
Web Security Analysis for Java
Using Conditional Weighted Pushdown System

By HUA, Vy Le Thanh

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Mizuhito Ogawa

September, 2012

Web Security Analysis for Java
Using Conditional Weighted Pushdown System

By HUA, Vy Le Thanh (1010225)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of

Professor Mizuhito Ogawa

and approved by
Professor Mizuhito Ogawa

Associate Professor Xavier Defago
Associate Professor Kazuhiro Ogata

August, 2012 (Submitted)

Copyright c© 2012 by HUA, Vy Le Thanh

Acknowledgements

Admittedly, this thesis would not have been possible without Research Assistant Profes-
sor Xin Li and Professor Mizuhito Ogawa. I sincerely appreciate their valuable advice and
consistent encouragement since the early stages of my study. In particular, I am deeply
indebted to Xin Li for broadening my horizons and supervising major parts of my thesis.
Her dedication in teaching and research has always been a rich source of inspiration. I
would like to thank Associate Professor Yasuhiko Minamide at University of Tsukuba for
his fruitful discussion on evaluation and performance of our approach. Definitely, it is my
honor to have this thesis reviewed by Associate Professor Xavier Defago and Associate
Professor Kazuhiro Ogata. I have also greatly profited from Associate Professor Nao
Hirokawa’s comments on improving the presentation. My gratitude is furthermore sent
to all colleagues at Ogawa Lab for their kindness to help me get into new environment
seamlessly. In addition to all the foregoing, I am much grateful to my beloved family and
friends for keeping their faith in me throughout my time at Master course.

i

Contents

1 Introduction 1
1.1 The Motivating Big Picture . 1
1.2 Overview of Permission Analysis Framework 2
1.3 Contributions . 3
1.4 Thesis Outline . 4

2 Stack-Based Access Control 5
2.1 Access Control Mechanism in Java . 5
2.2 Primitives . 6

2.2.1 Security Policy . 6
2.2.2 Permissions . 6
2.2.3 Protection Domain . 7
2.2.4 Policy Configuration by Policy File 8

2.3 Access Control by Stack Inspection . 10
2.3.1 Basic Algorithm . 10
2.3.2 Extended Algorithm with Privileged Operation 12

3 Pushdown Systems and Reachability Problem 16
3.1 Pushdown System (PDS) . 17
3.2 Reachability Problem . 17
3.3 Weighted Pushdown System (WPDS) . 18
3.4 Conditional Weighted Pushdown System (CWPDS) 19

4 On-The-Fly CWPDS Algorithm and Data Structure 21
4.1 On-The-Fly Algorithm . 21
4.2 Data Structure for Conditional Pushdown System 26
4.3 Performance of On-The-Fly Algorithm . 29

5 Permission Analysis 32
5.1 Problem Statement and Challenges . 32
5.2 Prerequisites . 34
5.3 Abstraction of Java Programs . 35
5.4 Abstraction of Policy System . 36
5.5 Permission Analysis . 37

ii

5.5.1 Determining Analysis Points . 37
5.5.2 Permission Check . 37

5.6 Demonstration of Permission Analysis Framework 41
5.6.1 Sample Usage of Package cwpds for Permission Check 41
5.6.2 Blueprint for Realization of the Framework 43

6 Related Work 45

7 Conclusion and Future Work 48
7.1 Conclusion . 48
7.2 Future Work . 48

Bibliography 50

A Sample Usage of Package cwpds 54

iii

List of Figures

1.1 Overview of Permission Analysis Framework 3
2.1 Protection Domains and Permission Grant 7
2.2 Standard Format of a Policy File . 8
2.3 A Sample Policy File Entry . 8
2.4 A Portion of Default java.policy in Java Platform, Standard Edition 6 . . . 9
2.5 The Basic Access-Control Algorithm . 10
2.6 Sample Java Codes Invoking Permission Check 11
2.7 Snapshot of Call Stack When Method foo of Class Teacher is Invoked . . . 12
2.8 Snapshot of Call Stack When Method foo of Class Student is Invoked . . . 12
2.9 The Extended Access-Control Algorithm with Privileged Operation 13
2.10 A Piece of Code that Calls doPrivileged . 13
2.11 Sample Java Codes Invoking Privileged Action 14
2.12 Snapshot of Call Stack When Method foo of AdvancedStudent is Invoked . 15
3.1 Two Sets pre∗(C) and post∗(C) . 17
3.2 post∗ Saturation Rule . 18
3.3 Conditions are Set on Stack Content . 20
3.4 Translating CWPDSs to WPDSs by Algorithm TRANS [26] 20
4.1 Condition DFA A0 and A1 . 25
4.2 Product of Condition DFA A = {A0, A1} 25
4.3 Initial P-automaton . 25
4.4 The Initial P-automaton after Applying the Translation 26
4.5 Final Result of Alg. 2. 26
4.6 A Sample Initial P-automaton Defined by Datalog 28
5.1 The Problem to be Addressed by Permission Analysis 32
5.2 A Code Fragment that Involves Tricky Cases of Permission Check 33
5.3 A Program Fragment with Permission Checks for File Access 38
5.4 The Control Flow Graph of Program Fragment in Fig. 5.3. 40
5.5 Screen-shot of Package cwpds Usage in Java 42
5.6 Screen-shot of Analysis Result Using Package cwpds 42
A.1 Sample Usage of Package cwpds - Part I 54
A.2 Sample Usage of Package cwpds - Part II 55
A.3 Sample Usage of Package cwpds - Part III 56
A.4 Sample Usage of Package cwpds - Part IV 57

iv

List of Tables

2.1 A Typical Access-Control Table . 6
2.2 A Sample Policy Configuration . 11

4.1 Datalog Domains for On-The-Fly post∗ Algorithm in CPDS 28
4.2 Datalog Relations for On-The-Fly post∗ Algorithm in CPDS 28
4.3 Datalog Inference Rules for On-The-Fly post∗ Algorithm in CPDS 29
4.4 Runtime and Memory Consumption for Offline and On-The-Fly Algorithms 31

v

Chapter 1

Introduction

This introduction comprises four parts. The first part paints in broad strokes the big
picture of Java Web security and unveils motivation of our study. The second part brings
out an overview of the approach proposed to work out a challenge in the field. The third
part provides a concise view of our contributions; while that last one shows the outline of
this thesis.

1.1 The Motivating Big Picture

In light of recent development in cybertechnologies and automation, our critical systems
increasingly relies on computers and networks. In spite of the vast benefits automated
services bring to daily life, the pervasiveness of computer and network usage gradually
exposes our critical infrastructures to a wide variety of threats and malicious attacks.
Accidental failures and disruption yielded by such unintended events can trigger disas-
trous effects in financial and reliable aspects of a service. According to Symantec report
published in April 2012 [12], in 2011 there are about 4 595 Web attacks blocked per day
and over one million identities exposed per security breach. These dire consequences have
highlighted the substance of Web security.
Notwithstanding numerous technologies introduced lately, Java is still one of the best

vehicles to program Web applications. Analogous to such tremendous rate of adoption is
a high expectation of a safe Web programming platform. Thereupon, building more trust
to Java Web applications is an inherent mission not only to software developers but also
to researchers in related fields.
In the overall security jigsaw puzzle from cryptography to firewalls, from antivirus

software to privacy protocols, access control is a crucial piece. Access control mechanisms
are born to be the fundamental protection for systems with shared resources. There
are three main issues in an access control mechanism, each of which corresponding to a
particular security question:

(i) Authentication – Who is a principal P in the system? Assume that attributes of P
are known.

1

(ii) Authorization – When a principal P makes a request, should it be allowed?

(iii) Enforcement – How to implement the authorization during an execution?

Permission grant is a tough work, since it requires heavy domain-specific knowledge and
continuous refinement to adapt to real-world situations. Too restrictive policy may cause
authorization failures at runtime, whereas granting too many permissions may open a
security hole. The burden of authorization assignment can be moderated if some parts
of the work is automated. Herein, our study contributes an automation of authorization
test which would provide at compile-time the test result of a given security policy.
In software development terms, detecting vulnerable components by testing can harm

the underlying system. Furthermore, when the system grows in complexity, it is non-trivial
to determine correct behaviors of a program at runtime. Static analysis techniques are
therefore taken to settle the problem. These techniques offer a way to safely approximate
the set of program behaviors arising dynamically at runtime. A large volume of literatures
has been published with aim at access control analysis for Java. Nevertheless, there
remains roadblock to a precise analysis when context of permission requirements are under
consideration. This challenge is the critical issue we manage to lift while constructing our
permission analysis framework.

1.2 Overview of Permission Analysis Framework

The ultimate target of our framework is to check whether access control against a given
trusted domain always succeed or may fail. As demonstrated in Fig. 1.1, our framework
could be seen via two stages:

(i) Prerequisites. Along with the Java program of concern, it is required to provide a
security policy represented by a policy file. Besides, two assumptions of points-to
analysis and string analysis are made to ensure the precision of analysis result.

(ii) Analysis and Output. First, we will abstract the given Java program and extract
essential policy details which help constructing the model, namely, inter-procedural
control flow graph, analysis points, and permission requirements. Second, we per-
form analysis to analyze result of permission checks. Finally, a deduction is made
to output a proper analysis result which is either ”Always succeed” or ”May

fail”.

In the nature of formalizing sequential programs, pushdown system has been considered
most appropriate. Having equipped with weights and conditions, it becomes sufficient to
model the stack-based access control mechanism in Java 2 platform. Thus, conditional
weighted pushdown system is our choice of formalism in the framework.

2

Java program
Initial

policy file

Abstract the program

Analyze permission checks

in trusted domains

Permission checks

in trusted domains

always succeed?

Yes

Points-to

analysis

Context-sensitive

string analysis

Permission	analysis

No

Output

"Always succeed"

Output

"May fail"

Figure 1.1: Overview of Permission Analysis Framework

1.3 Contributions

This thesis investigates and suggests an approach to automate a specific authorization
test. First, we take into account possible optimization of the framework approach. Next,
we systematically conduct the permission analysis.
In sum, the list of main contributions is as follows:

1. On-the-fly algorithm for conditional weighted pushdown systems. We
propose an on-the-fly algorithm that efficiently reduces the state space in practice.
This algorithm has been implemented in our open-source package cpwds and experi-
mentally evaluated to prove its effectiveness. Additionally, we specify our approach
with a declarative language, Datalog, and discuss its possibility to enhance perfor-
mance in large-scale applications.

3

2. Permission analysis. We apply weighed pushdown system and conditional weighted
pushdown system to formalize the permission checks. The analysis result of our
framework provides a clue to improve Java Virtual Machine runtime performance.
In sense that, one can remove redundant access-control checks that always suc-
ceed, to moderate overhead cost of program execution. Moreover, it could be also
a guide to refine cumbersome security policies. Preliminarily, we demonstrate how
the framework works with sample programs.

1.4 Thesis Outline

The rest contents of this thesis is organized along these lines.

• Stack-based access control (Chapter 2). The ultimate target of our study is
to formulate and analyze the access control mechanism of Java. Thereby first of all,
Chapter 2 is devoted to provide a gentle view of primitives and essential concepts
involved in Java stack inspection.

• Pushdown systems and rechability problem (Chapter 3). The key factor of
our framework formalism is the forward reachability problem in conditional weighted
pushdown system. Chapter 3 recalls foundational concepts and discusses techniques
that are mainly investigated in our study.

