . ,Rn} and S(C) = {s↓R′ ≈ t↓R′}

where, R1, . . . ,Rn are all TRS over C whose termination is shown by a
termination tool, R′ is an inter-reduced version of some R ∈ R(C), and
s ≈ t ∈ C ∪ CP(R′). A variant of the node data structure that is used in
multi-completion provides a compact representation of R(C) as well as an
efficient algorithm to compute it. This approach has been implemented in
the very effective completion tool mkbTT.

As stated before, maximal completion only computes maximal terminating
TRSs, which are often much fewer than all terminating TRSs, but it does not
miss a complete TRS. This is the main idea of our approach. One drawback is
the current limited power of maximal termination provers. Theoretically, brute
force search allows using a termination tool to compute maximal terminating
TRSs. However, it is practically infeasible due to exponentially many calls of the
termination tool.

Another difference is the definition of S(C). Except for maximal completion, all
procedures use a single equality in S(C) and its selection is critical for successful
runs. The next example illustrates this.

56

4.3 Related Work

Table 4.1: Summary for all 115 equational systems

LPO KBO termination tool
mkbTT Maxcomp mkbTT Maxcomp mkbTT Slothrop

completed 70 86 67 69 81 71

failure 6 6 3 3 3 4

timeout 39 23 45 43 31 40

Example 4.3.1. Recall the ES E in Example 4.1.5:

1 : s(p(x)) ≈ x 2 : p(s(x)) ≈ x 3 : s(x) + y ≈ s(x + y)

We perform ϕ(E) as the simulated run of multi-completion, where the class of reduction
orders is all LPOs with total precedence. Assume that our selection strategy for S(C)
prefers an equality derived from the critical pair of rule 3 and the rule of the biggest
possible index for some TRS in R(C).

(i) R({1, 2, 3}) = {{1, 2, 3}, {1, 2, 3′}}, which both do not satisfy the join-condition
of ϕ. Thus, ϕ({1, 2, 3}) = ϕ({1, . . . , 4}), where 4 is the single equality in
S({1, 2, 3}):

4 : x + y ≈ s(p(x) + y)

(ii) R({1, . . . , 4}) = {{1, 2, 3, 4′}, {1, 2, 3′, 4′}} and the join-condition does not hold
again. We continue the run with ϕ({1, . . . , 4}) = ϕ({1, . . . , 5}), where 5 in
S({1, . . . , 4}) is

5 : (x + y) + z ≈ s((p(x) + y) + z)

(iii) Generally, we have R({1, . . . , n}) = {{1, 2, 3, 4′, . . . , n′}, {1, 2, 3′, 4′, . . . , n′}}
and S({1, . . . , n}) is the singleton of

n+1 : ((x1 + x2) + · · ·) + xn−1 ≈ s(((p(x1) + x2) + · · ·) + xn−1)

for n ≥ 3. Thus, the join-condition never holds and the procedure does not termi-
nate.

Admittedly, for the above example it is easy to choose an appropriate selection
strategy that succeeds. In general however, it is difficult to know a suitable se-
lection strategy a priori. This is why mkbTT provides several selection strategies

57

Chapter 4: Maximal Completion

1 5 10 60 180 360
30

40

50

60

70

80

90

time (sec)

co
m

pl
et

ed
sy

st
em

s

mkbTT/LPO
Maxcomp/LPO

mkbTT/KBO
Maxcomp/KBO

mkbTT/TTT2
Slothrop/AProVE

Figure 4.1: Comparison of execution times.

as a user parameter. Maximal completion does not use a singleton but a set of
equalities for S(C), which reduces the risk to get stuck.

To conclude, we like to stress the simplicity of maximal completion, due to
avoiding a dedicated search algorithm like the one in Slothrop, and a sophisti-
cated but complex data structure like that of multi-completion. The only major
drawback is that maximal completion is practically limited to methods of show-
ing termination that can be encoded to constraints. This can prevent to find a
complete TRS even if one exists for a given ES. For example to complete the
theory CGEn of n commuting group endomorphisms [83], advanced termina-
tion techniques are required which can not be encoded as a constraint problem.
Consequently, maximal completion cannot (practically) complete CGEn.

4.4 Experiments

We implemented maximal completion in the tool Maxcomp. The tool employs
the SMT solver Yices [22] to support LPO and KBO. Concerning parameter K for
R(C) in Section 4.2, at the beginning we use K = 2 to compute two maximal
terminating TRSs. During the recursion of ϕ, we increase K whenever S(C) ⊆ C.
If, at some point, no new equalities are generated and all maximal terminating
TRSs are computed (i.e. the parameter K cannot be increased any more), the tool
stops with failure. Moreover, we fix n = 7 and d = 20 for S(C). These values
were chosen heuristically, see below for a brief discussion on their effect.

58

4.4 Experiments

0 2 4 6 8 10 12 14
50

60

70

80

90

parameter K

co
m

pl
et

ed
sy

st
em

s

Maxcomp/LPO
Maxcomp/KBO

Figure 4.2: Computation of maximal terminating TRSs ("K").

We compare Maxcomp with the two existing completion tools Slothrop and
mkbTT. Since the latter two require termination provers, we used AProVE [28]
for Slothrop, and for mkbTT its internally supplied prover TTT2 [50]. The test-bed
consists of 115 equational systems from the distribution of mkbTT.1 The tests were
single-threaded run on a system equipped with an Intel Core Duo L7500 with 1.6
GHz and 2 GB of RAM using a timeout of 300 seconds.

Table 4.1 gives a summary of the overall results. Here we also included results,
where mkbTT’s termination proving power was limited to LPO and KBO2 (this is
not possible for Slothrop). Aside from this, all parameters of all tools were left at
their default values. A full list of all results can be found in Appendix A.

It should be noted that the complete systems found by using a termination tool
are mostly different from those found with LPO or KBO, since the reduction or-
der constructed using a termination tool is usually different from them. Table 4.1
suggests that Maxcomp succeeds whenever mkbTT or Slothrop succeed, but this
is not the case. In fact for each tool there exist equational systems for which the
tool succeeds to find a complete TRS, but both of the other tools fail to do so.

For almost all equational systems in the test-set complete TRSs are known. The
reason why the tools fail or time out however is different with respect to each tool.
Maxcomp mostly fails or times out when it is not possible to show termination
of the known complete TRS for the ES in question by LPO or KBO. For Slothrop,
the reason for a timeout is usually that its best-first search algorithm picks the

1http://cl-informatik.uibk.ac.at/software/mkbtt/
2mkbtt -s lpo for LPO, and mkbtt -s kbo for KBO.

59

Chapter 4: Maximal Completion

wrong branch in the search tree and is unable to recover from that, and mkbTT

faces a similar problem. It should be noted however that by choosing specific,
suitable selection strategies for each equational system individually, mkbTT can
complete more systems than with its default selection strategy. To name one
example, mkbTT completes SK90.3.22 with LPO and selection strategy old [85]
within roughly 40 seconds, however times out after 300 seconds with all other
predefined strategies (max, slothrop, sum). While the chosen selection strategy
vastly affects the outcome of mkbTT, it is in general non-trivial to decide which
selection strategy to choose in advance.

Concerning the timeout, with very few exceptions, a higher timeout seems
not to affect the results. A notable exception are the group axioms with two
commuting endomorphisms CGE2 [83], for which Slothrop was the first tool to
automatically construct a complete TRS. Here however Slothrop fails to complete
CGE2 within 300 seconds.

All in all, as can be seen in Figure 4.1, Maxcomp is the fastest tool. The reason
is that significant time during completion is spent on termination analysis, and
the constraint-based approach of Maxcomp outperforms the use of termination
tools. For overall performance, whenever all tools succeeded, they usually (with
four exceptions) did so in less than 35 seconds. For the rest of systems, timing
values do not show a clear trend. As seen in Figure 4.2, the parameter K mostly
remains unchanged at 2, and for the vast majority of successful runs does not
exceed 5, the maximum being 14. It seems that the computation of few maximal
terminating TRSs suffices to guide the search process in the right direction.

One might think that other parameters (n and k) of Maxcomp should heavily
affect the outcome of the experiments, but in practice their overall influence is
rather small. For example with settings n = 7 and d = 21, and n = 7 and d = 19
using LPO, the completed systems did not change at all. For n = 8 and d = 20 the
ES LS94.P1.trs could be completed, but completion of SK90.3.28.trs did not
terminate. Lastly for n = 6 and d = 20 the ESs LS94.P1.trs and SK90.3.26.trs

were completed, but again, the run on the ES SK90.3.28.trs did not terminate.
An explanation for this behavior is that with no bound n and k at all we have
exponential growth of the set C due to the exponential number of critical pairs.
However, fixing n and k with any values ensures that the growth of C becomes
constant, which suffices to get practically good results.

60

Chapter 5

Constrained Equalities

Most calculi for (inductive) theorem proving are based on the idea of finding
a terminating TRS that satisfies certain joinability requirements of equalities (cf.
Chapter 3). Thereby an equational proof is transformed into a search problem.
To find such a TRS the inference rules of completion are adapted. However they
usually require a fixed reduction ordering as an input parameter.

Chapter 4 illustrated how completion can be fully automated by reformulating
it as an optimization problem over constraints. As seen, this also yields a prac-
tically highly efficient procedure. The key ingredient in the reformulation is the
use of maximality (Lemma 4.1.4). It states that given a set of candidate equalities,
it can never be harmful to choose a terminating superset of the required rules.
Thus one can maximize the choice of rules with respect to orientability.

In inductive theorem proving, such a choice does not fit, even if only (induc-
tively) valid equations are considered. For example, in rewriting induction an
analogous formulation would be that ifR andH are TRSs withR quasi-reducible
and R∪H terminating and Expd(R,H) ⊆ ↓R∪H, then for all H′ with H ⊆ H′
and R∪H′ terminating and R `i H′ we have Expd(R,H′) ⊆ ↓R∪H′ , cf. Theo-
rem 3.5.3. Unfortunately this is not the case.

Example 5.0.1. Recall the TRS R of Example 3.5.5:

1 : 0+ y→ y 2 : s(x) + y→ s(x + y)

61

Chapter 5: Constrained Equalities

Suppose we have additionally the following two equations

3 : (x + y) + z ≈ x + (y + z) 4 : x + s(x) ≈ s(x + x)

and we want to prove that R `i {3}. One can verify that indeed all the conditions
of the above (false) conjecture are met. Suppose we orient rules 3 and 4 from left to
right and expand at leftmost, innermost basic positions. If we take H = {3} then
Expd(R,H) ⊆ ↓R∪H which implies R `i {3} by Theorem 3.5.3. However when
choosing the superset H = {3, 4} we have Expd(R,H) 6⊆ ↓R∪H even though both 3
and 4 are valid inductive theorems.

To summarize, choosing an appropriate set of equations H among candidates
to solve the associated joinability problem Expd(R,H) ⊆ ↓R∪H is a highly non-
trivial task. Clearly, maximality with respect to the number of orientations is not
a suitable criterion.

To address this problem we attach constraints to each equation. From such
constrained equalities one can infer information on how selecting this equation
will affect the joinability problem, namely how many unjoinable equations it
will induce. Such additional information allow to again formulate these more
complicated joinability requirements as optimization problems, and automate
them in a similar fashion to maximal completion.

The framework turns out to be very flexible. Due to the abstract nature of the
constraints it allows easy adaptations to various settings. In Section 5.1 we intro-
duce the framework of constrained equalities, and in Section 5.2 we show how
inductionless induction and rewriting induction (cf. Chapter 3) can be formulated
in it. In maximal completion there is no possibility to apply inter-reduction. In
contrast to maximal completion, constrained equalities allow to formulate com-
pletion with inter-reduction as well, which is also done in Section 5.2, and in
Section 5.3 it is shown how such an approach can be automated. In the prac-
tical experiments of Section 5.4 however it turns out that exploiting maximality
in completion and maximizing as in maximal completion is more effective than
using an approach based on constrained equalities. In contrast, for our main
objective, namely inductive methods, we obtain a fully automatic and practically
efficient procedure. Finally we compare our approach with related work in Sec-
tion 5.5.

5.1 Constrained Equalities

We introduce termination constraints. The syntax is given by the next BNF C

C ::= `→ r | > | ⊥ | ¬C | C ∨ C | C ∧ C

62

5.1 Constrained Equalities

A TRS R satisfies a constraint C if R |= C holds. Here R |= C is inductively
defined on C as the standard interpretation of Boolean connectives together with
the following base case: R |= `→ r if and only if `→ r ∈ R.

A constrained equality is a pair of an equality on terms and a constraint. A
constrained equational system, in short CES, C is a set of constrained equalities. Let
R be a terminating TRS. The R-projection of C is the ES given by

{s ≈ t | (s ≈ t, C) ∈ C and R |= C}

and is denoted by CJRK. Below we write
∧R for

∧
`→r∈R ` → r. For brevity, we

define the following notations:

E> = {(s ≈ t,>) | s ≈ t ∈ E}

C 	R =
{(

s ≈ t, C ∧ ¬
∧
R
)
| (s ≈ t, C) ∈ C

}
C↓R =

{(
s↓R ≈ t↓R, C ∧

∧
R
)
| (s ≈ t, C) ∈ C and s↓R 6= t↓R

}
The intuition behind these notations is as follows. E> denotes constrained equal-
ities obtained from sets of equalities, and C↓R rewrites the equational part in
C to some normal form. However an added constraint ensures that the newly
obtained normal forms will be only triggered by the TRS R with which they
were normalized with. Lastly C 	R removes R from the constrained part, and
thus we have R 6|= C 	R. The next lemmata state important properties of these
notations. Their proofs are straightforward by unfolding the above definitions.

Lemma 5.1.1. If E>↓R = ∅ then E ⊆ ↓R.

Lemma 5.1.2. (C 	R)JRK = ∅.

Our main concern is a joinability problem of C, namely, CJRK ⊆ ↓R. But for
inductive theorem proving, one has only to consider ground joinability: We say
that an ES E is ground joinable for R if sσ ↓R tσ whenever s ≈ t ∈ E and sσ, tσ ∈
T (F). A function S is a (ground) joinability reflection for (ground) joinability
problems if for every constrained ES C and every TRS R (ground) joinability
of S(C)JRK for R implies that of CJRK. We give a simple criterion for testing
whether S is a (ground) joinability reflection. Below we say A ⊆ B on (ground)
terms, if for all s ≈ t ∈ A and all (ground) substitutions σ on s and t we have
sσ ≈ tσ ∈ B.

Lemma 5.1.3. S is a (ground) joinability reflection if CJHK ⊆ →∗H · ↔=
S(C)JHK ·

∗
H←

on (ground) terms for all C and H.

Proof. We show that S is a (ground) joinability reflection if the inclusion of the
lemma holds for (ground) terms. Let C be a CES and H be a TRS. Assume

63

Chapter 5: Constrained Equalities

S(C)JHK is (ground) joinable for H. Then for any s ≈ t ∈ S(C)JHK and any
substitution σ we have sσ ↓H tσ. Together with

CJHK ⊆ →∗H · ↔=
S(C)JHK ·

∗
H←

we have CJHK ⊆ ↓H. Thus (ground) joinability of CJHK for H holds. Hence S is
a reflection.

5.2 Constraints for Joinability Problems

In this section we show how completion and variants can be recast as joinability
problems using joinability reflections.

Definition 5.2.1. Let R be a function from CESs to a set of terminating TRSs, and F be
a function from TRSs to ESs. In the following we use the notation

SR(C) = (C 	R) ∪ C↓R ∪ F(R)>↓R, and

S(C) =
⋃

R∈R(C)
SR(C).

Lemma 5.2.2. S is a (ground) joinability reflection.

Proof. Let s ≈ t ∈ CJHK and R ∈ R(C). According to Lemma 5.1.3 it is sufficient
to show sσ →∗H · ↔=

S(C)JHK ·
∗
H← tσ for all (ground) substitutions σ. By the

assumption there is a C with (s ≈ t, C) ∈ C and H |= C. We distinguish three
cases.

• If R ⊆ H and s↓R = t↓R then sσ ↓R tσ for all (ground) substitutions σ, and
thus sσ ↓H tσ.

• If R ⊆ H and s↓R 6= t↓R then H |= C∧∧R. Thus s↓R ≈ t↓R ∈ SR(C)JHK.
Therefore sσ →∗H s↓R ↔SR(C)JHK t↓R ∗

H← tσ for all (ground) substitutions
σ.

• If R * H then H |= C ∧ ¬∧R. Thus, we have s ≈ t ∈ SR(C)JHK, which
implies sσ↔SR(C)JHK tσ for all (ground) substitutions σ.

Lemma 5.2.3. If S(C)JRK = ∅ and R ∈ R(C), then F(R) ⊆ ↓R.

Proof. Let R ∈ R(C) and s ≈ t ∈ F(R). Because R |= ∧R and S(C)JRK = ∅, we
must have s↓R = t↓R, and thus s ↓R t.

