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Computational reconstruction of
transcriptional relationships from ChIP-Chip
data

Ngoc Tu Le, Tu Bao Ho, and Bich Hai Ho

Abstract—Eukaryotic gene transcription is a complex process, which requires the orchestrated recruitment of a large number
of proteins, such as sequence-specific DNA binding factors, chromatin remodelers and modifiers, and general transcription
machinery, to regulatory regions. Previous works have shown that these regulatory proteins favor specific organizational theme
along promoters. Details about how they cooperatively regulate transcriptional process, however, remain unclear.

We developed an unbiased method to reconstruct a Bayesian network-based model representing functional relationships
among various transcriptional components. Independently, the positive(+)/negative(-) influence between these components was
measured from protein binding and nucleosome occupancy data and embedded into the model. Application on S.cerevisiae
ChIP-Chip data showed that the proposed method can recover confirmed relationships, such as Isw1-Pol I, TFIIH-Pol I, TFIIB-
TBP, Pol [I-H3K36Me3, H3K4Me3-H3K14Ac, etc. Moreover, it can distinguish co-locating components from functionally related
ones. Novel relationships, e.g., ones between Mediator and chromatin remodeling complexes (CRCs), and the combinatorial
regulation of Pol Il recruitment and activity by CRCs and general transcription factors (GTFs), were also suggested.

Conclusion: Protein binding events during transcription positively influence each other. Among contributing components, GTFs
and CRCs play pivotal roles in transcriptional regulation. These findings provide insights into the regulatory mechanism. Also,
the proposed method can be extended to reconstruct more accurate model as new data become available.

Index Terms—Transcriptional relationship, Bayesian network, ChIP-Chip data, histone modification, nucleosome positioning,
chromatin remodeling complex

<+

INTRODUCTION

Transcription in the context of chromatin is a complex
process with the purpose of activating a set of genes in
response to environmental stimuli. Nucleosome, the
fundamental unit of chromatin formed by wrapping
147bp of DNA around an octamer of histone proteins
[1], is known to function as the barrier preventing
the access of transcriptional components to DNA
sequences. To facilitate transcription in such context,
in addition to general transcription machinery, e.g.,
activators, Mediator, GTFs, and Pol II, the cell must
resort to other factors, such as chromatin remodelers
and modifiers. The main function of these factors is
to alter the interactions of histone-DNA or histone-
histone, by which transcription machinery can gain
access to cis-regulatory elements to initiate the process
[2], [3]. Elucidating the interplay of various compo-
nents involved in transcription is therefore a critical
step toward understanding gene regulation.
Technological advances for studying protein-DNA
interactions on large scale, e.g., the combinations of
chromatin immunoprecipication (ChIP) with high-
throughput technologies including DNA microarray
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(ChIP-Chip) or massively parallel sequencing (ChIP-
Seq), have made it possible to produce genome-
wide maps of various transcription-related compo-
nents, such as general transcription machinery and
its regulators [4], nucleosomes [5], [6], transcription
factors (TFs) [7], [8], histone modifications [9], [10],
and other chromatin components [11]. The availability
of such data offers unprecedented opportunities to
computationally uncover their genome-wide relation-
ships. For example, Wang et al. reconstructed a whole-
genome map of transcriptional cooperativity among
TFs from mapping data [12]; Dai et al. identified
statistically significant interactions between CRCs and
post-translational modifications of histone proteins in
S.cerevisiae [13]; Stenseel et al. reconstructed target-
ing interactions among 43 chromatin components in
Drosophila cells [14]. To our knowledge, however, most
of the previous works on transcriptional network
reconstruction only concentrated on investigating the
interactions of either TFs-TFs, TFs-genes, or genes-
genes [15]. Consequently, the role of each component
as well as how they cooperatively regulate transcrip-
tional process remain elusive. In other words, the
whole picture of functional relationships among tran-
scriptional components is far from complete.