• On-the-fly conditional weighted pushdown system algorithm and data
structure (Chapter 4). From a performance point of view, the effectiveness of
realizing conditional weighted pushdown system is critical to our framework. Hence,
a concerted effort has been put into creating an efficient algorithm to solve forward
reachability problem in conditional weighted pushdown system. Chapter 4 presents
our proposed on-the-fly algorithm as well as experience in selecting data structure
for its implementation. A preliminary experimental result is furthermore reported
to show the efficiency of our method.

• Permission analysis (Chapter 5). Admittedly, a sound solution depends upon
a well-defined problem and the precision in tackling every single parts of the chal-
lenge. In Chapter 5, we first restate the problem in a more formal way and discuss
obstacles to be encountered. Then the permission analysis will be partitioned into
smaller analyses which are solvable by weighted pushdown system and conditional
weighted pushdown system. Even more, we provide fruitful examples to demon-
strate how to apply package cwpds in the framework and a blueprint of framework
design through possible technical choices for implementation.

• Related work (Chapter 6). A literature survey on related studies is carried
out in Chapter 6 along with discussion on their advantages and drawbacks.

• Conclusion and future work (Chapter 7). Finally, a summary of presented
results will be shown in Chapter 7. Besides, we further sketch the road map of
possible improvement and extension of the framework.

4

Chapter 2

Stack-Based Access Control

To fulfill the promise as a safe Web programming platform, rich security features have been
integrated into Java ([22], [42], [27]). Among all, our interest is held by access control
mechanism – the key ingredient of this thesis. Access control is a necessary approach
offered to address a basic security question: Which part of a program is allowed to access
restricted resources?
Section 2.1 lays out the design and implementation of access-control mechanism Java

environment. Section 2.2 covers concepts of crucial primitives attached in Java Devel-
opment Kit (JDK). The last section 2.3 describes and illustrates the base of Java access
control: Stack Inspection. It is worth emphasizing that, although our framework is de-
signed for Java 2 platform, it is also applicable for non-Java systems with similar access
control model.

2.1 Access Control Mechanism in Java

Security model plays vital role among all architectural features that make Java an appro-
priate technology for Web environment [42].
Java 2 security is developed to moderate limitations on the sandbox security model

which was employed in original release of JDK 1.0. Roughly speaking, the sandbox secu-
rity model turns out to severely restrict access to valuable resources. While in real-world
applications, it is expected to provide a flexible access control. In other words, the sand-
box should have adjustable boundaries. In the old versions of JDK, theoretically it is
possible to implement a more flexible and finer-grained access control on Java platform.
However, a significant amount of effort is required to accomplish such task. Java 2 archi-
tecture aims to ease work of developers, since it provides a simpler and safer way to write
security code [22].
The effort devoted to improve Java platform involves revising the design and introduc-

ing new primitives, namely, security policy, protection domain, access permission, and
privileged action. These new concepts make the access control mechanism in Java 2 more
robust, in terms that it supports fine-grained access control by a configurable security
policy [23]. The following section focuses primarily on how the primitives are employed.

5

2.2 Primitives

2.2.1 Security Policy

The security policy of a Java system specifies its behavior in runtime. For the sake of
simplicity, a security policy is an access-control table. For instance, each entry in Table
2.1 informs that ”when running a program from code source X, allow it to do the actions
listed in corresponding column Permissions”.

Code Permissions
Alice’s applets read ”/test/question.txt”
Bob’s applets read and write ”/test/answer.txt”
Local applications read and write to ”/test”

Table 2.1: A Typical Access-Control Table

From an abstract viewpoint, a security policy conceptualizes a correlation between a
set of properties characterizing a code and a set of permissions granted to the code.
Specifically, code base (location where the code comes from), code signer (alias of entity
that signed the code) and a list of principals (people or any entities that may have right
to take actions) constitute the set of properties used to characterize a piece of code. Such
constitution is captured in the class java.security.CodeSource.

CodeSource A CodeSource object is comprised of a URL location and an array of cer-
tificates. Two CodeSource objects are considered equal if their URL locations are identical
and the set of certificates attached to them are identical. As a matter of convenience,
one can identify a CodeSource p is more general than a CodeSource q by checking whether
p.implies(q) is true. For example, CodeSource of http://www.jaist.ac.jp/tmp is more gen-
eral than CodeSource of http://www.jaist.ac.jp/tmp/foo.jar.

2.2.2 Permissions

A permission represents an approval of access to concerned resources. Java 2 embraces
the implementation of permission in the class java.security.Permission. Every new permis-
sion is defined by extending the Permission class, to represent a specific kind of access. To
illustrate, the following Java code can be used to produce a permission to a read a file
named abc.txt in the /home/admin directory.

perm = new java.io.FilePermission("/home/admin/abc.txt", "read");

In general, subclassed permissions are located in their own packages; such as, FilePer-
mission is found in package java.io which manages the file system access. Moreover, most
Permission objects include a target name and a list of actions permitted to do with the
target. For instance, to declare a permission FilePermission, one should specify its target
name by the pathname of a file or directory, and grant possible actions such as: read,
write, execute, delete.

6

Permission implication In essence, comparing permissions is central to an access
control mechanism deployment. To facilitate such comparison, Java 2 requires every
permission class to implement an implies() method that define the relationship between
the particular permission class and other permission classes. In more detail, given two
permission objects, a and b, if a.implies(b) returns true then any code granted a is also
automatically granted b. To take an example, java.io.FilePermission(”/home/admin/-”,
”read,write”) implies java.io.FilePermission(”/home/admin/abc.txt”, ”write”), but it does
not imply java.io.FilePermission(”/home/admin/xyz.txt”, ”execute”) nor
java.net.SocketPermission(”jaist.ac.jp”, ”connect”).

Permission assignment Generally, permissions are granted before the class is defined
in Java runtime [22]. In the default Java 2 implementation, permissions are not altered
once they are granted. It is worth noting that permissions are granted to classes, not to
instances of classes.

2.2.3 Protection Domain

To put forward the extensibility, Java 2 allows permissions to be granted to protection
domains – a concept encapsulated in class java.security.ProtectionDomain. Furthermore,
all classes of the concerned program should be assigned to a protection domain and
implicitly inherit all permissions granted to that domain. Informally speaking, classes
from the same location and signed by the same entities are treated alike. It should be
noted that each class belongs to one and only one protection domain. The mapping from
a class to its domain is set only once, before the class comes into use, and unchanged
during its lifetime (Fig. 2.1).

a.class

b.class

c.class

d.class

e.class

Virtual machine runtime

Domain A Permissions A

Domain B

Security Policy

Permissions B

Figure 2.1: Protection Domains and Permission Grant

Java 2 describes protection domains in a fairly straightforward way, each ProtectDo-
main involves two parts: a CodeSource and a set of Permission. It also provides implies()
method. However, unlike the purpose of comparison and testing equality in CodeSource or
Permission, the implies() method in ProtectionDomain is to determine if a ProtectionDomain
implies a given Permission.

7

2.2.4 Policy Configuration by Policy File

Policy file The default JDK implementation supports configuration of security policy
via a flat-file format named policy file. A policy file associates permissions with protec-
tion domains and is read when the Java Virtual Machine (JVM) starts. Each policy file is
made of one or multiple grant entries, every of which essentially consists of a CodeSource
and its permissions. A list of signer names are included for the set of certificates that
may be a part of the CodeSource. While the URL following keyword codeBase represents
location where the CodeSource refer (Fig. 2.2).

grant signedBy "signer-name", codeBase "URL"

principal Principal-class "principal-name",

principal Principal-class "principal-name",

.... {

permission Permission-class-name "target-name "actions",

signedBy "signer-name";

permission Permission-class-name "target-name "actions",

signedBy "signer-name";

....

};

Figure 2.2: Standard Format of a Policy File

Every entry in a policy file starts with keyword grant followed by optional information
of codeBase, signers and a list of principals; its body is filled in a block containing one
permission definition per line. Fig. 2.3 demonstrates a policy file entry granting codes
from the /home/admin directory read access to the file /tmp/abc.txt and write access to
the file /tmp/xyz.txt.

grant codeBase "file://home/admin/" {

permission java.io.FilePermission "/tmp/abc.txt", "read";

permission java.io.FilePermission "/tmp/xyz.txt", "write";

};

Figure 2.3: A Sample Policy File Entry

Configuring application-specific policy Java Development Kit (JDK) implementa-
tion obtains policy information from static locations where policy files can be found. The
Java default system policy file (Fig. 2.4) is located at

<java.home>/lib/security/java.policy

Here, java.home is the directory into which JDK was installed. This java.policy is system-
wide since it will be used when running any applet or application.

8

// Standard extensions get all permissions by default

grant codeBase "file:${{java.ext.dirs}}/*" {

permission java.security.AllPermission;

};

// default permissions granted to all domains

grant {

// Allows any thread to stop itself using the java.lang.Thread.stop()

// method that takes no argument.

// Note that this permission is granted by default only to remain

// backwards compatible.

// It is strongly recommended that you either remove this permission

// from this policy file or further restrict it to code sources

// that you specify, because Thread.stop() is potentially unsafe.

// See the API specification of java.lang.Thread.stop() for more

// information.

permission java.lang.RuntimePermission "stopThread";

// allows anyone to listen on un-privileged ports

permission java.net.SocketPermission "localhost:1024-", "listen";

// "standard" properties that can be read by anyone

permission java.util.PropertyPermission "java.version", "read";

permission java.util.PropertyPermission "java.vendor", "read";

permission java.util.PropertyPermission "java.vendor.url", "read";

permission java.util.PropertyPermission "java.class.version", "read";

permission java.util.PropertyPermission "os.name", "read";

permission java.util.PropertyPermission "os.version", "read";

permission java.util.PropertyPermission "os.arch", "read";

permission java.util.PropertyPermission "file.separator", "read";

permission java.util.PropertyPermission "path.separator", "read";

permission java.util.PropertyPermission "line.separator", "read";

};

Figure 2.4: A Portion of Default java.policy in Java Platform, Standard Edition 6

One can specify additional policy files when executing an application via the
-Djava.security.policy command line argument:

java -Djava.security.manager -Djava.security.policy=myURL myApplication

where myURL is a URL specifying location of a policy file, and -Djava.security.manager is
to invoke the default security manager so that the security policy will come into effect
when running the application myApplication.

9

2.3 Access Control by Stack Inspection

In Java, stack inspection is the base of access control [23]. The big picture: when
a security-sensitive operation is invoked, all methods currently in the call stack will be
inspected in top-down manner to see whether their declaration classes have required per-
mission. There are many strategies to implement stack inspection, two obvious ones are:
eager evaluation and lazy evaluation [6].

Eager evaluation The set of effective permissions is updated dynamically at each
method call and return.

Lazy evaluation The call stack is inspected on demand at authorization checkpoints.
Java 2 adopted this lazy semantics for performance and scalability.
An elaborate Application Programming Interface (API), first introduced in JDK 1.2,

triggers stack inspection via method java.security.AccessController.checkPermission(Permission).
The method returns silently if the specified Permission is allowed in the current execution
context. Otherwise, it throws a java.security.AccessControlException. This new API is
known as a comprehensive implementation since it fully embraces both the basic access
control algorithm, and the extended one with privileged operations.

