JAIST Repository

https://dspace.jaist.ac.jp/

[ ness Spact¢

d Logi c, 1

Title Two subcategories of apar
Author(s) |l shi hara, Haji me

Citation Annals of Pure and Applie
Issue Date 2011-07-20

Type Journal Article

Text version

aut hor

URL http://hdl.handle.net/ 10119/ 10606
NOTI CE: This is the authof's versi ol
accepted for publication py El sevi el

Rights |l shi hara, Annals of Pure pnd Appl i e
163(2), 2011, 132-139,
http://dx.doi.org/10.1016(j.apal . 20:

Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Two subcategories of apartness spaces

Hajime Ishihara

April 28, 2009

Abstract

We introduce the notion of a topological quasi-apartness space
and the notion of a uniform quasi-apartness space, and construct an
adjunction between the category of topological quasi-apartness spaces
and the category of neighbourhood spaces and an adjunction between
the category of uniform spaces and the category of uniform quasi-
apartness spaces.
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1 Introduction

Bridges and Vita [11] proposed the theory of apartness spaces as an alterna-
tive approach to topology from a constructive point of view. The theory of
apartness spaces consists of a theory of point-set apartness spaces [8] and a
theory of set-set apartness spaces [18, 7]. Ishihara et al [13] introduced the
notion of a (point-set) quasi-apartness space, and constructed an adjunction
between the category of (point-set) quasi-apartness spaces with (point-set)
quasi-apartness spaces as objects and continuous functions as morphisms
and the category Nbh of neighbourhood spaces with neighbourhood spaces
as objects and continuous functions as morphisms.

A (point-set) quasi-apartness space, (X, —), is a set X with an operation,
—, on the subsets of X satisfying the following axioms, in which we let
“S={zeX|-(xel}:



QAl. —0=X,

QA2. —ScC—S,

QA3. —(SUT)=-SN-T,
QA4d. —-Sc-T=— —Sc-T.

A neighbourhood space [3] is a pair (X, 7) consisting of a set X and a set 7
of subsets of X such that

NS1. Vz e X3U € 7(z € U),
NS2. Vze XVU,VerzeUNV =IWer(zeW CUNV)].

A function f between (point-set) quasi-apartness spaces (X, —) and (Y, —')
is continuous if f(z) € —'f(S) =z € —S for each x € X and S C X, and
a function f between neighbourhood spaces (X, 7) and (Y, 7') is continuous
if fz)eV=30er(zeUcCf V) foreachze X and V € 7".

Schuster et al [18] introduced the notion of a (set-set) apartness space in
relation to the notion of a metric space and the notion of a uniform space;
see also [6] for recent treatment of (set-set) apartness spaces. A (set-set)
apartness space, (X,), consists of a set X equipped with an inequality
# (that is, a binary relation on X such that z # y= vy # z and z #
y = —(x = y)) and a binary relation, >, on the subsets of X satisfying the
following axioms, in which we let ~ S = {z € X | Vy € S(z # y)} and
—S={zre X |{z}=S}:

Bl. X >0,

B2. ST = SNT =1,

B3. Sxx(TUT)<=S<TAST,
B4 -Sc~T=— —ScC-T,

B, ze-S=WYyeX(z#yVye-9),
B6. Sx<xT =1Twx§5,

B7. ST =Vzxe XIT'(z € -T'NFye-T'(yeS) = T'™=T);



see [18, 7] for more details. A function f between (set-set) apartness spaces
(X,>1) and (Y, <) is strongly continuous if

F(S)od f(T) => ST

for each S, T C X. Although various conditions on a (set-set) apartness space
have been introduced to try to characterize various spaces, any adjunction
has not been constructed between a natural category, such as the category of
neighbourhood spaces or the category of uniform spaces, and a subcategory
of the category of (set-set) apartness spaces consisting of (set-set) apartness
spaces as objects and strongly continuous functions as morphisms.

In this paper, we introduce the notion of a (set-set) quasi-apartness space
by dropping axioms B5-B7 from the definition of a (set-set) apartness space.
We also drop the inequality. We define the notion of a topological quasi-
apartness space, and construct an adjunction between the full subcategory
of (set-set) quasi-apartness spaces with topological quasi-apartness spaces
as objects and strongly continuous functions as morphisms and the category
Nbh of neighbourhood spaces. Then we introduce the notion of a completely
left joinable quasi-apartness space, show that it is equivalent to the notion of
a topological quasi-apartness space, and construct an adjoint equivalence be-
tween the category of (point-set) quasi-apartness spaces and the category of
topological quasi-apartness spaces. Finally, we define the notion of a uniform
quasi-apartness space, and construct an adjunction between the category of
uniform spaces and the full subcategory of (set-set) quasi-apartness spaces
consisting of uniform quasi-apartness spaces as objects and strongly contin-
uous functions as morphisms.