We propose a novel computational method, as an
extension of our previous work on reconstructing
histone modification network from ChIP-Chip data
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[16], to address the above-mentioned problem by
reconstructing a Bayesian network-based model rep-
resenting functional relationships among various tran-
scriptional components. Firstly proposed by Friedman
et al. to discover gene interactions from expression
data [17], Bayesian network (BN) models have been
widely applied to reconstruct many kinds of bio-
logical networks, such as protein-protein interactions
[18], [14], protein signaling networks [19], and inter-
actions among histone modifications [20]. Employ-
ing the search-and-score approach, we develop an
unbiased method to infer network structure in the
context where no positive training data is available.
Moreover, based on the observation that transcrip-
tional components all work on chromatin substrate
and cause change in nucleosome organization, the
positive(+) /negative(-) influence between any two
functionally related components was measured from
binding and nucleosome positioning data and inte-
grated into the network model.

When applied on genome-wide ChIP-Chip data
of 36 transcriptional components in S.cerevisiae, in-
cluding general transcription machinery, chromatin
remodeling complexes, and histone modifications, our
method not only recovers previously confirmed rela-
tionships, e.g., Rsc9-Rfx1, Isw1-Pol II, TFIIH-Pol I, Pol
II-H3K36Me3, TFIIH-H3K4Me3, H3K4Me3-H3K14Ac,
but also suggests several new ones, e.g., Mediator-
CRCs, (CRCs,GTFs)-Pol II, which may provide in-
sights into transcriptional regulation. Resulting net-
work model showed that transcriptional components
positively influence each other. Among them, GTFs,
Mediator, and CRCs play critical roles in regulating
the outcome of the whole process. Our method can
also be extended to reconstruct more accurate model
as data on other aspects of transcription become avail-
able.

2 METHODS
2.1 Materials
2.1.1 Histone modification

Genome-wide ChIP-Chip data of 8 histone
modifications, including H3 K9Ac/K14Ac, H4Ac,
H3K4Mel/2/3, H3K36Me3, and H3K79Me3, were
taken from Pokholok et al. [21]. Modification levels
at each promoter, defined as the region from 500bp
upstream to 100bp downstream around Transcription
Start Site (TSS), were measured as the averages of
overlapping probes or the nearest one, in case of no
overlap.

2.1.2 Protein binding

Binding data of diverse representative components of
the gene regulatory machinery in S.cerevisiae, includ-
ing 8 sequence-specific transcription factors (TFs), 8
chromatin remodelers, 6 GTFs and TATA-binding pro-
tein (TBP), 2 components of Pol II, and 3 components

of Mediator, were taken from Venters and Pugh [4].
Binding profile at the promoter of these components
was assigned as the average of binding levels of cor-
responding TSS and Upstream Activating Sequence
(UAS). After removing promoters lacking binding
information and combining with histone modification
data above, we received a contingency table of 36
columns and 4498 rows for further analysis.

2.1.3 Nucleosome occupancy

Genome-wide nucleosome occupancy data at 4bp res-
olution were taken from Lee et al. [22]. Occupancy
profile for each promoter was derived as follows. At
first, the promoter was divided into 4 bins of 150bp
long. Then, bin occupancy value was calculated as the
sum of the occupancy levels of all probes belonging
to the bin. Each occupancy profile was finally repre-
sented by a 4-dimensional vector.

2.1.4 Genomic annotations

Genomic annotations of S.cerevisiae (SGD/sacCer2 as-
sembly) were extracted from the tables provided by
the UCSC Genome Browser [23].

2.2 Bayesian network

2.2.1 Definition

A Bayesian network (BN) for a set of variables X =
{X1,X2,...,X,} is a probabilistic model consisting of
two components [24], [25]:

e A network structure S, which is a directed
acyclic graph (DAG), representing conditional
(in)dependence relationships among variables in
X.

o A set P of local probability distributions associ-
ated with each variable.

Markov condition guarantees that these two compo-
nents, (S, P), encode a joint probability distribution
on X, given by:

p(x) = Hp (z:|Pa;)

in which the terms of the product on the right hand
side correspond to the local probability distributions
P and Pa; are the parents of z;. The number of parents
of each variable is usually small, so a BN provides
a compact and convenient way to represent a joint
probability distribution. In our work, we learned a BN
on discrete variables, thus local probability distribu-
tions P can be represented by Conditional Probability
Tables (CPTs). One such table specifies the probability
a variable takes a certain value given the values of its
parents.
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2.2.2 Learning BN structure.