2.3.1 Basic Algorithm

The basic access-control algorithm can be intuitively expressed as in Fig. 2.5 [22].

for each caller in the current execution context {

if the caller does not have the requested permission

throws a java.security.AccessControlException

}

return normally

Figure 2.5: The Basic Access-Control Algorithm

In the obsolete versions of JDK, when a code evaluated an access control decision, it
ought to know the status of its callers as well as preceding callers in the call chain. This
burden is now relieved for programmers, since in new implementation of
java.security.AccessController the access checking process or stack inspection is automated.
Let us illustrate the algorithm by Example 2.3.1.

Example 2.3.1. Given a policy configuration as Table 2.2.
All codes in package App.Faculty and App.Student are assigned to domain FACULTY and

domain STUDENT respectively. Besides, codes that belong to Java system libraries are
associated with domain SYSTEM, whereas codes in App.App stay in domain APP. Fig. 2.6
shows the Java codes of two classes in App.Faculty and App.Student and how they invoke
permission check.

10

Protection domain Permissions
SYSTEM all existing permissions
FACULTY read and write ”/test/abc.txt”
STUDENT read ”/test/abc.txt”
APP read, write and delete ”/test/abc.txt”

Table 2.2: A Sample Policy Configuration

package App.Faculty;

public class Teacher {

public static void foo() {

... some code ...

FilePermission perm = new FilePermission("/test/abc.txt", "write");

AccessController.checkPermission(perm);

... write something to /test/abc.txt ...

}

}

package App.Student;

public class Student {

public static void foo() {

... some code ...

FilePermission perm = new FilePermission("/test/abc.txt", "write");

AccessController.checkPermission(perm);

... write something to /test/abc.txt ..

}

}

Figure 2.6: Sample Java Codes Invoking Permission Check

Suppose an application class MainApp in domain APP calls method foo in class Teacher
to write the file /test/abc.txt. The execution context will look like Fig. 2.7. To give
a clean intuition, we eliminated intermediate system calls from the figure. In this case,
three distinct domains appear within the execution context: SYSTEM (stack frame 3),
TEACHER (stack frame 2) and APP (stack frame 1). The stack inspection returns silently
as all mentioned domains in the call chain are granted permission of write access to
/test/abc.txt.
While in case of class Student (Fig. 2.8), the stack walk stops at stack frame 2, and

an exception java.security.AccessControlException will be thrown due to the lack of write
permission in domain STUDENT.

11

MainApp.main

Teacher.foo

AccessController.checkPermission

1

2

3

Figure 2.7: Snapshot of Call Stack When Method foo of Class Teacher is Invoked

MainApp.main

Student.foo

AccessController.checkPermission

1

2

3

Figure 2.8: Snapshot of Call Stack When Method foo of Class Student is Invoked

2.3.2 Extended Algorithm with Privileged Operation

In practice, there are occasions where the codes closer to top of the call stack want to
perform some actions that codes further down call stack are not allowed to do. A good
example [42] is, suppose an untrusted applet, with no local file access permission, asks
the Java API to render a string of text in font Helvetica. Apparently, the API needs to
load the font file of Helvetica from local disk to render on behalf of the applet. In the
process of opening font file, a file access permission check will be invoked. Although the
class making explicit request to open file belongs to system domain with full permissions,
the stack inspection still fails. Because the applet class sitting further down the call stack
is inspected for no access permission to local files.
For such occasions, the basic algorithm appears too restrictive. To cope with excep-

tional cases, AccessController offers a static method doPrivileged(). A method M that calls
doPrivileged() is telling the Java runtime to ignore the status of its callers since it will take
responsibility to perform the action. In other words, a privileged method is allowed to
execute any code with permissions granted to its caller, regardless of the calling sequence.
Fig. 2.9 [22] describes the extended algorithm to handle the privilege status. In an at-
tempt to avoid possible confusion, we stress that the method doPrivileged() being discussed
here is implemented in recent API of Java 2, which wraps entire enable-disable cycle in a
single interface [27] rather than keeping track of enable-disable processes separately as in
previous versions of API [43].

12

for each caller in the current execution context {

if the caller does not have the requested permission

throws a java.security.AccessControlException;

if the caller is privileged, return normally;

}

return normally

Figure 2.9: The Extended Access-Control Algorithm with Privileged Operation

To perform a privileged action A, method M invokes AccessControler.doPrivileged(A);
this invocation involves calling method A.run() with all the permissions of M enabled.
Java 2 API provides two interfaces to declare a privileged action: PrivilegedAction and
PrivilegedExceptionAction. The difference between these two interfaces is the latter can
throw checked exceptions.
Fig. 2.10 demonstrates a sample piece of code that calls doPrivileged with a PrivilegedAc-

tion.

methodM() {

... normal code ...

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

... do some privileged action, e.g., opening font file ...

return null;

}

});

... normal code ...

}

Figure 2.10: A Piece of Code that Calls doPrivileged

As a case in point, let us consider Example 2.3.2.

Example 2.3.2. We extend the Example 2.3.1 with three new classes: Observer1 and
Observer2 and AdvancedStudent (Fig. 2.11).

13

package App.App;

public class Observer2 {

public static void foo() {

FilePermission perm = new FilePermission("/test/abc.txt", "write");

AccessController.checkPermission(perm);

... write something to /test/abc.txt ...

}

}

package App.App;

public class Observer1 {

public static void foo() {

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

Observer2.foo();

return null;

}

});

}

}

package App.Student;

public class AdvancedStudent {

public static void foo() {

Observer1.foo();

}

}

Figure 2.11: Sample Java Codes Invoking Privileged Action

In this case, when MainApp.main invokes AdvancedStudent.foo (Fig. 2.12), two new
frames are pushed into call stack: AccessController.doPrivileged (domain SYSTEM) and
run (the same domain APP as Observer1). The permission check will succeed even when
AdvancedStudent does not have write access to file /test/abc.txt. Strictly speaking, frames
4-7 pass the inspection as they belong to domains that granted sufficient permission. When
encountering AccessController.doPrivileged, the inspection process will examine the caller
of AccessController.doPrivileged, i.e. Observer1.foo, and returns normally since Observer1
belongs to domain APP. The stack frame of AdvancedStudent.foo will never be examined
overall.

14

MainApp.main

AccessController.checkPermission

.....

methodP()

..... Skip

AccessController.doPrivileged

.....

Figure 2.12: Snapshot of Call Stack When Method foo of AdvancedStudent is Invoked

One worth highlighting point of the extended access control algorithm is that the caller
of AccessController.doPrivileged is always inspected; thereby an AccessController.doPrivileged
invocation will be futile if its caller does not have permission to execute the expected ac-
tion.

15

Chapter 3

Pushdown Systems and Reachability
Problem

Model-checking pushdown systems (PDSs) have served the heart of sequential program
analysis due to their natural model for handling (recursive) procedure calls by using
stacks. Consequently, over the past decade, researchers have shown an increased interest
in improving analysis techniques based on pushdown systems. In particular, Schwoon et
al. [39] first introduced weighted pushdown systems (WPDSs) to address the authorization
problems. Later, Reps et al. [36] made use of WPDS to tackle the generalized reachability
problems and their application to interprocedural dataflow analysis.
When context-sensitive information is taken into account, a valid path essentially com-

prises pairs of procedure calls and returns. There are two approaches: context-cloning
and context-stacking. The former bounds the depth of nested contexts, and the latter
uses a pushdown stack as PDS. Generally, the latter approach is expected to be precise,
but in some cases we need to look into the content of a stack. For instance, a method
invocation in object-oriented languages depends on dynamic types, which is propagated
in a sequence of invocations. More directly, stack inspection is frequently used in security
applications. To alleviate the problem, [26] extended WPDS to conditional weighted push-
down system (CWPDS) by associating conditions to each transition rule. Theoretically,
conditions described by regular sets are naturally obtained by enriching stack alphabet
as products [26], which easily leads to stack alphabet explosion. Instead of improving
theoretical complexity, our aim is to design a practically efficient algorithm.
This chapter recalls foundational concepts and discusses techniques that are mainly

used in our study. Section 3.1 and Section 3.2 concern pushdown systems and reachablility
problem, a formalism that facilitates interprocedural dataflow analysis. Section 3.3 and
Section 3.4 explain the extension of pushdown system with weight and condition. To
keep the content on point, we restrict us to essential definitions and properties. For
comprehensive introduction to dataflow analysis and pushdown model checking, we refer
to [19], [40], [38], and [30].

16

3.1 Pushdown System (PDS)

A pushdown system (PDS) is a formalism induced by a pushdown automaton. It is
equipped with a finite set of control locations and a stack. Content of the stack is defined
by a word of unbounded length over some finite stack alphabet. Consequently, a pushdown
system is capable of verifying infinite-state systems [35].

Definition 3.1.1. A pushdown system P = (Q,Γ,∆, q0, ω0) features: a finite set of
control location Q, a finite stack alphabet Γ, a finite set of rules ∆ ⊆ Q×Γ×Q×Γ∗, the
initial control location q0 ∈ Q and the initial stack contents ω0 ∈ Γ∗. A pair 〈p, ω〉, p ∈ Q,
ω ∈ Γ∗ is called configuration of P. A transition relation ⇒ between configurations of

P is defined so that 〈p, γω′〉
〈r〉
=⇒ 〈p′, ωω′〉, for all ω′ ∈ Γ′ if there is r = 〈p, γ〉 →֒ 〈p′, ω〉.

The reflexive transitive closure of ⇒ is denoted by ⇒∗. Given a set of configurations C,

we define post∗(C)
def
= {c′ | ∃c ∈ C : c ⇒∗ c′}.

3.2 Reachability Problem

Reachability problem is reduced from a natural class of dataflow analysis problems
in which checking safeness properties is brought into focus, e.g. ”Whenever a sorting
procedure finishes, the input array is sorted correctly.” [38] Given a set of configurations
C (Fig. 3.1), there are two versions of reachability problem: forward (set post∗(C)) and
backward (set pre∗(C)). In this study, our interest is mainly in the forward reachability.

pre*(C) post*(C)C

Figure 3.1: Two Sets pre∗(C) and post∗(C)

Definition 3.2.1. Given a pushdown system P , a set of configurations C and a configu-
ration c. The forward reachability (post∗) problem is to check whether c ∈ post∗(C)
holds.

As mentioned, pushdown systems may have unbounded number of configurations. It is
helpful to use finite automata, i.e., P-automaton, to represent regular sets of configura-
tions.

Definition 3.2.2. Let a pushdown system P = (Q,Γ,∆), and C be a set of configurations
of P . A P-automaton for C is a nondeterministic finite automaton that accepts from
an initial state q ∈ Q exactly the word ω such that pω ∈ C.

17

Saturation algorithm Typically, P-automaton [15] is used to tackle reachability prob-
lem because of its efficiency in practice [40]. The basic idea of P-automaton algorithm is
that:

1. Starting from a finite automaton representing a set of initial configurations C.

2. The algorithm finds all reachable states by adding transitions into the automaton
until it is saturated.

Hence, P-automaton algorithm is also known as Saturation algorithm. For instance, in
the post∗ problem, the saturation rule is: If the left-hand side of the rule existed, make a
path for the right-hand side. In Fig. 3.2, the dashed nodes and dashed edges are added
in the saturation process.

p q

p′

γ

ε

(a) 〈p, γ〉 →֒ 〈p′, ε〉 ∈ ∆

p q

p′

γ

γ′

(b) 〈p, γ〉 →֒ 〈p′, γ′〉 ∈ ∆

p q

p′ qp′,γ′

γ

γ′

γ′′

(c) 〈p, γ〉 →֒ 〈p′, γ′γ′′〉 ∈ ∆

Figure 3.2: post∗ Saturation Rule

3.3 Weighted Pushdown System (WPDS)

A weighted pushdown system (WPDS) is obtained by augmenting pushdown tran-
sition rules with a weight domain drawn from a bounded idempotent semiring. Instead
of direct encoding as the product of control states and environments, such semirings are
informative enough to enable us to describe dataflow as weights. Thus dataflow summary
from a source to a destination can be computed by accumulating weights along the flow
paths [36]. This approach gives opportunity to avoid state explosion.