Although the results are presented in informal Bishop-style constructive
mathematics [3, 4, 5, 19, 10], it is possible to formalize them (except the re-
sults in category theory) in Aczel’s constructive Zermelo-Fraenkel set theory
(CZF) [2] together with the power set axiom. However, we would like to
follow the minimalist brad [16, 1] of constructivism as far as possible. In the
section 4, the readers will find some remarks on avoiding use of the power set
axiom. We do not use any choice axioms. Therefore the work in this paper
holds in an arbitrary topos (with a natural number object).



2 Topological quasi-apartness spaces

A (set-set) quasi-apartness space, (X,), is a set X with a binary relation,
>, on the subsets of X such that for each sets S, 5", T,1T" C X,

QBl. X 0,
QOB2. ST = SNT =10,
QB3,,. SXTAS CSANT' CT= 5T,

QB3,. SXTASKT = Sx(TUT),

QB4. —-SCc-T—=— —-Sc-T.
Here — is a unary operation on the subsets of X defined by
—S={re X |{z}=S};

we sometimes write —,, for —. We say that < is a (set-set) quasi-apartness
on X.

Let > and <’ be two quasi-apartness relations on a set X. Then we
say that > is weaker than <’ (or <’ is stronger than 1<) and write pa<p<’ if
ST = S T for each sets S, T C X.

A quasi-apartness space (X, ) is weakly topological if

QBT1L. —Sx<x—--S

for each set S C X, and topological if it is weakly topological and
QBT2. Vi€ I(S;i=—S;) = (Uie; Si) > ~(Uie; Si)

for each family {S; | i € I} of subsets of X.

Lemma 2.1. (QB3,,) and (QBT1) imply (QB4).

Proof. Suppose that —S C =T. Then T'C = — 5. Since —S <1 = — S, by
(QBT1), we have —S 1 T by (QB3,,), and hence, again by (QB3,,), {z} =T
for each x € —S. Therefore —S C —T. O

Let (X,>) be a quasi-apartness space. Then we can define a family 7.
of subsets of X by

TNZ{UCX|UI><1—|U}.



Lemma 2.2. Let (X,1x) be a weakly topological quasi-apartness space. Then
ST = ST for each S, T C X.

Proof. Suppose that S >a T. Then S C —T. Since —T C —T, we have
—=T C =~ —=T. Therefore, since =T 1 =—T, by (QBT1), we have S 1 ==T,

by (QB3,,). O

Proposition 2.3. If (X,x) is a weakly topological quasi-apartness space,
then (X, Tw) is a neighbourhood space.

Proof. Since =X = (), we have X € 7, by (QB1). Suppose that U,V €
Tse- Then, since U <1 =U and V x =V, we have (UN V) > =U and
(UNV)x =V, by (QB3,,), and hence (UNV) xt (=U U =V), by (QB3,).
Therefore (UNV') ba == (=UU—V'), by Lemma 2.2, and, since =—(=UU-V') =
—~(UNV), we have (UNV)x~(UNV). Thus UNV € 7. O

Proposition 2.4. Let (X,x) and (Y,<) be weakly topological apartness
spaces. If f: (X,>) — (Y, <) is strongly continuous, then f : (X, 7w) —
(Y, Toer) is continuous.

Proof. Suppose that f : (X,>1) — (Y, <) is strongly continuous and V' € 7.
Then, letting T = f~1(=V), since f(f~'(=V)) C =V, we have f(T) C =V,
and therefore, since f(f~'(V)) C V and V < =V, we have f(f~1(V)) o<
f(T), by (QB3,,). Hence f~'(V) > T, and therefore, since T = f~'(=V) =
=f~1(V), we have f~'(V) o< —f~1(V). Thus f~(V) € 7. O

Let (X, 7) be a neighbourhood space. Then we can define a binary rela-
tion <, on the subsets of X by

S, T<«=Vr e SAU e r(x € U C —T).

Proposition 2.5. If (X, 1) is a neighbourhood space, then (X,1<,) is a topo-
logical quasi-apartness space.

Proof. 1t is straightforward to show that <, satisfies (QB1), (QB2), and
(QB3,,).

(QB3,): Suppose that S, T and S <, T'. Then for each x € S there
exist U,V € 7 such that + € U C =T and z € V C —=T”, and hence there
exists W € T such that x e W CUNV C =T N—-T" = —~(T'UT"). Therefore
S, (TUT.