64

5.2 Constraints for Joinability Problems

5.2.1 Completion

In this section, we specify parameters to derive our completion criterion with
inter-reduction. Let E be an ES. Below we assume that SKB(C) is an instance of the
above reflection S so that R(C) is a set of terminating TRSs with R ⊆ ↔∗E for all
R ∈ R(C), and F(R) = CP(R).

Theorem 5.2.4. Let C = Sn
KB(E>). If CJRK = ∅ for some R ∈ R(C), then R is

complete for E .

Proof. Let R ∈ R(C) and CJRK = ∅. Easy induction on n shows that the n-fold
composition of a reflection forms a reflection. Thus, Sn

KB being a reflection is
implied by Lemma 5.2.2 and we obtain E ⊆ ↓R. Together with R ⊆ ↔∗E , which
holds by assumption, we obtain ↔∗R = ↔∗R. We now distinguish two cases: If
n = 0 then E must be empty. Since termination of R and the inclusion R ⊆ ←→∗E
entail emptiness of R, the claim trivially holds. If n > 0, it is not difficult to
see that CJRK = ∅ implies SKB(C)JRK = ∅. Thus by Lemma 5.2.3 we have
CP(R) ⊆ ↓R which implies confluence of R. Together with termination of R
and↔∗R =↔∗R completeness of R for E follows.

In the following examples we assume that R(C) is a singleton.

Example 5.2.5. Consider the ES E consisting of the following equations:

1 : s(p(x)) ≈ x 2 : p(s(x)) ≈ x 3 : s(x) + y ≈ s(x + y)

We thus obtain three initial constraints C0 = E> = {(1,>), (2,>), (3,>)}. Assuming
R0 = {1, 2, 3} ∈ R(C0) and abbreviating R0 = 1 ∧ 2 ∧ 3 results in the constraints
C1 = {(1,¬R0), (2,¬R0), (3,¬R0), (4,>)} where 4 is derived from the critical overlap
〈1, 1, 3〉:

4 : x + y ≈ s(p(x) + y)

Now we can for instance take R1 = {1, 2, 3′, 4′} ∈ R(C1). We write R1 as a shorthand
for 1∧ 2∧ 3′ ∧ 4′, and obtain

C2 = {(1,¬R0 ∧ ¬R1), (2,¬R0 ∧ ¬R1), (3,¬R0 ∧ ¬R1), (4,¬R1), (5,>), (6,>)}

where 5 and 6 are new equalities obtained from the critical overlaps 〈3′, 1, 2〉 and 〈4′, 1, 2〉,
respectively:

5 : p(s(x) + y) ≈ x + y, 6 : p(x + y) ≈ p(x) + y

For R2 = R0 ∪ {4′, 5, 6′} ∈ R(C2) we now have SKB(C2)JR2K = ∅, so R2 is complete
for E . Note that this would also hold for the smaller (inter-reduced) system R′2 =
{1, 2, 3, 6′}, which is actually complete.

65

Chapter 5: Constrained Equalities

We remark that in Example 5.2.5 SKB(C2)JR′2K = ∅, and thus completeness
of R′2 can be inferred directly from the attached constraints in C2. In maximal
completion this information is not available, and a non-inter-reduced TRS such
as R2 is always selected (cf. Example 4.1.5). Of course one question is how to
automatically construct R′2 from C2. This is the subject of Section 5.3.

5.2.2 Inductionless Induction

Furthermore, Gramlich’s criterion 3.5.2 for inductionless induction can be instan-
tiated. Note that when talking about inductive theorem proving, throughout this
and the next section we consider TRSs to be sorted (cf. Chapter 3).

We recall Theorem 3.5.2:

Lemma 5.2.6 ([34]). Let R = R0 ∪ H be a terminating, and left-R0-inductively-
reducible TRS. If CP(R0,H) ⊆ ↓R, then R0 `i H.

Lemma 5.2.7. Let R = R0 ∪ H be a TRS, such that R0 `i H, and E be a set of
equalities. If E ⊆ ↓R on ground terms, then R0 `i E .

Let R0 be a TRS and E an ES. We assume that SG(C) is an instance of S so that
F(R) = CP(R0,R\R0) and R(C) is a set of terminating and left-R0-inductively-
reducible TRSs.

Theorem 5.2.8. Let C = Sn
G(E>). If CJRK = ∅ for some R ∈ R(C), then R0 `i E .

Proof. Let R ∈ R(C) and CJRK = ∅. Analogous to Theorem 5.2.4, we obtain
E ⊆ ↓R on ground terms. Again, we distinguish two cases: If n = 0 then E
must be empty, and the claim trivially holds. If n > 0 then by CJRK = ∅ we
obtain SG(C)JRK = ∅, and by Lemma 5.2.3, we have CP(R0,R \R0) ⊆ ↓R.
Since R is terminating and left-R0-inductively-reducible, by Lemma 5.2.6 we
haveR0 `i (R\R0). Together with E ⊆ ↓R, by Lemma 5.2.7 we haveR0 `i E .

Example 5.2.9. Consider the TRS R0 consisting of the following rules:

1 : 0− x → 0 2 : s(x)− 0→ s(x) 3 : s(x)− s(y)→ x− y
4 : p(0)→ 0 5 : p(s(x))→ x

and E the single equality

6 : p(x− y) ≈ p(x)− y

Here we assume the signature to be sorted with 0 : nat, p, s : nat→ nat and +,− : nat×
nat→ nat. We obtain the initial constraints C0 = {(6,>)}. ChoosingR1 = {1, . . . , 6}
from R(C0) results in the following constraint equations

C1 = SG(C0) = {(6,¬R1), (7,>), (8,>)}

66

5.2 Constraints for Joinability Problems

where 7, 8 are

7 : x− 0 ≈ x 8 : p(x)− y ≈ x− s(y)

Let R2 = {1, . . . , 8} be in R(C1), resulting in

C2 = {(6,¬R1 ∧ ¬R2), (7,¬R2), (8,¬R2)}

SupposeR2 is again included in R(C2) and chosen asR3. Then SG(C2)JR3K = ∅. One
can verify that indeed R1, . . . ,R3 are left-R0-inductively reducible and terminating.
Thus R0 `i E .

5.2.3 Rewriting Induction

As mentioned in Chapter 3, Rewriting Induction [62] relaxes the joinability con-
ditions of inductionless induction. Instead of requiring all critical pairs to be
joinable, joinability of only a specific subset suffices.

In the following, we assume R(C) to be a set of R0-expandable, terminating
TRSs such that for every R ∈ R(C), we have R0 ⊆ R and `σg ↔∗R0∪E rσg for all
` → r ∈ R and ground substitutions σg. We assume SRI(C) to be an instance of
S with F(R) = Expd(R0,R).

Lemma 5.2.10 ([62]). Let R and H be TRSs such that R is quasi-reducible TRS, and
R∪H is terminating. If Expd(R,H) ⊆ ↓R∪H, then R `i H.

Theorem 5.2.11. If Sn
RIJRK = ∅ for some R ∈ R(C), then R0 `i E .

Proof. Similar to Theorem 5.2.8, using Lemma 5.2.10.

Example 5.2.12. Consider the following TRS R0:

1 : x + 0→ 0 2 : x + s(y)→ s(x + y)

and E the single equality

3 : (x + y) + z ≈ x + (y + z)

As previously, we assume the signature to be sorted, here with 0 : nat, s : nat→ nat and
+ : nat× nat→ nat. We obtain the initial constraints C0 = {(3,>)}. Suppose R(C0)
is the singleton R0 = {1, 2, 3}. Then expanding 3 results in

C1 = SRI(C0) = {(3,¬R0), (4,>)}

where 4 is

4 : x + z ≈ x + (0+ z) 5 : s(x + y) + z = x + (s(y) + z)

67

Chapter 5: Constrained Equalities

In fact it is not difficult to see that orienting 5 and 3 will lead to an infinite run. However,
suppose now that R(C1) is the singleton R1 = {1, 2, 3′}. Expansion leads to

C1 = SRI(C0) = {(3,¬R0 ∨ ¬R1), (4,¬R0), (5,R0)}

With R1, we have SRI(C)JR1K = ∅. One can verify that R0 is quasi-reducible, and the
position 1 of the rhs of equation 3 is basic. Thus R0 `i E .

Example 5.2.12 illustrates two important facts: First, similar as in Knuth-Bendix
completion, the orientation of an equation to a rule is crucial, and a bad choice
can easily lead to divergence. Secondly, in practice it is not necessary to exhaus-
tively compute all TRSs at once. A bad choice can be always recovered at later
stage.

5.3 Automation

The challenge when automating our framework is the question how to find a set
of terminating TRSs R(C) given a set of constrained equalities C. We first show
how to find a TRS R that satisfies a termination constraint by solving a boolean
constraint. We then illustrate how this can be used to formulate an optimization
problem over boolean constraints to automate the search for a set terminating
TRSs R(C) among candidates C that fulfill the desired joinability requirements.

SAT/SMT-encodings of termination conditions based on existing subclasses of
reduction orders are well established nowadays, cf. [52, 17, 88, 23]. All of them
can test the existence of a tuple of an assignment of boolean variables and a
reduction order (M,�) that satisfies arbitrary Boolean combinations of boolean
variables and order constraints:

C ::= s > t | x | > | ⊥ | ¬ C | C ∨ C | C ∧ C

Here, for the base cases, we define (M,�) |= ` > r if ` � r and (M,�) |= x if x is
true in M, and extend this inductively to arbitrary formulas. Note the difference
to Chapter 4 where the second base does not exist and the constraints allow not
additional boolean variables.

All encodings of termination conditions allow to further automatically trans-
late constraints of form s > t with respect to a class of reduction orders to Boolean
(or SMT) constraints. Therefore one can treat order constraints as an instance of
MaxSAT/MaxSMT. When encoding order constraints w.r.t. specific classes of re-
duction orders, one needs to carefully distinguish termination constraints and
order constraints.

Let ψ be a termination constraint. We write Rules(ψ) for the set of all rules
that appear in ψ. We associate with each rule ` → r ∈ Rules(ψ) a fresh boolean
variable x`→r, and write ψ̂ for the constraint generated by replacing each `→ r ∈

68

5.3 Automation

Rules(ψ) by the associated variable x`→r in ψ. In the following we write R(M,�)
for the TRS

{`→ r ∈ Rules(ψ) | (M,�) |= x`→r}.

The next lemma shows how to find a solution (a TRS) to a termination constraint
by solving an order constraint.

Lemma 5.3.1. Let ψ be a termination constraint. Suppose (M,�) is a model such that

(M,�) |= ψ̂ ∧
∧

`→r∈Rules(ψ)
¬x`→r ∨ ` > r.

Then R(M,�) |= ψ.

Proof. The proof is by induction on the structure of ψ. We only show the impor-
tant base case here. Let ψ = ` → r. Then ψ̂ = x`→r. Since (M �) |= x`→r we
have by definition `→ r ∈ R(M,�). Moreover since (M,�) satisfies the part

∧
`→r∈Rules(ψ)

¬x`→r ∨ ` > r

we have ` � r. Thus R is terminating. Hence R |= ψ.

Lemma 5.3.1 is useful to automate the search for a TRS that satisfies a termi-
nation constraint. Nevertheless another questions remains, namely given a set of
constrained equalities C how to compute a TRS R such that CJRK = ∅.

In general there is no complete way to find a suitable TRS among candidates.
To find a suitable measure we use the the following approach. For a TRS R with
CJRK = ∅ we have R |= ¬C for all (s ≈ t, C) ∈ C. If CJRK 6= ∅ there exists some
(s ≈ t, C) ∈ C with R |= C. Then it makes sense to try to orient s ≈ t, since when
orientable, the equation is at least joinable in the next iteration.

To sum up, we try to solve the joinability problem of a CES C by iteratively
enumerating candidate TRSs. Similarly to Chapter 4 we write

Maximize S subject to ϕ

for the problem of finding an assignment that maximizes the number of satis-
fied elements in the set S while satisfying ϕ. Given k failed (i.e. CJRK 6= ∅)
TRSs R1, . . . ,Rk, we solve the following maximal satisfaction problem ψ over
termination constraints:

Maximize {¬C ∨ s→ t ∨ t→ s}(s≈t,C)∈C subject to
k∧

i=1

¬
∧
Ri

69

Chapter 5: Constrained Equalities

This can be translated to the following satisfaction problem χ over order con-
straints:

Maximize {¬Ĉ ∨ xs→t ∨ xt→s}(s≈t,C)∈C subject to
k∧

i=1

¬(
∧

`→r∈Ri

x`→r) ∧
∧

`→r∈Rules(ψ)
¬x`→r ∨ ` > r

Then the following lemma holds.

Lemma 5.3.2. Suppose (M,�) |= χ. Then R(M,�) |= ψ.

Proof. Quite similar to Lemma 5.3.1.

If the satisfaction problem is not satisfiable, we have exhaustively computed all
potential TRSs over the candidate equations w.r.t. our measure.

5.4 Experiments

We implemented both completion and rewriting induction. In both cases, the
SMT solver Yices [22] is used to solve ordered constraint problems. Encoded is
the class of all lexicographic path orders and the class of all Knuth-Bendix path
orders. The tests were single-threaded run on a system equipped with an Intel
Core Duo L7500 with 1.6 GHz and 2 GB of RAM, using a timeout of 10 seconds
for rewriting induction, and a timeout of 60 seconds for completion. A full list of
all results can be found in Appendix B.

Completion

A straight-forward implementation of completion fails. The set of critical pairs
is exponential at worst, and maximizing the set of oriented equations yields ex-
ponential growth in practice. For example for group-theory [49], which consists
of only three equations initially, after a few iterations several hundred equations
are contained in C.

Moreover, some equations tend to generate a lot of critical pairs, a problem
which all completion procedures face. Several selection heuristics have been pro-
posed to avoid such equations. In our implementation we use a similar approach.
Instead of taking the whole equational part of C as candidates for the TRS R, we
only select certain equations from C. We write C<d for

{(s ≈ t, C) ∈ C | |s|+ |t| < d}

70

5.4 Experiments

and we write C�n for the set of the n smallest (w.r.t. the size of the equational
part) constrained equalities in C. We refine the encoding from Section 4.2 to the
following maximality problem over termination constrains:

Maximize {¬C ∨ s→ t ∨ t→ s}(s≈t,C)∈(C<d)�n subject to
k∧

i=1

¬
∧
Ri

In our implementation we fix d = 20, we start with parameter n set to 7, and
increase n by 7 with each iteration. These values were experimentally chosen;
larger parameters could not be processed by our tool.

One should remark at this point the difference between Maximal Completion
(Chapter 4), and the current approach. In Maximal Completion, equations in
S(C) are directly reduced. The condition for soundness of the procedure —
specific to completion — needs to be ensured separately. Here however, the
conditions for soundness are directly encoded in the constraint part of S(C).

The test-bed consists of 115 equational systems contained in the distribution of
mkbTT.1 Table 5.1 gives a summary of the overall results. For comparison we also
include results from Maxcomp, for comparison here with a timeout of 60 seconds.

The experiments clearly show that maximal completion is more effective than
the current constraint based approach. From our observation there are two rea-
sons for it. The first one is that maintaining termination constraints for each
equation and evaluating them creates some non-trivial overhead. The second
reason however is maximality. In the approach based on constrained equations
we optimize the selection of a TRS among candidate equations with respect to
the number of unjoined equations. Thus equations that would create additional
critical pairs will not be selected. Theoretically this should increase the perfor-
mance.

However maximality ensures that adding such equations can never be harmful.
And in practice in a lot of cases it is quite beneficial to add such equations because
it decreases the chance to miss an important equation, i.e. the selection strategy
becomes less important as illustrated in Example 4.3.1. Moreover the additional
time spent for constructing additional critical pairs is marginal.

Rewriting Induction

The set Expd is a subset of all critical pairs. Thus, in Rewriting Induction, the
set C grows much slower compared to Completion, and no specific selection
is necessary. In fact, in practice it rarely happens that the proof fails due to
computational resources. Rather, a failed proof attempt is due to other reasons,
such as the need for additional lemmata. Thus our implementation follows the
approach described in Section 4.2.

1http://cl-informatik.uibk.ac.at/software/mkbtt/

71

Chapter 5: Constrained Equalities

Table 5.1: Summary for 115 equational systems

LPO KBO
Maxcomp Constraints Maxcomp Constraints

completed 86 47 69 33

failure 6 6 3 3

timeout 23 62 43 79

Table 5.2: Summary for 73 inductive conjectures

LPO KBO

success 32 21

timeout 41 52

The test-bed consists of 73 (valid) inductive conjectures from the (no longer
maintained) Dream Corpus of Inductive Conjectures, and from [66]. Results of a
prototype implementation are depicted in Table 5.2.

