
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Privacy-preserving Set Operations in the Presence

of Rational Parties

Author(s) Miyaji, Atsuko; Rahman, Mohammad Shahriar

Citation

2012 26th International Conference on Advanced

Information Networking and Applications Workshops

(WAINA): 869-874

Issue Date 2012-03

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/10657

Rights

This is the author's version of the work.

Copyright (C) 2012 IEEE. 2012 26th International

Conference on Advanced Information Networking and

Applications Workshops (WAINA), 2012, 869-874.

Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

Privacy-preserving Set Operations in the Presence
of Rational Parties

Atsuko Miyaji
School of Information Science

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, Japan

Email: miyaji@jaist.ac.jp

Mohammad Shahriar Rahman
School of Information Science

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, Japan

Email: mohammad@jaist.ac.jp

Abstract—Privacy-preserving set operations are useful for
many data mining algorithms as building tools. Protocols for
privacy-preserving set operations have considered semi-honest
and malicious adversarial models in cryptographic settings,
whereby an adversary is assumed to follow or arbitrarily deviate
from the protocol. Semi-honest model provides weak security
requiring small amount of computation, on the other hand,
malicious model provides strong security requiring expensive
computations like homomorphic encryption. However, efficient
computation of such set operations are desirable for practical
implementations. In this paper, we build efficient and private set
operations avoiding the use of expensive tools like homomorphic
encryption, zero-knowledge proof, and oblivious transfer. Our
protocol is constructed in game-theoretic model. In other words,
instead of being semi-honest or malicious, the parties are viewed
as rational and are assumed (only) to act in their self-interest. We
show that our protocol satisfies computational Nash equilibrium.

KeyWords: Privacy-preserving data mining, Set-
intersection, Game theory, Computational Nash equilibrium.

I. INTRODUCTION

A key utility of large databases today is scientific or
economic research. Despite the potential gain, this is often not
possible due to the confidentiality issues which arise, leading
to concerns over privacy infringement while performing the
data mining operations. The need for privacy is sometimes
due to law (e.g., for medical databases) or can be motivated
by business interests. To address the privacy problem, several
privacy-preserving data mining protocols using cryptographic
techniques have been suggested. Pricvacy-preserving algo-
rithms are applicable for web mining, where a customer can
be much better identified by many internet companies than
in real world. With these algorithms, internet sellers and web
searching companies are able to make much better forecast
of the customer’s behavior, without disclosing private data.
In data mining area, private set-intersection and set-union
protocols allow two parties interact on their respective input
sets. These protocols address several realistic privacy issues.
For example, companies may want to decide whether to make
a business alliance by the percentage of customers shared
among them, without publishing their customer databases
including the shared customers among them. This can be
treated as an intersection cardinality problem. To determine
which customers appear on a do-not-receive-advertisements

list, a store must perform a set-intersection operation between
its private customer list and the producer’s list.

Depending on the adversarial behavior assumptions,
privacy-preserving data mining protocols use different models.
Classically, two main categories of adversaries have been
considered:
Semi-honest adversaries: Following Goldreich’s definition
[15], protocols secure in the presence of semi-honest adver-
saries (or honest-but-curious) assume that parties faithfully
follow all protocol specifications and do not misrepresent any
information related to their inputs, e.g., set size and content.
However, during or after protocol execution, any party might
(passively) attempt to infer additional information about the
other party’s input. This model is formalized by requiring that
each party does not learn more information that it would in an
ideal implementation relying on a trusted third party (TTP).
Malicious adversaries: Security in the presence of malicious
parties allows arbitrary deviations from the protocol. In gen-
eral, however, it does not prevent parties from refusing to
participate in the protocol, modifying their private input sets,
or prematurely aborting the protocol. Security in the malicious
model is achieved if the adversary (interacting in the real
protocol, without the TTP) can learn no more information than
it could in the ideal scenario.