(QBT1): Suppose that z € —S. Then {z} <, S, and hence there exists
U € 7 such that x € U C —S. Since y € U C =S for each y € U, we have
U C -5, and therefore x € U C =—U C == — 5. Thus =S, = — S.

(QBT2): Supposet that S; >, =S; for each i € I and 2 € (J;; S;- Then
there exists 7 € I such that x € S;, and hence there exists U € 7 such that
r €U C —=S; C ==(U;es Si)- Therefore (|, Si) >y =(U,;e; Si)- O

Proposition 2.6. Let (X,7) and (Y,7') be neighbourhood spaces. If f :
(X,7) = (Y, 7') is continuous, then f : (X,0x,) — (Y,>d) is strongly con-
tinuous.

i€l

Proof. Suppose that f : (X,7) — (Y, 7') is continuous and f(S) . f(7T).
Then for each z € S there exists V € 7’ such that f(z) € V C —~f(T),
and hence there exists U € 7 such that x € U C f=}(V) C f~Y(~f(T)) =
- f~Y(f(T)) € =T. Therefore S <, T. O

Proposition 2.7. Let (X, ) be a neighbourhood space. Then T C Ty, .

Proof. Let U € 7. Then, since x € U C ——U for each z € U, we have
U <, —U, and hence U € 7, . O

Proposition 2.8. Let (X, be a weakly topological quasi-apartness space.
Then <=, .. Moreover, if (X,1x) is topological, then >, <.

Proof. Suppose that S 01 T. Then § C —T C —=T. Since —T € 7., by
(QBT1), we have S <, T'. Suppose that (X, <) is topological and S >, T
Then for each © € S there exists U, C X such that U, =< —-U, and = €
U, C =T, and hence (U,cgUs) > ~(Uzes Us), by (QBT2). Therefore, since
S CUpes Uz and T C ~({J,eg Us), we have S T. O

An adjunction (F,G,n, ) between categories C and D consists of functors
F:C — Dand G:D — C, and natural transformations n : 1¢ - GF
and € : FG — 1p such that ep o F'p = 1p and Ge o ng = 1. The functor
F' is the left-adjoint, and the functor G is the right-adjoint. The natural
transformation 7 is the unit, and the natural transformation ¢ is the counit.
The adjunction (F,G,n,¢) is called an adjoint equivalence if both the unit n
and the counit € are natural isomorphisms. For basic notions and results in
category theory, we refer the reader to [12, 14, 15, 17].

Let Qap™ denote the category of (set-set) quasi-apartness spaces with
(set-set) quasi-apartness spaces as objects and strongly continuous func-
tions as morphisms, and let Qap} denote the full subcategory of Qap™
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whose objects are topological quasi-apartness spaces and whose morphisms
are strongly continuous functions.

Theorem 2.9. There exists an adjunction between Qapy and Nbh whose
unit is a natural tsomorphism.

Proof. Define a functor Fr from Qap; to Nbh by Fr(X ) = (X, 7)
and Frf = f, and define a functor Gr from Nbh to Qap7 by Gr(X,7) =
(X,><;) and Grf = f. Then Fr and G are faithful functors, by Proposition
2.4 and 2.6.

Furthermore, by Proposition 2.7 and 2.8, we see that if we let nr(y
and er(xpq denote the indentity map on the set X, then nr y . (X,>) —
(X,r,) and ep(xr) : (X,7w,) — (X,7) are morphisms in the category
Qap7 and Nbh, respectively. Hence 7y : lQapy — GrFr is a natural
isomorphism and er : FrGr — Inpn iS a natural transformation satisfying
€rg, © Frnr = 1p, and Grer onrg, = 1g,. Therefore (Fr, Gr,nr,er) forms
an adjunction between Qap; and Nbh. O

A quasi-apartness space (X,) is left joinable if
QB3 SXTAS'NT = (SUS)=T
for each sets S,S’, T C X, and completely left joinable if
QBC,. VieI(S;xT) = (U;je; Si) =T

for each family {S; | i € I} of subsets of X and set T C X.
Note that a quasi-apartness space is always right joinable by (QB3,.).

Lemma 2.10. If (X, 7) is a neighbourhood space, then (X,1<;) is a com-
pletely left joinable quasi-apartness space.

Proof. 1t is enough to show that <, satisfies (QBC;), by Proposition 2.5.
Suppose that S; o<, T for each i € I and = € |J,.;S;- Then there exists
1 € I such that x € S;, and hence there exists U € 7 such that x € U C =T.
Therefore we have (|, Si) >, 7. O

Proposition 2.11. A quasi-apartness space is topological if and only if it is
completely left joinable.



