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A stack-based access control mechanism is to prevent tedraedes from accessing protected re-
sources in distributed application systems, such as Javaicweb applications and Microsoft .NET
framework. Such an access control mechanism is enforcathtitme by stack inspection that in-
spects methods in the current call stack for granted peioniss Nowadays practiced approaches
to generating policy files for an application are still malhudone by developers based on domain-
specific knowledges and testing, due to overwhelming teathohallenges involved and engineering
efforts in the automation.

This paper presents a formal framework of access righty/aisdior Java applications, which
includes both policy generation and checking. The anabyfsilicy generation automatically gen-
erates access control policies for the given program thagssarily ensure the program to pass stack
inspection. The analysis of policy checking takes as inpublecy file and determines whether ac-
cess control in the concerned domain always succeed or ritayli@ answer can either help detect
redundant inspection points or refine the given policied.oAbur analysis algorithms are novelly
designed in the framework of conditional weighted pushdeystems, and are expected to achieve
a high level of precision in the literature.

1 Introduction

Access control is often the first step to protect safetyealitsystems. In modern Web platforms, such
as Java-centric web applications or Microsoft .NET frammyvapplications comprise components from
different origins with diverse levels of trust. #tack-based access contmlechanism is employed in
an attempt to prevent untrusted codes from accessing pedteesources. Access control policies are
expressed in terms permissionghat are granted to codes grouped by different domains, ewelapers
can set checkpoints in their programs, and access contenifisced dynamically at runtime tstack
inspection When a stack inspection is triggered, the current calkstéltt be inspected in a top-down
manner to see whether methods in the stack is granted thigg@guermission until a privileged method
is found. A caller can be marked as being “privileged”, anel gskack inspection stops at a caller that is
marked as “privileged”. If all callers have the specifiedmission, access control is passed and stack
inspection returns quietly, and the program execution vélinterrupted immediately otherwise.

From a practical perspective, such runtime inspection naage a high overhead cost. If access
control at some checkpoints always succeed at runtimeptiigme overhead can be reduced by remov-
ing such redundant checkpoints. Moreover, to our knowledgeacticed approaches, nowadays policy
files are still generated manually by developers based oranieapecific knowledges, and measured by
a trial-and-error testing as to whether the policy file aiaive application to run properly. Since testing
cannot cover all program behaviors, the application coudfunction due to the authorization failures
given the misconfigured policies. On the other hand, if tHeEpdile is too conservative, i.e., some codes
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2 A Formal Framework for Access Rights Analysis

are granted permissions than necessary, it violates ticalkm PLP (Principle of Least Privilege), and
such codes become vulnerable points and can be manipulatedlizious attacks.

Example 1.1 (Semantics of Java Stack Inspectionfonsider the code snippet in Flg. 1.1 that we bor-
row from [7] and modify to explicitly show the control flowsdioeckpoints of stack inspection.

public class Lib {
private static final String dir ="C:” ;
private static final String logFile ="/log.txt”;
private static final String domain ="JAIST.AC.JP";
public static void createSocketf{inal String host) throws Exception {
checkConnect(host, 8080);
Priv op = new Priv(dir, logFile);
AccessController.doPrivileged (op);
System.out. printin{Enough permissions granted .’
}
public static void checkConnect(String host jnt port) throws Exception {
SocketPermission p =new SocketPermission(host# +port,”connect”);
13| AccessController.checkPermission (p);
14 1}
15| class Priv implements PrivilegedExceptionAction{
16 private final String dir;
17 private final String name;
18 Priv(final String dir, final String name) {
19 this.dir = dir;
20 this .name = name;

© 0 N O A W N R

B e
N B O

22 public Object run() throws Exception {

23 String fn = dir + File.separator + name.substring (1);
24 checkAccess (fn);
251}

26 public static void checkAccess(String fn)throws Exception {
27 FilePermission p =new FilePermission(fn’write” );

281 AccessController.checkPermission (p);

ol 1}

30| public class Faculty {

31 public void connectToFaculty ()throws Exception {

32 String host = Lib.domain.toLowerCase () ¥ faculty”;
33 Socket s = Lib.createSocket(host);
ul 3}

35| public class Student {
36 public void connectToStudent ()throws Exception {

37 String host = Lib.domain.toLowerCase () ¥ student”;
38 Socket s = Lib.createSocket(host);
39 1}

Figure 1: An Example for Java Stack Inspection

In Fig. [1.1, there are two library classekib and Priv, and two application classeBaculty and
Student. At the beginning of each program execution, the Java VMyassill classes along with their
related methods to a set of permissions specified by a sgqaiicy. At runtime, the two clients require
to connect to their corresponding domains by creating a esb(kine[33 and 38, respectively). Such a
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request will trigger stack inspection at Linel13 by the ARéckPermission(Permission) from the class
AccessController with taking a single parameter of tygermission or its subclassesStudent is required

to posses the permission perm“ SocketPermission(jaist.ac.jp/student:8080, connect)’ and Faculty

is required to hold perm="“ SocketPermission(jaist.ac.jp/faculty:8080, connect)’.