To the best of our knowledge there are no fully automated inductive theorem
provers except for [66], which is an adaptation of multi-completion to inductive
theorem proving, called multi-context rewriting induction. They report 35 solved
conjectures on the Dream Corpus. The combined number of examples solved
by our approach using the class of LPOs and KBOs on the Dream Corpus is 32.
Thus our approach has a quite comparable performance. Moreover multi-context
rewriting induction uses a termination tool to construct a reduction order on the
fly. Of course, this is more powerful than a constraint encoding of all LPOs and
KBOs. While no detailed data are provided in [66] we strongly suspect that the
small difference in proven conjectures can be mostly attributed to that. One has
to clearly state that despite its benefits the fact that not all methods of showing
termination can be encoded to constraints is the biggest drawback of our method.

72

5.5 Related Work

5.5 Related Work

We compare existing frameworks and their proof techniques with our framework
based on constrained equalities. For existing frameworks see also Chapter 3.

• Completion. Proving soundness of completion procedures is intricate, es-
pecially when inter-reduction is used. The first complete proof of Knuth
and Bendix’ procedure including inter-reduction was due to Huet [40] and
appeared roughly eleven years afterwards. Moreover it only shows sound-
ness for one particular implementation of the algorithm, and even minor
modifications can easily violate soundness [69, 75]. In order to address this
problem, Dershowitz, Plaisted, Bachmair and Hsiang [12, 11] recast Huet’s
completion in inference rules. They employed a new proof technique called
proof orderings, which significantly simplifies soundness-proofs in comple-
tion. Due to its universality, nowadays this framework is the most popular
way to formalize various completion procedures, including ordered com-
pletion, inductionless induction, and rewriting induction. In our sound-
ness proof, a simple reflection for joinability problems is used instead of
the proof ordering method.

• Multi-Completion [51]. The above framework of inference rules requires a
fixed reduction order, which is used to show the necessary termination of
the generated systems. Since it is hard to know a suitable order a priori,
often one has to restart the process with another order, which usually re-
quires user interactions. Kondo and Kurihara introduced an efficient data
structure, the node, to run completion procedures with different orders in
parallel. Adaptations are highly efficient and have been used for several
settings ([66, 84]). However each adaptation requires careful formulation as
well as a specific soundness proof which seems a non-trivial task. Usually,
soundness is established by extracting a single run out of the procedure,
and then applying the proof-ordering approach.

• Maximal Completion [46]. The original maximal completion can be simu-
lated if > is always associated to equalities. Inter-reduction was not avail-
able in maximal completion but by using constrained equalities we can fully
recover this functionality. Folklore suggests that inter-reduction improves
efficiency in completion, but in our approach this is not the case as seen in
experimental data. This is because rather than reducing terms, avoiding a
diverging processes is more critical for a successful run. Moreover, by not
using inter-reduction, more equalities are shared among different order-
ings, which avoids missing suitable equalities. The overhead costs, i.e. the

73

Chapter 5: Constrained Equalities

increased amount of time needed for processing equalities are neglectable
compared to other costs.

Soundness in Maximal Completion is ensured directly from Knuth and
Bendix’ criterion (Theorem 2.4.5). This, together with a lack of explicit con-
figurations — which are needed to maintain the joinability requirements in
inductive reasoning — prohibit to formulate other procedures in it.

We conclude this chapter by emphasizing the advantages of our framework
based on constrained equalities. For one, it is universal enough to formulate
several completion procedures with minimal effort. Here we showed formula-
tions for completion, inductionless induction and rewriting induction. But other
procedures can be easily expressed as well by varying the parameters S and
F. Secondly, proofs for soundness can easily be established using a reflection.
Lastly, experiments indicate practical feasibility. One has to note however, that
Maximal Completion’s practical strength is unparalleled, and future work should
investigate data-structures to improve scalability, as done in multi-completion.

74

Chapter 6

Confluence and Relative Termination

For terminating TRSs, confluence follows from local confluence, which itself can
be tested by the joinability of critical pairs. Since the construction of critical
pairs relies purely on syntactical properties, critical pairs can be effectively com-
puted, and a confluence test can be fully automated. For non-terminating TRSs,
confluence is undecidable. For non-terminating but left-linear TRSs, confluence
criteria can be given by restricting the shape of the join-relation. Essential here
is that left-linearity allows to trace untouched redexes over several rewrite steps
using the notion of residuals (cf. Chapter 4 of [75]). Together with the absence of
(non-trivial) critical pairs, this allows to derive effectively automatable confluence
criteria.

Unfortunately, for non-terminating and non-left-linear TRSs, none of these ap-
proaches work. The following example, due to Huet, gives an intuition for the
underlying problems:

Example 6.0.1 ([39]). Consider the following TRS:

1 : f(x, x)→ a 2 : f(x, g(x))→ b 3 : c→ g(c)

which is non-confluent since

a← f(c, c)→ f(c, g(c))→ b

and a and b are not joinable.

75

Chapter 6: Confluence and Relative Termination

Joinability of critical pairs does not imply confluence in the absence of termi-
nation, as can be inferred from Example 6.0.1, where the set of critical pairs is
empty. In orthogonal systems, rewriting residuals of one step after another step
or vice-versa results in the same end term, but non-left-linear rules destroy this
property. Thus, in the case of non-left-linear and non-terminating TRSs, not only
can none of the abstract notions like local confluence be utilized, also none of the
technical tools, such as (syntactical) critical pairs or residuals are applicable, and
no established tool-set is available.

Therefore one has to fundamentally modify these notions to yield new criteria.
Existing approaches [31, 44] use an extended notion of critical pairs to formulate
suitable joinability conditions. These extensions however come with a price to
pay, as they require equational unification, which itself is undecidable. Thus
even if sound criteria can be formulated with these extended notions, extra care
is needed to ensure computability. For example, Jouannaud and Kirchner’s result
is practically limited to TRSs where associativity and commutativity (AC) are the
cause of non-termination, since there, effective algorithms to solve AC-unification
exist. Gomi et al. developed a sound, but incomplete approximation algorithm
to practically apply their criterion.

In Section 6.1, we present a new confluence criterion for non-left-linear and
non-terminating TRSs, which is based on (modest) syntactic restrictions and rel-
ative termination, and show its application with some examples. Then we give
a proof in Section 6.2. Our criterion also requires joinability of extended critical
pairs. However we provide a result on unification in Section 6.3, that ensures that
joinability can be tested by computing syntactic unifiers only. With it we develop
a fully automatic procedure and evaluate it experimentally in Section 6.4. Finally
our result is compared with existing works in Section 6.5.

6.1 Confluence Criterion

We first need a few non-standard notions in term rewriting to state our main
result. We write→1/→2 for→∗2 · →1 · →∗2 , and→R/S for→R/→S .

Definition 6.1.1. A TRS R is relatively terminating over a TRS S (we also say R/S
is terminating), if→R/S is terminating.

In Definition 2.4.4, we defined syntactical critical pairs. We now give an ex-
tended notion of overlaps and critical pairs. An extended rewrite rule is a pair
(`, r) of terms with ` 6∈ V , and an extended TRS (eTRS) is a set of extended rewrite
rules.

Definition 6.1.2. Let R1,R2,S be eTRSs. An S-overlap (`1 → r1, p, `2 → r2)σ of R1
on R2 consists of a variant `1 → r1 of a rule in R1 and a variant `2 → r2 of a rule in

76

6.1 Confluence Criterion

R2, a position p ∈ PosF (`2), and a substitution σ, such that the following conditions
hold:

• `1σ↔∗S `2|pσ, and

• if p = ε, then `1 → r1 and `2 → r2 may not be variants of each other

The pair (`2σ[r1σ]p, r2σ) induced from the overlap is an S-extended critical pair (or
simply S-critical pair) of `1 → r1 and `2 → r2 at p, written

`2σ[r1σ]p R1←S ∝→R2 r2σ.

We will simply write CPS(R) for R←S ∝→R, namely the S-critical pairs originating
from S-overlapping rules from R on R.

Example 6.1.3 (continued from Example 6.0.1). Consider again Example 6.0.1 and
the TRSs R = {1, 2} and S = {3}. Then e.g.

(f(x, x)→ a, ε, f(x, g(x))→ b){x 7→c}

is an S-overlap of R. Its induced critical pair is (b, a).

It should be remarked that the definition of (S-)critical pairs includes pairs
originating from non-minimal unifiers. Usually, they are excluded to guaran-
tee finiteness of the set of critical pairs. Thus, for example taking the previous
Definition 2.4.4, even when considering only a TRS R (and no eTRS), the in-
clusion CP∅(R) ⊆ CP(R) does not hold in general. However due to the ex-
istence of mgu’s for critical pairs (see Section 6.3), we may restate Knuth and
Bendix’ criterion (Theorem 2.4.5) as: A terminating TRS is confluent if and only
if CP∅(R) ⊆ ↓R.

Let REN(t) denote a linear term resulting from replacing in t each variable
occurrence by a fresh variable. We write R̂ for the eTRS

{REN(`)→ r | `→ r ∈ R}.

Definition 6.1.4. A TRS S is strongly non-overlapping on R if Ŝ has no (syntactic)
overlaps on R̂. We write SNO(R,S) if both S is strongly non-overlapping on R, and
R is strongly non-overlapping on S .

Example 6.1.5 (continued from Example 6.0.1). Consider again Example 6.0.1. We
have SNO({1, 2}, {3}). But SNO({1}, {2}) does not hold, since

{̂1} = {f(x1, x2)→ a} and {̂2} = {f(x3, g(x4))→ b}

are syntactically overlapping, as f(x1, x2) and f(x3, g(x4)) unify.

77

Chapter 6: Confluence and Relative Termination

We have now all the definitions to state our main theorem.

Theorem 6.1.6. Suppose that S is confluent, R/S is terminating, and SNO(R,S).
The union R∪ S of the TRSs is confluent if and only if CPS(R) ⊆ ↓R∪S .

Note that the theorem is a proper generalization of Knuth and Bendix’ con-
fluence criterion when S 6= ∅, and coincides with it when S = ∅. The next
examples illustrate Theorem 6.1.6. Note that no existing tool can prove conflu-
ence of the involved TRSs automatically (see Section 6.4).

Example 6.1.7. Consider the TRS

1 : f(x, x)→ (x + x) + x 2 : x + y→ y + x

Take R = {1} and S = {2}. One can easily verify SNO(R,S). Termination of R/S
can be established using a termination tool such as TTT2 v1.06 [50]1, and confluence of S
follows from orthogonality. Because of CPS(R) = ∅ ⊆ ↓R∪S , we conclude confluence
by Theorem 6.1.6.

Example 6.1.8. Consider the TRS

1 : f(x, x)→ s(s(x)) 2 : ∞→ s(∞)

Take R = {1} and S = {2}. As in Example 6.1.7, one can easily verify the conditions
of Theorem 6.1.6, including CPS(R) = ∅ ⊆ ↓R∪S . Hence the TRS is confluent.

Example 6.1.9. Consider the TRS

1 : eq(s(n), x : xs, x : ys)→ eq(n, xs, ys) 3 : nats→ 0 : inc(nats)
2 : eq(n, xs, xs)→ T 4 : inc(x : xs)→ s(x) : inc(xs)

Take R = {1, 2} and S = {3, 4}. Again, SNO(R,S), termination of R/S and conflu-
ence of S is established. Moreover, one can show

CPS(R) = {(eq(s, t, u),T) | s, t, u are terms and t↔∗S u}

and thus the set is included in ↓R∪S because of confluence of S . Hence by using Theo-
rem 6.1.6 we infer that R∪ S is confluent.

We conclude this section by mentioning that all conditions of Theorem 6.1.6 are
essential. One cannot drop SNO(R,S) nor replace joinability of S-critical pairs
by joinability of critical pairs.

1http://colo6-c703.uibk.ac.at/ttt2/

78

6.2 Correctness of the Criterion

Example 6.1.10 (continued from Example 6.0.1). Recall that the TRS in Huet’s ex-
ample consists of

1 : f(x, x)→ a 2 : f(x, g(x))→ b 3 : c→ g(c)

which is non-confluent. If one takesR = {1} and S = {2, 3}, thenR/S is terminating,
S is confluent, and CPS(R) = ∅ ⊆ ↓R∪S , however SNO(R,S) is violated. If one takes
R = {1, 2} and S = {3} then, SNO(R,S), R/S is terminating, S is confluent and
R← ∝→R = ∅ ⊆ ↓R∪S . Yet the non-joinable S-critical pair a R← ∝→R b exists.

Also, termination of R/S is essential. We illustrate it with another famous
non-confluent and non-left-linear TRS, due to Klop:

Example 6.1.11. Consider Klop’s example [48]

1 : f(x, x)→ a 2 : g(x)→ f(x, g(x)) 3 : c→ g(c)

which is known to be non-confluent, since

a← f(g(c), g(c))← f(c, g(c))← g(c)→ g(g(c))→∗ g(a)

and a and g(a) are not joinable. If one would take R = {1, 2} and S = {3}, then
SNO(R,S), S is confluent, and CPS(R) = ∅ ⊆ ↓R∪S . However R/S is non-
terminating, since rule number 2 is looping.

6.2 Correctness of the Criterion

We now give a proof of the main theorem 6.1.6. In the proof we will make use
of the decreasing diagram technique [79, 81] of van Oostrom, a powerful confluence
criterion for abstract rewrite systems.

Let A = (A, 〈→α〉α∈I) be an ARS and > a well-founded order on I. For every
α ∈ I we write ∨−→α for

{→β| β ∈ I and β < α},

and ∨−→∗α for (
∨−→α)∗. The union of ∨−→α and α

∨←− is denoted by ←−∨−→α. For α, β ∈ I,
the union of ∨−→α and ∨−→β is written as ∨−→αβ.

Definition 6.2.1. Two labels α and β are decreasing with respect to > if

α← · →β ⊆
∨←→∗α· →=

β · ←−
∨−→∗αβ · =α← ·

∨←→∗β

Decreasingness is illustrated in Figure 6.1. An ARS A = (A, 〈→α〉α∈I) is decreasing
if there exists a well founded order > such that every two labels in I are decreasing with
respect to >.

79

Chapter 6: Confluence and Relative Termination

·

· · · · · ·

α β

∨

α

=

β

∨

β

=

α

∨

αβ

∗ ∗∗

Figure 6.1: Decreasingness

Decreasingness allows to formulate a very powerful confluence criterion on
ARSs.

Theorem 6.2.2 ([81]). Every decreasing ARS is confluent.

We recall an example from [81] to illustrate how to use the decreasing diagram
technique to show confluence of TRSs.

Example 6.2.3. Recall the “if”-direction of Lemma 2.1.6 (Newman), which, when applied
to TRSs, states that a terminating and locally confluent TRS is confluent. Let R be a
terminating and locally confluent TRS. To apply Theorem 6.2.2, we need to associate an
ARS with the TRS R. We will consider the ARS A with the set A as T (F ,V), and we
introduce labels by labeling rewrite steps by its source: We label a step s→ t as s→s t.
Lastly we need to compare labels by an ordering >, here we choose > := →+

R. Since R
is terminating, > is a well-founded order.

Now consider any peak s← · →v. By the definition of source labeling we have v = s,
i.e. s← · →s, and there exist u and t such that u ← s → t. By local confluence of R,
there exists a sequence

u→R u1 →R . . .→R un R← tm R← . . . R← t1 R← t

and thus a labeled sequence

u→u u1 →R . . .→un−1 un tm← tm tm−1← . . . t1← t1 t← t.

We have s > u and s > ui for all 1 ≤ i < n, and s > t and s > tj for all 1 ≤ j ≤ m.
Therefore A is decreasing, and thus by Theorem 6.2.2 confluent. Moreover confluence of
A readily implies confluence of R.

In our proof, we do not directly show confluence of the rewrite relation. Let
R and S be TRSs. We introduce an intermediate relation _, such that →R∪S ⊆
_ ⊆ →∗R∪S . Confluence of this intermediate relation readily implies confluence

80

6.2 Correctness of the Criterion

of R∪ S . The relation _ is defined as the union of →RS and →∗S , where RS is
the TRS

{`′σ→ rτ | `′ρ→ r ∈ R and σ→∗S ρτ for some variable substitution ρ }

Here σ→∗S τ means that xσ→∗S xτ for all variables x.

Remark 6.2.4. It is important to note that

a) in the definition of RS , linearity of `′ can be assumed without loss of generality, and

b) the inclusions→R ⊆ →RS ⊆ →∗S · →R hold.

We show confluence of _ by the decreasing diagram technique with the pre-
decessor labeling [81]: We write b _a c if a _∗ b _ c. Labels are compared with
respect to→+

R/S , denoted by >. Since termination of R/S is presupposed in the
theorem, the relation > forms a well-founded order.

The next lemma states a general property of rewriting in substitutions.

Lemma 6.2.5. Let R be a TRS. If tσ
p−→R u and p 6∈ PosF (t) then u →∗R tτ for some

τ with σ→=
R τ.