Proof. Let (X,1x1) be a topological quasi-apartness space. Then for each
S, T C X, ST if and only if S <, T, by Proposition 2.8, and therefore,
since <, is completely left joinable by Lemma 2.10, so is bx.

Conversely, let (X, ) be a completely left joinable quasi-apartness space.
Since —S C == — 5, we have —S C —— — S, by (QB4), and hence {z} >
— — S for each x € —S. Therefore —S <1 - — S, by (QBC,;). Suppose that
Si b1 S; for each ¢ € I. Then, since —(|J;, Si) C —S; for each j € I, we
have S; > —({J,c; Si) for each j € I, and hence (U, Si) > —~(U,¢; Si), by
(QBC)). O

After acquiring the equivalence between the notion of a topological quasi-
apartness space and the notion of a completely left joinable quasi-apartness
space, we can construct an adjoint equivalence between the category of
(point-set) quasi-apartness spaces and the category of topological quasi-
apartness spaces.

Let (X, —) be a (point-set) quasi-apartness space. Then we can define a
binary relation >x1_ on the subsets of X by

S T<+«—S5 c -T.

Proposition 2.12. If (X, —) is a (point-set) quasi-apartness space, then
(X,><d_) is a completely left joinable (set-set) quasi-apartness on X.

Proof. Tt is straightforward to see that xi_ satisfies (QB1), (QB2), (QB3,,),

Proposition 2.13. Let (X,—) and (Y,—=") be (point-set) quasi-apartness
spaces. Then f : (X, =) — (Y, =") is continuous if and only if f : (X,x_) —
(Y,>x1) is strongly continuous.

Proof. Suppose that f: (X, —) — (Y, ') is continuous and f(S) >, f(7T).
Then f(z) € —'f(T) for each z € S, and hence z € —T for each z € S.
Therefore S b T. Conversely suppose that f : (X, ) — (Y, /) is
strongly continuous and f(x) € —'f(S). Then f({z}) >_ f(S), and hence
{z} >a_ S. Therefore z € —S. O

Proposition 2.14. If (X,<) is a (set-set) quasi-apartness space, then (X, —.q)
is a (point-set) quasi-apartness space.

Proof. 1t is straightforward to see that —. satisfies (QA1), (QA2), (QA3)
and (QA4). O



Proposition 2.15. Let (X,<) and (Y,><) be quasi-apartness spaces. If f :
(X,>x1) — (Y,<) is strongly continuous, then [ : (X, —n) — (Y, =) is
continuous. Moreover, if (X,<) is completely left joinable, then the converse
holds.

Proof. Suppose that f: (X,>1) — (Y, <) is strongly continuous and f(x) €
—se f(S). Then f({z}) <’ f(S), and hence {z} > S. Threrefore z € —S.
Suppose that (X, ) is completely left joinable and f : (X, —) — (Y, —)
is continuous. Assume further that f(S) o<’ f(T'). Then f(z) € — f(T) for
each x € S. Hence z € —..T for each z € S, and therefore {x}<T" for each
z € S. Thus ST, by (QBC,)). O

Proposition 2.16. Let (X, —) be a (point-set) quasi-apartness space. Then
-8 = —_S for each set S C X.

Proof. v € —S<={z}x_ S<=zr € — Sforeachz € Xand S C X. O

Proposition 2.17. Let (X,>) be a quasi-apartness space. Then p<x=p__.
Moreover if (X,1x) is completely left joinable, then <1 <.

Proof. Suppose that S >1 T. Then {z} > T for each x € S, and hence
x € — T for each x € S. Therefore S >a_ T. Conversely, suppose that
(X,>) is completely left joinable and S a__ T. Then z € — T for each
x € S, and hence {z} > T for each x € S. Therefore S>a T, by (QBC;). O

Let Qap™~ denote the category of (point-set) quasi-apartness spaces with
(point-set) quasi-apartness spaces as objects and continuous functions as
morphisms.

Theorem 2.18. There exists an adjunction between Qap~ and Qap™ whose
unit 1s a natural isomorphism, and there exists an adjoint equivalence between

Qap  and Qap7.

Proof. Define a functor F' from Qap  to Qapy by F(X,—) = (X,>_) and
Ff = f, and define a functor G from Qap™ to Qap~ by G(X,x) = (X, —.)
and Gf = f. Then F'is a full and faithful functor and G is a faithful functor
(and a full and faithful functor from Qap7 to Qap~), by Proposition 2.13
and 2.15.