As mentioned above, a BN contains two components.
Thus, there are two steps in learning a BN model from
data: parameter learning, which specifies the local
probability distributions P, and structure learning,
which identifies the structure S. The main target
of our work is to uncover the dependencies among
transcriptional components, hence we focus on the
latter learning problem.

Score-based search method was employed to learn
a BN structure representing the dependencies among
transcriptional components. The aim of this method is
to identify network structures that “best” describe the
data by some measure. A search procedure, starting
from an initial structure (a graph without any edges),
explores the space of possible network structures step-
by-step. At each step, it scores the corresponding
structure to identify the network with maximum
score. Because exhaustive search in the structure space
is infeasible [26], a greedy hill-climbing search was
used as our search strategy. To escape from local
maximum, a simulated annealing approach was used.

To score a candidate network, we used a Bayesian
scoring metric, which was originated from [27], and
further developed by [24] as Bayesian metric with
Dirichlet prior and equivalence (BDe) metric:

(S)|D) DNy + Nijr)
= ij+ ijk
o T o 115

where n is the number of variables, N;;; is the
number of instances in the data set D having variable
x; in state k with its parents in the ] -th instantiation

ZN ijk and F()
k=1
is Gamma function. N, i, and N, ;; have the same

meaning but correspond to prior knowledge for the
parameters. When no prior knowledge is available,
they can be estimated as N;;;, = N/(r;qi) with N is
the equivalence sample size, r; is the number of states
of variable z; and ¢; is the number of instantiations
of the parents of variable ;. Finally, p(S) is the prior
probability of the structure. In our work, we assumed
the uniform distribution on the structure S.

in current structure S, Nj;

2.2.3 Bootstrapping and selection of the -cut-off
threshold

As the search-and-score method may output a differ-
ent network on each run, the highest scored graph,
the bootstrapping method, proposed by Friedman
et al.[17], was employed to estimate the confidence
score for each edge in the resulting network. Given
a dataset D of N instances, a new dataset D' was
created by resampling from D with replacement N
times. Then a BN was inferred on D . These two

steps of resampling and inferring a BN were repeated
m times, generating m different BNs. The confidence
score of each edge was estimated as the proportion of
networks containing that edge. A threshold, named 7,
was chosen to decide whether an edge was included
in the resulting network or not.

Because there is no positive training data about the
relationships among transcriptional components, we
derived the following method to select the reasonable
value for 7. At first, the input data D was split into
two equal parts, D; and D,, T times. Each time,
three bootstrapped BNs corresponding to D, D; and
Dy, named global BN, partial BNy, and partial BN,
respectively, were learned as above. Then, we defined
a measure, acc;:

#(partial BN; ﬂglobalBN)
#(partial BN;)

,i={1,2}

where the denominator is the number of edges of
partial BN; and the numerator is the number of edges
that appear in both partial BN; and global BN .

The selection criteria was chosen as:

acc; =

2
Stability = Z SNR(acc;)
i=1
where SNR(acc;) is the signal-to-noise ratio of acc;
after T' times of data splitting and network learning
steps. It is easy to see that acc; (i = {1,2}), thus
Stability, are the functions of 7. We then chose 7 that
maximized Stability as the cut-off threshold.

2.3 Partial correlation

Assume that X and Y are two random variables and
Z = (Z1,Zs,...,Z,) is a set of controlled random
variables. Partial correlation is employed to measure
the relationship between X and Y after eliminating
the influence of Z. The relationship between X and
Z can be estimated via a linear regression model
X = ax + ZBx + px, similarly for that between Y
and Z. The partial correlation between X and Y while
controlling Z is measured as the Pearson correlation
between pux and py.