Moreover, the socket construction process should be logged /log.txt by the system for later
observation. A file access permission pgrat* FilePermission(C:/log.txt, write)” is required on the
system to perform this task, and another stack inspectitnigigered at Lind 2B. But note th&ttudent
and Faculty reside on the current call stack yet should not posses pefmavoid authorization failures
while logging, Lib invokes the APHoPrivileged (Line[8) from the clas#\ccessController with passing
an instanceop of Priv, and by Java semanticsp.run() will be executed with full permissions granted
to its caller, and the stack inspection stopsadateSocket without requiring perm from clients ofLib.

As shown in Examplé_1l1, analysis on security policies igerexdl around reasoning permissions.
A permission analysis demands points-to analysis for ifyémg objects ofPermission type, and string
analysis for resolving string parameters of relevant sgcéPls. Especially, since string operations
are prevalent, e.g., string variables may be created threogcatenation (Line_28, B2, 137), substring
operation (Lind_23), case conversion (Lind B2] 37), etcingtanalysis plays an important role. It is
known challenging to design a precise and scalable algoritn either string or points-to analysis. On
the other hand, it is not clear how to utilize these analysiilts seamlessly in access rights analysis,
and we are aware of no such investigations.

This paper presents a formal framework of access rightysisdior Java applications, which in-
cludes both policy generation and checking. The analyspgotify generation automatically generates
access control policies for the given program that necigsarsure the program to pass stack inspec-
tions. The analysis of policy checking takes as input a gdile and determines whether access control
in the concerned domain always succeed or may fail. The ansaveeither help detect redundant in-
spection points or refine the given policies. All of our as@yalgorithms are designed in the framework
of conditional weighted pushdown systerns|[13] that are loi@paf reasoning properties over the stack.

Our analysis framework has many novel features. First ofvedl define an abstraction over the
calling contexts that are uniformly adapted in contexts@@m string and points-to analysis, as a bridge
for different analysis modules in the same analysis franmkewdoreover, instead of conducting analysis
on call graphs as usual, we model the analysis problem irstefra type of context-sensitive call graph,
taking into account the dynamic features of Java languag@eether reason why call graph does not
suffice for the analysis is that Java objects (here we areetnad with objects of thBermissiortype) can
be created and referred to anywhere in the program, by dijreccessing the heap, i.e., field access, or
by (ii) passing and returning parameters to method caltsatteefinished before stack inspection. In either
case, the data flow of permission objects is beyond the scofe @urrent call stack that is inspected
by access control. In view of the aforementioned reasoms$edial of conducting analysis on context-
sensitive call graphs alone, we also unify the program modet dependency graphs. The combined
model enables us to precisely infer permission requiresnainéach checkpoint of stack inspection. We
expect our analysis algorithms enjoy a high precision irlitbeature.

The rest of our paper is organized as follows. Sediion 2 Iecainditional weighted pushdown
model checking. Sectidd 3 defines abstractions on the progral the system of security policy, as well
as pre-assumed points-to analysis and string analysisioSEcformalizes our idea of policy generation
and policy checking regarding stack inspection problemd, $ectiol b gives realization algorithms in
the framework of conditional weighed pushdown systemsatedlwork is discussed in Sectigh 6, and
we conclude in Sectidn 7.
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2 Preliminary

Definition 2.1 A pushdown systens”? is (P,I", A, po, (), where P is a finite set of control locatiorsjs

a finite stack alphabefy CP x T x Px " is a finite set of transitions, g P is the initial control location,
and ap € I'* is the initial stack contents. A transitiop, y,q, w) € A is written as(p,y) — (g, w). A
configurationis a pair (g, w) with g€ P andw € I'’*. A set of configurations C regularif {w | (p,w) €

C} is regular. A relation=- on configurations is defined, such tHat yo') = (q, ww')for eachw’ € I'*

if (p,y) — (9, w), and the reflective and transitive closure=efis denoted by=*.

A pushdown system can be normalized (or simulated) by a pwahdystem for whichw| < 2 for
each transition rul€p, y) — (g, w) [19]. In sequel, we always assume such normalized forms.

Definition 2.2 A bounded idempotent semiring” is (D, ®, ©,0,1), where0,1 € D, and

1. (D,®) is a commutative monoid withas its unit element, ang is idempotent, i.e.,@a—=a for
allaeD;

2. (D,®) is a monoid withl as the unit element;

3. ® distributes overp, i.e., for all a b,c € D, we have
a® (boc)=(avb)® (a®c)and(boc)®a=(bea)®(c®a);

4. forallae D,a®(_): O®a=0;

5. A partial orderingC is defined on D such that@ b iff a®b = a for all a,b € D, , and there are
no infinite descending chains in D.

By Def. [2.2, we have thal is the greatest element. From the standpoint of abstrepirtation,
PDSs model the (recursive) control flows of the program, imteidements encodes transfer functions,
corresponds to function composition, angoins data flows. A weighted pushdown system (WPDS) [18]
is a generalized analysis framework for solving meet-@lepath problems for which data domains
comply with the bounded idempotent semiring.

Definition 2.3 A weighted pushdown syste” is (#,.7, ), where? = (P,I", A, po, wy) is a push-
down systemy = (D,®,®,0,1) is a bounded idempotent semiring, andX — D is a weight assign-
ment function.