By Proposition 2.16 and 2.17, we see that if we let nx _y and €x )
denote the indentity map on the set X, then nix ) : (X, =) = (X, —_)
and € x 0 @ (X,>_ ) — (X,p<) are morphisms in the category Qap~ and
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Qap™, respectively. Hence 7 : 1qa,- — GF is a natural isomorphism and
€ : FG — lQap> is a natural transformation satisfying ez o F'n = 1 and
Geong = 1g. Therefore (F, G,n,¢) forms an adjunction between Qap  and
Qap™.

Furthermore, by Proposition 2.17, the natural transformation € : FG —
1Qapts is @ natural isomorphism, and hence (F, G, 7, €) forms an adjoint equiv-
alence between Qap~ and Qap7. O

Now we can reprove Theorem 2.9 as a corollary of Theorem 2.18.

Corollary 2.19. There exists an adjunction between Qapy and Nbh whose
unit is a natural isomorphism.

Proof. By Theorem 2.18 and Theorem 4.1 in [13]. O
A quasi-apartness space (X, ) is symmetric if
QBS. SxT=—=Tx<S

for each sets 5,7 C X.
The following lemma shows that a weakly topological symmetric quasi-
apartness space has a peculiar property.

Lemma 2.20. Let (X, 1<) be a weakly topological symmetric quasi-apartness
space. Then

1. SCc—--585,
2. - —=8Spa—-——5,
3 SxT<+—=-—-SN—-=T=0.

Proof. (1): Since —S C =S, we have S C = — S.
(2): Since —S > = — S, we have = — S < —S, by (QBS), and hence

-—SC—-——-85cC——S. Therefore = — S =—— 5. Since — —Sp>a—-— -5,
by (QBT1), we have = — S >t —— — S.
(3): Suppose that S >t T and x € =—SN——T". Then, since -—1 = ——T,

we have {z} > —T', and therefore, since S C —T', we have {z} > S. Hence
x € —S, a contradiction. Conversely, suppose that - — SN - —T = (.
Then, since T' C = — T, we have T' C —— — S, and, since S C = — S and
- —S>x-——.S5, we have S T. O

The following corollary is a straightforward consequence of Lemma 2.20.

Corollary 2.21. A weakly topological quasi-apartness space (X,><) is sym-
metric if and only if ST <= —-—SN—-—T =0 for each S,T C X.
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3 Uniform quasi-apartness spaces

A uniform space (X,U) is pair of a set X and a set U of subsets of X x X
such that

Ubl. VYU,V eU3W e UW cUNV),
Ub2. VU € U(A C U),

Ub3. YU e U3V e U(V c UY),

Ubd. YU e U3V e U(V oV C U).

Here A = {(z,z) |z € X}, and U™ = {(z,9) | (y,z) € U} and UoV =
{(z,2) | Iy((z,y) € VA (y,z) € U)} for each U,V C X x X. A function
f between uniform spaces (X,U) and (Y,U") is uniformly continuous if for
each V € U' there exists U € U such that (z,y) € U = (f(z), f(y)) € V
for each z,y € X.

Remark 3.1. Schuster et al [18] and Bridges and Vita [9] defined a uniformity
on a set X as a set U of X x X such that

Ul. YW CXYUeU(UCV =V el)AVU,V eUUNV ell),
U2. YU € UA CUYAVU e U3V e U(V =V 1AV C U),

U3. YUeUadVeU(VoV cCl),

Ud VYU e U3V e Uvx,y € X|[(z,y) € UV (z,y) € -V],

that is, they employed a set of entourages with an extra condition (U4) to
define a uniformity. The following shows why we adopt a base for uniformity
without the extra condition as the definition of a uniformity.

Consider a family U, of entourages satisfying (U1), (U2) and (U3) for the
discrete uniformity on a set X. Then, since A € U, it consists of all subsets
of X x X containing A. The family i, is not a set in a predicative system,
such as CZF [2]. But the singleton {A} which is a set in CZF forms a base
for the discrete uniformity.

Furthermore, suppose that the condition (U4) holds for ¢,;. Then, since
A € Uy, there exists V € U, such that

Vo,y € X[(z,y) € AV (z,y) € 2V],

11



and hence x = yV—(z = y) forall z,y € X. If X = R, then this is equivalent
to the weak limited principle of omniscience (WLPO) [5]:

Ve € Rlz =0V —(z =0)].

Since it is doubtful that we can achieve a constructive proof of WLPO, we
cannot find one of (U4) for the discrete uniformity on R.

A quasi-apartness space (X, ) is weakly uniform if it is symmetric and
QBU. ST =39 T CX(S=-SA-T'><xTASNT =0)
for each sets S, 7 C X.
Lemma 3.2. (QB3,,) and (QBU) imply (QB4).