3 RESULTS AND DISCUSSION
3.1 Reconstruction of the network model
3.1.1 Discretization.

The contingency table described in Materials was used
as input for the network inference algorithm. Our
network model only accepts discrete variables, so the
next step is to transform data into discrete values.
In our work, each feature was discretized into 3
categories: “low” (0), “medium” (1), and “high” (2),
using 3 different discretization schemes. The ranges
were either Oth-10th, 11th-90th, 91th-100th percentile
(Scheme 1), or 0th-20th, 21th-80th, 81th-100th per-
centile (Scheme 2), or 0th-33th, 34th-67th, 68th-100th
percentile (Scheme 3), for each feature. For each
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scheme, following steps were employed to infer net-
work models.

3.1.2 Setting for BN Inference.

The structures of static BNs were inferred with Banjo
(http:/ /www.cs.duke.edu/~amink/software/banjo/),
which supports the network model described in
Methods. Empirical running showed that, with more
than 1,300,000 search iterations the network score
was not significantly improved, so each search was
set to finish at this number of iterations.

3.1.83 Threshold Derivation.

The procedure described in section Methods was em-
ployed to derive a reasonable threshold on confidence
scores of each inferred relationship, i.e., an edge of
the resulting BN. We randomly split input data into
two equal datasets 10 times (I' = 10), resulting in
20 datasets. For each, we ran bootstrap procedure
100 times (N = 100) and derived a corresponding
consensus BN. Each edge of the consensus BN had a
confidence score, measured by the number of times it
appeared in 100 bootstrapped BNs. Threshold = was
searched in the range of [0.5;0.9] with step of 0.05.
Table 1 shows the values of the selection criterion
Stability with corresponding values of 7 for each dis-
cretization scheme. The value of 7 and the discretiza-
tion scheme that gave the highest value to Stability,
7 = 0.6, Scheme 2, and Stability = 72.2043, were cho-
sen. To infer the network structure, bootstrap proce-
dure was run 1000 times on the whole data to identify
confidence score for each edge. Finally, after setting
7 = 0.6, we received a BN of 48 edges (Fig. 1), repre-
senting functional relationships among transcriptional
components in question. Confidence scores of the net-
work are given in the supplementary material, which
can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/Date/ID.

3.2 Transcriptional components show positive ef-
fects on each other

One disadvantage of BN in modeling biological in-
teractions is that it does not contain information
about positive(+)/negative(-) influence between the
variables. For example, it is hard to know whether
the binding of one protein would promote or inhibit
the binding of another protein from the corresponding
network model [14]. To enhance the semantic of BN
models, one can impose constraint on the sign (+ or
-) of each edge and learns it directly from model
parameters [28], [29]. This approach, however, in-
creases the cost of model reconstruction. Furthermore,
because the signs are deduced from the highest scored
graph, it is not appropriate in our context, where
the resulting model is inferred from the consensus
graph. Hence, we propose an alternative way to de-
rive the signs of the relationships among transcrip-
tional components. From the observation that these

components all work on chromatin substrate and they
either directly or indirectly alter nucleosome organiza-
tion [30], the influence between two components was
measured as the sign (+ or -) of their partial correlation
value considering nucleosome profile as controlling
variables. Concretely, nucleosome profile of the pro-
moter was represented by a 4-dimensional vector,
(Oceq, Ocea, Oces, Oceq), where Oce; (i = 1,...,4)
was the nucleosome occupancy level at bin i (see
Methods). Partial correlation was computed for the
two components based on their binding profiles with
nucleosome profile as 4 controlling variables.

The result, available in the supplementary ma-
terial on the Computer Society Digital Library at
http:/ /doi.ieeecomputersociety.org/Date/ID, shows
that almost all relationships were marked as positive
(+), i.e., regulatory components may positively influ-
ence the activity of each other. This is consistent with
the observation that during transcription, especially
at initiation stage, regulatory components are coop-
eratively recruited and the bindings of some com-
ponents may promote the bindings of the others to
facilitate the process. Notably, we found two relation-
ships marked as negative, H3K4Me3 — H3K4Mel
and PollII(Rpo2l) — TFIIA(Toa2). The former is
supported by the finding of Morillon et al. that the
appearance of H3K4Me3 was coincident with the
drop of H3K4Mel at the promoter of MET16 gene
[31]. Though, we did not find any direct evidence
for the latter one. It is possibly due to the removal
of GTFs, including TFIIA (Toa2), after the full PIC
is assembled and move to elongation step. Another
relationship also reported by Morillon ef al. is the
negative effect of Iswl on the activity of Pol II. In
[31], Isw1 is assumed to be recruited to the promoter
of MET16 to prevent the moving of Pol I and the early
onset of transcription. The link Iswl — PolII(Rpo21)
in our model, however, was assigned with positive
mark. This contradiction may be explained by the
combinatorial effects of other co-locating CRCs, such
as Ino80, Rsc9, and Swi3, on the activity of Isw1 [32].

