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Abstract

We deal with a form of the uniform boundedness theorem (or the
Banach-Steinhaus theorem) for topological vector spaces in Bishop’s
constructive mathematics, and show that the form is equivalent to the
boundedness principle BD-N, and hence holds not only in classical
mathematics but also in intuitionistic mathematics and in construc-
tive recursive mathematics. The result is also a result in constructive
reverse mathematics.
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1 Introduction

The notion of a topological vector space, as a generalization of the notion of
a normed space, is a very important notion to investigate function spaces,
such as the space of test functions, which do not form Banach spaces (see, for
example, [23]). Nonetheless little investigation on topological vector spaces
has been done in Bishop’s constructive mathematics [6, 7, 8, 10]; see also a
discussion in [6, Appendix A]. We can only find, noting that a topological
vector space is a uniform space, a constructive concept of a uniform space
with a set of pseudometrics, and basic theorems, such as, that arbitrary
uniform space has a completion, in [6, Problems 17 to 21 of Chapter 4]; see



also [7, Problems 22 to 26 of Chapter 4], and [9, 24, 12, 11, 17, 5] for other
constructive treatments of a uniform space.

However, using the notion of a neighbourhood space [6, 3.3] (see also [7,
3.3]) introduced by Bishop, we can naturally define a notion of a topological
vector space in Bishop’s constructive mathematics as follow.

A neighbourhood space is a pair (X, T) consisting of a set X and a set 7
of subsets of X such that

NS1. Vo € X3U € 7(z € U),
NS2. Vo € XVU,V etz eUNV = IW er(ze W CUNV)].

The set 7 is an open base on X, and an element of 7 is a basic open set. A
subset of X is open if it is a union of basic open sets. A neighbourhood of
a point © € X is a subset A C X such that x € U C A for some U € 7.
An open base o on X is compatible with 7 if each neighbourhood in o is a
neighbourhood in 7, and vice versa. An open base is compatible with a metric
d if it is compatible with the open base induced by open balls. A function
f between neighbourhood spaces (X, 7) and (Y, o) is continuous if f='(V) is
open for each V € o.

A topological vector space is a vector space E equipped with an open base
7 such that the vector space operations, addition (x,y) — = + y and scalar
multiplication (a,z) + az, are continuous, that is, if U is a neighbourhood
of x 4+ y, then there exist neighbourhoods V' and V' of z and y, respectively,
such that V4+V' = {v+v' | v € Vo' € V'} C U, and if U is a neighbourhood
of ax, then for some § > 0 and some neighbourhood V' of x we have bV =
{bv | v € V} C U whenever |a — b| < ¢. It is metrizable if T is compatible
with some metric d, and is an F-space if its open base 7 is compatible with a
complete invariant metric d. Here a metric d on a vector space E is tnvariant
if d(x + z,y + 2) = d(z,y) for all z,y,2 € E.

In this paper, we deal with the following form of the uniform boundedness
theorem (or the Banach-Steinhaus theorem) for topological vector spaces [23,
2.6] in Bishop’s constructive mathematics.

The Uniform Boundedness Theorem. If (1) is a sequence of contin-
wous linear mappings from an F-space E into a topological vector space F
such that the set

{T,x | m € N}

is bounded in F for each x € E, then (T),)n is equicontinuous.
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Here a subset A of a topological vector space E is bounded if for each neigh-
bourhood V of 0 in E there exists a positive integer K such that A C ¢tV for
each t > K, and a set I of continuous linear mappings between topological
vector spaces F and F' is equicontinuous if for each neighbourhood V' of 0 in
F there exists a neighbourhood U of 0 in E such that T(U) C V for each
Tel.

We know that a (contrapositive) form of the uniform boundedness the-
orem for normed spaces has a constructive proof [6, Problem 6 of Chapter
9] (see also [7, Problem 20 of Chapter 7]), and a corollary [23, Theorem 2.8|
of the uniform boundedness theorem for a sequence of sequentially contin-
wous linear mappings from a separable Banach space into a normed space
holds constructively [14, Theorem 7]. However, the corollary for a sequence
of continuous linear mappings not only implies, but also is equivalent to the
following boundedness principle (BD-N) [15, Theorem 21].

BD-N. Every pseudobounded countable subset of N is bounded.

Here a subset S of N is countable if it is a range of N, pseudobounded if
limy, o s, /n = 0 for each sequence (s,), in S, and bounded if there exists
a positive integer K such that s < K for each s € S; see [13, 18, 22] for
pseudobounded sets.