Definition 3.3.1. S = (D,⊕,⊗, 0̄, 1̄) is a bounded idempotent semiring iff:
1. (D,⊕) is a commutative monoid with unit element 0̄, and a⊕ a = a, ∀a ∈ D.
2. (D,⊗) is a monoid with unit element 1̄.
3. ⊗ distributes over ⊕.
4. ∀a ∈ D, a⊗ 0̄ = 0̄ = 0̄⊗ a.
5. No infinite descending chains in the partial order ⊑ induced by a ⊑ b iff a⊕ b = a.

Definition 3.3.2. A weighted pushdown system is a triplet W = (P,S, f) fea-
tures a pushdown system P = (Q,Γ,∆, q0, ω0), a bounded idempotent semiring
S = (D,⊕,⊗, 0̄, 1̄) and a valuation function f : ∆ → D.

18

To the extent of program analysis, 1̄ implies identity function, 0̄ deduces program
interruption. Meanwhile, ⊗ indicates merge of two dataflows at the meet, and⊕ represents
compositions of two dataflows.
The algorithm to solve weighted case of post∗ problem proposed in [36] has the same

flavor as unweighted one, in sense that they all use P-automaton technique. However, the
saturation rule is slightly changed:

1. Starting with a P-automaton A which accepts the set of configurations C.

2. All of the transitions in A are initially labeled with 1̄.

3. Applying the saturation rule of unweighted case to introduce new transitions (p, γ, q)
to A; if the transition (p, γ, q) already occurs in A, its label will be updated by
combine operation ⊕.

4. The weight of a path in A is computed by taking the extend operation ⊗ of the
labels on the transitions along the path.

Reachability problem on PDSs can be generalized to WPDSs via Meet-over-all-valid-
paths (MOVP) problem.

Definition 3.3.3. Let W = (P,S, f) be a weighted pushdown system where
P = (Q,Γ,∆, q0, ω0). Let σ = [r1, . . . , rk] ∈ ∆∗ denote a sequence of pushdown transition

rules; and v(σ) = f(r1) ⊗ · · · ⊗ f(rk). We write c
σ

⇒k c′ if c
r1⇒ c1

r2⇒ . . .
rk⇒ c′ for

any k ∈ N and c, c′, ci ∈ Q × Γ∗ with 1 ≤ i ≤ k. Let S, T ⊆ Q × Γ∗ be regular sets
of configurations. For any configuration c ∈ Q × Γ∗, the Meet-over-all-valid-paths

(MOVP) problem is to compute MOV P (S, T) =
⊕

{v(σ) | c
σ

⇒∗ c′, c ∈ S, c′ ∈ T}. To
specify the weighted pushdown system W associated with an MOVP problem, we may use
notation MOV P (S, T,W).

3.4 Conditional Weighted Pushdown System

(CWPDS)

A conditional weighted pushdown system (CWPDS) lifts an underlying WPDS
to a conditional system by associating conditions to each transition rule [26]. Herein,
conditions are set on stack content ω except the topmost stack symbol γ. As the the
stack is traversed in bottom-up order, ω is scanned in reverse order (Fig. 3.3).

Definition 3.4.1. A conditional pushdown system (CPDS) is a 6-tuple Pc =
(Q,Γ,∆c, C, q0, ω0) features: a finite set of control locations Q, a finite stack alphabet
Γ, a finite set of regular languages C = {L1, . . . , Ln} over Γ, ∆c ⊆ Q × Γ× C × Q × Γ∗,
the initial control location q0 ∈ Q and the initial stack contents ω0 ∈ Γ∗. A computa-
tion relation ⇒c on configurations is defined as 〈p, γω′〉 ⇒c 〈q, ωω′〉 for all ω′ ∈ Γ∗ if

〈p, γ〉
L
→֒ 〈q, ω〉 and ω′ ∈ L.

19

γ

Reverse(ω)

Bottom-up

...

Figure 3.3: Conditions are Set on Stack Content

Given a regular language L, a condition automaton with respect to L is a total
deterministic finite automaton.

Definition 3.4.2. A conditional weighted pushdown system (CWPDS) is a
triplet W = (Pc,S, f) features: a conditional pushdown system Pc = (Q,Γ,∆c, C, q0, ω0),
a semiring S = (D,⊕,⊗, 0̄, 1̄) and a valuation function f : ∆ → D.

Li et al. [26] showed that model checking problems on CWPDSs can be reduced to
those on WPDSs, and further proposed an offline algorithm for translating CWPDSs to
WPDSs. Given a set of regular languages C = {L1, . . . , Ln}, the authors managed to
settle the translation by synchronizing the underlying weighted pushdown system and the
condition automaton

∏

1≤i≤n Ai, which is a Cartesian product of all condition automata Ai

with respect to conditions Li. Fig. 3.4 is a summary for Algorithm TRANS demonstrated
in [26].

• Set of condition DFA A = {Ai | 1 ≤ i ≤ n} where Ai = (Si,Γ, δi, ṡi, Fi).

• Constructing the Cartesian product
∏

1≤i≤n Ai = (Ŝ,Γ, δ̂, ṡ, F̂).

• Translating rules:

〈p, γ〉
Ai

→֒ 〈q, ε〉 〈p, (γ, r)〉 →֒ 〈q, ε〉

〈p, γ〉
Ai

→֒ 〈q, γ′〉 =⇒ 〈p, (γ, r)〉 →֒ 〈q, (γ′, r)〉

〈p, γ〉
Ai

→֒ 〈q, γ′γ′′〉 〈p, (γ, r)〉 →֒ 〈q, (γ′, t)(γ′′, r)〉

where r ∈ Ŝ, ri ∈ Fi and δ̂(r, γ′′) = t.

• Translating weights: f ′(r′) = f(r).

Figure 3.4: Translating CWPDSs to WPDSs by Algorithm TRANS [26]

One should remark here, that above algorithm would produce entire set of stack al-
phabet at once to complete the outcome WPDS. Inevitably it involved redundant stack
symbols and transition rules which may never be used in later saturation process. More-
over, as the extended stack alphabet Γ′ is a product of Γ and Ŝ, a blow-up in the number
of states of

∏

1≤i≤nAi easily leads to explosion of Γ′. Hereafter, we design a new approach
to realize CWPDS more efficiently in practice.

20

Chapter 4

On-The-Fly CWPDS Algorithm and
Data Structure

This chapter is devoted to describe our contribution in realizing conditional weighted
pushdown and enabling its application for large-scale programs. Section 4.1 is covered by
details of our solution to enhance performance of conditional weighted pushdown system.
Section 4.2 discusses a specification of our algorithm written in the declarative language
Datalog. Lastly, Section 4.3 reports a preliminary experiment we conduct to evaluate
performance of our method.

4.1 On-The-Fly Algorithm

Intuitively speaking, to reduce space consumption and runtime, one should generate stack
alphabet and examine conditions only when necessary. We interleave this on-the-fly man-
ner with the weighted P-automaton construction in [36]; that means for a CWPDS tran-
sition rule, the condition associated with it will be checked only when the left-hand-side
of the rule is being considered in the saturation process.
In sum, the effectiveness of post∗ algorithm for CWPDS case is achieved via two phases:

1. Translating initial P-automaton of Conditional pushdown system to one in push-
down system.

2. Applying post∗ algorithm for WPDS case with on-the-fly manner.

Translating initial P-automaton The idea formalized in Alg. 1 contains two steps
as follows.

1. Given a P-automaton Ac of Conditional PDS, starting from a pair consisting of a
final state in Ac and the initial state of

∏

1≤i≤n Ai.

2. Extending and adding rules to the outcome P-automatonAt until it is saturated. To

illustrate, let (p, s) be a considered pair, add (q, t)
(b,s)
−→ (p, s) iff there exists q

b
−→ p

in Ac and s
b

−→ t in
∏

1≤i≤n Ai. See Example 4.1.1 for better understanding.

21

The intuition behind is that, we mimic traversal of the product of condition automata.

Algorithm 1 P-automaton translation

Input: a conditional pushdown system Pc = (Q,Γ, C,∆, q0, γ0) with C = {L1, . . . , Ln};
a set of condition automata A = {A1, . . . , An} with Ai = φ(LR

i) = (Si,Γ, δi, ṡi, Fi)
for 1 ≤ i ≤ n;
a P-automaton Ac = (Q′,Γ,→c, Q, Fc) that accepts Cs ⊆ Q× Γ∗, such that Ac

has no transitions into Q states and has no ε-transitions.
Output: a P-automaton At = (H,Γ′,→0, Q, F) that accepts C ′

s where
C ′

s = {ρ−1(c) | c ∈ Cs}, such that At has no transitions into Q states and has no
ε-transitions.

1: function buildPA(Pc, A,Ac)
begin

2: let δ̂(s1, s2, . . . , sn, γ) = (δ1(s1, γ), δ2(s2, γ), . . . , δn(sn, γ)) for si ∈ Si

with i ∈ {1, 2, . . . , n} and γ ∈ Γ
3: ṡ := (ṡ1, ṡ2, . . . , ṡn)
4: Γ′ := Γ× (S1 × S2 × · · · × Sn)
5: H := ∅
6: for each q ∈ Fc do
7: H := H ∪ {(q, ṡ)}

8:

9: F := H

10: workset := H

11: →0 := ∅
12: while workset 6= ∅ do
13: select and remove a state u = (p, s) from workset

14: for each r = (q, γ, p) ∈→c do
15: t := δ̂(s, γ)
16: H := H ∪ {(q, t)}

17: →0 :=→0 ∪{((q, t), (γ, s), (p, s))} ⊲ add transition (q, t)
(γ,s)
−→ (p, s)

18: workset := workset ∪ {(q, t)}

19: for each r = ((q, t), (γ, s), (p, s)) ∈→0 do
20: if q ∈ Q then
21: H := (H \ {(q, t)}) ∪ {(q)} ⊲ replace (q, t) by (q)
22: →0 := (→0 \ {((q, t), (γ, s), (p, s))})∪ {((q), (γ, s), (p, s))}

23: return (H,Γ′,→0, Q, F)
end

22

On-the-fly post∗ algorithm for Conditional weighted pushdown system It is
listed in Alg. 2. Line 19, 22, 25 describe the on-the-fly checking of conditions.

Algorithm 2 On-the-fly post∗ algorithm for Conditional weighted pushdown system

Input: a conditional weighted pushdown system Wc = (Pc, S, f),
where Pc = (Q,Γ, C,∆, q0, γ0) with C = {L1, . . . , Ln} and S = (D,⊕,⊗, 0̄, 1̄);
a P-automaton Ac = (Q′,Γ,→c, Q, Fc) that accepts Cs ⊆ Q× Γ∗, such that Ac

has no transitions into Q states and has no ε-transitions.
Output: a P-automaton Apost∗ = (H ′,Γ′,→, Q, F) with ε-transitions that accepts

post∗(C ′
s) where C ′

s = {ρ−1(c) | c ∈ Cs};
a function l that maps every (h, γ, h′) ∈→ to a weight taken from semiring S.