Proof. Suppose that —S C =T and x € —S. Then {z} xS, and hence, by
(QBU), there exist A, S" C X such that {z} 1 —A, =5 >S5 and ANS' = 0.
Since =S’ € =S C =T, we have T C -5, and, since A C —S’, we have
—-—S" C —A. Therefore T C —A, and so {z} > T, by (QB3,,). Thus
xe -T. 0

Lemma 3.3. A weakly topological symmetric quasi-apartness space is weakly
uniform.

Proof. Let (X,) be a weakly topological symmetric quasi-apartness space.
Let S'=-— S and 7" = = —T. Then, by Lemma 2.20 (1), (2) and (QBS),
we have S —S" and =7" < T, and, by Lemma 2.20 (3), if S > 7', then
S'NnT = 0. O

A quasi-apartness space (X, ) is joinable if
QBJ. Vie{l,... n}(SixT)ASXT C U (SixT;) = ST
for each sets S, 51,...,5,,1T,T1,...,T, C X, and strongly joinable if
QBJ,. Vie{l,....n}(SixT)ASXxT C—-~J_ (SixT;) = ST
for each sets S,S51,...,S,,1T,11,....,T, C X.
Lemma 3.4. (QBJ) implies (QB3;) and (QB3,).

Proof. Suppose that S <t T and S’ > T. Then, since (SUS') x T =
(S xT)U (S xT), we have (SU S') > T, by (QBJ). Similarly, we have
(QB3,). 0
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A quasi-apartness space (X, is uniform if it is weakly uniform and
strongly joinable.

Lemma 3.5. There is a uniform quasi-apartness space which is not weakly
topological.

Proof. Let < be a quasi-apartness relation on R defined by
S T<=3r>0WreSVyeT(z—y|l >r).

Then it is straightforward to see that > satisfies (QB1), (QB2), (QB3,,), and
(QBS).

(QBU): Suppose that S <t T'. Then there exists 7 > 0 such that |[x—y| > r
foreachx € Sandy € T. Let S'={z € X |3z € S(|z — 2| <r/2)} and
T'={2e€ X |3yeT(ly—=z <r/2)}. Then S'NT" = 0. If |z — z| < r/2 for
some z € S and z € =5', then z € ', a contradiction. Hence |z — z| > /3
for each z € S and z € —S’, and therefore S > —=S’. Similarly, we have
=T > T.

(QBJ,): Suppose that S; > T; for each i = 1,...,n and S x T C
== Ui, (S; x T;). Then there exist 71,...,r, > 0 such that Yz € S;Vy €

T:(|z — y| > r;) for each i = 1,... ,n. Let r = min{ry,...,r,}, and sup-
pose that |z — y| < r for some z € S and y € T. If (z,y) € S; x T; for
some ¢ = 1,...,n, then r; < |z —y| < r < r;, a contradiction, and hence

(z,y) € ~U~,(S; x T;). This contradiction entails that |z — y| > r/2 for
eachz € Sand y € T. Thus S T.

Hence (R, ) is a uniform quasi-apartness space. Let S = [0,00). Then
-5 = (—00,0) and = — S = S, and hence —S < = — § is impossible.
Therefore (R,1) is not a weakly topological quasi-apartness space. O

Let (X,U) be a uniform space. Then we can define a binary relation <,
on the subsets of X by

Sty T<=3U e U(S xT C -U).

Proposition 3.6. If (X,U) is a uniform space, then (X,<y) is a uniform
quasi-apartness space.

Proof. Tt is straightforward to show that >y, satisfies (QB1), (QB2), (QB3,,),
and (QBS).

(QBU): Suppose that S by T. Then there exists U € U such that
S x T C —U, and hence there exists V € U such that VoV C U. Let
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S'={yeX |FreS(z,y) eV)}and T'={ye X | Iz € T((y,2) € V)}.
If (z,y) € Sx =S and (z,y) € V, then y € S’ and y € =5’ a contradiction.
Hence S x =S’ C =V, and therefore S <y, —S’. Similarly, we have —7T" >, T.
Assume that y € S'NT’. Then there exist x € S and z € T such that
(z,y) € V and (y,2) € V, and hence (z,z) € S x T and (z,2) € VoV C U,
a contradiction. Thus S'NT" = (.