3.3 Resulting network model confirms previously
reported relationships

Comparing the occupancy of transcription machinery
and chromatin regulators at promoter regions,
Venters et al. [4] found that they were clustered into
6 groups whose members occupied a common

set of genes, including {Isw2Ioc2,Ioc3,Rsc9},
{Tfgl,Tfal,Swrl,Tafl}, {Swi3,Ino80,Isw1,Spt3},
{Ssl1,Sua?,TBP}, {Nutl,Srb5Rgrl}, and

{Rpo21,Toa2}. Their further investigation of the
“location-linkage” between sequence-specific TFs
and CRCs showed that Rapl, Ithl, and Cin5 did
not exhibit significant co-occupancy with any tested
CRCs, while Rfx1, Xbpl, and Yap6 showed strong
co-occupancy with all tested CRCs except SWI/SNF
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TABLE 1
The value of Stability with corresponding 7 and discretization scheme

i 1 1

+ +

Hiac HAE dmed

+
L
&
+

HiKAme2

=+
<5
+
+

==
+
(oo o

=+

Fig. 1.

T Stability (Scheme 1) | Stability (Scheme 2) | Stability (Scheme 3)
0.5 36.8696 54.858 62.9467
0.55 46.7434 49.9313 48.9445
0.6 54.2189 72.2043 49.7512
0.65 43.4048 66.1212 36.767
0.7 38.7191 70.4882 37.2507
0.75 40.7891 27.0812 37.0849
0.8 32.5331 29.6679 45.0156
0.85 26.2679 15.8474 37.3976
0.9 31.011 25.5555 37.463
= &rhs
+ + +

(L

Bayesian network model of transcriptional relationships. The sign of an edge represents

positive(+)/negative(-) influence between two respective nodes.

(Swi3). Among the latter three, Xbpl and Rfx1
also displayed location-linkage with co-occupying
CRCs. These co-occupancy and location-linkage
raised the question that whether they reflect the
functional relationships among factors or just are
the indirect consequence of interactions between
those factors with other linked proteins [33].
Our network model provides support for both
hypotheses. For example, in the latter four among
6 groups above, all of their members have at
least one direct functional linkage to the others
in the same group, e.g., {Ino80 — Iswl,Ino80 —
Spt3, Ino80 — Swi3, Iswl — Spt3,Spt3 — Swid},
{Sua7 — Ssll1,Ssll — TBP, Sua7 — TBP},

{Rpo21 — Toa2}, {Srb5 — Nutl, Srb5 — Rgrl}.

In each of the other two groups, we found only
one direct functional linkage, e.g., {Ioc2 — Ioc3},
{T'fal - Tfgl}. In comparison with the reported
co-occupancy and location-linkage between TFs and
CRCs, we found only one strong direct functional
linkage Rsc9 — Rfzl (with confidence score of
0.969), suggesting that the remaining ones might
be the consequence of indirect interactions between
those factors with linked proteins (possibly the
Mediator).

Among 8 histone modifications in the model, two
had direct relationships with transcription machinery,
H3K4Me3 and H3K36Me3. H3K4Me3 is a modifi-
cation related to active chromatin in many eukary-
otic organisms [21], [9]. In yeast, tri-methylation of
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H3K4 is catalyzed by Setl methylase, which has been
recruited to active regions in chromatin by TFIIH-
associated kinase Kin28, a substance phosphorylat-
ing the Polll C-terminal domain (CTD) and me-
diating the transition between initiation and elon-
gation [34]. These relationships were confirmed by
our model by the links TFIITH(Ssll) — H3K4Me3
and TFIIH(Ssll) — PollI(Rpo21). H3K36Me3 is
reported to coincidently appear at MET16 promoter
with H3K4Me3 after induction but change quickly af-
ter the onset of transcription [31]. Consistent with this
observation, the link PollI(Rpo21) — H3K36Me3
suggests that tri-methylation of H3K36 may be con-
trolled by different mechanism that is also linked with
the recruitment and elongation of Pol II.