1: procedure update(t, v)
begin

2: → := → ∪ {t}
3: newV alue := l(t)⊕ v

4: changed := (newV alue 6= l(t))
5: if changed then
6: workset := workset ∪ {t}
7: l(t) := newV alue

end
8:

9: let A = {A1, . . . , An} with Ai = φ(LR
i) = (Si,Γ, δi, ṡi, Fi) for 1 ≤ i ≤ n

10: let δ̂(s1, s2, . . . , sn, γ) = (δ1(s1, γ), δ2(s2, γ), . . . , δn(sn, γ)) for si ∈ Si

with i ∈ {1, 2, . . . , n} and γ ∈ Γ
11: At := buildPA(Pc, A,Ac) ⊲ call function in Alg. 1 to obtain At = (H,Γ′,→0, Q, F)
12: → := →0; workset := →0; l := λt.0̄
13: for all t ∈→0 do l(t) := 1̄

14: H ′ := H

15: while workset 6= ∅ do
16: select and remove a transition t = (p, (γ,u), q) from workset

17: if γ 6= ε then

18: for all r = 〈p, γ〉
Ai

→֒ 〈p′, ε〉 ∈ ∆ with Ai = (Si,Γ, δi, ṡi, Fi) do
19: if ui ∈ Fi then ⊲ Condition Ai is satisfied
20: update((p′, ε, q), l(t)⊗ f(r))

21: for all r = 〈p, γ〉
Ai

→֒ 〈p′, γ′〉 ∈ ∆ with Ai = (Si,Γ, δi, ṡi, Fi) do
22: if ui ∈ Fi then
23: update((p′, (γ′,u), q), l(t)⊗ f(r))

24: for all r = 〈p, γ〉
Ai

→֒ 〈p′, γ′γ′′〉 ∈ ∆ with Ai = (Si,Γ, δi, ṡi, Fi) do
25: if ui ∈ Fi then
26: let z = δ̂(u, γ′′)

23

27: H ′ := H ′ ∪ {hp′,(γ′,z)}
28: update((p′, (γ′, z), hp′,(γ′,z)), 1̄)
29: update((hp′,(γ′,z), (γ

′′,u), q), l(t)⊗ f(r))
30: if changed then
31: for all t′ = (p′′, ε, hp′,(γ′,z)) do
32: update((p′′, (γ′′,u), q), l(t)⊗ f(r)⊗ l(t′))

33: else
34: for all t′ = (q, (γ′,w), q′) ∈→ do update((p, (γ′,w), q′), l(t′)⊗ l(t))

35: return ((H ′,Γ′,→, Q, F), l)

Performance of the offline algorithm (Fig. 3.4) and on-the-fly algorithm (Alg. 2) are
implemented and experimentally evaluated in Section 4.3.

Example 4.1.1. Consider a conditional weighted pushdown system with:

• Stack alphabet Γ = {a, b, c}

• The initial P-automaton with two control locations p, p′ (Fig. 4.3).

• Semiring S = (N, min,+,∞, 0)

• Set of pushdown transition rules with condition and weight associated to each rule:

∆ =

〈p, b〉
A0,1
→֒ 〈p′, c〉

〈p′, c〉
A1,1
→֒ 〈p′, ab〉

〈p′, c〉
A0,1
→֒ 〈p, ε〉

The regular languages representing the conditions are described by two deterministic finite
automata A0, A1 (Fig. 4.1) and their Cartesian product A is depicted in Fig. 4.2.
The result after applying Alg. 1 and Alg. 2 are shown in Fig. 4.4 and Fig. 4.5 respectively.

24

s0 s1

a, c

b

a, b, c

(a) A0

t0 t1 t2

a, c

b a, c

b

a, c

b

(b) A1

Figure 4.1: Condition DFA A0 and A1

s0, t0 s1, t2

s0, t1

a, c

b

a, c

b

a, c

b

Figure 4.2: Product of Condition DFA A = {A0, A1}

p q0 q1

p′

b a

Figure 4.3: Initial P-automaton

25

p q0, {s1, t2} q1, {s0, t0}

p′

(b, {s1, t2}), 0 (a, {s0, t0}), 0

Figure 4.4: The Initial P-automaton after Applying the Translation

p q0, {s1, t2} q1, {s0, t0}

p′ hp′,(a,{s0,t1})

(b, {s1, t2}), 0

ε, 2

(a, {s0, t0}), 2

(c, {s1, t2}), 1

(a, {s0, t1}), 0

(b, {s1, t2}), 2

(a, {s0, t0}), 0

Figure 4.5: Final Result of Alg. 2.

By generating stack alphabet on-demand, we have avoided redundant symbols, such as:
(b, {s0, t0}), (c, {s0, t0}), (a, {s1, t2}), (b, {s0, t1}), (c, {s0, t1}).

4.2 Data Structure for Conditional Pushdown

System

Dealt with large-scale applications, what to seek is a good data structure for symbolic rep-
resentation. It should be compact and provides efficient operations for program-analysis

26

algorithms. Binary Decision Diagram (BDD) [1] is a structure widely used for this pur-
pose. As our investigation into popular BDD implementations, bddbddb (BDD-Based
Deductive DataBase) library provides the most natural and concise front-end ([44], [45]).
Specifically, a program analysis can be developed simply by writing a specification in a
declarative programming language Datalog. Later, bddbddb will automatically transform
the specification into efficient BDD operations. [46] reported that bddbddb was able to
analyze applications containing up to 4×1014 context-sensitive paths in under 20 minutes.
With the potential application of bddbddb, we make an effort into specifying conditional
pushdown system and its post∗ problem by Datalog.
For conditional pushdown system (CPDS), one can easily apply Alg. 2 to solve its

post∗ problem by modifying the saturation convergence condition. That is, in unweighted
case, the saturation process will stop when there are no new transitions introduced to the
P-automaton.
Meanwhile, the specification described below could be extended to use in weighted

case where the weight domain is finite; roughly, the extension is possible by integrating
a more powerful representation Algebraic Decision Diagrams (ADDs) [3] to bddbddb.
Nevertheless, it is beyond the scope of this thesis.

Datalog In deductive databases, Datalog is a query and rule language [34]. Syntac-
tically, it is a restricted form of the programming language Prolog. In terms of query
representation, Datalog operates on relations (two-dimensional tables) which consists of
attributes (columns) and a domain defining the set of possible attribute values. A Datalog
inference rule contains two parts: head and subgoals separated by an implication symbol.

D(w, z)
︸ ︷︷ ︸

Head

: −
︸︷︷︸

implication

A(w, x), B(x, y), C(y, z)
︸ ︷︷ ︸

Subgoals

indicates:

• IF A(w, x) AND B(x, y) AND C(y, z) are true

• THEN D(w, z) is true.

A Datalog program may contain many relations and inference rules.

Encoding conditional pushdown system to Datalog program Table 4.1 and Ta-
ble 4.2 describe the definition of domains and relations accordingly. Fig. 4.6 illustrates
how to generate relations for a given P-automaton. Last but not least, Table 4.3 shows all
necessary inference rules to solve post∗ problem in CPDS. The relation reachable should
be declared when applying the encoding to a specific analysis.

27

Declaration Remark
P control locations
I internal states of initial P-automata
Index indexes of condition automata
IndexStates indexes of states in condition automata
A ⊆ Index× IndexStates states of condition automata

Ŝ states of product automata
Γ stack alphabet
Γ′ = Γ ∪ {−} extended stack alphabet with special symbol

Q ⊆ (P ∪ I)× Γ′ × Ŝ internal states of post∗ P-automata

Table 4.1: Datalog Domains for On-The-Fly post∗ Algorithm in CPDS

Declaration Remark Flags

push : Index× P × Γ′ × P × Γ′ × Γ′ Push rules 〈p, γ〉
Ai

→֒ 〈p′, γ′γ′′〉 input

pop : Index× P × Γ′ × P Pop rules 〈p, γ〉
Ai

→֒ 〈p′, ǫ〉 input

normal : Index× P × Γ′ × P × Γ′ Normal rules 〈p, γ〉
Ai

→֒ 〈p′, γ′〉 input

cpa1 : P × Γ′ ×Q
Transitions from control locations

input
to internal states in post∗ P-automata

cpa2 : Q× Γ′ ×Q
Transitions of internal states

input
to internal states in post∗ P-automata

fa : A× Γ′ ×A Transitions of condition automata input
finalFA : A Final states of condition automata input
T control locations of interest input
reachable : P reachable control locations output

Table 4.2: Datalog Relations for On-The-Fly post∗ Algorithm in CPDS

p (q0, s2) (q1, s1) (q2, s0)

p′

α β γ

Relations describe above P-automaton
cpa1(p, α, q0,−, (s2)).
cpa2(q0,−, (s2), β, q1,−, (s1)).
cpa2(q1,−, (s1), γ, q2,−, (s0)).

Figure 4.6: A Sample Initial P-automaton Defined by Datalog

28

cpa1(p′, ε, q, α, (sj11 , . . . , s
jk
k , . . . , sjnn)) :-

cpa1(p, γ, q, α, (sj11 , . . . , s
jk
k , . . . , sjnn)),

pop(k, p, γ, p′),

f inalFA(sjkk).

cpa1(p′, γ′, q, α, (sj11 , . . . , s
jk
k , . . . , s

jn
n)) :-

cpa1(p, γ, q, α, (sj11 , . . . , s
jk
k , . . . , sjnn)),

normal(k, p, γ, p′, γ′),

f inalFA(sjkk).

cpa1(p′, γ′, p′, γ′, (st11 , . . . , s
tk
k , . . . , s

tn
n)) :-

cpa1(p, γ, q, α, (sj11 , . . . , s
jk
k , . . . , sjnn)),

push(k, p, γ, p′, γ′, γ′′),

f inalFA(sjkk),

fa(sj11 , γ
′′, st11),

. . . ,

fa(sjkk , γ′′, stkk),
. . . ,
fa(sjnn , γ′′, stnn).

cpa2(p′, γ′, (st11 , . . . , s
tk
k , . . . , s

tn
n), γ′′,

:-

cpa1(p, γ, q, α, (sj11 , . . . , s
jk
k , . . . , sjnn)),

q, α, (sj11 , . . . , s
jk
k , . . . , s

jn
n))

push(k, p, γ, p′, γ′, γ′′),

f inalFA(sjkk),

fa(sj11 , γ
′′, st11),

. . . ,

fa(sjkk , γ′′, stkk),
. . . ,
fa(sjnn , γ′′, stnn).

cpa1(p′′, γ′′, q, α, (sj11 , . . . , s
jk
k , . . . , sjnn)) :-

cpa1(p, γ, q, α, (sj11 , . . . , s
jk
k , . . . , sjnn)),

push(k, p, γ, p′, γ′, γ′′),

f inalFA(sjkk),
cpa1(p′′, ε, p′, γ′, (st11 , . . . , s

tk
k , . . . , s

tn
n)),

fa(sj11 , γ
′′, st11),

. . . ,

fa(sjkk , γ′′, stkk),
. . . ,
fa(sjnn , γ′′, stnn).

cpa1(p, γ′, q′, β, (st11 , . . . , s
tk
k , . . . , s

tn
n)) :-

cpa1(p, ε, q, α, (sj11 , . . . , s
jn
n)),

cpa2(q, α, (sj11 , . . . , s
jn
n), γ′, q′, β, (st11 , . . . , s

tn
n)).