Let o = [ro,...,rk] with r; € A for 0 <i < k be a sequence of pushdown transition rules. A value
associated witl is defined byal(o) = f(ro) ®...® f(rk). Givenc,c’ € P x I*, we denote byath(c,c’)
the set of transition sequences that transform configunsfimmc into ¢'.

Definition 2.4 Given a weighted pushdown systéfth= (#,.7, f) where &2 = (P,I", A, po, ap), and
regular sets of configurations,’ C P x I'*, themeet-over-all-pathproblem computes

MOVP(ST) =@{val(o) | o € path(s;t),se St T}

We refer to weighted pushdown model checking@VP (S T,#") sometime when there are more
than one weighted pushdown systems. WDPSs are extendgohtditional WPDSén [13], by further
associating each transition with regular languages thetifypconditions over the stack under which a
transition can be applied.
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Definition 2.5 A conditional pushdown systerns &2; = (P,I",A¢, 4, po, o), Where P is a finite set of
control locations[ is a finite stack alphabe¥ is a finite set of regular languages overAc: C P x I x
% x P x I*is a finite set of transitions, goc P is the initial control location, andwy, € '* is the initial

stack contents. A transitiofp, y,L,q, w) € A is written as(p, y) & (g, w). A computation relation=
on configurations is defined such thgt, yo') = (g, wa') for all o’ € I'* if there exists a transition

r:(p,y) L (g,w) and ' € L, written as(p, yw') = (q, wa'). The reflective and transitive closure of
= is denoted by=-%. We define cpréC) = {¢’' | ¢’ =% c,c€ C} and cpost(C) = {c' |c={c,ceC}
forany CC P xT*.

Definition 2.6 A conditional weighted pushdown syste(@@WPDS)%#; is (%,.7, f), where &2, =
(P,[,%,Ac, po, wo) is a conditional pushdown systen¥’ = (D,®,®,0,1) is a bounded idempoten-
t semiring, and f A¢; — D is a weight assignment function.

We lift the model checking problem on WPDSs in Definition 240WPDSs and refer it bMIOVP.

3 Abstraction and Prerequisites

3.1 Abstraction of Java Programs

Definition 3.1 (Program Points) We denote by# the set of all methods in a program, and 1 the
set of program line numbers each of which contains a statemlest Tag= {c,r}. A program point
is characterized by its enclosing methodem#, line number le ., and a tage Tag, and the set of
program points is denoted by ProgPoiit.#Z x ¥ x Tag. Moreover, we denote by
e CallSiteC .7 x £ x {c}: the set of call sites, such that | contains a method invocafor any
(m,l,c) € CallSite; and

e RetPointC .7 x £ x {r}: the set of return points of method invocations, such tmat,r)
RetPoint is the unique return point of a call s, |, c) € CallSite; and

We use variableg to range oveiProgPoint and { to range oveRetPoint Let N denote the set
of natural numbers. For any finite s8t= {s,...,s}, we definel1 S= {s,s;...s, | {io,...,ik}isa
permutation ofS}. For any wordw = s,,S; - .S, €S with 0 < j <kand 0<ij <k, we defineX(w) =
{S0,S15-+-»S; }-

Definition 3.2 (Call Graph) A call graph G= (N, E,s,nchec is a directed graph, where N ./ is the
set of nodes, E- .Z x CallSitex .# is the set of edges,sN is the initial node with no incoming
edges, and feck<€ N is the final state with no outgoing edges which in particdanotes the method
checkPermission from the classAccessController. We also denote byph, € N the methodloPrivileged
from the classAccessController. \We write n— n' if (n,x,n’) € E, and let—* be the transitive and
reflective closure of>.

G s built by call graph construction algorithms which is knote be cyclically dependent of points-
to analysis. If call graph construction detects tiatalls ' at linel, we have(m, (m,I,c),m’) € E.

Definition 3.3 (Calling Contexts) We denote by Context RetPoint the set of program calling contexts
in terms of call site strings. Given a call graph-6(N, E, s, ncheck), the calling contexts of a method m
is defined byp : .# — 2°°MX sych that

o(m) = {lk...(1{o € Context| ke N:mp =S, Mg 1 =m,
(mi, Xi,Miy1) € E, xi = (M, l;,¢), & = (my,;,r), for each0 <i <k}
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The calling contexts of a method (equivalently, local vialéa within this method scope) is the (finite)
set of finite yet unbounded sequences of return points thati@aa tom from the program entry.

Definition 3.4 (Abstract Calling Contexts) We denote by AbsCtxt 2ReétPoint the set of abstract pro-
gram calling contexts in terms of sets of call sites alonghezall sequence, as an over approximation
of calling contexts Context. An abstraction function Context— AbsCtxt is defined by (c) = X(c)
for each ce Context. A concretization function: AbsCtxt— 2°°"eXtjs defined byy(C) = N C for
each Ce AbsCtxt. The powerset extension afand y are denoted by : 2C0ntext _, pAbsCtxt gnq
jf : 2AbsCixt_, oContext ragpectively.

The abstract calling contexts of a method m is defineghyhoq: .# — 2°P5C™ such that

@nethod M) = {Z(ctxt) | ctxt € @(m),and ¢ & @nethod M) if ¢’ C ¢ and c€ @nethod M) }

Itis not hard to conclude th&eConex &, i7, 2AbsCY) js 4 Galois connection in abstract interpretation.

