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The uniform boundedness theorem and aboundedness prin
ipleHajime IshiharaAugust 11, 2010Abstra
tWe deal with a form of the uniform boundedness theorem (or theBana
h-Steinhaus theorem) for topologi
al ve
tor spa
es in Bishop's
onstru
tive mathemati
s, and show that the form is equivalent to theboundedness prin
iple BD-N, and hen
e holds not only in 
lassi
almathemati
s but also in intuitionisti
 mathemati
s and in 
onstru
-tive re
ursive mathemati
s. The result is also a result in 
onstru
tivereverse mathemati
s.Keywords: 
onstru
tive mathemati
s, topologi
al ve
tor spa
e, the uniformboundedness theorem, boundedness prin
iple.2010 Mathemati
s Subje
t Classi�
ation: 03F60, 46S30.1 Introdu
tionThe notion of a topologi
al ve
tor spa
e, as a generalization of the notion ofa normed spa
e, is a very important notion to investigate fun
tion spa
es,su
h as the spa
e of test fun
tions, whi
h do not form Bana
h spa
es (see, forexample, [23℄). Nonetheless little investigation on topologi
al ve
tor spa
eshas been done in Bishop's 
onstru
tive mathemati
s [6, 7, 8, 10℄; see also adis
ussion in [6, Appendix A℄. We 
an only �nd, noting that a topologi
alve
tor spa
e is a uniform spa
e, a 
onstru
tive 
on
ept of a uniform spa
ewith a set of pseudometri
s, and basi
 theorems, su
h as, that arbitraryuniform spa
e has a 
ompletion, in [6, Problems 17 to 21 of Chapter 4℄; see1



also [7, Problems 22 to 26 of Chapter 4℄, and [9, 24, 12, 11, 17, 5℄ for other
onstru
tive treatments of a uniform spa
e.However, using the notion of a neighbourhood spa
e [6, 3.3℄ (see also [7,3.3℄) introdu
ed by Bishop, we 
an naturally de�ne a notion of a topologi
alve
tor spa
e in Bishop's 
onstru
tive mathemati
s as follow.A neighbourhood spa
e is a pair (X; �) 
onsisting of a set X and a set �of subsets of X su
h thatNS1. 8x 2 X9U 2 �(x 2 U),NS2. 8x 2 X8U; V 2 � [x 2 U \ V =) 9W 2 �(x 2 W � U \ V )℄.The set � is an open base on X, and an element of � is a basi
 open set. Asubset of X is open if it is a union of basi
 open sets. A neighbourhood ofa point x 2 X is a subset A � X su
h that x 2 U � A for some U 2 � .An open base � on X is 
ompatible with � if ea
h neighbourhood in � is aneighbourhood in � , and vi
e versa. An open base is 
ompatible with a metri
d if it is 
ompatible with the open base indu
ed by open balls. A fun
tionf between neighbourhood spa
es (X; �) and (Y; �) is 
ontinuous if f�1(V ) isopen for ea
h V 2 �.A topologi
al ve
tor spa
e is a ve
tor spa
e E equipped with an open base� su
h that the ve
tor spa
e operations, addition (x; y) 7! x + y and s
alarmultipli
ation (a; x) 7! ax, are 
ontinuous, that is, if U is a neighbourhoodof x+ y, then there exist neighbourhoods V and V 0 of x and y, respe
tively,su
h that V +V 0 = fv+v0 j v 2 V; v0 2 V 0g � U , and if U is a neighbourhoodof ax, then for some Æ > 0 and some neighbourhood V of x we have bV =fbv j v 2 V g � U whenever ja � bj < Æ. It is metrizable if � is 
ompatiblewith some metri
 d, and is an F-spa
e if its open base � is 
ompatible with a
omplete invariant metri
 d. Here a metri
 d on a ve
tor spa
e E is invariantif d(x+ z; y + z) = d(x; y) for all x; y; z 2 E.In this paper, we deal with the following form of the uniform boundednesstheorem (or the Bana
h-Steinhaus theorem) for topologi
al ve
tor spa
es [23,2.6℄ in Bishop's 
onstru
tive mathemati