The boundedness principle BD-N is equivalent to the statement “every
sequentially continuous mapping from a separable metric space into a metric
space is continuous” [13, Theorem 4], is derivable in intuitionistic mathemat-
ics with a continuity principle [13, Proposition 3] and in constructive recursive
mathematics with Church’s thesis and Markov’s principle [13, Proposition 4],
and is not provable in HA® with axiom of choice for all finite types [19].

In the following, we show that the uniform boundedness theorem for
topological vector spaces with a sequence of continuous linear mappings is
also equivalent to the boundedness principle BD-N, and hence holds not
only in classical mathematics but also in intuitionistic mathematics and in
constructive recursive mathematics. The result is also a result in constructive
reverse mathematics [16, 20, 25].

Although the result is presented in informal Bishop-style constructive
mathematics, it is possible to formalize it in constructive Zermero-Fraenkel
set theory (CZF), founded by Aczel [1, 2, 3], with the dependent choice
axiom (DC), which permits a quite natural interpretation in Martin-Lo6f type
theory [21]. Note that the axiom of countable choice (AC,,) follows from the
dependent choice axiom in CZF; see [4, Section 8].
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2 The main results

A topological vector space F is separated if for each neighbourhood U of 0
there exist a neighbourhood V' of 0 and an open set W such that £ =UUW
and VW = 0.

Each topological vector space E whose open base is compatible with a
set {d; | i € I} of pseudometrics, that is, compatible with the open base
consisting of the sets B;, _; (v,e) ={y € E | >.p_, di,(z,y) < €}, is sepa-
rated. In fact, for each neighbourhood U of 0, there exist iy,...,%, € I and
e > 0 such that B;, _;.(0,e) C U, and hence, taking V' = B;, . ;.(0,€¢/2) and
W={yeE|e2<>,_,d(0,y)}, wehave E=UUW and VNW = 0.

On the other hand, suppose that a vector space E with the discrete
topology is separated. Then, since {0} is a neighbourhood of 0, there exist
a neighbourhood V' of 0 and an open set W such that £ = {0} UW and
V' NW = (). Hence for each z € E, either z € {0} or z € W: in the former
case, we have = 0; in the latter case, we have =(x = 0). If E = R, then
this is equivalent to the weak limited principle of omniscience (WLPO) [8,
1.1]:

Ve e Rz =0V —(z =0)].

Since it is doubtful that we can achieve a constructive proof of WLPO, we
cannot find out whether the topological vector space R with the discrete
topology is separated.

A subset A of a topological vector space E is unbounded if there exits a
neighbourhood V' of 0 in E such that for each positive integer k there exist
t >k and z € A such that z & tV.

The following theorem generalizes the constructive version of the uniform
boundedness theorem [6, Problem 6 of Chapter 9] (see also [7, Problem 20
of Chapter 7]) to topological vector spaces.

Theorem 1. Let (Ty,), be a sequence of continuous linear mappings from
an F-space E into a separated topological vector space F'. If there exists a
bounded sequence (x,), in E such that {T,x, | n € N} is unbounded, then
{T,x | n € N} is unbounded for some x € E.

Proof. Suppose that (x,), is a bounded sequence in E such that {1z, | n €
N} is unbounded. Then there exists a neighbourhood V; of 0 in F' such that
for each k, Tz, & tV; for some ¢t > k and n. Since (a,x) +— ax is continuous
at (0,0), there exist NV and a neighbourhood V; of 0 in F' such that a'V; C V}



for each a' with |a'| < 1/N. Furthermore, since (x,y) — = — y is continuous
at (0,0), there exists a neighbourhood V5 of 0 in F' such that V5 — V5 C V7.
Since F' is separated, there exist a neighbourhood V3 of 0 and an open set
W in F such that F = VoUW and V5N W = (.

For each m > 1, define a subset G,, of E by

G ={z € E | T,o € mW for some n}.

Then G, is open. Let y € E and let U be a neighbourhood of y in E. Then,
since the addition is continuous, there exists a neighbourhood U’ of 0 in F
such that y+U' = {y+u | u € U'} CU. Since (x,), is bounded, there exists
ko such that x,, € koU' for all n. Set kK = mkoN. Then there exist ¢ > k and
n such that T,z, & tVy. Either T,y/m € W or T,,y/m € V. In the former
case, setting z = y, we have z € G, N U. In the latter case, if T,,z/m € V,
where z = y + x,,/ko, then, since mky/t < mky/k =1/N, we have

Thxn  mko <Tnz Tny> . mky

t  t \m m t

mk
(VZ—VZ)gTngVo,

a contradiction; whence T,,z/m € W and therefore, since z € y + U" C U,
we have z € GG, "U. Thus G,, is dense in F.