3.2 Pre-assumed Analysis

Our framework for access rights analysis assumes congesitive points-to analysis, context-sensitive
string analysis. The precision of our analysis depends @pttécision of points-to and string analysis.

Definition 3.5 (Context-Sensitive Points-to Analysis)Given a reference variable v of the methodem
# , a context-sensitive points-to analysis, denoted byvpteeturns the finite set of abstract heap object-
s that v may refer to at runtime under certain calling corgeXach object @ pta(v) is represented as a
triplet o= (typeloc,c), where type is the object type, loc is the object allocatita and ¢€ @nethod M)

is the calling contexts under which the object is constriceadU ypeloc.c)cptav) 1€ = Pnethod M)

Definition 3.6 (Context-Sensitive String Analysis)Given a string variable v of the methoden#, a
context-sensitive string analysis, denoted b sareturns the finite set of string constants that v may
contain at runtime under certain calling contexts. Eachmeat in sév) is represented as a paisvc),
where sv is the string value and=cgethod M) is the calling contexts under which sv is constructed, and

Ulsuojesav) {c} = @nethod M).

The two dominating approaches to obtaining context-sgitgiin program analysis are known as
context-cloning and context-stacking. The former resesibb inline expansion that copies the called
procedures at each call site if possible and as such has aremtHimit if there exist recursive proce-
dural calls. The latter refers to model the program as a pwghdystem and the analysis problem as
model checking problems, e.g., in the framework of WPDSgacé&the stack of pushdown systems are
unbounded, it can naturally model recursive procedure.call

It is relatively straightforward to adapt a stacking-bas@alysis to our needs, since WPDSs have
the advantage of handling data flow queries as regular lggguaf pushdown configurations. Consider
the stacking-based points-to analysis Japot [12]. For ezfelnence variablg of the methodn, we can
computepta(v) by | MOVP(S, Tex) WhereSis the source configurations, algy = { (v, mw) | Z(w) C

Tetxt

ctxt} for eachctxt € @nethod M). For string-analysis, the analysis [n [5] based on contéxting (k-
CFA) can be reformulated in the framework of WPDSs, and tliapied to a context-sensitive analysis
similarly to points-to analysis.

To adapt cloning-based analysis to our needs demands atoluring method that is in line with
approaches ok-CFA or approximating loops. Given a call gragh= (N,E) that is commonly the
starting point of program analysis. We construct anothaplgGcione = (Nclone, Ecione), WhereNgione €
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2AbsCXt N is the set of nodes, anBone C Nelone X CallSitex Ngone is the set of edges. For each
ne N, (ctxt,n) € Nejone for eachctxt € @nethod ), and((ctxt,n), (ctxt’,n')) € Egone if ctxt C ctxt’ and
(n,n’) € E for any (ctxt,n), (ctxt',n’) € Ngjone. We can then obtain context-sensitive analysis by applying
context-insensitive analysis (jone €.9., the well-known points-to analysis framework Spdr¥] [can

be lifted to a context-sensitive analysis easily by clonisgooints-to graph (i.e., product with the call
graph) in this manner, and the most influential string angalySA (Java String Analyzei)|[6] can be lifted
to a context-sensitive counterpart as well by cloning isfrend flow graph, with no need to modify the
back-end analysis algorithms.

3.3 Abstraction of Policy System

Definition 3.7 (Policy System)Let Domain denote a finite set of protection domains, and Betemote
the universe of all permissions involved in the given pragr&\Ve denote by

e dom:.# — Domain the mapping from methods to their protection domains
e perm: Domain—; 2P¢'MSthe mapping that grants a set of permissions to each proiecomain.

Let permbe extended element-wise and let pokeyermo dom.

Recall that, all classes in a protection domain are gramedame set of permissions. Consequently,
all methods and all program points in it will possess the sgemnissions granted. Especially, all
methods belonging to the system domain, e.g., metlo®divileged from the clas#\ccessController, are
granted all permissions iRerms

Definition 3.8 (Check Points) We define CheckPoint as the set of call sites that directhtttaimethod
checkPermission, by CheckPoint= {x | 3n € N, x € CallSite: (n, X, Ncheck) € E}.

Let @perm: Perms— 2Context he g mapping from each permission to the calling contexteuwtiich
the permission is constructed. We genefgemsand ¢erm as follows. Initially,Perms= 0, and@yerm=
Ax.0. For each call sitgy = (m,I,c) € CheckPointwherel is supposed to contain the expression of
“checkPermission(pv)”, we first call points-to analysipta(pv). For each(Type,loc,c) € pta(pv),
the heap allocation site referred tollmg is supposed to contain expressions in one of the followimngyfo
according to the Java API specification,

npv = new Type(target,action) (1)
npv = new Type(target) (2
npv = new Type() 3)

Assumeoc belongs to the methoal’. We add each of the following permissigermto Perms

(Type,sw,SWw) Wwhere(sw,C1) € sa(target), (Sw,Cy) € Saaction),C1 = Cp,
and @erm( perm = @erm(perm U {c; } for (1)
perm= < (Type,SV) where(syc') € sa(target)
and @erm(perm = @erm(perm U {c’} for (2)
Type where@erm( Perm = @oerm(PErm U @nethod M) for (3)
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4 Formalization