(QBJ,): Suppose that S; by T; for each i = 1,...,n and S x T C
== Ui, (S; xT;). Then there exist Uy, ... ,U, € U such that S;xT; C —U; for
each 7 =1,... ,n, and hence there exists V € U such that V Cc Uyn...NU,.
Therefore S xT C == J,(Si xT;) ¢ ==~J~, ~U; = =, Ui C =V. Thus
S Dy T. U

Proposition 3.7. Let (X,U) and (Y,U'") be uniform spaces. If f : (X,U) —
(Y,U'") is uniformly continuous, then f : (X,b<y) — (Y,b<yy) is strongly
continuous.

Proof. Suppose that f : (X,U) — (Y,U') is uniformly continuous and
f(S) vy f(T). Then there exists V' € U’ such that f(S) x f(T) C V.
Since f is uniformly continuous, there exists U € U such that (z,y) €
U= (f(z), f(y)) € V for each z,y € X. If (z,y) € S x T and (z,y) € U,
then (f(z), f(y)) € f(S)x f(T) and (f(z), f(y)) € V, a contradiction. Hence
S x T C =U, and therefore S <y, T'. O

Let (X,) be a quasi-apartness space. Then we can define a family U,
of subsets of X x X by

L{N:{ﬂ—'(Sixﬂ)\Simﬂ foreachi1=1,... ,n}.

=1

Lemma 3.8. Let S, S', T and T' be subsets of a set X such that S'NT" = ().
Then —|(—|TI X T) o —|(S X —|SI) C _'(S X T).

Proof. Let (z,y) € =(S x =S") and (y,2) € =(—=T" x T'), and suppose that
(x,2) € S xT. Then y € =—S" and y € =—T". Assume that y € S’. Then,
since S C —T", we have y € —T", a contradiction. Hence y € —S’. This
contradiction entails that (z,2) € =(S x T). O

Proposition 3.9. If (X,x) is a weakly uniform quasi-apartness space, then
(X, Us) is a uniform space.
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Proof. 1t is straightforward to show that U, satisfies (Ubl), (Ub2) and (Ub3).
To show (Ub4), let U € U,,. Then there exist subsets Si,..., S, T1,-..,T,
of X such that U = ()_, ~(S; x T;) and S; 1 T; for each ¢ = 1,... ,n. By
(QBU), there exist subsets S7,...,S!,T},..., T of X such that S; >a =S,
T/ > T; and S;NT] =@ foreachi=1,... ,n. Let V =_, =(S; x =S)) N
Nie, (=T} x T;). Then V € U, and, for each i = 1,... ,n, we have
VoV C _|(_|T;I X T;) o _1(SZ X _18;) C _'(S, X E),
by Lemma 3.8. Hence VoV C U. O

Proposition 3.10. Let (X, <) and (Y,><) be weakly uniform quasi-apartness
spaces. If [+ (X, ) — (Y, <) is strongly continuous, then f : (X, Un) —
(Y, Un) is uniformly continuous.

Proof. Suppose that f : (X,<x) — (Y,<') is strongly continuous, and let
V € Usy. Then there exist subsets S1,...,5,,11,...,T, of Y such that V =
N, ~(SixT;) and S; <’ T; foreach i = 1,... ,n. Foreachi =1,...,n, since
F(FF1(S) C S; and F(f-1(T3) © T, we have f(f=(S)) od F(/~H(T,).
Hence f~1(S;) > f~H(T;) for each s = 1,...,n. Let U = (", ~(f~(S:) %
f7HT;)). Then U € Up. If (z,y) € U, then (f(z), f(y)) € —(S; x T;) for
each i = 1,...,n, and hence (f(z), f(y)) € V. Thus f: (X,Us) — (Y, Ux)

is uniformly continuous. U

Proposition 3.11. Let (X,U) be a uniform space. Then for each U € U,
there exists V € U such that V C U.

Proof. Let U € U.,. Then there exist subsets Si,...,S,,T1,...,T, of X
such that U = (N, =(S; x T;) and S; >, T; for each s = 1,... ,n, and hence
there exist Uy, ... ,U, € U such that S; x T; C —U; for each 1 = 1,... ,n.
Choose V' € U such that V C (;_, U;. Then, since U; C —(S; x T;) for each
i=1,...,n,we have V C U. O

Proposition 3.12. Let (X,x) be a weakly uniform quasi-apartness space.
Then <=y, . Moreover, if (X,>) is uniform, then d<y,, <.

Proof. Suppose that S > T. Then, since =(S X T) € Uy, and S x T C
—=(SxT), we have S >y, T. Suppose that (X, <) is uniform and S >, 7T
Then there exist St, ..., Sy, T4, ..., T, such that SXT C (i, =(S; xT;) =
== U;,(Si x T;) and S; < T; for each 7 = 1,...,n. Therefore S 1 T, by
(QBT,). .
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Let Uni denote the category of uniform spaces with uniform spaces as
objects and uniformly continuous functions as morphisms, and let Qapy; de-
note the full subcategory of Qap™ whose objects are uniform quasi-apartness
spaces and whose morphisms are strongly continuous functions.