By applying the constructive version of Baire’s theorem [6, Thorem 4 of
Chapter 4] (see also [7, Theorem 3.9 of Chapter 4] and [8, Theorem 1.3 of
Chapter 2]), we can find a point x € F such that x € G,, for all m, that is,
for each m there exists n such that T,z ¢ mVj3. Therefore {T,,x | n € N} is
unbounded. O

We will need the following general lemma later.
Lemma 2. Fach convergent sequence in a topological vector space is bounded.

Proof. Let (x,), be a sequence in a topological vector space E converging to
a limit z in F, and let V' be a neighbourhood of 0 in E. Since (a,x) — ax
is continuous at (0, 0), there exist a positive integer M and a neighbourhood
Vo such that a’'Vy C V for each o' with |a’| < 1/M. Since (z,), converges to
x, there exists a positive integer N such that x, — x € Vj for each n > N.
Note that for each y € F, since a — ay is continuous at 0, there exists a
positive integer M’ such that y/M’ € V;. Then there exist M', M7, ..., M}
such that z/M' € V, and x,/M] € V; forn = 1,...,N — 1. For each
n > N, since z, = (x, —x)+x € Vo + M'Vy C (M’ + 1)V,, we have
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T /(M'+1) € Vy. Let K = M max{M'+1,Mj,...,My_,}, and let t > K.
Then for each n, if n > N, then, since t (M’ +1) < 1/M, we have t 'z, =
(t=Y(M' +1))(z,/(M'+1)) € V;orelse n < N and, since t~'M] < 1/M, we
have t~'z,, = (t7'M!)(z,/M]) € V. Therefore z, € tV for each n. O

Let E be a separable F-space with a dense sequence (z;);, and F' be a
separated topological vector space. Let (7,,), be a sequence of continuous
linear mappings from E into F' such that for each € F its orbit {T,,x |
m € N} is bounded. Then for each neighbourhood V of 0 in F, since F is
separated, there exist a neighbourhood Vj of 0 and an open set W, such that
F=VUW,and Vo N W, =0, and there exist a neighbourhood V; of 0 and
an open set W, such that F' = V;UW; and V; "W, = (). Construct a binary
triple sequence « such that

ali,mk)=0 = 1/(k+1)*<d(0,2)V T,z €V
ali,m k) =1 = d(0,2) < 1/k* AT,z € Wy,

and define a countable subset S of N by
S ={k| a(i,m,k) =1 for some i and m} U {0}.

Lemma 3. For each sequence (s,), in S, either s, < n for alln or s, >n
for some n.

Proof. Let (s,), be a sequence in S, and construct an increasing binary
sequence (\,) such that

Ay=0 — sy <nforaln <n

M=1 = s, >n for some n' <n.

We may assume that A\; = 0. Define a sequence (z,), in E as follow: if
Ap = 0, then set x, = 0; if \, = 1 — \,_q, then pick ¢« and m such that
d(0,z;) < 1/s%2 < 1/n* and T,,z; € Wy, and set z; = nz; for all j > n (and
note that d(0,z;) = d(0,nz;) < >.p_,d((k — 1)z, kz;) = nd(0,z) < 1/n).
Then (z,) is a Cauchy sequence, and hence converges to a limit z in E.
Since {T},z | m € N} is bounded, there exists a positive integer K such that
{Tx | me N} CtVyforeacht > K. If A, = 1— )\, for some n > K, then
there exist 7 and m such that x = nz; and T,,z; € Wi, and hence T,z &€ nV;,
a contradiction. Therefore \, = A\,,_; for all n > K, and so either \,, = 1 for
some n or A, = 0 for all n. O



Lemma 4. For each sequence (s,), in S, either s, < n for all sufficiently
large n or s, > n for infinitely many n.

Proof. Let (s,)n be a sequence in S, and, by applying Lemma 3 to subse-
quences (S, )p>n, construct an increasing binary sequence (\,) such that

Ay=0 — sy >n'forsomen >n
A 1 = sy <nforalln >n.