In the above models, a secure protocol emulates (in its
real execution) the ideal execution that includes a TTP. This
notion is formulated by requiring the existence of adversaries
in the ideal execution model that can simulate adversarial
behavior in the real execution model. In other words, the
implicit assumption in the original formulation of the problem
is that each party is either honest or corrupt, and honest parties
are all willing to cooperate when reconstruction of the secret
is desired. However, the assumption of semi-honest behavior
may be unrealistic in some settings. In such cases, participating
parties may prefer to use a protocol that is secure against
malicious behavior. It is clear that the protocols secure in the
malicious model offer more security. Regarding malicious ad-
versaries, it has been shown that, under suitable cryptographic
assumptions, any multi-party probabilistic polynomial time
functionality (PPT) can be securely computed for any number
of malicious corrupted parties. However, these are not efficient
enough to be used in practice. Most of these constructions

use general zero-knowledge proofs for fully malicious multi-
party computation (MPC) protocols. These zero-knowledge
compilers lead to rather inefficient constructions [32]. In
typical cryptographic MPC protocols, parties are allowed to
abort when they can find some malicious behavior from other
parties. This means that the parties have to start the protocol
from the scratch which is undesirable for operations on huge
data sets.

Since the work of Halpern and Teague [17], protocols
for some cryptographic tasks (e.g., secret sharing, multi-
party computation) have begun to be re-evaluated in a game-
theoretic light (see [9], [23] for an overview of work in this
direction). In this setting, parties are neither honest nor corrupt
but are instead viewed as rational and are assumed (only) to
act in their self-interest. This feature is particularly interesting
for data mining operations where huge collection of data is
used, since parties will not deviate (i.e., abort) as there is
no incentive to do so. In many real-world settings, parties
are willing to actively deviate/cheat, but only if they are not
caught. This is the case in many business, financial, political
and diplomatic settings, where honest behavior cannot be
assumed, but where the companies, institutions and individuals
involved cannot afford the embarrassment, loss of reputation,
and negative press associated with being caught cheating,
hence having smaller incentive.

A. Related Work

Cryptographic techniques have been used to design many
different distributed privacy-preserving data mining algo-
rithms. In general, there are two types of assumptions on data
distribution: vertical and horizontal partitioning. In the case of
horizontally partitioned data, different sites collect the same set
of information about different entities. For example, different
credit card companies may collect credit card transactions of
different individuals. Secure distributed protocols have been
developed for horizontally partitioned data for mining decision
trees [27], k-means clustering [26], k-nn classifiers [21]. In the
case of vertically partitioned data, it is assumed that different
sites collect information about the same set of entities but they
collect different feature sets. For example, both a university
and a hospital may collect information about a student. Again,
secure protocols for the vertically partitioned case have been
developed for mining association rules [37], and k-means
clusters [19], [36]. All of those previous protocols claimed to
be secure only in the semi-honest model. In [12], [22], authors
present two-party secure protocols in the malicious model
for data mining. They follow the generic malicious model
definitions from the cryptographic literature, and also focus
on the security issues in the malicious model, and provide
the malicious versions of the subprotocols commonly used in
previous privacy-preserving data mining algorithms. Assuming
that at least one party behaves in semi-honest model, they use
threshold homomorphic encryption for malicious adversaries
presented by Cramer et al. [6]. Since homomorphic encryption
is considered too expensive [28] and zero-knowledge proof
is often one of the most expensive parts of cryptographic

protocols, the protocols proposed in malicious adversarial
model are not very practical for operations on large data
items. Set operations using commutative encryption have been
proposed in [2], where the adversaries have been considered as
semi-honest parties. Recently, [13] proposed set-intersection
protocol that allows the parties to use harware tokens. The
proposed protocol is quite efficient and privacy-preserving
under the assumption that the token issuer can communicate
with the token upto a certain time limit. However, dependency
on extra hardware or trusted third party is what we want
to avoid in this work. Game theory and data mining, in
general, have been combined in [20], [34] for constructing
various data mining algorithms. Rational adversaries have also
been considered in privacy-preserving set operations [38], [3].
These protocols consider Nash equilibrium to analyze the
rational behavior of the participating entities. As in all of
cryptography, computational relaxations are meaningful and
should be considered; doing so allows us to get around the
limitations of the information-theoretic setting. So, analyzing
set operations from the viewpoint of computational Nash
equilibrium is interesting, since it gives a more realistic results.
In order to build an efficient set-intersection protocol, [33]
proposed a construction in a secret sharing manner based on
iterations. It used verifiable random functions to make sure that
there is one unique message in each iteration. But the protocol
either has to depend on a trusted dealer for the pre-processing
stage or has to use oblivious transfer. There have been several
works on game theory based MPC/secret sharing schemes [1],
[17], [25], [30], [14], [35], [18]. But [17], [35] require the
continual involvement of the dealer even after the initial shares
have been distributed or assume that sufficiently many parties
behave honestly during the computation phase. Some schemes
[1], [25], [30] rely on multiple invocations of protocols. Other
work [18] relies on physical assumptions such as secure
envelopes and ballot boxes. [14] proposed efficient protocols
for rational secret sharing. But secret sharing schemes cannot
be directly used for our purpose since they require much
heavier computation, the existence of TTP, and their set up
is different.

