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1 Introduction

In [6, Problems 17 to 21 of Chapter 4], Bishop introduced a constructive
concept of a uniform space with a set of pseudometrics, and showed basic
theorems, such as, that arbitrary uniform space has a completion (the set of
Cauchy filters); see also [7, Problems 22 to 26 of Chapter 4], and [8, 10] for
Bishop’s constructive mathematics. Although, apparently, Bishop did not
actually say explicitly that the completion should have been constructed in
this way, since we have to think of the set of Cauchy filters, the construction
of a completion is problematic from a predicative point of view, such as in the
constructive Zermelo-Fraenkel set theory (CZF), founded by Aczel [1, 2, 3],
without the powerset axiom and the full separation axiom.

Schuster et al. [19] and Bridges and Vita [9] employed a set of entourages
with an extra condition to define a uniformity. If the discrete uniformity
on R were defined by a set D of pseudometrics, then there would exist
di,...,d, € D and € > 0 such that Y ;_, d(x,y) < € implies z = y for each



z,y € R, and hence we would have the weak limited principle of omniscience
(WLPO) [8, 1.1]:
Va,y € Rlz =y Vv -(z =y)],

which is provably false both in intuitionistic mathematics and in constructive
recursive mathematics. Therefore their approach seems more general than
the approach with a set of pseudometrics by Bishop; see also a discussion in
[6, Appendix A], and [16]. However their approach for uniform spaces has
a problem from a predicative point of view, and the extra condition leads
to a phenomenon that we find unsatisfactory: namely, that if the real line,
taken with the discrete uniform structure, satisfies it, then one can derive
the non-constructive principle WLPO; see [13, Remark 3.1].

In this paper, we define a notion of a uniform space using a base of unifor-
mity as in [13], and construct a completion of a uniform space in a subsystem
CZF~ of the constructive set theory CZF; see [12] for a construction of a
completion of a uniform space in terms of formal topology [17, 18].

There are other constructive treatments of uniformity: for example, see
[11] for uniform spaces in formal topology; see also [4] for general topology
and formal topology in CZF.

2 The constructive set theory CZF

The constructive set theory CZF, founded by Aczel [1, 2, 3], grew out of My-
hill’s constructive set theory [15] as a formal system for Bishop’s constructive

mathematics, and permits a quite natural interpretation in Martin-Lof type
theory [14].

Definition 1. The language of CZF contains variables for sets, a constant
w, and the binary predicates = and €. The axioms and rules are the axioms
and rules of intuitionistic predicate logic with equality, and the following set
theoretic axioms:

1. Extensionality: VaVb(Va(r € a<=2 €b) = a =0).
2. Pairing: VaVb3cVr(r € c<=z =aVx =0b).

3. Union: Va3dbVz(zr € b<=Jy € a(r € y)).



. Restricted Separation:
VadbVe(z € b<=x € a A ¢(z))

for every restricted formula (), where a formula ¢(x) is restricted, or
Ay, if all the quantifiers occurring in it are bounded, i.e. of the form
Vo € cor Ju € c.

. Strong Collection:

Va(Vz € adyp(z,y) = (Ve € aTy € bp(x, y)AVy € bz € ap(z,y)))
for every formula p(z,y).

. Subset Collection:

Va¥b3cVu (Ve € ady € bp(x,y,u) =
3d € ¢(Vr € ady € do(z,y,u) ANVy € dIx € ap(x,y,u)))

for every formula p(z,y,u).

. Infinity:
(wl) OewAVz(rew=2+1€w),
(w2) VyeyAVe(zrey=a2+1€cy) = wCy),

where x + 1 is 2 U {z}, and 0 is the empty set ) = {z € w | L}.
. €-Induction:

(IND¢) Va(Vz € ap(x) = ¢(a)) = Yap(a)
for every formula p(a).