Definition 4.1 (Context-Sensitive Call Graph) A context-sensitive call graphG= (G, @dge) CONSists
of a call graph G= (N, E, S, Nchecr) @nd @ mappingfedge: E — 24PSC™ such that for each node@N,

® (dgd€) C @methodN) for each edge e (n, x,n’) € E; and
® Ue—(nx,m)cE Redgel€) = @nethod N).-

We define a mappin@oyte : (—*) — 2225y, for each n—' v,

o 1) = | o= 11) | fi=1

oute {ctxtuctxt’ | ctxt € @oue(N =1 n"),ctxt’ € @eagdn” — 1)} ifi >1
Definition 4.2 (Valid Paths) Given a context-sensitive call graph.G= (G, @dge) Where G= (N, E,s,
Ncheck), We define

¢ the set of paths from s to a node=rN by
pathn) = {epe;...&x | IkeN:ng=s, nkr1 =n, & = (N, xi,Ni+1) € E for each0 < i <k}
e the set of subsequences of pabhthat are truncated by the nodg as

tpath(n) = {ee1e...6 | IKEN:ng =S5, N1 =N, No =" Npriv,
€ = (Npriv, X0, N1),& = (Ni, Xi, Ni+1) for eachl <i <k}

¢ the set of valid paths from s to a nodeiN by
vpath(n) = {o € path(n) | 3ctxt € @oue(0) : Ctxt C siteg o)}

where given a node a N, we define sités) = {{ = (n,I,r) |e= (n,x,n') € Z(o) andx =
(n,1,c)} for a patho = epe;...e¢ € path(n) with ke N.

A context-sensitive call graph is constructed during cedlpdp construction, given a context-sensitive
points-to analysis. One such algorithm is given(in [13], vehier each call edge € E, ctxt € @qge€)
specifies a calling context under whiehis valid. In Java, due to polymorphism and late biding, that
target method of a dynamic dispatched call (etd.un(---)) depends on the runtime type of receiver
objects (i.e.,r). Therefore, a call edge is conditioned by receivers’ ototinformation (which is
further conditioned by calling-contexts), so does a patihéncall graph. We refer td [13] for details, but
illustrate in Examplé_1]1 the semantics for “privileged'ties specific to access control.

Example 4.3 Consider the code snippet in Fig. 2 that consist in methogdsmy OnePrivActiorrun(),
AnotherPrivActiorrun(), and nyiy, Ncheckk Methods are grouped by dotted circles. OnePrivAction and
AnotherPrivAction are classes that implement the interf&ivilegedAction. There are call edges
{e1,---,e5}, €.9., @ = (M, (M, l2,¢) and g = (OnePrivActionrun, (OnePrivActionrun,Is, C), Ncheck)-

We do not explicitly show the call site insidgiin  Since doPrivilege and checkPermission are static,
@dgd&) = Ofori e {1,2,5,6}. AssumgOnePrivActionly, ctxt) € pta(x) and(AnotherPrivActionls, ctxt')
pta(y). We have ctxe @eqgd€z) and ctxt € @agd€s).
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OnePrivActionrun()

: |y :x=new OnePrivActiof - - )
3._I2 : AccessControlledoPrivilegeXx) :

...................................... .t T T T T T IR
//do privileged things E
I : AccessControllecheckPermissidp: -

: //do privileged things :
I5 : AccessControllecheckPermissiap: -

14 AccessControlledoPrivilegey) :

AnotherPrivActiomrun()

€4 €
Figure 2: An Example for Context-Sensitive Call Graph

Definition 4.4 (Dependency Graph)Given a program in SSA (Static Single Assignment) form. Let
Tperm denote the class (or typ&ermission or any of its subclassses. Léfyoc C £ be the set of
program lines that allocate objects ofehn and let AllocPernt . x ZLajioc.
A dependency graphds, of the program is a directed grapiNgep, Edep, Siep, Fdep), Where Nep C
A x 2 is the set of nodes,dgp € Nyepx Ngepis the set of edgesy& = AllocPerm is the set of initial
nodes with no incoming edges, angt FC CheckPoint is the set of final nodes without outgoing edges.
Moreover, Fepis the smallest set that contaifis n') where n= (m,l) and i = (n?, 1) if the variable
(more specifically, local variables like x, static fieldselik f, and instance fields like. 6 where o denotes
the abstract heap object resolved by points-to analysis3fefence type pkrm defined in | is used irf |

Definition 4.5 (Dependency Paths)Give a dependency graphies = (Ndep, Edep, Suep; Fdep), We define
the set of dependency paths froga 30 a node ne Nyep by

dpath(n) = {epe1...& | IKeN:ng € Syep, Mkt1 =N, & = (N, Ni1) € Egepfor each0 <i <k}

Definition 4.6 (Relate Dependency Paths to Permissions}iven a context-sensitive call graph.G=
(G, @edge) Where G= (N, E, s, Nchecl), and a dependency graphy& = (Ndep, Edep, Siep, Fdep)-

Given a node re Ngep, and a dependency patin= epe; - -- & € dpath(n) for k € N, where ¢ =
(ni,niy1) for each0 <i <k, and = (m;, ;) for each0 < j < k+ 1. We define

W =4,

where0 <ig <ip--- <ij <k+1, 0< j <k+1, and for each j € {io,---,ij}, &, = (M, 1, 1),
(Ni—1, (M, li,)) € Edep @nd |1 is @ method return statement. Specificatly,= ¢ if such i, does
not exist .