s.The Uniform Boundedness Theorem. If (Tm)m is a sequen
e of 
ontin-uous linear mappings from an F -spa
e E into a topologi
al ve
tor spa
e Fsu
h that the set fTmx j m 2 Ngis bounded in F for ea
h x 2 E, then (Tm)m is equi
ontinuous.2



Here a subset A of a topologi
al ve
tor spa
e E is bounded if for ea
h neigh-bourhood V of 0 in E there exists a positive integer K su
h that A � tV forea
h t � K, and a set � of 
ontinuous linear mappings between topologi
alve
tor spa
es E and F is equi
ontinuous if for ea
h neighbourhood V of 0 inF there exists a neighbourhood U of 0 in E su
h that T (U) � V for ea
hT 2 �.We know that a (
ontrapositive) form of the uniform boundedness the-orem for normed spa
es has a 
onstru
tive proof [6, Problem 6 of Chapter9℄ (see also [7, Problem 20 of Chapter 7℄), and a 
orollary [23, Theorem 2.8℄of the uniform boundedness theorem for a sequen
e of sequentially 
ontin-uous linear mappings from a separable Bana
h spa
e into a normed spa
eholds 
onstru
tively [14, Theorem 7℄. However, the 
orollary for a sequen
eof 
ontinuous linear mappings not only implies, but also is equivalent to thefollowing boundedness prin
iple (BD-N) [15, Theorem 21℄.BD-N. Every pseudobounded 
ountable subset of N is bounded.Here a subset S of N is 
ountable if it is a range of N, pseudobounded iflimn!1 sn=n = 0 for ea
h sequen
e (sn)n in S, and bounded if there existsa positive integer K su
h that s < K for ea
h s 2 S; see [13, 18, 22℄ forpseudobounded sets.The boundedness prin
iple BD-N is equivalent to the statement \everysequentially 
ontinuous mapping from a separable metri
 spa
e into a metri
spa
e is 
ontinuous" [13, Theorem 4℄, is derivable in intuitionisti
 mathemat-i
s with a 
ontinuity prin
iple [13, Proposition 3℄ and in 
onstru
tive re
ursivemathemati
s with Chur
h's thesis and Markov's prin
iple [13, Proposition 4℄,and is not provable in HA! with axiom of 
hoi
e for all �nite types [19℄.In the following, we show that the uniform boundedness theorem fortopologi
al ve
tor spa
es with a sequen
e of 
ontinuous linear mappings isalso equivalent to the boundedness prin
iple BD-N, and hen
e holds notonly in 
lassi
al mathemati
s but also in intuitionisti
 mathemati
s and in
onstru
tive re
ursive mathemati
s. The result is also a result in 
onstru
tivereverse mathemati
s [16, 20, 25℄.Although the result is presented in informal Bishop-style 
onstru
tivemathemati
s, it is possible to formalize it in 
onstru
tive Zermero-Fraenkelset theory (CZF), founded by A
zel [1, 2, 3℄, with the dependent 
hoi
eaxiom (DC), whi
h permits a quite natural interpretation in Martin-L�of typetheory [21℄. Note that the axiom of 
ountable 
hoi
e (AC!) follows from thedependent 
hoi
e axiom in CZF; see [4, Se
tion 8℄.3



2 The main resultsA topologi
al ve
tor spa
e E is separated if for ea
h neighbourhood U of 0there exist a neighbourhood V of 0 and an open set W su
h that E = U [Wand V \W = ;.Ea
h topologi
al ve
tor spa
e E whose open base is 
ompatible with aset fdi j i 2 Ig of pseudometri
s, that is, 
ompatible with the open base
onsisting of the sets Bi1;:::;in(x; �) = fy 2 E j Pnk=1 dik(x; y) < �g, is sepa-rated. In fa
t, for ea
h neighbourhood U of 0, there exist i1; : : : ; in 2 I and� > 0 su
h that Bi1;:::;in(0; �) � U , and hen
e, taking V = Bi1;:::;in(0; �=2) andW = fy 2 E j �=2 <Pnk=1 dik(0; y)g, we have E = U [W and V \W = ;.On the other hand, suppose that a ve