B. Our Contribution

In this work, we build two-party secure set-intersection
protocol in game-theoretic setting using cryptographic primi-
tives. It is assumed that parties are neither honest nor corrupt
but are instead rational and are assumed to act only in their
self-interest. Our construction avoids the use of expensive
tools like homomorphic encryption, zero knowledge proof, and
oblivious transfer. We have used commutative encryption as
the underlying cryptographic primitive which is simple and
efficient. The parties run the protocol in a sequence of r rounds
and learn the complete result at the end of the r-th round. Also,
our construction does not rely on the existence of any trusted
third party. It is also possible to use our protocol for computing
set-union operations. We also show that our protocol satisfies
computational version of strict Nash equilibrium. In short, our
protocol achieves the following:

• Either of the parties may cheat with incorrect input. But
cheating does not help any party to win the game.

• At any round earlier than r, aborting the protocol does
not give any higher pay off to the aborting party than
following the protocol.

Organization of the paper: The remainder of the paper is
organized as follows: Section II presents the background and
preliminaries. Section III describes the protocol model. Section
IV includes protocol construction. In Section V, we analyze
the protocol formally. We give some concluding remarks in
Section VI.

II. BACKGROUND AND PRELIMINARY

A. Cryptographic Considerations in Game Theory

Achieving a secure protocol is the objective in the cryp-
tographic setting. Eliminating the trusted party is one of the
main tasks while maintaining the privacy. On the other hand,
in game theory, some particular equilibrium is defined to
achieve stability. The existence of the trusted party/mediator
is a parameter setting resulting in a more desirable, but harder
to implement equilibrium concept for rational behaviors. Thus,
privacy is a goal in the cryptographic setting while in the game
theory setting it is a means to an end.

Games are treated in a modified way with a differently
defined equilibrium notions in a cryptographic setting with.
Katz, in [23], gives some examples of how this might be
done for the specific case of parties running a protocol in the
cryptographic setting. A security parameter n is introduced
which is provided to all parties at the beginning of the game.
The action of a player Pj now corresponds to running an
interactive Turing Machine (TM) Tj . The Tj takes the current
state and messages received from the other party as the input,
and outputs message of player Pj along with updated state.
The message mj is sent to the other party. In a computational
sense, it is required that Tj runs in PPT meaning that the
function is computed in time polynomial in n. Tj is thus
allowed to run for an unbounded number of rounds and, it
can be added that the expected number of rounds is also
polynomial for which Tj runs. The security parameter n is
given as input to the utility functions. Utility functions map
transcripts of a protocol execution to the reals that can be
computed in time polynomial in n. Let ∆ be a computational
game in which the actions of each player correspond to the
PPT TMs. Also, the utilities of each player are computed in
time polynomial in n. Thus, mixed strategies are no longer
needed to be considered, since a polynomial time mixed
strategy corresponds to a pure strategy (since pure strategies
correspond to randomized TMs) [23]. The parties are not
assumed to be curious in negligible changes in their utilities,
and this is an important difference between the cryptographic
setting and the setting that has been considered here.

B. Definitions

In this section, we will state the definitions of computational
Nash equilibrium and Commutative encryption. A protocol is
in Nash equilibrium if no deviations are advantageous. In other

words, there is no incentive to deviate in the case of a Nash
equilibrium. We assume that a party exhibits its malicious
behavior by aborting early or sending non-participate message.
However, a malicious party does not manipulate its own
datasets to provide wrong data. Preventing malicious parties
from sharing false data is difficult since the data are private
and non-verifiable information. To prevent such malicious
behavior, there can be auditing mechanism where a TTP can
verify the integrity of data. Further investigation is needed to
thwart this kind of misbehavior without a TTP. In this regard,
mechanism design could be a potential tool to motivate parties
to share their data. We denote the security parameter by n. A
function ε is negligible if for all c > 0 there is a nc > 0 such
that ε(n) < 1/nc for all n > nc; let negl denote a generic
negligible function. We say ε is noticeable if there exist c, nc
such that ε(n) > 1/nc for all n > nc.
We consider the strategies in our work as the PPT interactive
Turing machines. Given a vector of strategies ~σ for two parties
in the computation phase, let uj(~σ) denote the expected utility
of Pj , where the expected utility is a function of the security
parameter n. This expectation is taken over the randomness of
the players’ strategies. Following the standard game-theoretic
notation, (σ′j , ~σ−j) denotes the strategy vector ~σ with Pj’s
strategy changed to σ′j .