Proof. Suppose tσ
p−→R u and p 6∈ PosF (t). Then there exists a variable position

q ∈ PosV (t) with q 6 p and u = (tσ)[u|q]q. Let Q be the set of all positions of t|q
in t. Since u|q′ →R u|q holds for all q′ ∈ Q \ {q}, we have u→R (tσ)[u|q]q′∈Q\{q}.
The latter term is identical to (tσ)[u|q]q′∈Q. We define the substitution τ as fol-
lows:

τ(x) =

{
u|q if x = t|q
xσ otherwise

One can verify σ→=
R τ and (tσ)[u|q]q′∈Q = tτ. Hence u→∗R tτ.

We analyze peaks of the form ^ · _. According to the definition of _, they
fall into the three cases: (a) ∗S← · →∗S , (b) RS← · →∗S , and (c) RS← · →RS . For
case (a) we can apply confluence of S to show decreasingness of the peak. The
remaining cases are more complicated. We start with a localized version of (b). In
the next Lemmata 6.2.6, 6.2.9, and 6.2.10 we assume SNO(R,S) and confluence
of S .

Lemma 6.2.6. If t RS← s→S u then t→∗R∪S · ∗
RS← u.

Proof. We perform induction on s. Suppose t RS
p←− s

q−→S u. By the definition
of RS we may assume `1ρ → r1 ∈ R for some linear term `1 and ρ : V → V ,
s|p = `1σ, t|p = r1τ, and σ →∗S ρτ, as well as `2 → r2 ∈ S , s|q = `2µ, and
u|q = r2µ. Due to SNO(R,S), neither p\q ∈ PosF (`2) nor q\p ∈ PosF (`1) holds.
We distinguish several cases concerning the relation of p and q.

81

Chapter 6: Confluence and Relative Termination

• Suppose p = ε. Then there is a variable position q1 of x1 in `1 with q1 6 q.
Since x1ρτ ∗

S← x1σ →S u|q1 holds, we have x1ρτ →∗S v ∗S← u|q1 for some v
by confluence of S . We define the substitutions µ1 and ν as follows:

µ1(x) =

{
u|q1 if x = x1

xσ otherwise
ν(x) =

{
v if x = x1ρ

xτ otherwise

We have τ →∗S ν, and also u = `1µ1 by linearity of `1. Moreover, µ1 →∗S ρν

because xµ1 →∗S v = x1ρν = xρν if x = x1, and xµ = xσ →∗S xν otherwise.
Therefore, we obtain t = r1τ →∗S r1ν RS← `1µ1 = u.

• Suppose q = ε. We may presume Var(`1)∩Var(`2) = ∅, and thus σ = µ can
be assumed. Since `2σ →RS t holds, by Lemma 6.2.5 we obtain t →∗RS `2ν

for some ν with σ→=
RS ν. Thus, t→∗RS `2ν→S r2ν ∗

RS← r2σ = r2µ = u.

• If p = ip′ and q = jq′ for some i, j ∈ N with i 6= j, one can easily verify
t

q−→S · RS
p←− u.

• Otherwise, p = ip′ and q = iq′ for some i ∈ N. Since t|i RS← s|i →S u|i
holds, the induction hypothesis yields t|i →∗R∪S · ∗

RS← u|i. Therefore
t→∗R∪S · ∗

RS← u.

In order to handle peaks of shape RS← · →∗S we show auxiliary lemmata for
ARSs. In the next two lemmata → stands for →1 ∪ →2 and > for (→1/→2)

+,
and we write b→a c if a→∗ b→ c.

Lemma 6.2.7. The next two properties hold:

(a) For all a, b, c, d with a > b, if b←−∨−→∗a c→∗ d then b←−∨−→∗a d.

(b) For all a, b, c with a→∗ b→∗1 c there exists some d such that b→=
1 d ∨−→∗a c.

Proof. (a) We distinguish three cases: If b = c, then each step of b →∗ d can be
labeled by b itself. Since a > b was assumed, we have b ←−∨−→∗a d. If b 6= c then
there exists some e and label a′ with a > a′ such that either b ←−∨−→∗a e →a′ c →∗ d
or b ←−∨−→∗a e a′← c →∗ d. In both cases we have a′ →∗ c, and thus again all steps
of c →∗ d can be labeled with a′ to obtain b ←−∨−→∗a d. (b) First note that the claim
trivially holds if b→=

1 c. Otherwise we distinguish whether a = b. If a 6= b, then
we can label each step of b →∗1 c by b itself and obtain b ∨−→∗a c. Otherwise there
exists some d with b →1 d →∗ c. We can label each step of d →∗ c by d. Since to
a→+

1 b and b→1 d, we have b→1 d ∨−→∗a c.

Lemma 6.2.8. Let 1← · →2 ⊆ →∗ · ∗1←. If b 1← a→∗2 c then b←−∨−→∗a · =1← c.

82

6.2 Correctness of the Criterion

Proof. Let b 1← a →n
2 c. We show the claim by induction on n. If n = 0 then

trivially the claim holds. Otherwise, a →n−1
2 d →2 c for some d. The induction

hypothesis yields b←−∨−→∗a e =
1← d for some e. We distinguish two cases.

• If d = e then b←−∨−→∗a e = d→1 c. Thus b←−∨−→∗a c by (1).

• Suppose d →1 e. Because we have e 1← d →2 c, by the assumption e →∗
f ∗1← c for some f . Since a →∗2 d →1 e →∗ f holds, we obtain e ∨−→∗a f by
(2). Moreover, c→∗1 f implies c→=

1 ·
∨−→∗a f by (2). Hence, b←−∨−→∗a · =1← c.

Lemma 6.2.9. If t RS← s→∗S u then t ∨_̂∗s · =
RS← u.

Proof. By Lemma 6.2.6 we have that t RS← s→S u implies t→∗R∪S · ∗
RS← u. The

claim follows by instantiating Lemma 6.2.8 with→1 as→RS and→2 as→S .

Lastly, peaks of case (c), of shape RS← · →RS , are considered.

Lemma 6.2.10. If t RS← s→RS u then t ∨_̂∗s u or t→∗S · ↔CPS (R) ·
∗
S← u.

Proof. We perform induction on s. Suppose t RS
p←− s

q−→RS u. By the definition
of RS we can assume `1ρ1 → r1, `2ρ2 → r2 ∈ R for some linear terms `1, `2 and
ρ1, ρ2 : V → V , and

s|p = `1σ1 t|p = r1τ1 σ1 →∗S ρ1τ1

s|q = `2σ2 u|q = r2τ2 σ2 →∗S ρ2τ2

Except for symmetric cases, the relation of p and q falls into the next four cases:

• Suppose q = ε, and p ∈ PosF (`2). We have `1ρ1τ1
∗
S← s →∗S `2|pρ2τ2.

Without loss of generality Var(`1ρ1) ∩ Var(`2ρ2) = ∅, and thus we may
assume τ = τ1 ∪ τ2 is a well-defined substitution. The substitution τ is an
S-unifier of `1ρ1 and `2ρ2|p. Because xσ2 →∗S xρ2τ holds for all x ∈ Var(`2),

t = (`2σ2)[r1τ]p →∗S (`2ρ2τ)[r1τ]p ↔CPS (R) r2τ = u

• Suppose q = ε, and p 6∈ PosF (`2) and p2 is a variable occurrence of x2
in `2 with p2 6 p. Since t|p2 RS← x2σ2 →∗S x2ρ2τ2, Lemma 6.2.9 yields
t|p2

∨_̂∗s|p2
v =
RS← x2ρ2τ2 for some v. Because s = `2σ2, t|p2

∨_̂∗s|p2
v, and

σ2 →∗S ρ2τ2 hold, by closure under contexts of rewrite relations and > we
obtain

t = (`2σ2)[t|p2]p2
∨_̂∗s (`2σ2)[v]p2 →∗S (`2ρ2τ2)[v]p2

Thus, t ∨_̂∗s (`2ρ2τ2)[v]p2 . Since x2ρ2τ2 →=
RS v holds and `2 is linear,

`2ρ2τ2 →=
RS (`2ρ2τ2)[v]p2

83

Chapter 6: Confluence and Relative Termination

s

t uv

s1 s2

s2 s1

s

t uv

s1 s2

∨
s1

∗ =
s1

s

t u

s1 s2

∨
s1

∗

(a) ∗S← · →∗S (b) RS← · →∗S (c) RS← · →RS

Figure 6.2: Decreasingness of _.

is deduced. Here we distinguish two cases. If `2ρ2τ2 = (`2ρ2τ2)[v]p2 , we
obtain

t ∨_̂∗s `2ρ2τ2 →R u

Otherwise, `2ρ2τ2 →RS (`2ρ2τ2)[v]p2 . Since by Lemma 6.2.5 there exists ν

with τ2 →=
RS ν such that (`2ρ2τ2)[v]p2 →∗RS `2ρ2ν, finally we obtain

t ∨_̂∗s (`2ρ2τ2)[v]p2 →∗RS `2ρ2ν→R r2ν ∗
RS← r2τ2 = u

Because s > t and s > u hold, in both cases t ∨_̂∗s u is concluded.

• If p = ip′ and q = jq′ for some i, j ∈ N with i 6= j, one can easily verify
t

q−→RS · RS
p←− u, which implies t←−∨−→∗s u.

• Otherwise, p = ip′ and q = iq′ for some i ∈ N. Since t|i RS← s|i →RS u|i
holds, by the induction hypothesis t|i ←−

∨−→∗s|i u|i or t|i →∗S · ↔CPS (R) ·
∗
S← u|i

is deduced. Thus, t←−∨−→∗s u or t→∗S · ↔CPS (R) ·
∗
S← u is concluded.

Now we are ready to prove the main theorem.

Proof of Theorem 6.1.6. Suppose that S is a confluent TRS, R/S is terminating,
and SNO(R,S). We show that R ∪ S is confluent if and only if CPS(R) ⊆
↓R∪S . Since the “only if”-direction is trivial, we only show the “if”-direction.
Assume CPS(R) ⊆ ↓R∪S . Because confluence of _ implies confluence of R∪S ,
according to Theorem 6.2.2 it is enough to show decreasingness of _. Let t s1^
s _s2 u. As mentioned, following the definition of _, we distinguish three cases.

(a) If t ∗S← s→∗S u then t→∗S v ∗S← u for some v by confluence of S .

(b) If t RS← s→∗S u then t ∨_̂∗s v =
RS← u for some v by Lemma 6.2.9.

(c) If t RS← s→RS u then t ∨_̂∗s u for some v by Lemma 6.2.10 and joinability
of S-critical pairs.

In all cases decreasingness is established, as seen in Figure 6.2.

84

6.3 Joinability of Extended Critical Pairs

6.3 Joinability of Extended Critical Pairs

The biggest challenge in applying Theorem 6.1.6 is to check CPS(R) ⊆ ↓R∪S
automatically. The problem is that CPS(R) may contain infinitely many pairs.

Before proceeding, we extend the notions of unifiability and unifiers from
Chapter 2. Let E and S be sets of equations, and X the set of all variables in
E . Note that a TRS can be taken for S . An S-unification problem is a finite set
of equalities {s1 ≈ t1, . . . , sn ≈ tn}. Given a substitution σ, we write Eσ for
{sσ ≈ tσ | s ≈ t ∈ E}.

Definition 6.3.1. Let E be an S-unification problem. An S-unifier of E is a substitution
σ such that Eσ ⊆ ↔∗S .

A substitution σ is more general than a substitution σ′ on X (σ .X
S σ′), if there

exists a substitution τ such that xσ′ ↔∗S xστ for all x ∈ X.

Definition 6.3.2. Let U be a set of S-unifiers of E .

1. U is complete if for every S-unifier of E there is a more general element in U , and

2. if in addition all elements in U are minimal with respect to .X
S , we call U minimal

complete.

3. A substitution σ is an S-most general unifier (S-mgu) of E , if {σ} is a minimal
complete set of S-unifiers of E .

The special case of S = ∅ corresponds to syntactic unification, unifiers and mgu’s as
defined in Chapter 2.

A set of equalities E = {x1 ≈ t1, . . . , xn ≈ tn} is in solved form, if the xi are
pairwise distinct variables, and none of the xi occurs in any tj. For E in solved

form, we write
−→E for the induced substitution {x1 7→ t1, . . . , xn 7→ tn}. Note that

in contrast to syntactic unifiability (S = ∅), S-unifiability does not ensure the
existence of an S-mgu in general.

The standard approach to test CPS(R) ⊆ ↓R∪S is to compute a minimal com-
plete set of S-unifiers for `1 and `2|p for each combination of rules `1 → r1,
`2 → r2 and a position p ∈ PosF (`2). Then, joinability of its induced critical
pairs ensures joinability for all S-unifiers. However, depending on S , the com-
putation of minimal complete sets varies, and worse, minimal complete sets may
not even exist for S-unifiable terms. In this section we give sufficient conditions
for the joinability and non-joinability of S-critical pairs without performing spe-
cific equational unification algorithms.

For the first we show that a most general unifier of strongly S-stable terms
is always a most general S-unifier. As the next lemma shows, this allows us
to compute S-critical pairs by means of syntactic unification. Here a term t

85

Chapter 6: Confluence and Relative Termination

is strongly S-stable if for every position p ∈ PosF (t) there are no term u and
substitution σ such that t|pσ →∗S ·

ε−→S u. Note that tσ is strongly S-stable if t
and xσ are strongly S-stable for all variables x in t.

Lemma 6.3.3. Let t be a linear term. Then (a) implies (b) where

(a) for every σ we have that tσ
p−→S u implies p ∈ PosV (t),

(b) for every σ we have that tσ→∗S u implies u = tτ for some τ.

Proof. By induction on the length of tσ→∗S u.

Lemma 6.3.4. If SNO(R,S) then ` is strongly S-stable for all `→ r ∈ R.

Proof. Suppose SNO(R,S) and let ` → r be a rule in R and p ∈ PosF (`).
We write t for REN(`|p). Clearly, t is linear and by SNO(R,S) condition (a)
of Lemma 6.3.3 holds for t. Thus the lemma implies that condition (b) also holds.
Now consider the reduction `|pσ →∗S u

p−→S v. It is not difficult to see that there
exists a substitution ρ with tρ = `|pσ. Then by condition (b) of Lemma 6.3.3
we have u = tτ for some τ. By condition (a) the position p must be a variable
position, and thus p 6= ε. So `|pσ →∗S v ε−→ u does not hold. Hence ` must be
strongly S-stable.

In order to show the claim on mgu’s, we recall the standard inference rules for
syntactic unification from [10]. These rules are defined over sets of equalities on
terms.

Eliminate

{x ≈ t}] E
{x ≈ t} ∪ E{x 7→ t} if x 6∈ Var(t)

Orient

{t ≈ x}] E
{x ≈ t} ∪ E if t 6∈ V

Delete

{t ≈ t}] E
E

Decompose

{ f (s1, . . . , sn) ≈ f (t1, . . . , tn)}] E
{s1 ≈ t1, . . . , sn ≈ tn} ∪ E

We write =⇒ for a derivation by the inference rules. The following lemma states
that a most general unifier can be computed by a sequence of derivations.

Lemma 6.3.5 ([10]). If s and t are unifiable, there exists E in solved form such that
{s ≈ t} =⇒∗ E and

−→E is an mgu of s and t.

The next lemma shows that the inference rules of syntactic unification preserve
strong S-stability and S-unifiability. We say that a set E of equalities is strongly
S-stable if s and t are strongly S-stable for all s ≈ t ∈ E .

86

6.3 Joinability of Extended Critical Pairs

Lemma 6.3.6. Let S be a confluent TRS. If E1 is strongly S-stable, E1σ ⊆ ↓S , and
E1 =⇒ E2, then E2σ ⊆ ↓S and E2 is strongly S-stable.

Proof. Suppose E1 is strongly S-stable, E1σ ⊆ ↓S , and E1 =⇒ E2. We distinguish
the inference of E1 =⇒ E2. Because the cases of Delete and Orient are trivial,
below we only consider the other two cases:

• Eliminate: Suppose E1 = {x ≈ t}] E ′ and E2 = {x ≈ t} ∪ E ′µ, where
µ = {x 7→ t} and x 6∈ Var(t). We claim µσ ↔∗S σ. Actually it follows from
the assumption xσ ↓S tσ. We now prove E2σ ⊆ ↓S . It is sufficient to show
uµσ ↓S vµσ for an arbitrary u ≈ v ∈ E ′. Because uσ ↓S vσ by assumption,
the claim yields uµσ ↔∗S vµσ. Therefore uµσ ↓S vµσ is concluded from
confluence of S . To show strong S-stability of E2, fix u ≈ v ∈ E ′. Since u, v,
and xµ are strongly S-stable, so are uµ and vµ.

• Decompose: Suppose E1 = {s ≈ t}] E ′ and E2 = {s1 ≈ t1, . . . , sn ≈
tn} ∪ E ′ with s = f (s1, . . . , sn) and t = f (t1, . . . , tn). Since E is strongly
S-stable, and thus s and t are, si and ti are also strongly S-stable for all
1 6 i 6 n. Furthermore, due to strong S-stability of s and t, sσ ↓S tσ
implies siσ ↓S tiσ for all 1 6 i 6 n. Therefore, the claim holds.