A subsystem CZF ~ is obtained by removing €-Induction from CZF. Let

a and b be sets. Using Strong Collection, the cartesian product a x b of a
and b consisting of the ordered pairs (z,y) = {{z},{z,y}} with x € a and
y € b can be introduced in CZF~. A relation r between a and b is a subset
of axb. A relation r C a x b is total (or is a multivalued function) if for every
x € a there exists y € b such that (x,y) € r. The class of total relations
between a and b is denoted by mv(a,b), or more formally

remv(a,b) & r CaxbAVr €ady € b((x,y) €r).
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A function from a to b is a total relation f C a x b such that for every = € a
there is exactly one y € b with (x,y) € f. The class of functions from a to b
is denoted by b*, or more formally

feb e femv(a,b) ANVr € aVy,z € b((x,y) € f A (z,2) € f =y =2).
In CZF~, we can prove
Fullness:  VaVb3c(c C mv(a,b) AVr € mv(a,b)3s € ¢(s C 1)),
and, as a corollary, we see that b® is a set, that is
Exponentiation: VaVb3cVf(f € c<= f € b%).

For more details of CZF, see [5].

3 A completion of a uniform space

In this section, we define a notion of a uniform space using a base of unifor-
mity as in [13], and construct a completion of a uniform space in CZF .

A uniform space (X,U) is a pair of a set X and a set U of subsets of
X x X such that

Ubl. YU,V eU3IW cUW CUNV),
Ub2. YU € U(A CU),

Ub3. YU eU3aV euU(v cU™"),

Ub4d. YU e U3V eU(V oV CU).

Here A = {(z,z) | € X}, and U! = {(z,y) | (y,z) € U} and UoV =
{(z,2) | y((z,y) € VA (y,z) € U)} for each U,V C X x X. Note that
(UoV)'=V-1oU™. Weset U =A and UM =U"0oU.

A uniform space (X,U) is T, if

Vo,y e XIVU e U((x,y) e U) = x =y|.



Remark 2. Let D be a set of pseudometrics on a set X, and let Up be the
set of subsets of X x X of the form

Ud,...a, (€) = {(w,y) € X X X | 3 di(w,y) < e},

where dy,...,d, € D (n > 0) and € > 0. Then it is straightforward to see
that the pair (X,Up) forms a uniform space, and it is Ty if

Ve,y € X[Vd € D(d(z,y) =0) = z =y].
Especially, for a metric space (X,d), the pair (X,U,) forms a T; uniform

space, where Uy = {U,, | n € N} and U, = {(z,y) € X x X | d(z,y) < 27"}.
Let <, be a relation on U defined by

VU&IWeUlVWnW tAW" CU).

Lemma 3. For each U € U there exists V € U such that V <, U, and if
V <, U, then VFio...oVk CU for each ki,..., k, € {—1,1}.

Proof. Let U € U, and let m be a natural number with n < 2™. Then,
using (Ub4) m times, there exists W € U such that W?" C U, and hence
we have W™ C W?" C U, by using (Ub2) if necessary. There exists W' € U
such that W' C W1 by (Ub3), and hence there exists V' € U such that
VCWnW CWnW by (Ubl). If V <, U, then there exists W € U
such that V. C W NW~" and W" C U, and therefore, since V¥ C W for
each k € {—1,1}, we have V¥ o...0 V¥ C W™ C U for each ky,...,k, €
{~1,1}. O

A set F of subsets of X is a filter if
Fbl. VA€ Fdr e X(z € A),
Fb2. VA ,Be€ F3C € F(C C AN B).

A filter F on X converges to x in X if for each U € U there exists A € F
such that A CU(z) = {y € X | (z,y) € U}. A filter F on X is a Cauchy
filter if

FbC. YU € UFA € F(Ax ACU).