Definition 1: Π induces a computational Nash equilibrium
if for any PPT strategy σ′1 of P1 we have u1(σ′1, σ2) ≤
u1(σ1, σ2) + negl(n), and similarly for P2.

The following definition is stated for the case of a deviating
P1 (definition for a deviating P2 is analogous). Let P1 and P2

interact, following σ1 and σ2, respectively. Let mes denote the
messages sent by P1, but not including any messages sent by
P1 after it writes to its (write-once) output tape. Then viewΠ

2

includes the information given by the trusted party to P2, the
random coins of P2, and the (partial) transcript mes. We fix a
strategy γ1 and an algorithm A. Now, let P1 and P2 interact,
following γ1 and σ2, respectively. Given the entire view of
P1, algorithm A outputs an arbitrary part mes′ of mes. Then
viewA,γ12 includes the information given by the trusted party to
P2, the random coins of P2, and the (partial) transcript mes′.

Definition 2: Strategy γ1 yields equivalent play with respect
to Π, denoted γ1 ≈ Π, if there exists a PPT algorithm A such
that for all PPT distinguishers D
| Pr[D(1n, viewA,γ12) = 1] − Pr[D(1n, viewΠ

2) = 1] |≤
negl(n)
Commutative Encryption: Our definition of commutative en-
cryption below is similar to the constructions used in [5], [7],
[11] and others. Informally, a commutative encryption is a pair
of encryption functions f and g such that f(g(v)) = g(f(v)).
Thus by using the combination f(g(v)) to encrypt v, we
can ensure that a party cannot compute the encryption of a
value without the help of others. In addition, even though the
encryption is a combination of two functions, each party can
apply their function first and still get the same result.

Definition 3: Let ωk ∈ {0, 1}n be a finite domain of n-
bit numbers. Let D1 = D1(ωn) and D2 = D2(ωn) be
distributions over n. Let An(x) be an algorithm that, given

x ∈ ωn, returns either true or false. We define distribution
D1 of random variable x ∈ ωn to be computationally indis-
tinguishable from distribution D2 if for any family of PPT
algorithms An(x), any polynomial p(n), and all sufficiently
large n
Pr[An(x)|x ∈ D1]− Pr[An(x)|x ∈ D2] < 1

p(n)

where x is distributed according to D1 or D2, and Pr[An(x)]
is the probability that An(x) returns true.

Definition 4: A commutative encryption F is a computable
(in polynomial time) function f : KeyF ×DomF → DomF ,
defined on finite computable domains, that satisfies all prop-
erties listed below. We denote fe(x) ≡ f(e, x).

1) Commutativity: For all e, e′ ∈ KeyF we have fe◦fe′ =
fe′ ◦ fe

2) Each fe : DomF → DomF is a bijection.
3) The inverse f−1

e is also computable in polynomial time
given e.

4) The distribution of 〈x, fe(x), y, fe(y)〉 is indistinguish-
able from the distribution of 〈x, fe(x), y, z〉, where
x, y, z ∈r DomF and e ∈r KeyF .

Informally, Property 1 says that when we compositely en-
crypt with two different keys, the result is the same irrespective
of the order of encryption. Property 2 says that two different
values will never have the same encrypted value. Property 3
says that given an encrypted value fe(x) and the encryption
key e, we can find x in polynomial time. Property 4 says that
given a value x and its encryption fe(x) (but not the key e),
for a new value y, we cannot distinguish between fe(y) and
a random value z in polynomial time. Thus we can neither
encrypt y nor decrypt fe(y) in polynomial time. Note that
this property holds only if x is a random value from DomF ,
i.e., the adversary does not control the choice of x.