No = (Mo, lo) is the initial node ofrt. Leto = g€, - - - €, € vpathmy) be a path from s to gin G for
h e N, where ¢= (ni, x,n_ ) for each0 <i < h. We define

W = X0 Xn

Let [,y denote(m,1,c) € CallSite and let}, ) denote(m,l,r) € RetPoint. The set of all such
parentheses induced by CallSit®etPoint is denoted by.t;. We sayrr matches witho if @ w, called
avalid flow, is a context-free language ovEgs. The set of all suclw for ris denoted by mat¢im).

Given a permission perm Perms, we sayr relates toperm, if there existéi) o € match(m), i.e.,
matches witho, and (i) ctxt € @perm(perm) such that ctxt= sitego).
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Definition 4.7 (Relate Valid Paths to Dependency Pathslziven a context-sensitive call graphG=
(G, @dge) Where G= (N, E, s, Ncheck), and a dependency graphytp = (Ndep Edep, Siep, Fdep)-

Given a node re Ngep, and a dependency patin= epe; - -- & € dpath(n) for k € N, where ¢=
(ni,niy1) for each0 <i <k, and n = (mj,l;) for eachO < j < k+ 1. We define noder) = {m |0 <
i <k+1}.

Given anode e N, and a patho = epe; - - - &, € vpath(n') for some he N where = (n{, x/,m{_,)
for eachO <i < h, we define nod¢s) = {m{ |0<i <h+1}

We sayo relates tor if there exists a patho’ € match{m) such that nodds) C nodegrm) U
nodes$a’) U {Ncheck} -

Definition 4.8 (Policy Generation) We define policy.# — 2P®™Shy, for each valid patlw € vpathneneck),
and each dependency pathe d path(n) for each nc Fyep

perme policy(m) for each me nodego’) if nyiy € Nnodego), o relates tort, and rtrelates to perm

perme policy(m) for each me nodega) if nyy ¢ nodego), o relates torr, and rrrelates to perm
and o’ is a suffix ofo for someg’ € t path(ncheck)

Note that bothirand o in Def.[4.8 can be infinitely many.

Definition 4.9 (Policy Checking) Given a policy. .# — 2°¢™Sand a policy : .# — 2°¢'"MSgenerated
by Defl4.8. All stack inspections triggered in the programiays succeed if poli¢gm) C policy(m) for
each me .#, and may fail otherwise.

Example 4.10 Consider the code fragments in Fig. 3, where in the depernydgraph each node corre-
sponds to a permission manipulation statement and conthégténe dashed arrows. The underlying call
graph is shown for which each node is grouped by the dottedkesitand connected by the solid arrows.
The following permissions are involved in this example.

perm : SocketPermissighdomain: 80”,“connect) at“npv=expr,

perm : FilePermissioii“ public’,“read”) at“npv=expr/

permy : FilePermissiori“ personat ,“read”) at“npv=expt/
where perm is created and referred to by methods in the current call lstathen the inspection is
triggered, whereas pernpernyg are created/passed by finished method calls that do noteesidthe
current call stack of stack inspection, and stored/reférby field access such that their data flows are
beyond the control flow to the the checkpoints. By Defl 4.6/aAdwe have the dependency path
T (4)(5)(6)(7)(9)(10)(11) relates to the valid patlw : (0)(1)(3) and thus to perm and the valid path
o’ :(0)(11)(12) relates torrand thus to perm Other permission requirements can be similarly inferred.

5 Realization Algorithms

5.1 Policy Generation

Definition 5.1 (Modelling Context-Sensitive Call Graph) Given a context-sensitive call graph.G=
(G, @edge) Where G= (N, E, s, ncheci), We define a conditional pushdown systefa= ({-},I', 4, A, {-},9),
where the set of control locations is a singletpr}, the stack alphabdt C .# U RetPoint is encoded
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from nodes of G and return points. We wr'cteg w for each(-,a,C,-,w) € Ac. A is constructed as
follows, for each edge € (n, x,n’) € E wherex = (n,1,c), let{ = (n,l,r), we have

ns3 n'¢
where G= \/ \/ r*ylor*ylrlr*“'y'\ctxt\r*

CtXt:{K)«,Vl«,"' 7”(3[)(1\ }E(ﬂsdg&e) {i(),il,"' MCIX[‘ }GE(CtXt)

where=(S) denote the set of all permutations {0,1,--- ,|S} for a finite set S, and/ denote the set
union of regular expressions.

Definition 5.2 (Modeling Dependency Graph)Give a dependency graphy&= (Ndep, Edep, Step: Fdep)s
we define a conditional pushdown systéth= ({-},I",¢”,A), wherel; is constructed as follows, for
each edge e- (n,n’) € Egepwhere n= (m,1) and i = (m,I"), we have

mccieand(nf,l’,r)c%nf

if | is a method return statement, where€ ", i.e., no conditions.