A uniform space (X,U) is complete if every Cauchy filter on X converges.
Let (X,U) be a Ty uniform space. Then, since X and U are sets, by
Fullness, there exists a set R such that R C mv(U, X) and

Vr e mv(U,X)3ds € R(s Cr). (1)
Let ¢ be a restricted formula defined by
o(r) VU,V e Uz, y € X[(U,z) €r A (V,y) €r = (z,y) € V 1o U].

Note that
p(r)Ns Cr = ¢(s). (2)

Using Restricted separation, define a set X by
X ={reR|er)}

For each U € U, define a subset U of X x )?, using Restricted Separation,
as follows:

U={(r,s) | 3U:,Us € UTz1, 20 € X(U; CU AU, C UA
(Ul,azl) ern (UQ,ZUQ) € s (371,.%'2) € U)}

By Strong Collection, let
U={U|UelU}.
The equality =z on X is defined by
r=g s VU eU((r,s) e U).

Remark 4. We may think of a multivalued function r € mv(U, X) as a
multivalued net in X indexed by the directed set ¢, and the formula ¢(r) as
expressing a reqularity of r. Then the set X is a set of regular multivalued
nets in X indexed by the specific directed set U; a similar trick can be found
in the proof that the class of points of a complete uniform formal topology is
a set in [11]. If I/ is countable, then, in the presence of the axiom of countable
choice, we may define X as the set of regular sequences (singlevalued functions
on N) in X. In the uniform space (X,U;) induced by a metric space (X, d),



each regular sequence (z,), in (X,Uy) is a regular sequence in the metric
space (X, d) in the sense that

d(zpm,xy,) < 27™ 4277

for each m,n € N. On the other hand, for each regular sequence (x,), in
(X, d), the sequence (z,41)n is a regular sequence in (X, Uy).

Proposition 5. ()?,L?) is a Ty uniform space.

Proof. (Ubl): Let U,V € U. Then there exists W € U such that W C UNV,
and it is straightforward to see that W cUnv.

(Ub2): Let U € U and r € X. Then, since r € mv(U, X), there exists
x € X such that (U,z) € r, and therefore, since (z,z) € U, we have (r,r) €
U.

(Ub3): Let U € U. Then there exists V' € U such that V C U~!, and it
is straightforward to see that VU

(Ub4): Let U € U. Then there exists V' € U such that V <4 U, by
Lemma 3. Let (r,s) € V and (s,t) € V. Then there exist Vi, Vs, Wy, Wy € U
and xq, 9, Y1, y2 € X such that Vi, Vo, W, Wy, C V', (Vi,21) €1, (Va,15) € s,
(Wi,y1) € s, (Wa,ye) €8, (x1,22) € V and (y1,y2) € V. Since (Vo,x9) € s,
(W1,y1) € s and @(s), we have (zq,y1) € W, ' o V5, and hence

(€1,92) EVoW oVhoVC VoV oVoV CU,

by Lemma 3. Therefore, since Vi, W, CV C U, we have (r,t) € U.
The uniform space (X,U) is Ty by the definition of equality. O

Let F be a Cauchy filter on X. Define a subset r of U x X, by Restricted
Separation, as follows:

r={(Uz) |3V eUTA e FAsc AV <, UNAX ACV A(V,z) € s)}.
Lemma 6. r € mv(U, X) and p(r).

Proof. Let U € U. Then there exists V' € U such that V' <4 U, by Lemma
3. Since F is a Cauchy filter, there exists A € F such that A x A C V,
by (FbC), and hence there exists s € A, by (Fbl). Since s € mv(U, X),
there exists x € X such that (V,z) € s, and hence (U,z) € r. Therefore
remv(U,X).