tor spa
e E with the dis
retetopology is separated. Then, sin
e f0g is a neighbourhood of 0, there exista neighbourhood V of 0 and an open set W su
h that E = f0g [W andV \W = ;. Hen
e for ea
h x 2 E, either x 2 f0g or x 2 W : in the former
ase, we have x = 0; in the latter 
ase, we have :(x = 0). If E = R, thenthis is equivalent to the weak limited prin
iple of omnis
ien
e (WLPO) [8,1.1℄: 8x 2 R[x = 0 _ :(x = 0)℄:Sin
e it is doubtful that we 
an a
hieve a 
onstru
tive proof of WLPO, we
annot �nd out whether the topologi
al ve
tor spa
e R with the dis
retetopology is separated.A subset A of a topologi
al ve
tor spa
e E is unbounded if there exits aneighbourhood V of 0 in E su
h that for ea
h positive integer k there existt � k and x 2 A su
h that x 62 tV .The following theorem generalizes the 
onstru
tive version of the uniformboundedness theorem [6, Problem 6 of Chapter 9℄ (see also [7, Problem 20of Chapter 7℄) to topologi
al ve
tor spa
es.Theorem 1. Let (Tn)n be a sequen
e of 
ontinuous linear mappings froman F-spa
e E into a separated topologi
al ve
tor spa
e F . If there exists abounded sequen
e (xn)n in E su
h that fTnxn j n 2 Ng is unbounded, thenfTnx j n 2 Ng is unbounded for some x 2 E.Proof. Suppose that (xn)n is a bounded sequen
e in E su
h that fTnxn j n 2Ng is unbounded. Then there exists a neighbourhood V0 of 0 in F su
h thatfor ea
h k, Tnxn 62 tV0 for some t � k and n. Sin
e (a; x) 7! ax is 
ontinuousat (0; 0), there exist N and a neighbourhood V1 of 0 in F su
h that a0V1 � V04



for ea
h a0 with ja0j � 1=N . Furthermore, sin
e (x; y) 7! x� y is 
ontinuousat (0; 0), there exists a neighbourhood V2 of 0 in F su
h that V2 � V2 � V1.Sin
e F is separated, there exist a neighbourhood V3 of 0 and an open setW in F su
h that F = V2 [W and V3 \W = ;.For ea
h m � 1, de�ne a subset Gm of E byGm = fx 2 E j Tnx 2 mW for some ng:Then Gm is open. Let y 2 E and let U be a neighbourhood of y in E. Then,sin
e the addition is 
ontinuous, there exists a neighbourhood U 0 of 0 in Esu
h that y+U 0 = fy+u j u 2 U 0g � U . Sin
e (xn)n is bounded, there existsk0 su
h that xn 2 k0U 0 for all n. Set k = mk0N . Then there exist t � k andn su
h that Tnxn 62 tV0. Either Tny=m 2 W or Tny=m 2 V2. In the former
ase, setting z = y, we have z 2 Gm \ U . In the latter 
ase, if Tnz=m 2 V2where z = y + xn=k0, then, sin
e mk0=t � mk0=k = 1=N , we haveTnxnt = mk0t �Tnzm � Tnym � 2 mk0t (V2 � V2) � mk0t V1 � V0;a 
ontradi
tion; when
e Tnz=m 2 W , and therefore, sin
e z 2 y + U 0 � U ,we have z 2 Gm \ U . Thus Gm is dense in E.By applying the 
onstru
tive version of Baire's theorem [6, Thorem 4 ofChapter 4℄ (see also [7, Theorem 3.9 of Chapter 4℄ and [8, Theorem 1.3 ofChapter 2℄), we 
an �nd a point x 2 E su
h that x 2 Gm for all m, that is,for ea
h m there exists n su
h that Tnx 62 mV3. Therefore fTnx j n 2 Ng isunbounded.We will need the following general lemma later.Lemma 2. Ea
h 
onvergent sequen
e in a topologi
al ve
tor spa
e is bounded.Proof. Let (xn)n be a sequen
e in a topologi
al ve
tor spa
e E 
onverging toa limit x in E, and let V be a neighbourhood of 0 in E. Sin
e (a; x) 7! axis 
ontinuous at (0; 0), there exist a positive integer M and a neighbourhoodV0 su
h that a0V0 � V for ea
h a0 with ja0j � 1=M . Sin
e (xn)n 
onverges tox, there exists a positive integer N su
h that xn � x 2 V0 for ea
h n � N .Note that for ea
h y 2 E, sin