Definition 5.3 (Program Modeling) We define a conditional pushdown systéfgrog = ({-},I, €prog,
Dprog, {-},5) wherel" C .# x RetPoint,¢proqg = ¢ U%", and Aprog = Ac U AL, by combining the condi-
tional pushdown syster’; and 22, generated for @ and Gyep, respectively.

Definition 5.4 (Weight Domain) We define a bounded idempontent semitifign= (Dgen, Bgen @gen, C_), I),
where Quen C 22727 x2"x2" {0}, and1 = {(0,0,0,0)}. For any dd’ € Dy, d®gend’ = dUd’, and
d ®gend/ = {(Ml U Mi \ Mé, Ms, M3 U Mé, Mg U Mi) | (M]_, My, M3, M4) ed, (MZ/L’ Mé, Mé, MA) S d/}

It is not hard to prove that botR, and®n, are associative, ané, is commutative and distributive
over ®m, which holds for a bounded idempontent semiring.

Definition 5.5 (Modeling Policy Generation) We define a conditional weighted pushdown systge=
(Pprog: Lgen Tgen). For each transition ruled € Agen, fgen(d) is defined as follows,

e if disapushrule e m'(m,1,c),

{ fgen(0) = {({m}, 1,0, {m})}, if m = npriy;
fgen(0) = {({m},0,0,{m})}, otherwise

e if disapop rule ms e and((m,l),(n,1")) € Eqep, fgen() = {(0,0,{m'},0)}.
e otherwise fen(3) =1

Definition 5.6 (Algorithm for Policy Generation) Given a conditional weighted pushdown syst#ga, =
(ZPprog,Zgen fgen) constructed by Def(_5.5. For any=d (My,M2,M3,M4) € MOVP({(-,9)}, T, #prog)
where T= {(-,Ncheck) | w € I}, and perme Perms, we say perm is required by d if there exists €txt
@perm( perm) such that ctxtc M. For each me M1\ M3, we have perng policy(m) if perm is required by d.

For eachd in Def.[5.6,My is the calling history before stack inspection is triggeidg is the calling
history truncated by, M2 is supposed to be 0 by our modeling, aviglis methods that do not reside
on the current call stack.



12 A Formal Framework for Access Rights Analysis

5.2 Policy Checking

Another popular need in access rights analysis is checkimgtiver the program function properly, e.g.,
codes from trusted domains always pass access controh gipelicy file that is commonly generated
by the application developers. By Dé&f. K.9, one approactolicypchecking is first generating a policy
required by passing stack inspections by Def.] 4.8, and theakcwhether the given policy includes
the required policy. Instead of generating the requiredcpoh advance, an alternative is on-demand
checking whether all methods in the current call stack aaatgd required permissions at checkpoints.
The two approaches to policy checking is quite in line with tivo ways of implementing the stack
inspection mechanism by virtual machines in an eitrageror lazy manner.

We present the on-demand checking algorithm in this sec@wven a trusted domain, our approach
consists of three steps of

e determining analysis pointsithin codes of the given domain that trigger stack insgegtand
¢ identifying permission requiremerits/olved in policy checking on each analysis point; and

e checking policywhich determines whether stack inspections triggered bgrecerned domain
always succeed or may fail.

5.2.1 Determining Analysis Points

Definition 5.7 (Boundary) Given a call graph G= (N, E,S,Nchecy). Let 1: N — Domain be a mapping
from methods to their belonging protection domainsboiindaryof a domain dme Domain, denoted
by %(dm), is defined by

Z(dm) ={neN|(nx,n) € E,I(n)=dml(n) #1(n)}

The boundary of a domaidm refers to the set of methods with outgoing edges to methaufs fr
different domains, e.g., Java libraries typically.

Definition 5.8 (Analysis Points) Assume the conditional pushdown system encoded by[Deéf.\We1l.
defineanalysis pointsof a given domain dng Domain by
AnalysisPointedm) = {{ = (n,l,r) € RetPoint| n € #(dm),l € .Z,
In el w,w el :(-,n{w) e cpost({({-,s)})Ncpre ({{-,Ncheck®) }) }

5.2.2 ldentifying Permission Requirements

Definition 5.9 (Modeling Permission Requirements)We define a conditional weighted pushdown sys-
tem Wiy = (Pprog: -Zetx, Tetx) Where Zpog is the conditional pushdown system defined before, and

e the idempotent semiring’x = (Detx, Petx; Retx, 0, 1) , Where D= 22" {0}, 1 =10, ®x is set
union, andxx is element-wise set union;

o foreachd:a S we Dgen fux(0) ={{n'}} if w=nd, { = (",I,r), and §(r) = 1 otherwise.

Definition 5.10 (Identifying Permission Requirements) Given a domain dng Domain and an analy-
sis point = (n,1,r) € AnalysisPoint&dm), we comput@ethod N) = MOVP(S T, Wetx) Where S={(-,s)},
T={(,nw| wel*}. We define permission requirements on n by

PermReq&]) = { perme Perms| 3ctxt € @nethod N), CtXt € @oerm(perm : ctxt’ C ctxt}
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5.2.3 Permission Checking

We adopt the semiring’check= (Dcheck Bcheck @check 0, 1) in [14] given a a PER (Partial Equivalence
Relation)-based abstraction with 2-point domgANY, D}, whereDcheck= {AX.ANY,AX.ID,0,1} with
the orderingAXxANYC 1C Ax.ID C 0.