Let (U,z) € r and (V,y) € r. Then there exist Up, Vo € U, A, B € F,
s € Aand s € B such that Uy <4 U, V; <4 V, AXACUO,BXBCVO,
(Up,xz) € s and (Vp,y) € s'. Since F is a filter, there exist C' € F and
t € C such that t € C C AN B, by (Fb2) and (Fbl). Since (s,t) € Uy and
(s',t) € Vo, there exist Uy, Uy, Vi, Vo € U and z1,22,y1,ys € X such that
U, Uy C Uy, Vi, Vo C Vo, (U, 21) € 8, (Un,x2) €8, (Vi,yn) €5, (Vo,0) €8,
(x1,x2) € Uy and (y1,y2) € V. Since (Uy, z), (U1, z1) € s, Vi, 11), (Vo,y) € s
and (Us, z2), (Va, 2) € t, we have (z,2,) € U7 o Uy, (y1,y) € Vgt o V4, and
(z2,92) € Vy ! 0 Uy, and hence

(,y) € Vy'toVioVy'oVytolUyolUyoU ol
C (VooVooVytoVy) to(UyoUyoUytolly) CV tol,
by Lemma 3. Therefore o(r). O

By (1), there exists rx € R such that 7z C r. Since ¢(rx), by Lemma 6
and (2), we have rr € X.

Lemma 7. F converges to rr.

Proof. Let U € U. Then there exists V € U such that V < U, and there
exists W € U such that W <4 V, by Lemma 3. Since F is a Cauchy filter,
there exists A € F such that A x A CW. Let s € A. Since s € mv(U, X),
there exists * € X such that (W,z) € s, and hence (V,z) € r. Since
rg € mv(U, X), there exists ' € X such that (V,2') € rx C r. Since ¢(r)
by Lemma 6, we have (z/,z) € V1oV C U, and therefore, since V,W C U,
we have (rz,s) € U. Thus A C U(ry). O

Thus we have the following proposition.
Proposition 8. ()?,LN{) is complete.
For each x € X, define a subset & of Y x X by
z={(U,z)|U € U}.

Then 7 is a constant function on U, and, since for each (U, x), (V,x) € Z, we
have (z,z) € V"1 o U, we have 7 € X.

Lemma 9. ForeachU € U andzx,y € X, (x,y) € U if and only if (Z,7) € U.



Proof. Since (U,z) € @ and (U,y) € §, if (x,y) € U, then (i,7) € U. If
(z,y) € U, then there exist V,W € U such that VW C U, (V,x) € Z,
(W,y) € g and (z,y) € U, and so (z,y) € U. O

A mapping f between uniform spaces (X,U) and (Y,U') is uniformly
continuous if for each V' € U’ there exists U € U such that

(z,y) e U= (f(2),f(y)) €V

for each z,y € X. o
Let i be the mapping from (X, ) into (X,U) such that

11T T
Thus, by Lemma 9, we immediately have the following proposition.
Proposition 10. i : (X,U) — (X,U) is a uniformly continuous injection.

Let (Y,V) be a complete T} uniform space, and let f : (X,U) — (Y, V)
be uniformly continuous. Let € X. For each U € U, define a subset A7, of
Y by

A ={f(x) |3V eU(V CUA (V,z) €r)}.

By Strong Collection, let
F.={A}, | U e U}.
Lemma 11. F, is a Cauchy filter on Y.

Proof. For each U € U, since (U,z) € r for some v € X, we have f(z) €
Ajp;. Since for each U,V € U if V C U, then Aj, C Aj;,, we have for each
U, V. € U there exists W € U such that A}, C A}, N A}, by (Ubl). Let
U € V. Then, since f is uniformly continuous, there exists V € U such that
(x,y) € V= (f(x), f(y)) € U for each x,y € X, and there exists W € U
such that W <, V. Suppose that (f(x), f(y)) € A}, x Aj,. Then there
exists Wy, Wy € U such that Wy, W, C W, (Wy,z) € r and (Ws,y) € r, and
hence (z,y) € Wy to Wy C W—to W C V. Thus (f(x), f(y)) € U. Therefore
Al x A, CU. 0

Since (Y, V) is complete, F, converges to a point f(r) in Y.