e a 7! ay is 
ontinuous at 0, there exists apositive integerM 0 su
h that y=M 0 2 V0. Then there existM 0;M 01; : : : ;M 0N�1su
h that x=M 0 2 V0 and xn=M 0n 2 V0 for n = 1; : : : ; N � 1. For ea
hn � N , sin
e xn = (xn � x) + x 2 V0 + M 0V0 � (M 0 + 1)V0, we have5



xn=(M 0 + 1) 2 V0. Let K = M maxfM 0 + 1;M 01; : : : ;M 0N�1g, and let t � K.Then for ea
h n, if n � N , then, sin
e t�1(M 0 + 1) � 1=M , we have t�1xn =(t�1(M 0+1))(xn=(M 0+1)) 2 V ; or else n < N and, sin
e t�1M 0n � 1=M , wehave t�1xn = (t�1M 0n)(xn=M 0n) 2 V . Therefore xn 2 tV for ea
h n.Let E be a separable F -spa
e with a dense sequen
e (zi)i, and F be aseparated topologi
al ve
tor spa
e. Let (Tm)m be a sequen
e of 
ontinuouslinear mappings from E into F su
h that for ea
h x 2 E its orbit fTmx jm 2 Ng is bounded. Then for ea
h neighbourhood V of 0 in F , sin
e F isseparated, there exist a neighbourhood V0 of 0 and an open set W0 su
h thatF = V [W0 and V0 \W0 = ;, and there exist a neighbourhood V1 of 0 andan open set W1 su
h that F = V0 [W1 and V1 \W1 = ;. Constru
t a binarytriple sequen
e � su
h that�(i;m; k) = 0 =) 1=(k + 1)2 < d(0; zi) _ Tmzi 2 V0�(i;m; k) = 1 =) d(0; zi) < 1=k2 ^ Tmzi 2 W1;and de�ne a 
ountable subset S of N byS = fk j �(i;m; k) = 1 for some i and mg [ f0g:Lemma 3. For ea
h sequen
e (sn)n in S, either sn < n for all n or sn � nfor some n.Proof. Let (sn)n be a sequen
e in S, and 
onstru
t an in
reasing binarysequen
e (�n) su
h that�n = 0 =) sn0 < n0 for all n0 � n�n = 1 =) sn0 � n0 for some n0 � n:We may assume that �1 = 0. De�ne a sequen
e (xn)n in E as follow: if�n = 0, then set xn = 0; if �n = 1 � �n�1, then pi
k i and m su
h thatd(0; zi) < 1=s2n � 1=n2 and Tmzi 2 W1, and set xj = nzi for all j � n (andnote that d(0; xj) = d(0; nzi) � Pnk=1 d((k � 1)zi; kzi) = nd(0; zi) < 1=n).Then (xn) is a Cau
hy sequen
e, and hen
e 
onverges to a limit x in E.Sin
e fTmx j m 2 Ng is bounded, there exists a positive integer K su
h thatfTmx j m 2 Ng � tV1 for ea
h t � K. If �n = 1��n�1 for some n � K, thenthere exist i and m su
h that x = nzi and Tmzi 2 W1, and hen
e Tmx 62 nV1,a 
ontradi
tion. Therefore �n = �n�1 for all n � K, and so either �n = 1 forsome n or �n = 0 for all n. 6



Lemma 4. For ea
h sequen
e (sn)n in S, either sn < n for all suÆ
ientlylarge n or sn � n for in�nitely many n.Proof. Let (sn)n be a sequen
e in S, and, by applying Lemma 3 to subse-quen
es (sn0)n0�n, 
onstru
t an in
reasing binary sequen
e (�n) su
h that�n = 0 =) sn0 � n0 for some n0 � n�n = 1 =) sn0 < n0 for all n0 � n:We may assume that �1 = 0. De�ne a sequen
e (xn)n in E as follow: if�n = 0, then pi
k n0 � n, i and m su
h that d(0; zi) < 1=s2n0 � 1=n2 andTmzi 2 W1, and set xn = nzi (and note that d(0; xn) < 1=n); if �n = 1, thenset xn = xn�1. Then (xn) is a Cau
hy sequen
e, and hen
e 
onverges to alimit x in E. Sin
e fTmx j m 2 Ng is bounded, there exists a positive integerK su
h that fTmx j m 2 Ng � tV1 for ea
h t � K. If �n = 1��n�1 for somen > K, then there exist i and m su
h that x = (n�1)zi and Tmzi 2 W1, andhen
e Tmx 62 (n� 1)V1, a 
ontradi
tion. Therefore �n = �n�1 for all n > K,and so either �n = 1 for some n or �n = 0 for all n.Proposition 5. The set S is pseudobounded.Proof. By [18, Lemma 3℄, it suÆ
es to show that for ea
h sequen
e (sn)n inS, sn < n for all suÆ
iently large n. Let (sn)n be a sequen
e in S. Then,by Lemma 4, either sn < n for all suÆ