Table 4.3: Datalog Inference Rules for On-The-Fly post∗ Algorithm in CPDS

4.3 Performance of On-The-Fly Algorithm

Implementation of package cwpds Since the target usage is in Java programs anal-
ysis, we implement the whole framework and all related algorithms by Java language to
maintain the consistency and highest possible efficiency. Our package cwpds offered for
conditional weighted pushdown system is extended from the weighted pushdown system
library jMoped [40]. In practice, the conditions associated with transition rules are typ-

29

ically defined by regular expressions. To get a fast manipulation and easy convert from
regular expression to deterministic automata, the Java automaton library developed by
Anders Moller [29] is our choice.

Experiment setup Comparison between the offline algorithm (Fig. 3.4) and the on-
the-fly algorithm (Algo. 2) is conducted with test cases obtained from a study of HTML5
parser [28] in which conditional pushdown systems are constructed to formalize a non-
trivial phase of the HTML5 specification.

Details of the input conditional pushdown systems are as follows:

• Initial configuration 〈323, X〉.

• Size of stack alphabet |Γ| = 25.

• Number of control locations |Q| = 487.

• Number of pushdown transition rules |∆| = 19679.

• Each condition Li in the system is described by a regular expression, e.g.,
(~(((Div|(Optgroup|(Option|(P|(Rp|Ruby))))))*Li(@))). The corresponding
condition DFA Ai may contain upto 6 states.

The result reported in Table 4.4 are from executing our implementation on a system
with IntelrCore(TM) 2 Duo CPU P8400 @2.26GHz, 2.26GHz, Windows XP SP3 with
1GB RAM and Java Development Kit (JDK) 1.6.

• The first column shows number of conditions in the conditional pushdown system
in increased order. As a recall, number of conditions is an aforementioned factor
that causes the explosion of extended stack alphabet.

• The second column informs size of the outcome P-automaton after applying post∗

algorithm.

• Runtime and memory consumption are estimated in second (s) and Kilobyte (KB).

• ∞ means either taking longer than 24 hours or getting Out-of-memory.

Result When number of conditions |C| is upto 5, the offline algorithm is still able to
handle stack-alphabet explosion, but the resource and overhead cost taken is at least two
times more than that of the on-the-fly algorithm. When number of conditions |C| is over
5, theoretically product of condition DFA could explode exponentially as much as 6|C| in
size, where 6 indicates the maximum number of states in a single condition DFA. Table
4.4 proves efficiency of the on-the-fly algorithm towards performance.

30

Number of
Size of output

Offline algorithm On-the-fly algorithm
conditions Runtime Memory Runtime Memory
1 18 229 transitions 1.313s 26 302 KB 0.953s 16 520 KB
2 31 414 transitions 2.187s 45 810 KB 1s 21 804 KB
5 31 412 transitions 25.438s 671 699 KB 1.047s 17 156 KB
10 109 960 transitions ∞ ∞ 1.875s 31 577 KB
15 211 368 transitions ∞ ∞ 2.391s 45 506 KB
20 418 363 transitions ∞ ∞ 5.11s 79 124 KB
60 3 445 895 transitions ∞ ∞ 32.594s 610 628 KB
70 3 244 153 transitions ∞ ∞ 32.062s 562 998 KB
80 3 331 394 transitions ∞ ∞ 35.094s 564 417 KB

Table 4.4: Runtime and Memory Consumption for Offline and On-The-Fly Algorithms

31

Chapter 5

Permission Analysis

This chapter is set out to draw attention to another major contribution of our study: How
we apply conditional weighted pushdown system to settle a specific problem of stack-based
access control in Java 2 platform. First, Section 5.1 clarifies the problem to be addressed
and challenges that should be carried out to obtain a precise analysis. Then, the rest
sections present our approach in detail.

5.1 Problem Statement and Challenges

The problem to be addressed by our permission analysis is described in Fig. 5.1. The
original goal of permission analysis is to improve the runtime performance of Java Vir-
tual Machine (JVM). By knowing which permission checkpoints always pass the stack
inspection, one can either remove redundant checks in the program or refine the policy
file accordingly.

Given:
(1) A Java program to be analyzed.
(2) A policy file stored at a static location.
(3) A list of trusted protection domains selected among all protection domains
mentioned in the policy file.
Problem: Determine whether all permission checks invoked in trusted domains will
always succeed. The output will be either ”Always succeed” or ”May fail”.

Figure 5.1: The Problem to be Addressed by Permission Analysis

Example 5.1.1. Suppose an application MainUI gets from program arguments a file name
fn (without extension) located in directory home. It counts number of available bytes in
the file fn.txt, then write the result to an output file fn.out.

32

class A {

01: public static String DIR = "home" + File.pathSeparator;

02: public void doYourThing(String fileName) {

03: try {

04: // read access to file

05: FileInputStream f = new FileInputStream(DIR+fileName+".txt");

06: int cnt = f.available();

07: // write access to directory

08: FilePermission fp = new FilePermission(DIR+"*", "write");

09: AccessController.checkPermission(fp);

10: // write access to file

11: PrintWriter out = new PrintWriter(DIR+fileName+".out");

12: out.println("Total available bytes = " + cnt);

13: } catch (AccessControlException e) {

14: e.printStackTrace();

15: } catch (FileNotFoundException e) {

16: e.printStackTrace();

17: } catch (IOException e) {

18: e.printStackTrace();

}

}

}

public class MainUI {

19: public static void main(String[] args) {

20: new A().doYourThing(args[1]);

}

}

Figure 5.2: A Code Fragment that Involves Tricky Cases of Permission Check

Herein, challenges to be encountered while performing the permission analysis are in-
vestigated through Example 5.1.1.

Complicated context of constructing Permission objects From the perspective of
developers, Java 2 platform has successfully encapsulated obscure parts of authorization
test in its API; this helps release concerns over trivial permission requirements, e.g.,
asking for read access when you want to open a file. From the perspective of static
analyses, such features make the circumstance more sophisticated. Because, without
knowledge of how AccessController.checkPermission(perm) is actually invoked and how its
parameter perm is instantiated, the analysis result may become overly conservative. To
illustrate a tricky context of Permission object construction, suppose one needs to open
a text file a.txt by instantiating an object FileInputStream(”a.txt”) (Line 05 in Fig. 5.2).

33

The constructor of FileInputStream will invoke the SecurityManager.checkRead() method,
then a FilePermission(”a.txt”, ”read”) object named perm is instantiated and passed to
SecurityManager.checkPermission(perm) method, which subsequently uses the parameter
perm to call AccessController.checkPermission(perm).
That means, in a Java program, there may be more than one single access-control check-

point (explicit invocation of the AccessController.checkPermission method); other check-
points are perhaps wrapped in system calls. Therefore, not only the program needs to be
modeled but also the underlying Java system libraries. Without careful treatment, size
of the model to analyze could grow up indiscriminately.

Computation for permission requirements Beside the aforementioned context of
Permission object, another problem is that, AccessController.checkPermission(perm) is a
static method. Particularly, its invocations may occur in different parts of the program
with the same allocation site and the same type of permission (Line 05, 08, 11, 20 in
Fig. 5.2). A natural question thereby arises: How to distinguish calling contexts of
AccessController.checkPermission and instantiating contexts of Permission object?

Propagation of string constants Every Permission object is made of zero or more
parameters of String objects. As mentioned in Chapter 2, permission requirement rep-
resented by a Permission object perm can be uniquely identified via the Permission type
along with its String parameters as below.

perm = new PermissionType(target, action)

The String expressions describe target and actions may be created and passed through a
sequence of manipulation, e.g., concatenation (Line 05, 08, 11 in Fig. 5.2). Hence, for
analyses aiming at Java 2 access control, it is crucial to keep track of string constants.
The remainder of this chapter sequentially reveals prerequisites and the way we cope

with above challenges. From now on, checkPermission will stand for
AccessController.checkPermission.

5.2 Prerequisites

In our analysis, we have assumption of the following context-sensitive points-to analysis
[2] and string analysis [10]. These two extra analyses are responsible for computing
type of perm at every invocation checkPermission(perm) along with (zero or more) String
parameters when instantiating the perm object:

• Given a reference v, pta(v) returns the finite set of abstract objects that v may refer
to at runtime under certain calling contexts. Each element in pta(v) is represented
as a triplet (type, loc, c), where type is the object type, loc is the allocation site, and
c is the calling contexts through which the object is constructed.

• Given a string variable v, sa(v) returns the finite set of string constants that v

may contain at runtime under certain calling contexts. Each element in sa(v) is

34

represented as a pair (sv, c), where sv is the string value and c is the calling contexts
through which sv is constructed.

The precision of our analysis depends on the precision of points-to analysis and string
analysis.

5.3 Abstraction of Java Programs

Definition 5.3.1. Let Methods denote the set of all methods in the given program. We
denote by Gm = (Nm, Em, em, xm) the control flow graph (CFG) for any method m ∈
Methods, where Nm is the set of nodes that corresponds to program points, and Em ⊆
Nm × Nm is the set of edges that represents the program control flow, and em, xm ∈ Nm

are unique entry point and exit point of m, representatively.
For the method AccessController.checkPermission that triggers stack inspection, we define

its CFG as Gcp = ({ecp, xcp}, {(ecp, xcp)}, ecp, xcp).
An inter-procedural CFG G = (N,E) is a directed graph where N is the set of nodes

and E ⊆ N × N is the set of edges. Given a collection of CFGs for all methods, G is
built as follows. Initially N =

⋃

m∈Methods Nm and E =
⋃

m∈Methods Em. For any n ∈ N ,
if n is an invocation point for “m calls m′”, then

• a call edge (n, em′) and a return edge (xm′ , nR) are added into E, where nR ∈ N is
a fresh node representing the return point, and

• new edges {(nR, n′) | (n, n′) ∈ E} are added into E, and the original edges {(n, n′) ∈
E | n′ ∈ N} are removed from E.

Note that,

• Since our permission analysis is concerned with method invocations, nodes and edges
in G that are not relevant to method invocations and the control flow structure of
the program, such as program branching points, are abstracted away.

• Treatment for AccessController.doPrivileged: According to Java 2 semantics, each
invocation of AccessController.doPrivileged(action) involves an underlying call to
action.run(). To abstract such relation, one edge should be added between the entry
point of AccessController.doPrivileged and that of the corresponding action.run().

Definition 5.3.2. Given an inter-procedural CFG G = (N,E) of the given program, we
define a pushdown system P = ({·},Γ,∆, γinitial) that models the program, where the set
of control locations is singleton, Γ ⊆ N , γinitial = em with m being the program’s entry
point, and ∆ is constructed as follows, for each edge (n, n′) ∈ E,

• 〈·, n〉 →֒ 〈·, n′nR〉 ∈ ∆, if n′ = em for some method m;

• 〈·, n〉 →֒ 〈·, ǫ〉 ∈ ∆, if n = xm for some method m and n′ = uR is the return point
of node u;

• 〈·, n〉 →֒ 〈·, n′〉 ∈ ∆ otherwise.

35

5.4 Abstraction of Policy System

The second analysis step is to abstract the domain-specific security policy of Java 2
platform. Recall that, all classes in a protection domain are granted the same set of
permissions. Consequently, we can reasonably suppose all methods in the same class are
also granted the same set of permissions.