Lemma 12. For each U € V there exists V € U such that

(r,s) € V= (f(r),f(s)) €U
for each r,s € X.

Proof. Let U € V. Then there exists Uy € V such that Uy <3 U, and,
since f is uniformly continuous, there exists Vy € U such that (z,y) €
Vo = (f(x), f(y)) € Uy for each z,y € X. By Lemma 3, there exists V € U
such that V' <5 V4. Suppose that (r,s) € V. Then there exist Vi, Vo € U and
x1,x2 € X such that Vi, Vo TV, (Vi,21) €7, (Vo,29) € s and (z1,22) € V.
Since F, and F, converge to f(r) and f(s), respectively, we can find W € U
such that W C V, A}, C Up(f(r)) and A5, C Up(f(s)), and, since A}, and
A$, are inhabited, there exist z,y € X such that f(x) € A}, and f(y) € A, .
Hence there exist Wy, Wy € U such that Wi, Wy, C W, (W, x) € r and
(Wa,y) € s. Since (Wiy,z),(Vi,z1) € r and (Va, x2), (Wa,y) € s, we have
(z,71) € V' o W, and (z9,y) € Wyt o Va, and therefore

(x,y) S WQ_IOVZOVOVI_IowlQW_IOVOVOV_IOW
C V5ioVoVoVioVCV,.

Thus (f(x), f(y)) € Up. Since (f(r), f(x)) € Uy and (f(s), f(y)) € Uy, we
have (f(r), f(s)) € Uyt o Uyo Uy C U. O

Since (Y, V) is Ty, we have f(r) = f(s) whenever 7 = s, by Lemma 12.
Hence f is a function on )?, and it is uniformly continuous, by Lemma 12.
Since A% = {f(x)} for each U € U, F; converges to f(z), and therefore we
have the following lemma.

Lemma 13. f = foi.
The function f is unique in the following sense.

Lemma 14. If b : (X,U) — (Y, V) is uniformly continuous with f = h o,
then h = f.

Proof. Let r € )?, and let U € V. Then there exists Uy € V such that
Up <2 U, and since h is uniformly continuous, there exists V' € U such that
(s,t) € V.= (h(s), h(t)) € U, for each s,t € X. Since F, converges to f(r),
we can find W € U such that W C V and Af, C Uy(f(r)), and, since Al is
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inhabited, there exists x € X such that f(z) € Aj,. Hence there exists W' €
U such that W' C W C V and (W',x) € r, and therefore, since (V,z) € &
and (z,z) € V, we have (r,#) € V. Thus (h(r), h(Z )) = (h(r), f(x)) € U,.
Since (f(r), f(z)) € Uy, we have (h(r), f(r)) € Uyt o Uy C U. Therefore,
since (Y, V) is Ty, we have h(r) = f(r). O

Now we have shown the following theorem.

Theorem 15. Let (Y, V) be a complete Ty uniform space, and let f : (X,U) —
(Y, V) be umformly continuous. Then there exists a unique uniformly con-

tinwous f : (X,U) — (Y, V) such that f = f o i.
Remark 16. Let F be a Cauchy filter on a uniform space (X,), and let

—{(U,) | FA € F(Ax ACU Az € A)}.

Then r € mv(U,X) and ¢(r), and hence there exists rr € X such that
rz C r. On the other hand, for each r € X, let F, = {B}, | U € U}, where

Bl ={z|3VeUVCUAN(V,x)eT)}

Then F, is a Cauchy filter on (X, ). In the presence of the powerset axiom,
it is straightforward to show that these correspondences r — F. and F +— rz
between the completion (X, ) and the uniform space of the set of all Cauchy
filters on (X,U) (the completion of (X,U) in the sense of Bishop) form a
uniform isomorphism.

For a metric space (X,d), as mentioned in Remark 4, in the presence of
the axiom of countable choice, there is a uniform isomorphism between the
completion (X, L[d) and Bishop’s metric completion.
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