
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
モデル検査ツールにより出力された反例に基づく誤り

特定に関する研究

Author(s) 陳, 適

Citation

Issue Date 2012-06

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/10562

Rights

Description Supervisor:青木利晃, 情報科学研究科, 修士



Error Localization Based on the Counterexamples

Generated by Model-Checker

Chen Shi (0910753)

School of Information Science,

Japan Advanced Institute of Science and Technology

May 19, 2012

Keywords: error localization, counterexample, model-checker, problem

characteristics.

Today, software has been deeply involved in human life in many aspects.

At the same time, software tends to be complicated with large-scale. The

safety and reliability of software has become more and more important.

Model checking, as an approach that can exhaustively verify the correct-

ness of the specification, has attracted considerable attention lately. In

model checking, we check a property against a model that represents a

target system to be developed. Counterexamples are generated by model-

checker when the model does not satisfy given properties. By analyzing the

counterexamples, we can find out the errors of model and fix the defects

of specification finally.

However, redundant and unreadable counterexamples often output from

a model with complex behavior. Sometimes it takes a lot of time to iden-

tify an error of a model when we analyze these counterexamples by hand.

To make error localization easier for model developers, analyzing the coun-

terexamples and localizing the errors automatically are expected.

Copyright c© 2012 by Chen Shi

1



In recent years, counterexample explanation for model checking has been

researched, but instead of localizing the errors location exactly, any of the

existing research just stopped to provide the processed information that

helps people to analyze counterexample. You need to refer to the processed

information and find out the errors of the model by yourself eventually.

In model checking, a variety of counterexamples are generated when vari-

ous kind of problems are contained in the model. Each kind of the problems

has characteristics respectively. If we do not take those characteristics of

the problems into account, it is difficult to find the errors out exactly.

In this dissertation, we proposed a method to find the errors of a specified

model automatically based on the counterexamples generated by model-

checker, using problem characteristics as additional information. As a re-

sult, we succeeded in proposing such method as well as the one, which

provides information about how to correct the model.

There are various kinds of problems that make the counterexamples gen-

erated during model checking. In this research, we pick up a problem

named ”race conditions” as our analysis target, which is the problem that

often occurs in a concurrent system. We use safety property described in

assertion as desired properties, and use SPIN as our model-checker, which

is a well-known model-checker awarded ACM System Software Award.

Race conditions problem has the following characteristics.

• Race conditions problem occurs when the access to shared resources

of one process is interrupted by another.

• Race conditions problem can be fixed by executing the access opera-

tions of shared resources consecutively.

The idea of the proposed method is that we focus on the characteristics

of the race conditions, which make the identification of the problem and

the correction of the errors easier. In the proposed method, the problem

of ”error localization” is come to be the problem of ”finding out the illegal

interrupt locations in model”, and the problem of ”presentation of correc-

2



tion method” is come to be the problem of ”determining the process scope

that should be executed atomically”.

Counterexamples contain the execution sequences that cause race condi-

tions. We can determine which process was interrupted by other processes

and where was the interrupt point according to the execution sequence.

We can find out the answer of how to avoid the occurrence of race condi-

tions based on the execution sequence where there is no illegal interruption

exists in witnesses, that is, the correct execution sequence which does not

cause race conditions.

To solve the problem of ”finding out the illegal interrupt locations in

model”, we first extract all interrupt points from execution sequence of

counterexamples. Then, identify the illegal ones by comparing the coun-

terexamples with the witnesses. Those interrupt points that only exist in

counterexamples, never appear in witness are determined as illegal ones.

To solve the problem of ”determining the process scope that should be

executed atomically”, we select the minimum scope of continuous pro-

cesses that beginning with the ”illegal interrupt point” from the execution

sequence of witnesses. The correction method provided as analysis result

suggests the scope that should to be executed atomically.

According to the proposed method, we implemented an analysis tool,

which generates all counterexamples and witnesses of a specified model

first, then find out all of the errors that induce race conditions automati-

cally, as the analysis result, the correction method of each error is provided.

In order to evaluate the proposed method, we prepared the models in

various structures with race conditions problems embedded and the mod-

els implemented with the typical algorithms, which are usually mentioned

when discussing race conditions problem. We carry out the evaluation ex-

periments on these prepared models using the above analysis tool to see

whether the tool can find the embedded errors and provide the correction

method correctly.

3



The result of the experiments shows that the proposed method has the

following advantages.

• The proposed method is effective. All of the embedded errors of race

conditions are found automatically by the analysis tool in the exper-

iments. It was confirmed that after modified the model according to

the correction method presented by the analysis tool, counterexamples

were no longer output by the model-checker.

• The correction method provided by the analysis tool is appropriate.

The provided scope is just the process scope, which should be executed

atomically to avoid race conditions.

• For all counterexamples are analyzed, multiple errors can be discov-

ered at one-time.

• The proposed method is a practical method, which accepts the exist-

ing model as input, and executes the entire analysis automatically.

• By applying the proposed method, the time of error localization has

been shortened in seconds, which improves the efficiency of counterex-

ample analysis significantly.

But for the proposed method output all of the counterexamples and

witnesses of a specified model, if the counterexamples or witnesses are

generated from the model with a huge number, you should either tune the

search depth of the verification or reduce the number of states by refining

the model to shorten the analysis time.

In the future, like race conditions picked up in this research, various

kinds of other problems can be handled in the same way by considering

the problem characteristics of each one.

4