Definition 5.4.1. Let Domain denote a finite set of protection domains, and Perms

denote the universe of all permissions involved in the given program.

• dom : Methods −→ Domain is a mapping from methods to protection domains.
This mapping is proper for Java semantics where domains are assigned to classes
and all methods in classes.

• Each control flow graph is associated with a security policy
perm : Domain −→ 2Perms, which grants a set of permissions to each protec-
tion domain. Especially, all methods in system domain, e.g., method AccessCon-
troller.doPrivileged, are granted all permissions in Perms.

• The policy system in our approach is method-wise; so all entry, exit, and invocation
points associated with a method m will inherit all permissions granted to m and also
belong to the protection domain of m.

Consider perm is extended element-wise. Hereafter, we use policy(m) as the abbrevi-
ation for (perm ◦ dom)(m).

Definition 5.4.2. Let CheckPoints = {n ∈ N | (n, n′) ∈ E, n′ = ecp}, i.e., CheckPoints

is the set of call sites that invokes the AccessController.checkPermission method.

For each checkpoint n ∈ CheckPoints that is supposed to contain expression
“checkPermission(perm)”, we first call points-to analysis pta(perm). For each
(Type, loc, c) ∈ pta(perm), the allocation site referred to by l is supposed to contain
expressions in one of the following form

perm = new Type(target,action) (1)
perm = new Type(target) (2)
perm = new Type() (3)

We add each new permission perm to Perms, where perm =

(Type, sv1, sv2) where (sv1, c1) ∈ sa(target), (sv2, c2) ∈ sa(action)
and c1 = c2 for (1)

(Type, sv) where (sv, c′) ∈ sa(target) for (2)
Type for (3)

36

5.5 Permission Analysis

Our approach consists of two steps:

1. Determining analysis points: within programs of a given trusted domain, all
trigger points of checkPermission will be captured and named AnalysisPoints.

2. Performing permission analysis: an analysis will be performed to decide whether
all permission checks invoked in the trusted domain always succeed.

5.5.1 Determining Analysis Points

Definition 5.5.1. Given an inter-procedural CFG G = (N,E) (Def. 5.3.1), and a map-
ping l : N → Domain from nodes to their belonging protection domains. A boundary of
a given domain dm ∈ Domain, denoted by B(dm), is defined as

B(dm) = {u ∈ N | (u, v) ∈ E, l(u) = dm, l(u) 6= l(v)}

The boundary of a domain dm refers to nodes from dm with outgoing edges to nodes
from different domains (that are typically Java libraries).
The first step of our analysis is to determine program points from the given domain dm,

denoted by AnalysisPoints(dm), that may (indirectly) trigger stack inspection at runtime
and will be examined in permission analysis. Assume the pushdown system encoded by
Def. 5.3.2. Such checkpoints are defined as an approximation by

AnalysisPoints(dm) = {n ∈ N | 〈·, nω〉 ∈ R for some ω ∈ Γ∗}

where R = {〈·, nω〉 | ω ∈ Γ∗, n ∈ B(dm)} ∩ pre∗({〈·, ecpω〉 | ω ∈ Γ∗}).

5.5.2 Permission Check

Definition 5.5.2. Given a domain dm ∈ Domain, for each analysis point n ∈ AnalysisPoints(dm),
we denote by PermReqs(n) permissions that may be checked for stack inspection at run-
time triggered by the statement at n.

We leave the realization of Def. 5.5.2 as future work. We adopt the semiring Sperm =
(Dperm,⊕perm,⊗perm, 0, 1) in [24], given a PER-based abstraction with 2-point domain
{ANY, ID}, where Dperm = {λx.ANY, λx.ID, 0̄, 1̄} with the ordering λx.ANY ⊑ 1̄ ⊑
λx.ID ⊑ 0̄.
We adapt the pushdown system P = ({·},Γ,∆, γinitial) encoded from the given program

(Def. 3.1.1) to a CWPDS Wperm = (Pperm,Sperm, fperm), where
Pperm = ({·},Γ, Cperm,∆perm, γinitial).

We write 〈p, α〉
C,w
→֒ 〈q, ω〉 if r : (p, α, C, q, ω) ∈ ∆c and f(r) = w. For each

r : 〈·, α〉 →֒ 〈·, ω〉 ∈ ∆, if α = ecp and ω = xcp, then for each perm ∈ Perms, we have

〈·, ecp〉
L&C,1̄
→֒ 〈·, xcp〉 ∈ ∆perm, and

〈·, ecp〉
(!L)&C,λx.ANY

→֒ 〈·, xcp〉 ∈ ∆perm

37

where L = (α∗) + (α∗)βα(Γ∗) and !L is the complement of L, with

• α = {(l, m) ∈ Γ | perm ∈ policy(m)},

• β = α ∩ {(l, m) ∈ Γ | m = AccessController.doPrivileged}.

• C = Γ∗(nR
1 +nR

2 +· · ·+nR
k)Γ

∗ where {nR
1 , n

R
2 , . . . , n

R
k } = {nR | perm ∈ PermReqs(n)}

Definition 5.5.3. Given a domain dm ∈ Domain. For any analysis point
n ∈ AnalysisPoints(dm), we say stack inspections invoked by n may fail if
MOV P (S, T,Wperm) = λx.ANY and always succeed otherwise, where S = {〈·, γinitial〉},
T = {〈·, nRω | ω ∈ Γ∗}. We say access control invoked from the domain dm always
succeed if each analysis point in this domain always succeeds for stack inspection, and
may fail otherwise.

Example 5.5.4 illustrates the control flow graph and conditional weighted pushdown
system in case there are two different invocations of checkPermission.

Example 5.5.4. Consider a code fragment (Fig. 5.3) and its control flow graph (Fig.
5.4).

package test.App;

public class MyApp() {

l0: public static void main(String[] args) {

l1: boolean canOpenFile = false;

l2: checkPermission(new FilePermission("a.txt", "read"));

l3: canOpenFile = true;

l4: A(canOpenFile);

l5: checkPermission(new FilePermission("b.jar", "execute"));

}

Figure 5.3: A Program Fragment with Permission Checks for File Access

The encoding to conditional weighted pushdown system is:

• Stack alphabet:

Γ = {emain, xmain, ecp, xcp, n1, n
R
1 , n2, n

R
2 , n3, n

R
3 }

where n1 = (l2, main), n2 = (l4, main), n3 = (l5, main).

38

• Pushdown transition rules:

∆ =

〈·, xmain〉
Γ∗,1̄
→֒ 〈·, ǫ〉

〈·, xcp〉
Γ∗,1̄
→֒ 〈·, ǫ〉

〈·, xA〉
Γ∗,1̄
→֒ 〈·, ǫ〉

〈·, emain〉
Γ∗,1̄
→֒ 〈·, n1〉

〈·, n1〉
Γ∗,1̄
→֒ 〈·, ecp n

R
1 〉

〈·, ecp〉
L1&C1,1̄
→֒ 〈·, xcp〉

〈·, ecp〉
(!L1)&C1,λx.ANY

→֒ 〈·, xcp〉

〈·, ecp〉
L2&C2,1̄
→֒ 〈·, xcp〉

〈·, ecp〉
(!L2)&C2,λx.ANY

→֒ 〈·, xcp〉

〈·, nR
1 〉

Γ∗,1̄
→֒ 〈·, n2〉

〈·, n2〉
Γ∗,1̄
→֒ 〈·, eA nR

2 〉

〈·, eA〉
Γ∗,1̄
→֒ 〈·, xA〉

〈·, nR
2 〉

Γ∗,1̄
→֒ 〈·, n3〉

〈·, n3〉
Γ∗,1̄
→֒ 〈·, ecp n

R
3 〉

〈·, nR
3 〉

Γ∗,1̄
→֒ 〈·, xmain〉

where:

– L1 = (α∗
1) + (α∗

1)β1α1(Γ
∗),

– α1 = {γ = (l, m) ∈ Γ | FilePermission(”a.txt”, ”read”) ∈ policy(m)},

– β1 = α1 ∩ {γ = (l, m) ∈ Γ | m = AccessController.doPrivileged},

– C1 = Γ∗(nR
1)Γ

∗,

– L2 = (α∗
2) + (α∗

2)β2α2(Γ
∗),

– α2 = {γ = (l, m) ∈ Γ | FilePermission(”b.jar”, ”execute”) ∈ policy(m)},

– β2 = α2 ∩ {γ = (l, m) ∈ Γ | m = AccessController.doPrivileged},

– C2 = Γ∗(nR
3)Γ

∗.

39

emain

n1 ecp

xcpnR
1

n2 eA

xAnR
2

n3

nR
3

xmain

Figure 5.4: The Control Flow Graph of Program Fragment in Fig. 5.3.

40

5.6 Demonstration of Permission Analysis Framework

5.6.1 Sample Usage of Package cwpds for Permission Check

As described in Chapter 5, conditional weighted pushdown system is the key formalism
in our permission analysis framework. In more detail, the on-the-fly algorithm in package
cwpds will be used to compute post∗ P-automaton for the permission check. Here we
demonstrate how to use package cwpds for such purpose via the Example 5.5.4; full source
code of this demonstration could be found in Appendix A.
Suppose conditions of pushdown transition rules shown in Example 5.5.4 are:

• L1 = (α∗
1) + (α∗

1)β1α1(Γ
∗), where α1 = {emain, xmain, ecp, xcp, n1, n

R
1 , n2, n

R
2 , n3, n

R
3 },

and β1 = ∅,

• C1 = Γ∗(nR
1)Γ

∗,

• L2 = (α∗
2) + (α∗

2)β2α2(Γ
∗), where α2 = {eA, xA, ecp, xcp}, and β2 = ∅,

• C2 = Γ∗(nR
3)Γ

∗.

Before invoking the on-the-fly algorithm, one should construct a conditional weighted
pushdown system in the following way:

(i) Defining regular expressions and conditional DFA (Line 30 – 60 in Fig. A.2). A0

describes condition Γ∗. Condition DFA A1, A2 are corresponding to L1 and !L1;
while A3, A4 represent L2 and !L2.

(ii) Computing Cartersian product A =
∏

0≤i≤4 Ai (Line 63 – 68 in Fig. A.2).

(iii) Creating a conditional weighted pushdown system by setting Semiring (PERSemiring),
and adding pushdown transition rules (Line 71 – 102 in Fig. A.2, and Fig. A.3).

(iv) Initializing P-automaton with a given program entry point, e.g. emain (Line 105 –
109 in Fig. A.3).

(v) Asking the on-the-fly saturation algorithm to obtain post∗ P-automata (Line 113 –
118 in Fig. A.3).

(vi) Finally, stack inspections invoked by a checkpoint n is determined by the analysis
result or solution of MOV P (Def. 5.5.3) at n. This value can be computed by
Algorithm 4 Fig. 19 in [36] (Line 119 – 122 in Fig. A.3).

Fig. 5.5 illustrates a successful run of package cwpds. Format of transitions in the
outcome P-automata is:

<start state> -<symbol>-> <end state> (weight of transition)

41

Figure 5.5: Screen-shot of Package cwpds Usage in Java

Figure 5.6: Screen-shot of Analysis Result Using Package cwpds

42

Fig. 5.6 displays the analysis result at two points nR
1 and nR

3 , along with a running
profile of the demonstration (Line 124 – 135 in Fig. A.4). According to above conditional
pushdown system, the checkPermission invoked at n1 always succeeds, while at n3 it may
fail.