Remark: One-way functions exist under the discrete log-
type hardness assumption; namely, exponentiation modulo a
prime p. To be precise, given that DomF is all quadratic
residues modulo p where p is a safe prime and q = (p −
1)/2 such that p and q are primes, and KeyF is {1, 2, . . . q−
1}, the exponentiation function fe(x) = xe mod p has the
properties of commmutative encryption. That is, the powers
commute, each of the powers fe is a bijection with its inverse,
and indistinguishability is satisfied under the discrete log-type
hard problem.

III. MODEL

In a typical protocol, parties are viewed as either honest
or semi-honest/malicious. To model rationality, we consider
players’ utilities. Here we assume that F = {f : X×Y → Z}
is a functionality where | X |=| Y | and their domain is
polynomial in size (poly(n)). Let D be the domain of output
which is polynomial in size. The function returns a vector
I that represents the set-intersection where It is set to one if
item t is in the set-intersection. In other words, for all the data
items of the parties (i.e., X and Y), we will compute X ∩ Y ,
and we get I as the output of the function. Let us assume
that xl is set to 1 if P1 has item i in its private set else it
is set to 0 (similarly for yl for P2). Clearly, for calculating

set-intersection, we need to calculate xl ∧ yl for each l where
xl ∈ X and yl ∈ Y . Similarly, for set-union, we need to
calculate xl∨yl for all l. This can be rewritten as ¬(¬xl∧¬yl).
Computing the set-union is thus straight forward.

Given that j parties are active during the computation phase,
let the outcome o of the computation phase be a vector of
length j with oj = 1 iff the output of Pj is equal to the exact
intersection (i.e., Pj learns the correct output). Let νj(o) be
the utility of player Pj for the outcome o. Following [17], [14],
we make the following assumptions about the utility functions
of the players:
- If oj > o′j , then ν(oj) > ν(o′j)
- If oj = o′j and

∑
j oj <

∑
j o
′
j , then ν(oj) > ν(o′j)

In other words, player Pj first prefers outcomes in which he
learns the output; otherwise, Pj prefers strategies in which the
fewest number of other players learn the result (in our two-
party case, the other player learns). From the point of view of
Pj , we consider the following three cases of utilities for the
outcome o where U∗ > U > U ′:
- If only Pj learns the output, then νj(o) = U∗.
- If Pj learns the output and the other player does also, then
νj(o) = U .
- If Pj does not learn the output, then νj(o) = U ′.
So, we have the expected utility of a party who outputs a
random guess for the output1 (assuming other party aborts
without any output, or with the wrong output) as follows:
Urand = 1

|D| · U
∗ + (1− 1

|D|) · U
′.

Also, we assume that U > Urand; else players have almost no
incentive to run the computation phase at all. As in [14], we
make no distinction between outputting the wrong secret and
outputting a special ‘don’t know’ symbol- both are considered
as a failure to output the correct output.

IV. RATIONAL SET-INTERSECTION PROTOCOL

A. An Overview of the Protocol

Let x denote the input of P1, let y denote the input of P2,
and let f denote the set-intersection function they are trying
to compute. Our protocol is composed of two stages, where
the first stage can be viewed as a key generation stage and
the second stage that computes the intersection takes place
in a sequence of r = r(n) iterations. More specifically, in
the key generation stage the parties generate their encryption
keys. They also choose i∗ ∈ r according to some random
distribution α in which step they can learn the complete
intersection result. In every round i ∈ {1, . . . , r} the parties
exchange the encrypted data for the current round, which
enables P1 and P2 to perform the Intersection Computation.
Clearly, when both parties are honest, the parties produce
the same output result which is uniformly distributed. Briefly
speaking, the stages have the following form:
Key Generation Stage:

1We do not consider U ′′- the utility when neither party learns the output,
since ‘not learning the output’ is not the target of a rational adversary in
practice.

• Each party randomly chooses a secret key for itself,
i.e. eS ∈ KeyF for P1 and eR ∈ KeyF for P2, for
commutative encryption.

• A value i∗ ∈ {1, . . . , r} is chosen according to some
random distribution 0 < α < 1 where α depends on
the players’ utilities (discussed later). This represents the
iteration, in which parties will learn the complete result.