Definition 5.11 (Modeling Policy Checking) Given a context-sensitive call graph&= (G, @dge) Where
G = (N, E, s,ncheck), We define a conditional weighted pushdown sys#@rack= (Pcheck -check fcheck)s

where Zcheck= ({-}, I check Gcheck Acheck {-}-S) With Acheck= Ac U Acp and T check= I U {€cp, Xcp}- Ac iS
defined in Defl_5]1, anf.p is constructed as follows, for each pemPerms, we have

L&C
0 €p — Xep € Acp fehec 8) = AX.ID
(lL)&cC

where L= (a*) + (a*)Ba (M .q) @and!L is thecomplement ot., with
e a={(nl,r) € check| perme policy(n),n € N},
o B=an{(nl,r) €lcheck| M= npriv}-
o C=Tealo+ it + Q)T fhecke Where{ o, {a, ..., 4k} = {{ | perme PermReg&)} forke N

Definition 5.12 (Algorithm for Policy Checking) Given a domain dra Domain, and le{{o, {1, - ,{k} =
AnalysisPointedm). We compute resuk: MOVP(S, T, #check), Where S= {(-,5)} and T = {(-,X;pw) |
W=T%edlo+ 0+ +L)Mead- We say access control for dm may fail if restld X ANY and
always succeed if resut Ax.ID.

6 Related Work

From the theoretical aspect, Banerjee et all_in [1] givedreotigional semantics and hereby proved the
equivalence of eager and lazy evaluation for stack inspeciihey further proposed a static analysis of
safety property, and also identified program transformatithat help remove redundant runtime access
control checks. The problem to decide whether a prograrsfigstia given policy properties via stack
inspection, was proved intractable in general by Nitta etial[15]. They showed that there exists a
solvable subclass of programs which precisely model progreontainingcheckPermission of Java 2
platform. Moreover, the study concluded the computati@oahplexity of the problem for the subclass
is linear time in the size of the given program.

Chang et al.[[4] provided a backward static analysis to apprate redundant permission checks
with must-fail stack inspection and success permissiomtlich&ith must-pass stack inspection. This
approach was later employed in a visualization tool of pssion checks in Javal[9]. But the tool didn’t
provide any means to relieve users from the burden of dagidatess rights. In addition to a policy
file, users were also required to explicitly specify whichtioels and permissions to check. Two control
flow forward analysis, Denied Permission Analysis and Grartermission Analysis, were defined by
Bartoletti et al.[[2] [3] to approximate the set of permiss&alenied or granted to a given Java bytecode at
runtime. Outcome of the analysis were then used to elimirgtendant permission checks and relocate
others to more proper places in the code.

Koved et al. in[[10] proposed a context-sensitive, flow-gams and context-sensitive (1-CFA) data
flow analysis to automatically estimate the set of acce$dsigequired at each program point. In spite
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of notable experimental results, the study suffered frormeatjral matter, as it does not properly handle
strings in the analysis. Being a module of privilege asseiiti a popular tool — IBM Security Workbench
Development for Java (SWORDA4]) [8], the interproceduralyasis for privileged code placement [17]
tackled three neat problems: identifying portions of cotthes necessary to make privileged, detecting
tainted variables in privileged codes, and exposing usgiésileged blocks of codes, by utilizing the
technique in[[10].

In all aforementioned works, they all assume the permissiequired at evergheckPermission(perm)
point. In other words, they either ignored or employed laditomputation obtring parameters. Corre-
spondingly, the access rights analysis become too corsenva.g., many false alarms may be produced
in policy checking.

To the best of our knowledge, the modular permission arsfysiposed in [7] is the most relevant
to our work . On one hand, it was also concerned with autolgtigenerating security polices for
any given program, with particular attention on the prifeipf least privilege. On the other hand,
they were the first to attempt to reflect the effects of stringlgsis in access rights analysis in terms
of slicing. The authors also developed a tool Automated Auitlation Analysis (A3) to assess the
precision of permission requirements for stack inspectiblowever, their algorithms are based on a
context-insensitive call graph and the analysis resultsbeapolluted by invalid call paths. Moreover,
their slicing algorithms are also context-insensitive.

Although stack inspection is widely adopted as a simple aadtjgal model in stack-based access
control, it has a number of inherent flaws, e.g., an unawthdrcode which is no longer in the call stack
may be allowed to affect the execution of security-seresitigde. A worth highlighting alternate model
is IBAC (Information-based Access Control) proposed bydpaset al. in[16] for programs with access
control based on execution history.

7 Conclusions

We have presented in this paper a formal framework of acégists rmanalysis for Java programs, includ-
ing analysis of automatically generating security poBdier any given program and analysis of policy
checking on whether stack inspection from the concernedaitoaiways succeed or may fail, given a
policy file. Our analysis integrates with both points-to lggs and string-analysis in a unified abstract
framework. All analysis algorithms are novelly designethia framework of conditional weighted push-

down systems, which is modeled after combining a contaxsitee call graph and dependency graph of
the target program and precisely identifies permissionirements at checkpoints of stack inspection.
We expect a high precision of our analysis, which means Idsefalarms in policy checking and high

compliance with the principle of least privilege.
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