Theorem 3.13. There ezists an adjunction between Uni and Qapy; whose
counit is a natural tsomorphism.

Proof. Define a functor Fy from Uni to Qapy by Fy(X,U) = (X,>y)
and Fy f = f, and define a functor Gy from Qapy to Uni by Gy (X,x) =
(X,Ux) and Gy f = f. Then Fy and Gy are faithful functors, by Proposition
3.7 and 3.10.

Furthermore, by Proposition 3.11 and 3.12, we see that if we let ny x )
and €y (x ) denote the indentity map on the set X, then ny x4 : (X,U) =
(X, U,) and ey (xpq : (X,>uy,,) — (X,>d) are morphisms in the category
Uni and Qapy;, respectively. Hence ny : lyni — GuFy is a natural trans-
formation and ¢y : FyGy — lQapys 1s & natural isomorphism satisfying
evry © Funu = 1g, and Guey o nyg, = lg,. Therefore (Fy, Gy, ny,ev)
forms an adjunction between Uni and Qapj;. O

Note that (Fy, Gy, nu, €y) constructed in the proof of Theorem 3.13 also
forms an adjunction between Uni and the category of weakly uniform quasi-
apartness spaces with weakly uniform quasi-apartness spaces as objects and
strongly continuous functions as morphisms.

4 Concluding remarks

A (point-set) quasi-apartness space (X, —) is set-presented if there exists a
subset C of Pow(X) such that

r€—-S<=3JU eC(xelU C~S)

for each x € X and S C X. Then the (point-set) quasi-apartness —,, induced
by an open base 7 [13, Proposition 2.3], is set-presented. Furthermore, the
open base 7, induced by a set-presented (point-set) quasi-apartness — [13,
Proposition 3.6], is generated by the subbase C, and hence it forms a set.
Hence there is a possibility to avoid use of the power set axiom in the results of
[13] by introducing the notion of a set-presented (point-set) quasi-apartness.
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Although we have not arrived at an appropriate notion of a set-presented
(set-set) quasi-apartness, we hope that we will be able to avoid use of the
power set axiom in this paper by introducing a similar notion. Therefore we
have refrained from freely using the power set axiom, and inclined to follow
the minimalist brand of constructivism as far as possible.

Of course, this attitude has caused a bit of problem when stating some
category theoretic results in this paper. Since there are many open bases
which generate the same open sets, the category Top of topological spaces
equipped with the open sets (by using the power set axiom) and continuous
mappings and the category Nbh of neighbourhood spaces equipped with the
basic opens and continuous mappings are not isomorphic, but equivalent.

In the following, we summarise the category theoretic results of this paper.

A subcategory D of a category C is reflective and coreflective if the inclu-
sion functor I : D — C has a left adjoint and a right adjoint, respectively.

Let us call a neighbourhood space (X, 7) is negative if U C (=—U)° implies
U C U° for each subset U of X, where S° denotes the interior of S. Since
U € n, if and only if U C (——U)°, a negative neighbourhood space (X, 1)
is isomorphic to the neighbourhood space (X, 7. ). Therefore, by Theorem
2.9, we see that the full subcategory Nbh™ of negative neighbourhood spaces
is a coreflective subcategory of Nbh.

On the other hand, Theorem 2.18 shows that the category Qapy is a
full coreflective subcategory of the category Qap™. Furthermore, calling
a uniform space (X,U) strongly uniform if (X,U.,) is isomorphic to the
original space (X, U), the category stUni of strongly uniform spaces is a full
reflective subcategory of the category Uni of uniform spaces and uniformly
continuous mappings, by Theorem 3.13.

Let Set be the category of sets and functions. Then a category C is a
category over Set if there exists a faithful functor, called a forgetful functor,
K : C — Set. Categories C and D over Set with forgetful functors K :
C — Set and J : D — Set, respectively, is isomorphic (over Set) if there
exists an isomorphism I : C — D such that K = J o I. Theorem 2.18 shows
that the categories Qap~ and Qap7 are isomorphic over Set. Note that, in
the presence of the power set axiom, Qap~, Qap7 and the category Top™
of negative topological spaces and continuous maps are isomorphic over Set,
and, by identifying uniform spaces that generate the same uniformities, the
categories stUni and Qap}; are isomorphic over Set.
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