Intersection Computation Stage:
In each iteration i, for i = 1, . . . , r, the parties do the
following: First, P2 sends c1 to P1 and then P1 sends c2 to
P2, where c1 and c2 are the ciphertexts computed by party P1

and P2 respectively. After receiving the ciphertexts, P2 and
P1 compute the set-intersection using commutative property
of the encryption scheme. If a party aborts in some iteration i,
then the other party outputs the value computed in the previous
iteration. If some party fails to follow the protocol, the other
party aborts. In fact, it is rational for Pj to follow the protocol
as long as the expected gain of deviating is positive only if
Pj aborts exactly in iteration i∗; and is outweighed by the
expected loss if Pj aborts before iteration i∗. The intersection
computation phase proceeds in a series of iterations, where
each iteration consists of one message sent by each party.

B. Protocol Construction
As described above, our protocol Π consists of two stages.

Let p be an arbitrary polynomial, and set r = p· | Y |.
We implement the first stage of Π using a key generation
algorithm. This functionality returns required keys to each
party. In the second stage of Π, the parties exchange their
ciphertexts in a sequence of r iterations. The protocol returns
I at the end of the operations on all the data items as follows:

Key Generation Stage:
• Each party randomly chooses a secret key e1 ∈ KeyF for
P1 and e2 ∈ KeyF for P2 for commutative encryption.

• A value i∗ ∈ {1, . . . , r} is chosen according to some
random distribution 0 < α < 1 where α depends on the
players’ utilities. This represents the iteration, in which
parties will learn the complete result.

Set Intersection Computation Stage:
for all i do

1) P2 encrypts its input dataset Z2 = fe2(Y) and sends Z2

to P1.
2) P1 encrypts its input dataset Z1 = fe1(X) and sends Z1

to P2.
3) For P2, if it has not received any message from P1 then

output the result of iteration i − 1 and halt. Otherwise,
compute Z ′2 = fe2(fe1(X)) and sends the pairs 〈Z1, Z

′
2〉

to P1.
4) For P1, if it has not received any message from P2

then output the result of iteration i − 1 and halt. Oth-
erwise, compute Z ′1 = fe1(fe2(Y)). Also, from pairs
〈fe1(x), fe2(fe1(x))〉 obtained in earlier step for each
x ∈ X , it creates pair 〈x, fe2(fe1(x))〉 replacing fe1(x)
with corresponding x.

5) For P1, for x ∈ X for which (fe2(fe1(x)) ∈ Z ′1, these
values form the intersection result I = X ∩ Y .

6) P2 computes and outputs I similarly.
We provide an intuitive description of the computa-

tion phase. Let us assume that P1 has a set of data
items {Tokyo, London,Washington,Beijing} and P2 has
{Tokyo, Paris, Toronto,Rome}. At first, they encrypt each
of the items with their secret keys and exchange the ciphertexts
with each other at each round (here, we will have 4 rounds at
most to complete the whole protocol). After a party receives
the ciphertext from the other party, it reencrypts the ciphertext
using its own secret key. After they exchange such data
items at each round, due to the commutative property of the
underlying encryption scheme, they will come to know the
intersection output (1 if the otems match, 0 otherwise). For this
example, they will come to know that Tokyo is the intersected
result from round 1, and all the subsequent rounds will output
0. So, the final result they will know only is the intersected
value.

V. PROTOCOL ANALYSIS

Here we will give some intuition as to why the reconstruc-
tion phase of Π is a computational Nash equilibrium for an
appropriate choice of α. Let us assume that P2 follows the
protocol, and P1 deviates from the protocol. (It is easier to
analyze the deviations by P2 since P2 starts in every iteration.)
When P1 aborts in some iteration i < i∗, the best strategy
P1 can adopt is to output Zi

∗

1 hoping that i = i∗. Thus,
following this strategy, the expected utility that P1 obtains
can be calculated as follows:
• P1 aborts exactly in iteration i = i∗. In this case, the

utility that P1 gets is at most U∗.
• When i < i∗, P1 has ‘no information’ about correct I and

so the best it can do is guess. In this case, the expected
utility of P1 is at most Urand.

Considering the above, P1’s expected utility of following this
strategy is at most:

α× U∗ + (1− α)× Urand
Now, it is possible to set the value of α such that the

expected utility of this strategy is strictly less than U , since
Urand < U by assumption. In such a case, P1 has no incentive
to deviate. Since there is always a unique valid message a party
can send and anything else is treated as an abort, it follows that
the protocol Π induces a computational Nash equilibrium. Due
to lack of space, we omit the proof of the following theorem.
It will appear in the full version.