We arrive at the aforementioned sufficient condition.

Theorem 6.3.7. Let S be a confluent TRS. An mgu of strongly S-stable terms s and t
is an S-mgu of s and t.

Proof. Let µ be an arbitrary mgu of strongly S-stable terms s and t. Since µ is
trivially an S-unifier of s and t, it is enough to show that µ is more general than
an arbitrary S-unifier σ of s and t. By using Lemma 6.3.5 there is an E in solved
form such that {s ≈ t} =⇒∗ E and

−→E is an mgu of s and t. Because sσ ↔∗S tσ
and S is confluent, we have {s ≈ t}σ ⊆ ↓S , and thus Eσ ⊆ ↓S is obtained by
induction on the length of =⇒∗ using Lemma 6.3.6. Since E is in solved form,
xσ ↓S x

−→E σ holds for all x ∈ Dom(
−→E). This means σ ↔∗S

−→E σ. Since µ is an
mgu, there is a substitution ρ with

−→E = µρ. Thus σ ↔∗S µρσ. Hence µ is more
general than σ.

When automating Theorem 6.1.6, confluence of S and SNO(R,S) can be as-
sumed. Therefore, according to Theorem 6.3.7 and Lemma 6.3.4, a syntactical
overlap by an mgu µ is also an S-overlap by S-mgu µ. Thus joinability of its
syntactical critical pairs implies joinability of S-critical pairs induced by any S-
unifier.

87

Chapter 6: Confluence and Relative Termination

Example 6.3.8 (continued from Example 6.1.9). We consider again the example with
R = {1, 2} and S = {3, 4}. Take the first and second rules renamed:

1 : eq(s(n), x : xs, x : ys)→ eq(n, xs, ys) 2 : eq(m, zs, zs)→ T

We know that there is an overlap between 1 and 2 at root position with mgu

µ = {m 7→ s(n), zs 7→ x : xs, ys 7→ xs}.

Elsewhere, even S-overlaps cannot occur. The induced critical pair (eq(n, xs, xs),T) is
trivially joinable by the second rule. Hence CPS(R) ⊆ ↓R∪S holds.

Confluence of S cannot be dropped in Theorem 6.3.7.

Example 6.3.9. Consider the TRS S

g(x, y)→ f(x, x) g(x, y)→ f(x, y)

The terms f(x1, x1) and f(x, y) are both strongly S-stable, and the substitution

µ = {x 7→ x1, y 7→ x1}

is a most general unifier. However, µ is not an S-mgu, because µ is not more general
than the other S-unifier {x1 7→ x}.

Unjoinability of S-critical pairs can be tested in a similar way to checking non-
confluence of a TRS with the function TCAP ([87]).

Definition 6.3.10 ([29]). Let t be a term, and R a TRS. We define TCAPR(t) in-
ductively as a fresh variable, when t is a variable or when t = f (t1, . . . , tn) and ` and
u unify for some (renamed) rule ` → r ∈ R, and u, otherwise. Here u stands for
f (TCAPR(t1), . . . ,TCAPR(tn)).

Lemma 6.3.11. Let `1 → r1, `2 → r2 ∈ R and p ∈ PosF (`2). If `1σ ↔∗R `2|pσ, and
TCAPR(r2) and TCAPR(`2[r1]p) do not unify, R is not confluent.

Proof. Using the fact that if sσ ↓R tτ then TCAPR(s) and TCAPR(t) must unify,
see [87].

Example 6.3.12 (continued from Example 6.0.1). Recall R = {1, 2} and S = {3}:

1 : f(x, x)→ a 2 : f(y, g(y))→ b 3 : c→ g(c)

where variables are renamed in rule 2. We denote i-th rule by `i → ri. While `1 and `2|ε
are (R∪ S)-unifiable with {x, y 7→ c}, we have

TCAPR∪S(`2[r1]ε) = a and TCAPR∪S(r2) = b

which do not unify. Thus, by Lemma 6.3.11, R∪ S is not confluent.

88

6.3 Joinability of Extended Critical Pairs

In automation we need to test S-unifiability of `1 and `2|p. This can be au-
tomated by first-order theorem provers for unit equational problems, so-called
UEQ. We briefly describe the approach. Roughly summarized, such theorem
provers work as follows. The input is a set of equations E and goal ϕ containing
arbitrary quantifiers

Q1x1, . . . , Qnxn s ≈ t

where Qi stands for either ∀ or ∃ and x1, . . . , xn are the variables appearing in s
and t. The theorem prover tries to answer whether E |= ϕ. The approach is to
first negate and skolemize ϕ which results in a formula s′ 6≈ t′. Note that if we
have Qi = ∀ for all 1 ≤ i ≤ n then both s′ and t′ are ground terms. If s′ and t′

are E -unifiable then the goal is inconsistent with the axioms and thus we have
E |= ϕ. Most theorem provers for UEQ are based on a variant of completion
called unfailing completion [12] which is refutationally complete. This means that
if E |= ϕ then unifiability will (theoretically) be detected after a finite amount of
time and thus we are guaranteed that the conjecture will be proven.

Testing S-unifiability of `1 and `2|p means asking whether S |= ϕ where ϕ is

∃x1, . . . , ∃xn `1 ≈ `2|p

and x1, . . . , xn are the variables of `1 and `2|p. If we input ϕ together with S ,
then the theorem prover will check S-unifiability of `1 and `2|p which is pre-
cisely our original question. If unifiability is proven then we can employ TCAP

and Lemma 6.3.11. Depending on the power of the prover, sometimes invalid
conjectures can be refuted, i.e. it can be shown that

S 6|= ∃x1, . . . , ∃xn `1 ≈ `2|p.

Then we can conclude the absence of S-unifiers. However in this case refuta-
tional completeness2 does not hold, i.e. the theorem prover is not (theoretically)
guaranteed to refute the conjecture after a finite amount of time.

Note that in contrast to [87], Lemma 6.3.11 only requires to know that S-
unifiability holds, but it does not require the computation of S-unifiers. In fact
most theorem provers test only unifiability without computing any concrete uni-
fier.

By the above approach indeed non-confluence of the TRS of Example 6.3.12
can be proven automatically, see Section 6.4. As a final remark, note that from
the absence of a syntactic unifier we may not conclude non-existence of S-critical
pairs, as illustrated in Example 6.0.1.

2Refutational completeness here refers to being guaranteed to show the inconsistency of the
axioms w.r.t. the negated, skolemized conjecture.

89

Chapter 6: Confluence and Relative Termination

6.4 Experiments

In order to assess feasibility of our methods, we implemented Theorem 6.1.6 to-
gether with Theorem 6.3.7 for confluence, and Lemma 6.3.11 for non-confluence.
In the next subsections we mention details of our implementation and report on
experimental data.

6.4.1 Implementation

In order to automate Theorem 6.1.6 we employed TTT2 v1.06 [50] for checking
relative termination R/S and an extended version of Maxcomp [46] for testing
S-unifiability, using ordered completion. To check confluence of S , we used the
existing three state-of-the-art confluence provers: ACP v0.20 [7],3 CSI v0.1 [87],4

and Saigawa v1.2 [38].5 Since termination of R∪ S cannot be assumed, we only
test joinability of S-critical pairs by at most four rewrite steps form each side.

We give a brief overview of our procedure. Given a TRS P , we output either
YES (P is confluent), NO (P is not confluent), or MAYBE (confluence of P is neither
proven nor disproven). We enumerate all possible partitions P = R]S , and then
for each (R,S), we test whether SNO(R,S), termination ofR/S , and confluence
of S holds. If one of these conditions does not hold, we continue with the next
partition; if none is left, we return MAYBE. Otherwise, to check the last remaining
condition of Theorem 6.1.6, namely CPS(R) ⊆ ↓R∪S , we proceed in the following
way: For all tuples (`1 → r1, p, `2 → r2) where `1 → r1 and `2 → r2 are rules
from R and p ∈ PosF (`2), we test in the following order:

1. If REN(`1) and REN(`2|p) are not syntactically unifiable, then no S-overlap
exists, and we continue with the next tuple. Otherwise,

2. if `1 and `2|p are syntactically unifiable with σ, the current tuple forms an
S-overlap, so we test joinability of the induced critical pair.

a) If joinability holds, we continue with the next tuple.

b) If joinability cannot be established, we test whether TCAPR∪S(r2σ)
and TCAPR∪S(`2σ[r1σ]p) syntactically unify. If they are not unifiable,
return NO. Otherwise, return MAYBE

3. if `1 and `2|p are not syntactically unifiable, we check S |= `1 ≈ `2|p by a
theorem prover:

a) If unsatisfiability of the formula is detected, no S-overlap exists, and
we continue.

3http://www.nue.riec.tohoku.ac.jp/tools/acp/
4http://cl-informatik.uibk.ac.at/software/csi/
5http://www.jaist.ac.jp/project/saigawa/

90

6.4 Experiments

b) If satisfiability is detected, we proceed and test syntactic unifiability of
TCAPR∪S(r2) and TCAPR∪S(`2[r1]p). If they are not unifiable, return
NO. If they unify, return MAYBE.

c) Lastly, if the theorem prover does not provide a conclusive answer,
return MAYBE

If no tuple remains, we have established CPS(R) ⊆ ↓R∪S and return YES.
The procedure has the following properties. Let 1 : `1 → r1 and 2 : `2 → r2 be

rules of R and p ∈ PosF (`2). Below we write 1
p←−S ∝→2 for the S-critical pairs

of `1 → r1 and `2 → r2 at p.

• If the procedure continues after step 1) or 3a) then 1
p←−S ∝→2= ∅.

• If the procedure continues after step 2a) then 1
p←−S ∝→2 ⊆ ↓R by Theo-

rem 6.3.7 and Lemma 6.3.4.

• If the procedure outputs NO then 1
p←−S ∝→2 * ↓R by Lemma 6.3.11.

Using these properties one can show correctness of the whole procedure using
Theorem 6.1.6.

6.4.2 Experimental Results

We tested the implementation on a collection of 32 TRSs, consisting of 29 non-left-
linear non-terminating TRSs in the Confluence Problem Database (Cops Nos. 1–
116)6 and Examples 6.1.7, 6.1.8 and 6.1.9. Note that Examples 6.0.1 and 6.1.11 are
part of the 29 TRSs. The tests were single-threaded run on a system equipped
with an Intel Core Duo L7500 with 1.6 GHz and 2 GB of RAM using a timeout
of 60 seconds.

The results are depicted in Table 6.1. For more more detailed results see Ap-
pendix C. In Table 6.1, columns ACP, CSI and Saigawa show results for running
the respective tools, and ACP∗, CSI∗ and Saigawa∗ show results when using the
respective tool to show confluence of the S-part in Theorem 6.1.6.

It should be noted, that the criteria implemented by Saigawa apply only to left-
linear systems, whereas CSI is able to show confluence of non-left-linear systems
by order-sorted decomposition [25], and the implementation of ACP includes cri-
teria based on layer preserving [59] and persistency decompositions [5], and the
criterion by Gomi et al. [33].

For overall results, there are twelve TRSs for which confluence can be shown by
ACP, CSI and Saigawa combined, in fact however all twelve can be shown by ACP

alone. Extending with Theorem 6.1.6, there are 19 TRSs, for which confluence can

6http://coco.nue.riec.tohoku.ac.jp/

91

Chapter 6: Confluence and Relative Termination

Table 6.1: Summary of experimental results (32 TRSs)

ACP ACP∗ CSI CSI∗ Saigawa Saigawa∗

YES 12 19 7 15 0 10
NO 3 4 3 3 0 2

MAYBE 17 9 17 9 32 20
timeout (60 sec) 0 0 5 5 0 0

be shown by ACP∗, CSI∗ or Saigawa∗ combined. Similar to the standalone-case,
ACP∗ subsumes both other combinations. As for Example 6.1.7, 6.1.8 and 6.1.9,
neither CSI, ACP nor Saigawa can show confluence, whereas all CSI∗, ACP∗ and
Saigawa∗ succeed. Out of the nine TRSs that ACP∗ missed, four TRSs (Cops Nos.
76, 77, 78, 109) contain AC rules, for which most likely the criterion in [44] applies
if suitable equational unification algorithms were implemented (see Section 6.5),
and five TRSs (Nos. 16, 24, 26, 27, 47) are variants of Huet’s example (Exam-
ple 6.0.1) or Klop’s example (Example 6.1.11).

6.5 Related Work

Among others, we compare our criterion with three well-known criteria capable
of proving confluence of non-left-linear and non-terminating TRSs. Note that for
the second criterion below we use reversibility [6] for comparison, because the
original criterion requires equational systems for S rather than rewrite systems.
We say that a TRS S is reversible if S← ⊆ →∗S .

• Criteria by Non-E-Overlappingness. The criterion by Gomi et al. [31],
later extended in [32] and [33], is that a non-E-overlapping TRS, that is also
strongly weight-preserving or strongly depth-preserving, is confluent. Here E-
overlaps are a generalization of overlaps, and strong non-overlappingness
plays a major role in deriving decidable criteria for non-E-overlappingness.7

A TRS is strongly depth preserving, if for any rewrite rule and any variable
appearing in both sides, the minimal depth of the variable occurrences in
the left-hand side is greater than or equal to the maximal depth of the right
hand side’s occurrences. Instead of comparing the depth of the variable

7S-overlaps are sometime called E -overlaps but should not be confused with the E-overlaps
defined by Gomi et al. [31], originally introduced by Ogawa [57].

92

6.5 Related Work

directly, one can also assign weights to function symbols and compare the
weight of the variable occurrence, where the weight is the sum of the func-
tion symbols from root to its occurrence. For details of the definitions we
refer to [33]. Consider the following TRS:

f(x, x)→ a c→ g(c) g(x)→ f(x, x)

Confluence of this TRS can be established, since it is depth-preserving and
root-E-overlapping. However Theorem 6.1.6 cannot be applied, since the
TRS cannot be partitioned into a non-empty R and S , such that R/S is
terminating — except for R = ∅. On the other hand, weight-preservation
and depth-preservation impose strong syntactic restrictions on the variable
positions. Consider for example the TRS

1 : g(x, x)→ f(x) 2 : f(x)→ f(f(x))

By taking R = {1} and S = {2}, Theorem 6.1.6 can be applied. However
the second rule violates both strong depth and strong weight-preservation.

• Criteria by Extended Critical Pairs. In [44], based on the preliminary
work in [43], Jouannaud and Kirchner show that the union of a TRS R and
a reversible TRS S is confluent if R/S and B/↔S are terminating and

R←S ∝→R∪S∪S−1 ⊆ →∗R,S · ↔∗S · ∗
R,S←

Here s →R,S t if there exist a rule ` → r ∈ R, a position p ∈ Pos(s), and
a substitution σ, such that s|p ↔∗S `σ and t = s[rσ]p. Note that S has a
serious restriction: The two termination requirements prohibit application
when S is erasing or collapsing, or even when C[t] ↔∗S t for a non-empty
context C. For instance, Examples 6.1.8 and 6.1.9 cannot be handled due to
this restriction. On the other hand it is applicable for mutually overlapping
TRSs R and S , for example:

1 : x + x → x 2 : x + y→ y + x 3 : (x + y) + z→ x + (y + z)

By taking R = {1} and S = {2, 3}, one can easily show confluence of
R∪ S by using their criterion. However, Theorem 6.1.6 cannot be applied
because R and S overlap on each other. This criterion forms a foundation
of AC-completion.

• Criteria by Relative Termination. Geser [27] introduced several pioneer-
ing applications of relative termination. A result of particular interest in

93

Chapter 6: Confluence and Relative Termination

this context is the following confluence criterion: A TRS R∪ S is confluent
if R is left-linear, S is confluent, and the inclusions

S←∅ ∝→R ⊆ (→∗S · ∗
R∪S←) ∪ (→R · ↓R∪S)

and
R←∅ ∝→R ⊆ ↓R∪S

hold. In contrast to Theorem 6.1.6, overlaps between rules in R and S pose
no problem. The following example, due to Geser, shows the power of his
approach beyond pure left-linear systems:

1 : c(s(x), s(y))→ c(x, y) 2 : c(x, x)→ f(c(x, x))

Then confluence can be established by taking R = {1} and S = {2},
whereas Theorem 6.1.6 is not applicable. 8 The reason for being able to han-
dle overlaps between R and S is, that with the restriction of left-linearity
of the R-part, joinability of syntactical critical pairs suffices to establish
confluence. On the other hand, the requirement of left-linearity prevents
application for Examples 6.1.7, 6.1.8 and 6.1.9, except for choosing R = ∅.

8All current confluence tools fail to show confluence of the one rule TRS consisting of rule
number 2.

94

Chapter 7

Conclusion and Future Work

We have developed a new framework for completion, called maximal comple-
tion, that allows to characterize it as an optimization problem over constraints.
The framework has been adapted to allow a similar maximality-based approach
for various adaptations of completion to inductive theorem proving by means
of constrained equalities. Moreover we showed a new and easily automatable
criterion for confluence of non-left-linear and non-terminating TRSs.