During transcription, there may be crosstalks
among histone modifications [35]. For example, the
crosstalk between H3K4Me3 and H3K14Ac in yeast
is known to create positive feedback loops in which
H3K4Me3 and H3K14Ac may reinforce each other
[33]. However, because BN model is limited to
the DAG class, our network only presents the link
H3K4Me3 — H3K14Ac. Also, the link H3K14Ac —
H3K9Ac suggests that H3K14 acetylation by Genb
acetyltransferase may cause the acetylation of nei-
bouring domain (H3K9), consistent with the role of
Gcenb in catalyzing these two acetylation events [36].

3.4 Pivotal roles of Mediator, GTFs, and CRCs in
trancsriptional regulation

The resulting network contains 3 root nodes, H4Ac,
TFIIB (Sua?), and Mediator (Srb5), with correspond-
ing out degrees of 3, 5, and 7 (highest overall the net-
work), confirming the importance of TFIIB, together
with other functionally linked GTFs, and Mediator in
transcriptional regulation [37], [38], [4].

The network shows that Mediator may impose its
effect on transcription through either direct or indi-
rect interactions with remodeling complexes, e.g. RSC
(Rsc9), INO80O (Ino80), and ISW1 (Isw1l), suggesting
the critical roles of these complexes in the process.
So far, CRCs are known to translocate or even re-
move nucleosomes from DNA sequences, by which
facilitating the recruitment of Pol II and transcription
machinery to the promoter [2], [3]. Their importance
in transcription is demonstrated by the fact that some
activators are dispensable for maintainance of tran-
scription when nucleosomes are unable to reassemble
at a gene promoter [39], [40]. Recent observations on
chromatin remodeling activity induced by heat shock
at several genes lead to the hypothesis that, instead
of acting individually several CRCs may function
cooperatively [41], [42], [32]. Taken together with the
result from [4], our model provides support for this
hypothesis and further suggests that the cooperation
of CRCs may be a critical step in genome-wide tran-
scriptional regulation.

One advantage of BN model is that it permits the
identification of a group of variables (parents) that
combinatorially regulate another one (the common
child). In our model, there are two groups of factors
cooperatively regulating the recruitment and activity
of Pol II (Rpo21), one is GTFs (Sua7 — Ssl — Rpo21),
and the other is CRCs (Srb5 — Rsc9 — Ino80 —
Iswl — Rpo2l). Although the importance of GTFs
and CRCs in transcriptional regulation have been
reported in literature [4], [3], several observations sug-
gested that there may be redundancy in the functions
of individual components. For example, the activation
of several genes may not need the presence of such
critical factors as TFIIA and CTD of Pol II [43], [44].
Our model confirms that, even such redundancy ex-
ists, the activities of both GTFs and CRCs are impor-
tant to transcription, from initiation stage to the onset
of elongation. This conclusion is supported by the
observation that, even partial PIC had been formed
at some genes, PIC is only fully assembled when the
-1 nucleosome is removed [45], [4].

4 CONCLUSION

Transcription in eukaryotic organisms is a complex
process requiring the involvement of a large number
of proteins, e.g., GTFs, TFs, chromatin remodelers and
modifiers. However, their detailed roles as well as
how they function together to regulate transcription
are still unclear. Using genome-wide mapping data
of the transcription machinery and histone modifi-
cations from S.cerevisine, we proposed a computa-
tional method to reconstruct an unbiased Bayesian
network model representing functional relationships
among various transcriptional components. Our net-
work model showed high consistency with previous
knowledge about their interactions during transcrip-
tion. A number of novel functional relationships was
also suggested, which may bring insights into tran-
scriptional regulation.
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