Theorem 1: The protocol Π induces a computational Nash
equilibrium given that 0 < α < 1, U > α × U∗ + (1− α)×
Urand, and the properties of commutative encryption.

VI. CONCLUSION

In this paper, we have proposed a privacy-preserving set-
intersection protocol in two-party settings from the game-
theoretic perspective. We have used commutative encryption
as the underlying cryptographic primitives which is simple and
very efficient. We do not rely on expensive tools like homo-
morphic encryption, zero knowledge proof, oblivious transfers,

etc. It is also possible to use our protocol for computing set-
union operations. We also show that our protocol satisfies
computational version of Nash equilibrium. Applying game-
theoretic approach for multi-party setting where parties are
allowed to collude is an interesting open problem.

REFERENCES

[1] Abraham, I., Dolev, D., Gonen, R., and Halpern, J.: Distributed Com-
puting Meets Game Theory: Robust Mechanisms for Rational Secret
Sharing and Multi-party Computation. In 25th ACM Symposium Annual
on Principles of Distributed Computing, pp. 53-62, 2006.

[2] Agrawal, R., Evfimievski, A., and Srikant, R.: Information Sharing
Across Private Databases. In the Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data- Sigmod’03, pp.
86-97, 2003.

[3] Agrawal, R. and Terzi, E.: On Honesty in Sovereign Information
Sharing. In the 10th International Conference on Extending Database
Technology- EDBT’06, pp. 240-256 2006.

[4] Bellare, M. and Micali, S.: Non-interactive Oblivious Transfer and
Applications. In Advances in Cryptology- CRYPTO’89, pp. 547-557,
1989.

[5] Benaloh, C. J. and de Mare, M.: One-way accumulators: A decentralized
alternative to digital sinatures. In Advances in Cryptology- EURO-
CRYPT’93, pp 274-285, 1993.

[6] Cramer, R., Damgard, I., and Nielsen, J.B.: Multi-party Computation
from Threshold Homomorphic Encryption. In Advances in Cryptology-
EUROCRYPT’01, pp. 280-299, 2001.

[7] Diffie, W. and Hellman, M.: New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644-654, 1976.

[8] Dodis, Y.: Efficient Construction of (distributed) Verifiable Random
Functions. In 6th International Workshop on Theory and Practice in
Public Key Cryptography- PKC’03, pp. 1-17, 2003.

[9] Dodis, Y. and Rabin, T.: Cryptography and Game Theory. In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editors, Algorithmic Game
Theory, pp. 181-207, Cambridge University Press, 2007.

[10] Dodis, Y. and Yampolskiy, A.: A Verifiable Random Function with Short
Proofs and Keys. In 8th International Workshop on Theory and Practice
in Public Key Cryptography- PKC’05, pp. 416-431, 2005.

[11] ElGamal, T.: A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, IT-
31(4):469-472, 1985.

[12] Emura, K., Miyaji, A., and Rahman, M.S.: Efficient Privacy-Preserving
Data Mining in Malicious Model. In The 6th International Conference
on Advanced Data Mining and Applications, ADMA’10. pp. 370-382,
2010.

[13] Fischlin, M., Pinkas, B., Sadeghi, A-R., Schneider, T., and Visconti I.:
Secure Set Intersection with Untrusted Hardware Tokens. In Topics in
Cryptology - CT-RSA ’11, pp. 1-16, 2011.

[14] Fuchsbauer, G., Katz, J., and Naccache, D.: Efficient Rational Se-
cret Sharing in Standard Communication Networks. In Theory of
Cryptography- TCC’10, pp. 419-436, 2010.

[15] Goldreich, O.: Foundations of cryptography: Basic applications. Cam-
bridge Univ. Press, Cambridge, 2004.

[16] Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete Fairness in
Secure Two-party Computation. In 40th Annual ACM Symposium on
Theory of Computing- STOC’08, pp. 413-422, 2008.

[17] Halpern, J. and Teague, V.: Rational Secret Sharing and Multi-party
Computation: Extended abstract. In 36th Annual ACM Symposium on
Theory of Computing- STOC’04, pp. 623-632, 2004.

[18] Izmalkov, S., Micali, S., and Lepinski, M.: Rational Secure Computation
and Ideal Mechanism Design. In 46th Annual Symposium on Founda-
tions of Computer Science- FOCS’05, pp. 585-595, 2005.