In all the above our implementations followed very closely the theoretical
frameworks to show their practical effectiveness. Nevertheless, to make our re-
sults accessible and useful in other domains, highly practical tools have to be
developed. Especially in Chapter 5 experimental results show potential for im-
provements. In fact such optimization is currently being undertaken in prepara-
tion for [4]. Preliminary results indicate that in fact vast improvements in perfor-
mance can be achieved by optimizing the implementation.

Maximal completion’s main drawback is that it is currently restricted to meth-
ods of showing termination that can be encoded to Boolean constraints. It is
therefore crucial to recapitulate termination techniques into maximal termina-
tion to extend the capability of Maxcomp. In particular, the dependency pair
method [8] and semantic labeling [89] are known to be extremely powerful tech-
niques of showing termination of TRSs. Techniques that to show maximal termi-
nation based on these methods would greatly benefit maximal completion.

95

Chapter 7: Conclusion and Future Work

The application of completion to theorem proving is an important direction.
Several first order theorem provers like Waldmeister [53] are based on unfailing
completion [12]. In Chapter 6 we briefly mention an extension of maximal com-
pletion. Due to its very ad-hoc nature these extensions are not covered in this
thesis. A thorough investigation should be conducted on how to apply maximal
completion in unfailing completion to construct more effective theorem provers.

Constrained Equalities give a framework to fully automate rewriting induc-
tion and other inductive proof methods. As mentioned in the introduction, the
user provided reduction order is only one among many obstacles in constructing
inductive proofs. Several methods have been proposed to extend rewriting in-
duction, for example to deal with non-orientable equations [1] or to to construct
needed lemmata automatically [3, 71, 78]. It is worthwhile to investigate if and
how these techniques can be incorporated in our approach.

Last but not least, in Chapter 6 we presented a generalization of Knuth and
Bendix’ confluence criterion, which can deal with non-left-linear, non-terminating
TRSs and can be fully automated. As seen in Section 6.5, conditions required
in our criterion are related to the results by Jouannaud and Kirchner [44] and
Geser [27]. Both exploit relative termination to overcome the problem of non-
termination, however still relative termination poses a strict restriction. In the
case of left-linear TRSs, Hirokawa and Middeldorp employed critical pair steps [38]
to relax this restriction. The resulting criterion generalizes both Knuth-Bendix’
criterion and orthogonality (left-linearity and non-overlappingness). We antici-
pate that this and our result can be combined by using such critical pair steps.
However deriving such a combined criterion is tightly related to the long-standing
open conjecture that every strongly non-overlapping, right-linear TRS is conflu-
ent.1

In our approach we separate a TRS into two parts and use local properties
such as confluence of the S-part and relative termination. To separate these parts
we employ strong non-overlappingness. In the absence of such local properties
direct criteria weaken the notion of strong non-overlappingness — as SNO(R,R)
is too restrictive — to non-ω-overlappingness [57], non-E-overlappingness [32] or
persistence [82]. It is interesting to investigate whether such weakening is also
possible in our scenario.

1The RTA Open Problem #58: http://rtaloop.mancoosi.univ-paris-diderot.fr/

96

Appendix A

Experimental Data for Chapter 4

Table A.1 contains the list of all experimental results. Here × denotes failure,
i.e. no more rules are orientable, no new critical pairs can be generated and the
tool gives up. The symbol ∞ denotes that the tool in question did not provide a
result within 600 seconds.

Table A.1: Experimental results for Maxcomp

LPO KBO termination tool
problem mkbTT Maxcomp mkbTT Maxcomp mkbTT Slothrop

AD93.Z22 ∞ ∞ ∞ ∞ ∞ ∞
ASK.93.1 0.01 0.10 0.02 0.01 0.01 0.98

ASK.93.2 ∞ ∞ ∞ ∞ ∞ ∞
ASK.93.5 ∞ ∞ ∞ ∞ ∞ ∞
ASK.93.6 16.75 1.06 10.93 0.83 5.73 10.81

aufgabe3.2 0.01 0.00 0.01 0.01 0.01 0.95

aufgabe3.3 0.01 0.01 0.01 0.01 0.01 0.87

BD94.collapse 0.05 0.01 0.08 0.01 0.03 1.18

BD94.peano 0.03 0.01 ∞ ∞ 0.02 1.22

BD94.sqrt 0.02 0.00 0.03 0.01 0.02 1.00

BGK94.D08 ∞ 0.70 ∞ ∞ ∞ ∞
BGK94.D10 ∞ 0.88 ∞ ∞ 51.49 ∞
BGK94.D12 ∞ 1.18 ∞ ∞ 52.44 ∞
BGK94.D16 ∞ 37.48 ∞ ∞ 74.91 ∞
BGK94.M08 0.74 0.24 1.25 0.49 0.59 7.72

BGK94.M10 1.20 0.81 2.24 ∞ 0.94 20.97

BGK94.M12 1.83 41.69 3.65 ∞ 1.42 27.18

BGK94.M14 2.73 ∞ 5.73 ∞ 2.06 25.88

BGK94.Z22W ∞ ∞ ∞ ∞ ∞ ∞
continued on next page

97

Appendix A: Experimental Data for Chapter 4

continued from previous page

LPO KBO termination tool
problem mkbTT Maxcomp mkbTT Maxcomp mkbTT Slothrop

BH96.fac8 0.11 0.02 0.52 0.06 0.07 2.07

Chr89.A2 4.21 0.99 4.81 0.95 95.76 182.93

Chr89.A24 ∞ ∞ ∞ ∞ ∞ ∞
Chr89.A3 40.06 3.17 20.85 ∞ ∞ ∞
fggx 0.01 0.01 0.02 0.01 0.01 0.98

fib 0.87 100.32 ∞ ∞ 0.85 7.18

HR94.1 ∞ ∞ ∞ ∞ ∞ ∞
HR94.2 ∞ ∞ ∞ ∞ ∞ ∞
kb.fail × × × × × ×
kb.fail1 × × × × × ×
KK99.linear_assoc 0.02 0.01 0.02 0.01 0.03 0.83

Les83.fib 0.10 0.01 ∞ ∞ 0.23 2.82

Les83.subset 0.22 0.01 ∞ ∞ 0.09 3.27

lr.theory 0.35 0.11 0.45 2.89 1.74 7.90

LS06.CGE4 ∞ ∞ ∞ ∞ ∞ ∞
LS06.CGE5 ∞ ∞ ∞ ∞ ∞ ∞
LS94.G0 0.52 0.05 0.71 0.06 1.28 5.90

LS94.G1 ∞ ∞ ∞ ∞ ∞ ∞
LS94.G2 ∞ ∞ ∞ ∞ ∞ ∞
LS94.G3 ∞ ∞ ∞ ∞ ∞ ∞
LS94.P1 ∞ ∞ ∞ ∞ ∞ ∞
OKW95.dt1 0.78 46.15 ∞ ∞ 0.91 6.22

rl.theory 2.36 0.17 ∞ 1.21 1.76 8.07

Sim91_sims2 ∞ ∞ ∞ ∞ ∞ ∞
SK90.3.01 1.20 0.09 2.23 0.61 4.16 18.85

SK90.3.02 0.03 0.01 0.03 0.02 0.05 0.97

SK90.3.03 4.69 1.01 3.88 0.05 1.59 5.54

SK90.3.04 6.72 1.75 ∞ ∞ 99.98 ∞
SK90.3.05 1.58 0.35 1.07 0.33 3.46 ∞
SK90.3.06 4.22 0.90 ∞ ∞ ∞ ∞
SK90.3.07 ∞ 3.03 ∞ ∞ ∞ ∞
SK90.3.08 0.08 0.01 0.06 0.03 0.05 1.18

SK90.3.09 ∞ ∞ ∞ ∞ ∞ ∞
SK90.3.10 0.03 0.01 0.03 0.01 0.02 0.92

SK90.3.11 0.03 0.01 0.03 0.01 0.02 1.02

SK90.3.12 × × × × × ×
SK90.3.13 0.17 0.02 0.16 0.02 0.17 1.33

SK90.3.14 0.13 0.01 0.21 0.16 0.15 1.65

SK90.3.15 ∞ ∞ 0.12 0.02 0.08 1.39

continued on next page

98

continued from previous page

LPO KBO termination tool
problem mkbTT Maxcomp mkbTT Maxcomp mkbTT Slothrop

SK90.3.16 0.02 0.01 0.03 0.01 0.01 0.80

SK90.3.17 0.05 0.01 0.04 0.01 0.08 1.25

SK90.3.18 0.15 0.01 ∞ ∞ 0.30 3.50

SK90.3.19 0.15 0.09 0.26 15.11 0.32 2.73

SK90.3.20 0.35 1.34 0.42 ∞ 0.46 2.65

SK90.3.21 0.16 0.04 0.25 0.03 0.19 85.81

SK90.3.22 ∞ 4.03 ∞ 8.03 ∞ ∞
SK90.3.23 0.03 96.93 0.43 0.19 0.37 4.72

SK90.3.24 0.04 0.02 0.04 0.01 0.04 1.26

SK90.3.25 0.02 0.43 0.02 0.01 0.03 0.99

SK90.3.26 ∞ ∞ ∞ ∞ ∞ ∞
SK90.3.27 13.31 21.09 36.47 0.53 72.31 ∞
SK90.3.28 ∞ 20.23 53.58 ∞ ∞ 110.76

SK90.3.29 2.29 0.86 3.91 1.75 2.02 5.27

SK90.3.30 0.03 0.01 0.03 0.02 0.02 0.76

SK90.3.31 0.03 0.01 0.04 0.01 0.01 0.84

SK90.3.32 0.01 0.01 0.01 0.01 0.01 0.74

SK90.3.33 0.03 0.01 0.02 0.01 0.02 0.91

sl.ackermann 0.02 0.01 ∞ ∞ 0.03 0.68

sl.cge ∞ ∞ ∞ ∞ 173.03 ∞
sl.cge3 ∞ ∞ ∞ ∞ ∞ ∞
sl.endo ∞ 0.62 ∞ 0.38 3.88 7.60

sl.equiv.proofs × × ∞ ∞ 2.52 262.32

sl.equiv.proofs.or × × ∞ ∞ 2.81 ∞
sl.fgh 0.01 0.01 0.01 0.01 0.01 0.73

sl.groups 0.45 0.08 ∞ 0.08 0.54 2.22

sl.groups_conj 0.11 0.02 0.18 1.10 0.21 2.49

sl.hard 0.01 0.01 0.01 0.02 0.01 0.69

slothrop.nlp-2b ∞ ∞ ∞ ∞ ∞ ∞
TPDB.torpa.secr10 2.21 0.17 14.34 0.55 9.15 50.46

TPDB.torpa.secr4 4.77 35.69 15.25 31.62 17.10 35.56

TPDB.thiemann27 ∞ ∞ ∞ ∞ ∞ ∞
TPDB.zantema.z115 ∞ 0.73 5.76 42.63 15.27 203.69

TPTP.BOO027-1 0.04 0.02 0.04 0.01 0.03 1.37

TPTP.COL053-1 0.01 0.01 0.01 0.01 0.01 0.67

TPTP.COL056-1 0.04 0.01 0.03 0.87 0.03 0.82

TPTP.COL060-1 × × 0.01 0.01 0.02 1.14

TPTP.COL085-1 0.01 0.01 0.01 0.01 0.01 0.66

TPTP.GRP010-4 1.52 0.27 2.21 0.11 6.02 231.47

continued on next page

99

Appendix A: Experimental Data for Chapter 4

continued from previous page

LPO KBO termination tool
problem mkbTT Maxcomp mkbTT Maxcomp mkbTT Slothrop

TPTP.GRP011-4 0.48 0.09 0.62 0.10 0.63 25.42

TPTP.GRP012-4 0.28 0.03 0.34 0.03 0.48 2.13

TPTP.GRP393-2 0.01 0.01 0.01 0.01 0.01 0.68

TPTP.GRP394-3 0.33 0.06 0.42 0.07 0.51 2.68

TPTP.GRP454-1 17.13 2.65 49.63 0.14 109.87 ∞
TPTP.GRP457-1 17.18 2.66 49.98 1.62 112.73 ∞
TPTP.GRP460-1 ∞ 0.89 17.74 2.91 16.99 ∞
TPTP.GRP463-1 ∞ 1.76 17.80 3.26 16.91 ∞
TPTP.GRP481-1 ∞ 2.40 ∞ 57.20 ∞ 69.56

TPTP.GRP484-1 ∞ 0.52 ∞ 13.52 ∞ ∞
TPTP.GRP487-1 ∞ 1.00 ∞ 7.05 ∞ ×
TPTP.GRP490-1 ∞ 0.84 168.93 13.21 ∞ ∞
TPTP.GRP493-1 ∞ 5.13 40.54 2.83 ∞ ∞
TPTP.GRP496-1 ∞ 0.90 ∞ 11.13 ∞ 241.10

TPTP.HWC004-1 0.13 0.03 0.09 0.01 0.14 1.32

TPTP.HWC004-2 0.05 0.01 0.04 0.01 0.03 1.09

TPTP.SWV262-2 0.03 0.02 0.03 0.05 0.03 0.88

WS06.proofreduction ∞ ∞ ∞ ∞ 162.66 ∞

100

Appendix B

Experimental Data for Chapter 5

Table B.2 contains the list of all experimental results of completion based on con-
strained equalities, and Table B.1 contains all data for rewriting induction based
on constrained equalities. Here × denotes failure, i.e. that no more rules are ori-
entable, no new critical pairs or expansions can be generated and the tool gives
up. For rewriting induction with constrained equalities we do not provide pre-
cise timing information, instead Y denotes a successful proof. For completion the
symbol ∞ denotes a timeout. The time limit was set to 60 seconds for completion
and to 10 seconds for the inductive proofs.

Table B.1: Experimental results for Induction with Constraint Equalities

problem LPO KBO problem LPO KBO

DC #2 Y Y DC #3 ∞ ∞
DC #4 ∞ ∞ DC #5 Y Y

DC #7 Y Y DC #22 Y Y

DC #23 Y Y DC #25 ∞ ∞
DC #27 ∞ ∞ DC #28 ∞ ∞
DC #29 ∞ ∞ DC #30 ∞ ∞
DC #31 ∞ ∞ DC #43 ∞ ∞
DC #47 ∞ ∞ DC #55 ∞ Y

DC #58 Y ∞ DC #60 ∞ ∞
DC #63 ∞ ∞ DC #64 ∞ ∞
DC #79 ∞ ∞ DC #80 ∞ ∞
DC #81 ∞ ∞ DC #82 ∞ ∞
DC #83 ∞ ∞ DC #84 ∞ ∞
DC #109 ∞ ∞ DC #110 Y Y

DC #111 ∞ ∞ DC #112 Y Y

DC #113 ∞ ∞ DC #115 Y Y

continued on next page

101

Appendix B: Experimental Data for Chapter 5

continued from previous page

problem LPO KBO problem LPO KBO

DC #116 ∞ ∞ DC #158 ∞ ∞
DC #208 Y ∞ DC #216 ∞ ∞
DC #225 Y Y DC #228 Y Y

DC #229 Y Y DC #230 Y Y

DC #231 Y ∞ DC #232 ∞ ∞
DC #233 ∞ ∞ DC #234 Y ∞
DC #236 ∞ ∞ DC #237 ∞ ∞
DC #270 ∞ ∞ DC #281 Y Y

DC #283 Y Y DC #287 Y Y

DC #300 ∞ ∞ DC #301 Y Y

DC #305 Y ∞ DC #318 ∞ ∞
DC #319 ∞ ∞ DC #349 Y ∞
DC #370 ∞ ∞ DC #375 ∞ ∞
DC #442 Y ∞ DC #502 Y ∞
DC #665 Y Y DC #694 ∞ ∞
DC #699 Y ∞ DC #704 Y Y

DC #744 Y Y DC #1003 Y Y

DC #1018 Y Y DC #1052 ∞ ∞
DC #1107 ∞ Y mul Y ∞
mul2 ∞ ∞ sato1 Y ∞
sato2 ∞ ∞

Table B.2: Experimental results for Completion with Constraint Equalities

problem LPO KBO problem LPO KBO

AD93.Z22 ∞ ∞ ASK.93.1 0.26 ∞
ASK.93.2 ∞ ∞ ASK.93.5 ∞ ∞
ASK.93.6 ∞ ∞ aufgabe3.2 0.01 0.01

aufgabe3.3 0.01 0.01 BD94.collapse 0.05 0.02

BD94.peano 0.01 ∞ BD94.sqrt 0.01 0.01

BGK94.D08 ∞ ∞ BGK94.D10 ∞ ∞
BGK94.D12 ∞ ∞ BGK94.D16 ∞ ∞
BGK94.M08 ∞ ∞ BGK94.M10 ∞ ∞
BGK94.M12 ∞ ∞ BGK94.M14 ∞ ∞
BGK94.Z22W ∞ ∞ BH96.fac8 0.03 0.03