We may assume that A\; = 0. Define a sequence (z,), in E as follow: if
A, = 0, then pick n’ > n, i and m such that d(0,z) < 1/s? < 1/n? and
Timzi € Wi, and set x, = nz; (and note that d(0,x,) < 1/n); if A, =1, then
set &, = x, 1. Then (x,) is a Cauchy sequence, and hence converges to a
limit z in E. Since {7T,,,x | m € N} is bounded, there exists a positive integer
K such that {T,,z | m € N} C tV] foreacht > K. If A\, = 1—\,,_; for some
n > K, then there exist i and m such that x = (n—1)z; and T,2; € Wi, and
hence T,z ¢ (n — 1)Vi, a contradiction. Therefore A\, = \,_; for all n > K,
and so either A, = 1 for some n or A\, = 0 for all n. ]

Proposition 5. The set S is pseudobounded.

Proof. By [18, Lemma 3], it suffices to show that for each sequence (s,), in
S, sn < n for all sufficiently large n. Let (s,), be a sequence in S. Then,
by Lemma 4, either s,, < n for all sufficiently large n or s, > n for infinitely
many n. Suppose that s, > n for infinitely many n. Then for each n there
exists n’ > n such that s, > n', and hence there exist i,, and m,, such that
d(0,z;,) < 1/s% <1/n?and T,,, z;, € Wy. Therefore nT,,, z;, & nV; for each
n, and so {1}, (nz;,) | n € N} is unbounded. Since (nz;,), converges to 0, it
is bounded, by Lemma 2, and hence {7},,,x | n € N} is unbounded for some
x € E, by Theorem 1. This contradicts with the fact that {T,,,z | m € N} is
bounded for all x € E. Therefore s,, < n for all sufficiently large n. O

Suppose that S is bounded, that is, there exists a positive integer K such
that k < K foreach k € S. Let 1 € U = {x € E | d(0,z) < 1/(K + 1)*}
and assume that T,,z € W, for some m. Then, since T,, is continuous and
Wy is open, there exists i such that d(0,z;) < 1/(K + 1)? and T,,z; € Wy,
and hence T,,z; & Vj. Therefore (i, m, K) must be 1, and so K € S, a
contradiction. Thus 7;,z € V for each € U and m € N.

We have shown the following theorem.



Theorem 6. Assume BD-N. If (T,,)m is a sequence of continuous linear
mappings from a separable F'-space E into a separated topological vector space
F' such that the set

{T,,x | me N}

is bounded for each x € E, then (T,,)m is equicontinuous.

Let (T,,)m be a sequence of continuous linear mappings from a separable
F-space E into a separated topological vector space F' such that the limit
Tr= lim T,x
m—00
exists for each x € E. Then for each x € E its orbit {T,,z | m € N} is
bounded, by Lemma 2. Therefore, by applying the uniform boundedness
theorem, (7},)., is equicontinuous.

Let V' be a neighbourhood of 0 in F. Then, since (z,y) — = — y is
continuous at (0,0), there exists a neighbourhood W of 0 in F' such that
W — W C V. Note that W C V: in fact, if # € W, then there exist
y,z2 € W such that x +y = 2, and hence x = 2 —y € W — W C V. Since
(T0n)m is equicontinuous, there exists a neighbourhood U of 0 in E such that
T,,(U) € W for each m, and hence T(U) C W C V. Therefore (being
obviously linear) T is continuous.

Let S = {s, | n € N} be a pseudobounded countable subset of N, and
define a sequence (T,),, of continuous linear mappings from the Hilbert space
[y of square summable sequences into itself by

m
T,x = Z Sp (T, €n)en,
n=1

where (e,,), is an orthonormal basis of 5. Then, since S is pseudobounded,
as in the proof of [15, Lemma 20], we can show that the limit

o0
Tr = lim T,,z = E Sn (T, en)en
m—0o0 1
n=

exists for each = € l. If T is continuous, then, since s, = ||Te,|| for each n,
we see that S is bounded.
Thus we have the following theorem.

Theorem 7. The following are equivalent
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1. BD-N.

2. If (T,)m 1s a sequence of continuous linear mappings from a separable
F-space E into a separated topological vector space F' such that the set

{T,,x | m € N}
is bounded for each x € E, then (T,,)m is equicontinuous.

3. If (T)m 1s a sequence of continuous linear mappings from a separable
F-space E into a separated topological vector space F' such that

Tr= lim T,z
m—00

exists for each x € E, then T is continuous.

Remark 8. The sequence (T,,),, of continuous linear mappings from Iy into
itself constructed from a countable subset S of N before Theorem 7 is a
sequence of compact self-adjoint operators on ly. Therefore BD-N actually
follows from the weaker statement: If (7,,),, is a sequence of compact self-
adjoint operators on [y such that Tz = lim,,_,. T},x exists for each x € lo,
then 7' is continuous.
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