[19] Jagannathan, G. and Wright, R.N.: Privacy-preserving Distributed k-
means Clustering over Arbitrarily Partitioned Data. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining-
KDD’05, pp. 593-599, 2005.

[20] Jiang, W., Clifton, C. and Kantarcioglu, M.: Transforming Semi-Honest
Protocols to Ensure Accountability. In Data and Knowledge Engineering
(DKE), 65(1), pp. 57-74, 2008.

[21] Kantarcioglu, M. and Clifton, C.: Privately Computing a Distributed k-
nn Classifier. In 7th European Conference on Principles and Practice of
Knowledge Discovery in Databases- PKDD’04, pp. 279-290, 2004.

[22] Kantarcioglu, M., and Kardes, O.: Privacy-preserving Data Mining in the
Malicious model. In International Journal of Information and Computer
Security, Vol. 2, No. 4, pp. 353-375, 2008.

[23] Katz, J.: Bridging Game Theory and Cryptography: Recent Results and
Future Directions. In Theory of Cryptography- TCC’08, pp. 251-272,
2008.

[24] Katz, J.: On Achieving the Best of Both Worlds in Secure Multi-
party Computation. In 39th Annual ACM Symposium on Theory of
Computing- STOC’07, pp. 11-20, 2007.

[25] Kol, G. and Naor, M.: Cryptography and Game Theory: Designing
Protocols for Exchanging Information. In Theory of Cryptography-
TCC’08, pp. 320-339, 2008.

[26] Lin, X., Clifton, C. and Zhu, M.: Privacy-preserving Clustering with
Distributed EM Mixture Modeling. In Knowledge and Information
Systems, July, Vol. 8, No. 1, pp. 68-81, 2005.

[27] Lindell, Y. and Pinkas, B.: Privacy-preserving Data Mining. In Advances
in Cryptology- CRYPTO’00, pp. 36-54, 2000.

[28] Liu, J., Lu, Y.H., and Koh, C.K.: Performance Analysis of Arithmetic
Operations in Homomorphic Encryption. In ECE Technical Reports,
Purdue University, 2010.

[29] Lysyanskaya, A.: Unique Signatures and Verifiable Random Func-
tions from the DH-DDH Separation. In Advances in Cryptology-
CRYPTO’02, pp. 597-612, 2002.

[30] Lysyanskaya, A., Triandopoulos, N.: Rationality and Adversarial
behavior in Multi-party computation. In Advances in Cryptology-
CRYPTO’06, pp. 180-197, 2006.

[31] Micali, S., Rabin, M. O., and Vadhan, S. P.: Verifiable Random Func-
tions. In 40th Annual Symposium on Foundations of Computer Science-
FOCS’99, pp. 120-130, 1999.

[32] Miyaji, A., and Rahman, M.S.: Privacy-preserving Data Mining in
Presence of Covert Adversaries. In The 6th International Conference
on Advanced Data Mining and Applications, ADMA’10, pp. 429-440,
2010.

[33] Miyaji, A., and Rahman, M.S.: Privacy-preserving Data Mining: A
Game Theoretic Approach. The 25th IFIP WG 11.3 Conference on Data
and Applications Security and Privacy, DBSEC’11. pp. 86-200, 2011 .

[34] Nix, R. and Kantarcioglu, M.: Incentive Compatible Distributed Data
Mining. In IEEE International Conference on Privacy, Security, Risk
and Trust, pp. 735-742, 2010.

[35] Ong, S. J., Parkes, D., Rosen, A., and Vadhan, S.: Fairness with an
Honest Minority and a Rational Majority. In Theory of Cryptography-
TCC’09, pp. 36-53, 2009.

[36] Su, C., Bao, F., Zhou, J., Takagi, T., Sakurai, K.: Security and Correct-
ness Analysis on Privacy-Preserving k-Means Clustering Schemes. In
IEICE Trans. Fundamentals, Vol.E92-A, No.4, pp. 1246-1250, 2009.

[37] Vaidya, J. and Clifton, C.: Privacy Preserving Association Rule Mining
in Vertically Partitioned Data. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining- KDD’02, pp. 639-644, 2002.

[38] Zhang, N. and Zhao, W.: Distributed Privacy-preserving Information
Sharing. In the 31st International Conference on Very large data bases-
VLDB’05, pp. 889-900, 2005.