Chr89.A2 ∞ 2.38 Chr89.A24 ∞ ∞
continued on next page

102

continued from previous page

problem LPO KBO problem LPO KBO

Chr89.A3 ∞ ∞ fggx 0.01 0.02

fib ∞ ∞ HR94.1 ∞ ∞
HR94.2 ∞ ∞ kb.fail × ×
kb.fail1 × × KK99.linear_assoc 0.01 0.01

Les83.fib 0.03 ∞ Les83.subset 0.01 ∞
lr.theory 10.04 ∞ LS06.CGE4 ∞ ∞
LS06.CGE5 ∞ ∞ LS94.G0 ∞ ∞
LS94.G1 ∞ ∞ LS94.G2 ∞ ∞
LS94.G3 ∞ ∞ LS94.P1 ∞ ∞
OKW95.dt1 ∞ ∞ rl.theory 1.22 ∞
Sim91_sims2 ∞ ∞ SK90.3.01 1.03 ∞
SK90.3.02 0.01 ∞ SK90.3.03 4.69 ∞
SK90.3.04 ∞ ∞ SK90.3.05 ∞ 3.13

SK90.3.06 ∞ ∞ SK90.3.07 ∞ ∞
SK90.3.08 0.03 0.07 SK90.3.09 ∞ ∞
SK90.3.10 0.01 0.01 SK90.3.11 0.07 0.08

SK90.3.12 × × SK90.3.13 0.05 0.03

SK90.3.14 0.11 ∞ SK90.3.15 ∞ 0.06

SK90.3.16 0.01 0.01 SK90.3.17 0.01 ∞
SK90.3.18 ∞ 0.01 SK90.3.19 0.27 ∞
SK90.3.20 0.64 ∞ SK90.3.21 4.50 0.08

SK90.3.22 ∞ 4.03 SK90.3.23 35.67 ∞
SK90.3.24 0.06 0.04 SK90.3.25 0.18 0.01

SK90.3.26 ∞ ∞ SK90.3.27 ∞ ∞
SK90.3.28 ∞ 30.88 SK90.3.29 0.03 ∞
SK90.3.30 0.03 0.03 SK90.3.31 0.02 0.01

SK90.3.32 0.01 0.01 SK90.3.33 0.01 0.01

sl.ackermann 0.01 ∞ sl.cge ∞ ∞
sl.cge3 ∞ ∞ sl.endo ∞ ∞
sl.equiv.proofs × × sl.equiv.proofs.or × ×
sl.fgh 0.01 0.03 sl.groups 0.46 ∞
sl.groups_conj 0.08 0.08 sl.hard 0.01 ∞
slothrop.nlp-2b ∞ ∞ TPDB.torpa.secr10 ∞ 17.39

TPDB.torpa.secr4 ∞ ∞ TPDB.thiemann27 ∞ ∞
TPDB.zantema.z115 ∞ ∞ TPTP.BOO027-1 0.01 0.02

TPTP.COL053-1 0.01 0.01 TPTP.COL056-1 0.01 0.01

TPTP.COL060-1 × 0.01 TPTP.COL085-1 0.01 0.01

TPTP.GRP010-4 ∞ ∞ TPTP.GRP011-4 1.63 ∞
TPTP.GRP012-4 0.10 0.10 TPTP.GRP393-2 0.01 0.01

continued on next page

103

Appendix B: Experimental Data for Chapter 5

continued from previous page

problem LPO KBO problem LPO KBO

TPTP.GRP394-3 0.29 ∞ TPTP.GRP454-1 ∞ ∞
TPTP.GRP457-1 ∞ ∞ TPTP.GRP460-1 ∞ ∞
TPTP.GRP463-1 ∞ ∞ TPTP.GRP481-1 ∞ ∞
TPTP.GRP484-1 ∞ ∞ TPTP.GRP487-1 ∞ ∞
TPTP.GRP490-1 ∞ ∞ TPTP.GRP493-1 ∞ ∞
TPTP.GRP496-1 ∞ ∞ TPTP.HWC004-1 0.01 0.01

TPTP.HWC004-2 0.01 0.01 TPTP.SWV262-2 0.03 ∞
WS06.proofreduction ∞ ∞

104

Appendix C

Experimental Data for Chapter 6

Table C.1: Experimental results for the new confluence criterion

problem ACP ACP∗ CSI CSI∗ Saigawa Saigawa∗

Example 6.1.7 ?(0.07) Y(0.49) ?(6.32) Y(13.62) ?(0.19) Y(0.55)

Example 6.1.8 ?(0.07) Y(0.43) ?(1.81) Y(10.77) ?(0.19) Y(0.61)

Example 6.1.9 ?(0.07) Y(1.03) ?(6.32) Y(20.19) ?(0.25) Y(1.15)

Cops #1 Y(0.19) Y(0.67) Y(0.67) Y(1.11) ?(0.31) ?(2.29)

Cops #2 Y(0.07) Y(0.07) Y(0.67) Y(2.04) ?(0.19) ?(5.55)

Cops #3 Y(0.19) Y(0.13) Y(0.79) Y(2.05) ?(0.25) ?(4.77)

Cops #15 N(0.43) N(0.43) ∞ ∞ ?(0.19) ?(0.19)

Cops #16 ?(0.13) ?(2.78) ?(2.96) ?(12.40) ?(0.19) ?(2.89)

Cops #17 Y(0.19) Y(0.07) ?(6.39) ?(39.52) ?(0.19) ?(13.72)

Cops #24 ?(0.07) ?(3.44) ?(6.33) ?(14.94) ?(0.19) ?(3.56)

Cops #25 Y(0.07) Y(0.67) ?(0.67) Y(1.11) ?(0.19) Y(0.85)

Cops #26 ?(0.07) ?(3.44) ?(6.29) ?(14.82) ?(0.19) ?(3.57)

Cops #27 ?(0.07) ?(1.71) ?(2.66) ?(25.45) ?(0.19) ?(2.24)

Cops #28 ?(0.07) Y(0.79) ?(6.33) Y(11.96) ?(0.19) Y(0.91)

Cops #46 N(0.07) N(0.07) N(0.37) N(1.33) ?(0.19) N(0.61)

Cops #47 ?(0.07) ?(3.44) ?(6.33) ?(16.17) ?(0.19) Y(3.62)

Cops #53 Y(0.25) Y(0.13) Y(0.43) Y(1.72) ?(0.31) ?(6.51)

Cops #55 Y(0.31) Y(0.13) Y(0.43) Y(1.74) ?(0.31) ?(5.43)

Cops #59 ?(0.13) Y(0.49) ?(1.82) Y(7.75) ?(0.19) Y(0.61)

Cops #70 ?(0.13) N(0.85) ?(0.31) N(1.24) ?(0.19) N(0.97)

Cops #76 ?(0.13) ?(0.73) ∞ ∞ ?(0.19) ?(0.91)

Cops #77 ?(0.37) ?(13.32) ∞ ∞ ?(0.19) ?(13.43)

Cops #78 ?(0.37) ?(2.90) ∞ ∞ ?(0.19) ?(2.84)

Cops #79 Y(0.07) Y(0.07) ?(6.32) ?(21.41) ?(0.19) ?(3.62)

Cops #89 Y(0.07) Y(0.07) ?(6.35) ?(35.35) ?(0.19) ?(2.24)

continued on next page

105

Appendix C: Experimental Data for Chapter 6

continued from previous page

problem ACP ACP∗ CSI CSI∗ Saigawa Saigawa∗

Cops #91 ?(0.07) Y(1.16) ?(6.32) Y(20.05) ?(0.19) Y(1.28)

Cops #94 Y(0.13) Y(0.13) Y(4.52) Y(7.01) ?(0.19) Y(31.82)

Cops #97 Y(0.07) Y(0.07) Y(0.67) Y(4.05) ?(0.19) Y(0.73)

Cops #98 N(0.07) N(0.07) N(0.37) N(3.38) ?(0.19) ?(1.16)

Cops #107 ?(0.07) Y(0.49) ?(1.95) Y(2.42) ?(0.19) Y(0.61)

Cops #108 Y(0.13) Y(0.07) ?(6.33) ?(11.08) ?(0.49) ?(5.01)

Cops #109 ?(0.43) ?(2.96) ∞ ∞ ?(0.19) ?(2.77)

106

Appendix D

Maxcomp: Installation and Usage

Maxcomp is a fully automatic completion tool for equational systems for Linux

based operating systems, written in the OCaml programming language. In this
section we briefly describe its set-up and usage.

Installation

The source code of Maxcomp is available on-line at

http://www.jaist.ac.jp/project/maxcomp

Maxcomp builds heavily on the works of others. Unfortunately, this makes
compilation and installation slightly tedious since several software packages are
needed to compile the source code. Some (OCaml, GNU make, Findlib, Cam-
lIDL, GMP) might be available through the package system of your distribution.
Below, version numbers refer to those versions of the packages which were used
during the development of Maxcomp. Later versions might work, but backward-
compatibility is not guaranteed. The packages are:

• Objective CAML (OCaml) 3.12, available at

http://www.caml.inria.fr

• The GNU make tool 3.18, available at

http://www.gnu.org/s/make

• OCaml Findlib 1.2.7, available at

http://projects.camlcity.org/projects/findlib.html

• Ocamlyices 7bd6030, available at

https://github.com/polazarus/ocamlyices

OCaml Findlib should be installed before installing Ocamlyices. Moreover
after installing Findlib, the following packages, which are needed for Ocamlyices,
have to be installed. They should be installed in the following order:

107

Appendix D: Maxcomp: Installation and Usage

1. CamlIDL 1.05.13, available at

http://forge.ocamlcore.org/projects/camlidl

2. The GNU Multiple Precision Arithmetic Library (GMP) 2.5.1, available at

http://gmplib.org

This is only needed if you do not install Yices with statically linked GMP
libraries. It is recommended however to install Yices with non-statically
linked GMP libraries.

3. Yices 1.0.29, available at

http://yices.csl.sri.com

After installation of all these packages and Ocamlyices, extract the contents of
the archive of Maxcomp into a folder:

tar xzvf maxcomp-1.0.1.tar.gz

Switch to the newly generated directory, and execute make

cd maxcomp-1.0.1

make

to compile and generate the Maxcomp binary.

Usage

The general usage of Maxcomp is

maxcomp <options> <file>

If successful, it will output a line YES followed by the found complete TRS. Avail-
able input options are:

• -lpo (default)
this option encodes constraints based on lexicographic path orders (LPO) to
find maximal terminating TRSs

• -mpo

this option encodes constraints based on multiset path orders (MPO) to find
maximal terminating TRSs

• -kbo

this option encodes constraints based on Knuth-Bendix orders (KBO) to find
maximal terminating TRSs

108

• -mi <d,n>

this option encodes constraints based on d ∗ d matrix interpretations with
coefficients ≤ n

• -K <n>

this option enforces to initially compute n− 1 maximal terminating TRSs.
If omitted, the default value is set to 2, i.e. only one maximal terminating
TRS is computed

Only one of the options -lpo, -mpo, -kbo and -mi <d,n> can be activated at a time.
If multiple of those options are specified, all but the last one are ignored. We give
some examples:

maxcomp filename.es

tries to complete the equational system specified in filename.es by encoding con-
straints based on lexicographic path orders with parameter K initially set to 2.

maxcomp -kbo -mi 2 2 -K 4 filename.es

tries to complete the equational system specified in filename.es by encoding con-
straints based on 2 ∗ 2 matrix interpretations with coefficients ≤ 2, and parameter
K initially set to 4. Note that the option -kbo is ignored and could be simply omit-
ted.

As input, Maxcomp accepts the TPDB1 plain text file format. To give some
intuition, consider the specification of group-theory, sl_groups.trs:

(VAR x y z)

(RULES

f(x,f(y,z)) -> f(f(x,y),z)

f(x,i(x)) -> e

f(x,e) -> x

)

Roughly, the first line lists all variables in the subsequent rules. The TPDB

format was intended to to specify term rewriting systems, and not equational
systems, but due to its popularity, it is used as the input format of Maxcomp.
Intended for TRSs, a direction -> is indicated between terms. Maxcomp how-
ever ignores this direction and treats the specified rules as equations. Therefore
writing e.g.

e -> f(x,i(x))

instead of f(x,i(x)) -> e is still valid input and specifies the same equational
system, even though it violates the variable condition of TRSs when interpreted
as a rule.

1http://www.lri.fr/~marche/tpdb/format.html

109

References

[1] Takahito Aoto. Dealing with non-orientable equations in rewriting induc-
tion. In Proc. of the 17th International Conference on Rewriting Techniques and
Applications, volume 4098 of Lecture Notes in Computer Science, pages 242–256,
2006.

[2] Takahito Aoto. Designing a rewriting induction prover with an increased
capability of non-orientable theorems. In Proc. of the Austrian-Japanese Work-
shop on Symbolic Computation in Software Science, RISC Technical Report 08-08,
pages 1–15, 2008.

[3] Takahito Aoto. Sound lemma generation for proving inductive validity of
equations. In Proc. of the IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 2 of Leipzig International
Proceedings in Computer Science, pages 13–24, 2008.

[4] Takahito Aoto, Nao Hirokawa, Dominik Klein, and Sarah Winkler. Con-
strained equalities. In preparation. 2012.

[5] Takahito Aoto and Yoshihito Toyama. Persistency of confluence. Journal of
Universal Computer Science, 3(11):1134–147, 1997.

[6] Takahito Aoto and Yoshihito Toyama. A reduction-preserving completion
for proving confluence of non-terminating term rewriting systems. Logical
Methods in Computer Science, 8(1-31):1–29, 2012.

[7] Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama. Proving confluence
of term rewriting systems automatically. In Proc. of the 21st International Con-
ference on Rewriting Techniques and Applications, Lecture Notes in Computer
Science, pages 93–102, 2009.

[8] Thomas Arts and Jürgen Giesl. Termination of term rewriting using depen-
dency pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

[9] Jürgen Avenhaus. Reduktionssysteme. Rechnen und Schließen in gleichungs-
definierten Strukturen. Springer, 1995.

[10] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, 1998.

111

References

[11] Leo Bachmair and Nachum Dershowitz. Equational inference, canonical
proofs, and proof orderings. Journal of the ACM, 41(2):236–276, 1994.

[12] Leo Bachmair, Nachum Dershowitz, and Jieh Hsiang. Orderings for equa-
tional proofs. In Proc. of the ACM/IEEE Symposium on Logic in Computer Sci-
ence, pages 346–357, 1986.

[13] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Proc. of the 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
volume 1579 of Lecture Notes in Computer Science, pages 193–207, 1999.

[14] Garrett Birkhoff. On the structure of abstract algebras. Proceedings of the
Cambridge Philosophical Society, 31(4):433–454, 1935.

[15] Alan Bundy. The automation of proof by mathematical induction. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, pages 845–911. Elsevier and MIT Press, 2001.

[16] Alonzo Church and John B. Rosser. Some properties of conversion. Transac-
tion of the American Mathematical Society, 39:472–482, 1936.

[17] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Solving partial order
constraints for LPO termination. JSAT, 5(1–4):193–215, 2008.

[18] Hubert Comon. Inductionless induction. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, pages 913–962. Elsevier
and MIT Press, 2001.

[19] Martin Davis, George Logemann, and Donald W. Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[20] Nachum Dershowitz. A note on simplification orderings. Information Pro-
cessing Letters, 9(5):212–215, 1979.

[21] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Com-
puter Science, 17:279–301, 1982.

[22] Bruno Dutertre and Leonardo De Moura. A fast linear-arithmetic solver
for DPLL(T). In Proc. of the 18th International Conference on Computer Aided
Verification, volume 4144 of Lecture Notes in Computer Science, pages 81–94,
2006.

[23] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpreta-
tions for proving termination of term rewriting. Journal of Automated Reason-
ing, 40(2-3):195–220, 2008.

112

References

[24] Michael J. Fay. First-order unification in an equational theory. In Proc. of the
4th Workshop on Automated Deduction, pages 161–167, 1979.

[25] Bertram Felgenhauer, Harald Zankl, and Aart Middeldorp. Layer systems
for proving confluence. In Proc. of the 31st International Conference on Foun-
dations of Software Technology and Theoretical Computer Science, volume 13 of
Leipzig International Proceedings in Computer Science, pages 288–299, 2011.

[26] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René
Thiemann, and Harald Zankl. SAT solving for termination analysis with
polynomial interpretations. In Proc. of the 10th International Conference on
Theory and Applications of Satisfiability Testing, volume 4501 of Lecture Notes in
Computer Science, pages 340–354, 2007.

[27] Alfons Geser. Relative Termination. PhD thesis, Universität Passau, 1990.
Available as technical report 91-03.

[28] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2: Au-
tomatic termination proofs in the dependency pair framework. In Proc. of
the 3rd International Joint Conference on Automated Reasoning, volume 4130 of
Lecture Notes in Artificial Intelligence, pages 281–286, 2006.