iently large n or sn � n for in�nitelymany n. Suppose that sn � n for in�nitely many n. Then for ea
h n thereexists n0 � n su
h that sn0 � n0, and hen
e there exist in and mn su
h thatd(0; zin) < 1=s2n0 � 1=n2 and Tmnzin 2 W1. Therefore nTmnzin 62 nV1 for ea
hn, and so fTmn(nzin) j n 2 Ng is unbounded. Sin
e (nzin)n 
onverges to 0, itis bounded, by Lemma 2, and hen
e fTmnx j n 2 Ng is unbounded for somex 2 E, by Theorem 1. This 
ontradi
ts with the fa
t that fTmx j m 2 Ng isbounded for all x 2 E. Therefore sn < n for all suÆ
iently large n.Suppose that S is bounded, that is, there exists a positive integer K su
hthat k < K for ea
h k 2 S. Let x 2 U = fx 2 E j d(0; x) < 1=(K + 1)2gand assume that Tmx 2 W0 for some m. Then, sin
e Tm is 
ontinuous andW0 is open, there exists i su
h that d(0; zi) < 1=(K + 1)2 and Tmzi 2 W0,and hen
e Tmzi 62 V0. Therefore �(i;m;K) must be 1, and so K 2 S, a
ontradi
tion. Thus Tmx 2 V for ea
h x 2 U and m 2 N.We have shown the following theorem.7



Theorem 6. Assume BD-N. If (Tm)m is a sequen
e of 
ontinuous linearmappings from a separable F -spa
e E into a separated topologi
al ve
tor spa
eF su
h that the set fTmx j m 2 Ngis bounded for ea
h x 2 E, then (Tm)m is equi
ontinuous.Let (Tm)m be a sequen
e of 
ontinuous linear mappings from a separableF -spa
e E into a separated topologi
al ve
tor spa
e F su
h that the limitTx = limm!1Tmxexists for ea
h x 2 E. Then for ea
h x 2 E its orbit fTmx j m 2 Ng isbounded, by Lemma 2. Therefore, by applying the uniform boundednesstheorem, (Tm)m is equi
ontinuous.Let V be a neighbourhood of 0 in F . Then, sin
e (x; y) 7! x � y is
ontinuous at (0; 0), there exists a neighbourhood W of 0 in F su
h thatW � W � V . Note that W � V : in fa
t, if x 2 W , then there existy; z 2 W su
h that x + y = z, and hen
e x = z � y 2 W �W � V . Sin
e(Tm)m is equi
ontinuous, there exists a neighbourhood U of 0 in E su
h thatTm(U) � W for ea
h m, and hen
e T (U) � W � V . Therefore (beingobviously linear) T is 
ontinuous.Let S = fsn j n 2 Ng be a pseudobounded 
ountable subset of N, andde�ne a sequen
e (Tm)m of 
ontinuous linear mappings from the Hilbert spa
el2 of square summable sequen
es into itself byTmx = mXn=1 snhx; enien;where (en)n is an orthonormal basis of l2. Then, sin
e S is pseudobounded,as in the proof of [15, Lemma 20℄, we 
an show that the limitTx = limm!1Tmx = 1Xn=1 snhx; enienexists for ea
h x 2 l2. If T is 
ontinuous, then, sin
e sn = kTenk for ea
h n,we see that S is bounded.Thus we have the following theorem.Theorem 7. The following are equivalent8



1. BD-N.2. If (Tm)m is a sequen
e of 
ontinuous linear mappings from a separableF -spa
e E into a separated topologi
al ve
tor spa
e F su
h that the setfTmx j m 2 Ngis bounded for ea
h x 2 E, then (Tm)m is equi
ontinuous.3. If (Tm)m is a sequen
e of 
ontinuous linear mappings from a separableF -spa
e E into a separated topologi
al ve
tor spa
e F su
h thatTx = limm!1Tmxexists for ea
h x 2 E, then T is 
ontinuous.Remark 8. The sequen
e (Tm)m of 
ontinuous linear mappings from l2 intoitself 
onstru
ted from a 
ountable subset S of N before Theorem 7 is asequen
e of 
ompa
t self-adjoint operators on l2. Therefore BD-N a
tuallyfollows from the weaker statement: If (Tm)m is a sequen
e of 
ompa
t self-adjoint operators on l2 su
h that Tx = limm!1 Tmx exists for ea
h x 2 l2,then T is 
ontinuous.A
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