[29] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and dis-
proving termination of higher-order functions. In Proc. of the 5th International
Symposium on Frontiers of Combining Systems, volume 3717 of Lecture Notes in
Artificial Intelligence, pages 216–231, 2005.

[30] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke.
Mechanizing and improving dependency pairs. Journal of Automated Reason-
ing, 37(3):155–203, 2006.

[31] Hiroshi Gomi, Michio Oyamaguchi, and Yoshikatsu Ohta. On the Church-
Rosser property of non-E-overlapping and strongly depth-preserving term
rewriting systems. Trans. IPSJ, 37(12):2147–2160, 1996.

[32] Hiroshi Gomi, Michio Oyamaguchi, and Yoshikatsu Ohta. On the Church-
Rosser property of non-E-overlapping and weight-preserving TRS’s. Tech-
nical Report 950, RIMS Research Report, 1996.

[33] Hiroshi Gomi, Michio Oyamaguchi, and Yoshikatsu Ohta. On the Church-
Rosser property of root-E-overlapping and strongly depth-preserving term
rewriting systems. Trans. IPSJ, 39(4):992–1005, 1998.

[34] Bernhard Gramlich. Completion based inductive theorem proving: An ab-
stract framework and its applications. In Proc. of the 9th European Conference
on Artificial Intelligence, pages 314–319. Pitman Publishing, London, 1990.

113

References

[35] Bernhard Gramlich. Confluence without termination via parallel critical
pairs. In Proc. of the 21st International Colloquium, Linköping Trees in Alge-
bra and Programming, volume 1059 of Lecture Notes in Computer Science, pages
211–225, 1996.

[36] Bernhard Gramlich. Strategic issues, problems and challenges in inductive
theorem proving. In Proc. of the 5th International Workshop on Strategies in
Automated Deduction, volume 125 of Electronic Notes in Theoretical Computer
Science, pages 5–43, 2005.

[37] Nao Hirokawa and Aart Middeldorp. Automating the dependency pair
method. Information and Computation, 199(1-2):172–199, 2005.

[38] Nao Hirokawa and Aart Middeldorp. Decreasing diagrams and relative
termination. Journal of Automated Reasoning, 47:481–501, 2011.

[39] Gerald Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of the ACM, 27:797–821, 1980.

[40] Gerald Huet. A complete proof of correctness of the Knuth-Bendix comple-
tion algorithm. Journal of Computer and System Sciences, 21(1):11–21, 1981.

[41] Gérard Huet and Dallas Lankford. On the uniform halting problem for term
rewriting systems. Technical Report 283, INRIA, 1981.

[42] Jean-Marie Hullot. Canonical forms and unification. In Proc. of the 5th In-
ternational Conference on Automated Deduction, volume 87 of Lecture Notes in
Computer Science, pages 318–334, 1980.

[43] Jean-Pierre Jouannaud. Confluent and coherent equational term rewriting
systems: Application to proofs in abstract data types. In Proc. of the 8th
International Colloquium on Trees in Algebra and Programming, volume 159 of
Lecture Notes in Computer Science, pages 269–283, 1983.

[44] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules
modulo a set of equations. SIAM Journal on Computing, 15(4):1155–1194,
1986.

[45] Sam Kamin and Jean J. Lévy. Two generalizations of the recursive path
ordering. Unpublished manuscript, University of Illinois, 1980.

[46] Dominik Klein and Nao Hirokawa. Maximal completion. In Proc. of the 22nd
International Conference on Rewriting Techniques and Applications, volume 10 of
Leipzig International Proceedings in Computer Science, pages 71–80, 2011.

114

References

[47] Dominik Klein and Nao Hirokawa. Confluence of non-left-linear TRSs via
relative termination. In Proc. of the 18th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, volume 7180 of Lecture Notes
in Computer Science, pages 258–273, 2012.

[48] Jan W. Klop. Combinatory reduction systems. PhD thesis, Utrecht University,
1980.

[49] Donald E. Knuth and Peter Bendix. Simple word problems in universal
algebras. In J. Leech, editor, Computational Problems in Abstract Algebra, pages
263–297. Pergamon Press, 1970.

[50] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Ty-
rolean Termination Tool 2. In Proc. of the 20th International Conference on
Rewriting Techniques and Applications, volume 5595 of Lecture Notes in Com-
puter Science, pages 295–304, 2009.

[51] Masahito Kurihara and Hisashi Kondo. Completion for multiple reduction
orderings. Journal of Automated Reasoning, 23(1):25–42, 1999.

[52] Masahito Kurihara and Hisashi Kondo. Efficient BDD encodings for partial
order constraints with application to expert systems in software verification.
In Proc. of the 17th International Conference on Industrial and Engineering Ap-
plications of Artificial Intelligence and Expert Systems, volume 3029 of Lecture
Notes in Artificial Intelligence, pages 827–837, 2004.

[53] Bernd Löchner and Thomas Hillenbrand. A phytography of Waldmeister.
AI Communications, 15(2–3):127–133, 2002.

[54] Yves Métivier. About the rewriting systems produced by the Knuth-Bendix
completion algorithm. Information Processing Letters, 16(1):31–34, 1983.

[55] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defini-
tion of Standard ML, Revised Edition. MIT Press, 1997.

[56] Maxwell H.A. Newman. On theories with a combinatorial definition of
“equivalence”. Annals of Mathematics, 43(2):223–243, 1942.

[57] Mizuhito Ogawa. Chew’s theorem revisited - uniquely normalizing prop-
erty of nonlinear term rewriting systems-. In Proc. of the 3rd International
Symposium on Algorithms and Computation, volume 650 of Lecture Notes in
Computer Science, pages 309–318, 1992.

[58] Enno Ohlebusch. Modular Properties of Composable Term Rewriting Systems.
PhD thesis, Universität Bielefeld, 1994.

115

References

[59] Enno Ohlebusch. Modular properties of composable term rewriting systems.
Journal of Symbolic Computation, 20:1–41, 1995.

[60] Enno Ohlebusch. Advanced topics in term rewriting. Springer, 2002.

[61] Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0–255, Jan 2003.

[62] Uday S. Reddy. Term rewriting induction. In Proc. of the 10th International
Conference on Automated Deduction, volume 449 of Lecture Notes in Computer
Science, pages 162–177, 1990.

[63] John Alan Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, 1965.

[64] Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems.
Journal of the ACM, 20(1):160–187, 1973.

[65] Masahiko Sakai and Mizuhito Ogawa. Weakly-non-overlapping non-
collapsing shallow term rewriting systems are confluent. Information Pro-
cessing Letters, 110(18–19):810–814, 2010.

[66] Haruhiko Sato and Masahito Kurihara. Multi-context rewriting induction
with termination checkers. IEICE Transactions, 93-D(5):942–952, 2010.

[67] Haruhiko Sato, Masahito Kurihara, Sarah Winkler, and Aart Middeldorp.
Constraint-based multi-completion procedures for term rewriting systems.
IEICE Transactions, 92-D(2):220–234, 2009.

[68] Haruhiko Sato, Sarah Winkler, Masahito Kurihara, and Aart Middeldorp.
Multi-completion with termination tools (system description). In Proc. of
the 4th International Joint Conference on Automated Reasoning, Lecture Notes in
Computer Science, pages 306–312, 2008.

[69] Andrea Sattler-Klein. About changing the ordering during Knuth-Bendix
completion. In Proc. of the 11th Annual Symposium on Theoretical Aspects of
Computer Science, volume 775 of Lecture Notes in Computer Science, pages 175–
186, 1994.

[70] Peter Schneider-Kamp, René Thiemann, Elena Annov, Michael Codish, and
Jürgen Giesl. Proving termination using recursive path orders and SAT solv-
ing. In Proc. of the 6th International Symposium Frontiers of Combining Systems,
volume 4720 of Lecture Notes in Computer Science, pages 267–282, 2007.

[71] Satoshi Shimazu, Takahito Aoto, and Yoshihito Toyama. Automated
lemma generation for rewriting induction with disproof. Computer Software,
26(2):41–55, 2009. (in Japanese).

116

References

[72] Joachim Steinbach and Ulrich Kühler. Check your ordering—termination
proofs and open problems. Technical Report SR-90-25, Universität Kaisers-
lautern, 1990.

[73] Aaron Stump, Garrin Kimmell, and Roba El Haj Omar. Type preservation as
a confluence problem. In Proc. of the 22nd International Conference on Rewriting
Techniques and Applications, volume 10 of Leipzig International Proceedings in
Computer Science, pages 345–360, 2011.

[74] Aaron Stump and Bernd Löchner. Knuth-Bendix completion of theories of
commuting group endomorphisms. Information Processing Letters, 98(5):195–
198, 2006.

[75] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[76] Yoshihito Toyama. On the Church-Rosser property for the direct sum of
term rewriting systems. Journal of the ACM, 34(1):128–143, 1987.

[77] Yoshihito Toyama. Commutativity of term rewriting systems. In K. Fuchi
and L. Kott, editors, Programming of Future Generation Computers II, pages
393–407. North-Holland, 1988.

[78] Pascal Urso and Emmanuel Kounalis. Sound generalizations in mathemati-
cal induction. Theoretical Computer Science, 323(1-3):443–471, 2004.

[79] Vincent van Oostrom. Confluence by decreasing diagrams. Theoretical Com-
puter Science, 126(2):259–280, 1994.

[80] Vincent van Oostrom. Development closed critical pairs. In Proc. of the
2nd International Workshop on Higher-Order Algebra, Logic, and Term Rewriting,
Selected Papers, volume 1074 of Lecture Notes in Computer Science, pages 185–
200, 1995.

[81] Vincent van Oostrom. Confluence by decreasing diagrams, converted. In
Proc. of the 19th International Conference on Rewriting Techniques and Applica-
tions, volume 5117 of Lecture Notes in Computer Science, pages 306–320, 2008.

[82] Rakesh M. Verma. Unique normal forms and confluence of rewrite systems:
Persistence. In Proc. of the 14th International Joint Conference on Artificial Intel-
ligence, volume 1, pages 362–370, 1995.

[83] Ian Wehrman, Aaron Stump, and Eric M. Westbrook. Slothrop: Knuth-
Bendix completion with a modern termination checker. In Proc. of the 17th In-
ternational Conference on Rewriting Techniques and Applications, Lecture Notes
in Computer Science, pages 287–296, 2006.

117

References

[84] Sarah Winkler and Aart Middeldorp. Termination tools in ordered comple-
tion. In Proc. of the 5th International Joint Conference on Automated Reasoning,
volume 6173 of Lecture Notes in Artificial Intelligence, pages 518–532, 2010.

[85] Sarah Winkler, Haruhiko Sato, Aart Middeldorp, and Masahito Kurihara.
Optimizing mkbtt (system description). In Proc. of the 21st International Con-
ference on Rewriting Techniques and Applications, volume 6 of Leipzig Interna-
tional Proceedings in Computer Science, pages 373–384, 2010.

[86] Sarah Winkler, Haruhiko Sato, Aart Middeldorp, and Masahito Kurihara.
Multi-completion with termination tools. Journal of Automated Reasoning, to
appear.

[87] Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp. CSI - A conflu-
ence tool. In Proc. of the 23th International Conference on Automated Deduction,
volume 6803 of Lecture Notes in Artificial Intelligence, pages 499–505, 2011.

[88] Harald Zankl, Nao Hirokawa, and Aart Middeldorp. KBO orientability.
Journal of Automated Reasoning, 43(2):173–201, 2009.

[89] Hans Zantema. Termination of term rewriting by semantic labelling. Funda-
menta Informaticae, 24:89–105, 1995.

118

Index

A, 21
↔, 22
↔∗, 22
↔+, 22
A, 38
w, 38
→∗, 22
→+, 22
→=, 22
→, 21
→A, 21
→α, 21
≈, 31
≈E , 32
→E , 32
>mul, 24
>kbo, 30
>rpo, 30
_, 80
p−→R, 28
→R, 28
B, 29
↓, 22
↓A, 22
→R/S , 76
→1 · →2, 21
→1/→2, 76
←S ∝→, 77
p\q, 26
., 25
[α]A, 32
ε, 25

fA, 32
`i, 33
|=, 32
|t|x, 26
ϕ, 50
|t|, 26
t|p, 25
B, 47
CPS , 77
C 	R, 63
Dom, 26
Expd, 47
E>, 63−→E , 85
Fun(t), 25
NF(A), 22
N, 30
CJRK, 63
Pos(t), 25
PosF (t), 26
R(C), 51, 64
RS , 81
R̂, 52
R̃, 52
R̂, 77
S(C), 51, 64
SR(C), 64
F , 25
SNO(R,S), 77
TCAP, 88
T (F ,V), 25
T, 51

119

Index

V , 25
Var(t), 25

Abstract Rewrite System, 21
algebra, 31
arity, 25
ARS, 21
assignment

variable-, 32

Birkhoff’s theorem, 32

carrier, 32
CES, 63
Church-Rosser, 23
closure

reflexive, 22
symmetric, 22
transitive, 22

collapsing, 28
complete, 23

for an ES, 33
completion

Knuth-Bendix-, 38
MKBTT, 44
multi-, 41
unfailing, 89
with termination tools, 40

composition, 21, 22
confluent, 23
constant, 25
constrained equality, 63
constraint

order, 53
termination, 62

constructor symbols, 47
context, 26
critical pair, 28
S-extended-, 77
trivial-, 28

decreasing, 79
diagrams, 79

depth-preserving
strongly, 92

domain, 26

encompassment, 38
equation, 31
equational step, 32
equivalent, 32
erasing, 28
eTRS, 76
evaluation, 32
expandable, 47
extended rewrite rule, 76
extended TRS, 76

fair
completion, 39
multi-completion, 43

F -algebra, 31
function symbols, 25

defined-, 47

ground joinable, 63

identity, 22
inductionless induction, 47
inductive theorem, 33
inductively reducible, 47

left-R, 47
instance, 27

joinability reflection, 63
ground-, 63

joinable, 22

KBO, 30
Knuth-Bendix order, 30

labeled, 21
linear, 28

left-, 28
right-, 28

locally confluent, 23

maximal

120

Index

completion, 51
TRS, 51

mgu, 27
S-, 85

model of an ES E , 32
monotonic, 27
multiset, 24

extension, 24
finite, 24

non-overlapping, 28
normal form, 22

of a, 22
normalizing, 22

order, 23
Knuth-Bendix-, 30
partial-, 23
pre-, 23
reduction-, 27
rewrite-, 27
simplification, 29
simplification-, 29
strict-, 23
total-, 24
well-, 24
well-founded-, 24

orthogonal, 28
overlap, 28
S-, 76

persistent
equations, 38
rules, 38

position, 25
basic-, 47

precedence, 29

quasi-reducible, 47

reduced TRS, 52
reduct, 22
reflection, 63

refutational complete, 89
relation

inverse, 22
join, 22

relatively terminating, 76
reversible, 92
rewrite

relation, 27
rules, 27
step, 28

rewrites, 22
Rewriting Induction, 48

Inference Rules, 47
root

position, 25
symbol, 25

run
of completion, 38
of multi-completion, 42

signature, 25
sort, 31
stable, 27
strongly
S-stable, 86
non-overlapping, 77

substitution, 26
composition of a-, 27
ground-, 27
variable-, 27

subterm, 25
relation, 29

TCAP, 88
term, 25

basic-, 47
ground-, 26
instance of a-, 27
linear-, 26
size of a-, 26

terminating, 22
TRS, 27

121

Index

unifiable
syntactically, 27

unification problem
S-, 85
in solved form, 85

unifier, 27
S-, 85

uniquely normalizing, 22
universe, 32

variable, 25
variable renaming, 27
variant of a rule, 28

weakly Church-Rosser, 23
weight function, 30
weight-preserving

strongly, 92
well-founded, 23

122

Publications

in peer-reviewed international journals and conferences

(i) Dominik Klein and Nao Hirokawa: “Confluence of Non-Left-Linear TRSs
via Relative Termination”. Proceedings of the 18th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, volume 7180 of
Lecture Notes in Computer Science, pages 258–273, 2012.

(ii) Dominik Klein and Nao Hirokawa: “Maximal Completion”. Proceedings of
the 22nd International Conference on Rewriting Techniques and Applications, vol-
ume 10 of Leipzig International Proceedings in Informatics, pages 71-80, 2011.

(iii) Dominik Klein, Frank G. Radmacher and Wolfgang Thomas: “Moving in a
network under random failures: A complexity analysis”. Science of Computer
Programming, Article In Press.

(iv) Dominik Klein, Frank G. Radmacher and Wolfgang Thomas: “The Com-
plexity of Reachability in Randomized Sabotage Games”. Fundamentals of
Software Engineering, Revised Selected Papers, volume 5961 of Lecture Notes in
Computer Science, pages 162-177, 2009.

in domestic proceedings

(v) Dominik Klein: “Solving Randomised Sabotage Games for Navigation in
Networks”. Informatiktage 2008. Fachwissenschaftlicher Informatik-Kongress,
volume S-6 of Lecture Notes in Informatics, pages 15-18, 2008.

123