5.6.2 Blueprint for Realization of the Framework

Realization of the framework is underway. Our design for abstracting a Java program and
constructing control flow graph can be sketched as follows.

Front-end engine Among all strategies to implement program analysis algorithms,
the primary concern is ability to construct control flow graph for Java method invocation,
tools for points-to analysis, and the possibility to integrate with our back-end libraries.
After careful consideration, our choice is Soot – a Java Optimization Framework from
McGill University [41]. It not only provides the benefits of being well-established for
research projects but also offers well-documented source code [13] [37]. Soot can be used
as either a stand-alone tool or embedded instructions in Java programs.

Intermediate representation The versatility of Soot is remarkable since it supplies
four intermediate representations for code: Baf, Jimple, Shimple and Grimp. Within
the scope of our analysis, Jimple is the most suitable to represent the expected level of
abstraction. Jimple (Java’s simple) is a stackless, typed 3-address, and statement-based
intermediate representation. It breaks compound statements into more atomic ones so
that each statement can be described as a 4-tuple: (result, operand1, operator, operand2).
For instance, z = a+ b+ c will become z0 = a+ b and z = z0+ c. This feature is essential
to simplify dataflow analysis [13]. Jimple has 15 kinds of statements. For the purpose of
interprocedural control-flow analysis, we utilize only InvokeStmt which represents method
invocation.

Control flow graph creation Among several kinds of control flow graphs (CFGs)
provided by Soot, BriefUnitGraph sufficiently meets our requirement. From a complete
CFG generated by Soot, we simplified the model by abstracting away irrelevant nodes
and edges as described in Chapter 5. A technical issue worth noting is treatment for the
method AccessController.doPrivileged. Each CFG in Soot is built for a given method body,
this construction thereby cannot be applied for a non-concrete method with no body
like AccessController.doPrivileged. In other words, whenever encountering an invocation
AccessController.doPrivileged(action), we need to perform a points-to analysis to obtain
proper object action, then manually create edges for the relationship between AccessCon-
troller.doPrivileged and action.run() method.

Points-to analysis tool Of concern over large-scale applications, Japot – a stacking-
based context-sensitive points-to analysis tool for Java, is reported to be well-scaled with
benchmarks of significant size [25].

43

String analysis tool Java String Analyzer (JSA) [11] is a tool for static string analysis
which assesses possible values of string expressions. Its underlying technique was proposed
by Christensen et al. [10]. For a gentle manual of installation and usage, we refer to [16].
The first phase in the front-end of JSA is the Jimple code generation implemented by Soot,
while the outcome automata are represented using the Anders Moller’s package [29]. They
conjointly make our structure in harmony.

Identifying permission requirements Each analysis point n will be matched with a
set of permissions which may be checked for stack inspection triggered from n. This step
could be done by one extra analysis on the calling contexts.

44

Chapter 6

Related Work

This chapter reports a literature survey on related studies by three aspects: applications
of conditional pushdown system, analyses aimed to stack inspection, and other approaches
for access control systems.

Applications of conditional pushdown system Minamide et al. [28] suggested an
interesting application of reachability analysis for parsing specification of HTML5. To
avoid blowup of the size of stack alphabet while translating the problem to conditional
pushdown system, the authors extended P-automata to describe a set of configurations
to automata with regular lookahead.

Analyses related to stack inspection and available tools Inspecting call stack in
runtime can be costly from a performance point of view. Hence, a considerable amount
of literature has been published on static analysis for stack inspection.
Namely, Banerjee et al. [4] pointed to a denotational semantics that proved the equiv-

alence of eager and lazy evaluation for stack inspection, proposed a static analysis with
full-proof for safety, and also identified program transformations that help to remove re-
dundant runtime access control checks. Meanwhile, [21] proposed a technique using a
context-sensitive, flow-sensitive, interprocedural data flow analysis to automatically es-
timate the set of access rights required at each program point. In spite of notable ex-
perimental results, the study suffered a practical matter, as it supposed parameters to
Permission constructors were string constants.
From theoretical side, given a program which may contain stack inspection, the verifica-

tion problem to decide whether it satisfies a given policy properties, was proved intractable
in general [31]. Nonetheless, there still existed a solvable subclass of programs which pre-
cisely model programs containing checkPermission of Java 2 platform. Moreover, the study
concluded computational complexity of problem for the subclass is linear time in the size
of the given program.
On the other hand, in light of practical circumstances, [9] provided a backward static

analysis to approximate redundant permission checks with must-fail stack inspection and
success permission checks with must-pass stack inspection. This approach was later em-

45

ployed in a visualization tool of permission checks in Java [20]. Controversially, the tool
made no attempt to relieve users from the burden of deciding access rights; more specif-
ically, along with a given policy file, users were also required to explicitly specify which
methods and permissions to check.
Conversely, being a module of privilege assertion in a popular tool – IBM Security Work-

bench Development for Java (SWORD4J) [18], the interprocedural analysis for privileged
code placement [33] tackled three problems: identifying portions of codes that necessary
to make privileged, detecting tainted variables in privileged codes, and exposing useless
privileged blocks of codes. By utilizing Access-Rights Invocation Graph (ARIG) [21], the
analysis enabled propagation of string constants to acquire more precise constructor of
Permission object. Even so, having built on the expensive context-sensitive call graph,
ARIG, scalability becomes its major disadvantage.
Of primary concern over implementation of the stack inspection algorithm, two control

flow forward analyses, Denied Permission Analysis and Granted Permission Analysis, were
defined by Bartoletti et al. [5] [6] to approximate the set of permissions denied or granted
to a given Java bytecode at runtime. Outcome of the analyses were then used to eliminate
redundant permission checks and relocate others to more proper places in the code.
Briefly, [21] [6] [20] approximated permissions required to allow the code to execute at

each checkpoint. While with conditional weighted pushdown systems, we do not need to
explicitly compute such information.
To the best of our knowledge, the modular analysis proposed in [17] is the most relevant

to our work. The authors employed Automated Authorization Analysis (A3) tool to assess
the precision of permission requirements for stack inspection. Strictly speaking, the study
managed to identify authorization objects by a combination of string analysis and program
slicing. However, it shed light only on analyzing for necessary permissions rather than
checking an existing policy. That is to say, the effectiveness of its analysis relied on
whether the permissions it detected were actually required or not.

Other approaches for access-control Since the inception of stack-based access con-
trol systems, stack inspection is widely adopted as a simple and practical model for Web
security. Still a number of inherent flaws have been discovered; for example, an unautho-
rized code which is no longer in the call stack may be allowed to affect the execution of
security-sensitive code [33] [32]. As a consequence, it makes an appeal to attempts for
better alternate models or remedies to the known limitations.
Instead of analyzing security policies associated with existing code, Erlingsson and

Schneider [14] composed new notion for enforcing security policies on runtime platforms
like Java Virtual Machine. They constructed a system that inserted an inlined reference
monitor and authorization checkpoints into the code to reduce redundant tests.
Likewise, targeting at a central problem of stack inspection: ”To what extent local

checks are sufficient to guarantee enforcement of global security properties?” [8] created
a constraint-based static program analysis for inferring a secure calling context for a
stack-inspecting method. It made a substantial step towards a secure interface for stack
inspection [7].

46

A worth highlighting alternate model for Stack-based access control (SBAC) is the
Information-based access control (IBAC) which was recently introduced in [32]. IBAC
brought out a novel security model that could verify all and only the code responsible for
a security-sensitive operation was sufficiently authorized. Notwithstanding it surpassed
SBAC in many case studies, IBAC was quite complex for a complete implementation and
applications.

47

Chapter 7

Conclusion and Future Work

7.1 Conclusion

With a given program and its security policy, our framework performs a static analysis to
analyze whether all permission checks in concerned domains always succeed. The analysis
result indeed embraces the original motivation of program analysis; that is, to improve
program performance with results already known at compile time. Specifically, with
the awareness of always-succeed permission checks, developers can eliminate superfluous
computational cost at runtime by removing those redundant access-control checks or
further cleaning up bulky parts of the security policy.
We build up the framework by bringing two key factors into focus: the efficiency of

framework approach and the precision of core analyses. Of concern over framework ap-
proach, we propose an on-the-fly algorithm to solve the forward reachability problem in
conditional weighted pushdown system. In contrast to existing approach, experiment
described in Chapter 4 Section 4.3 shows potential efficiency of our algorithm. Implemen-
tation of on-the-fly algorithm is packed in our open-source package cwpds. Furthermore,
we pave the way for possible large-scale applications by providing a Datalog specification
of the algorithm in scope of conditional pushdown system.
The calling context of a permission check and its relevant parameters are difficult to

evaluate at compile time, in general; it requires meticulous analysis to deal with various
situations of runtime data. By designing the framework in conditional weighted pushdown
systems, we can manage the calling contexts in a precise way. Furthermore, it leads to
an automatic realization of the analysis algorithm by model checker. As described in
Chapter 5, we divide the problem into two analyses for: determination of analysis points
and permission check. The first analysis is undertaken by applying weighted pushdown
system, whereas the latter takes advantage of conditional weighted pushdown system with
the proposed on-the-fly algorithm.

7.2 Future Work

Exploring the following matters promises to be a worthwhile line in future work:

48

• Completing realization of the permission analysis framework. As the framework
turns out to be a helpful tool for Web security, topmost priority is putting it into
practice and conducting empirical study on performance.

• Investigating more efficient algorithms for problem instances in practice. Despite
of the potential efficiency of the on-the-fly algorithm, it is still appealed for an
improvement so that the adaptation of conditional pushdown system are enabled in
large-scale applications.

• Investigating case studies for Datalog encoding. With an implementation in Binary
Decision Diagrams, e.g. bddbddb, the Datalog encoding appears promising once it
benefits are taken for problem themes in which number of attributes is sufficiently
solvable.

• Extending scenario for the automation of authorization test. An interesting foresight
of our framework analysis result is that one could make use of it to generate a policy
file. Composing a maintainable policy file is typically a manual work in reality. It
requires domain-specific knowledge and hands-on experience in security, especially
when one composes from scratch. Therefore, an initial policy file would help reduce
such kind of burden.

49

Bibliography

[1] H. Andersen. An introduction to binary decision diagrams. In Lecture Notes,
http://www.cs.auc.dk/˜kgl/VERIFICATION99/mm4.html, 1997.

[2] L. Andersen. Program analysis and specialization for the C programming language.
PhD thesis, University of Copenhagen, 1994.

[3] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic Decision Diagrams and their Applications. In Proceedings
of the 1993 IEEE/ACM international conference on Computer-aided design, pages
188–191, Los Alamitos, CA, USA, 1993. IEEE Comput. Soc. Press.

[4] A. Banerjee and D. A. Naumann. A simple semantics and static analysis for Java
security. Technical report, Stevens Institute of Technology, 2001.

[5] M. Bartoletti and P. Degano. Static analysis for stack inspection. Electronic Notes
in Theoretical Computer Science, 54:706–80, Aug. 2001.

[6] M. Bartoletti and P. Degano. Stack inspection and secure program transformations.
International Journal of Information, 2004.

[7] F. Besson. Interfaces for stack inspection. Journal of Functional, 2005.

[8] F. Besson, T. de Grenier de Latour, and T. Jensen. Secure calling contexts for stack
inspection. In Proceedings of the 4th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 76–87. ACM, 2002.

[9] B. Chang. Static check analysis for Java stack inspection. ACM SIGPLAN Notices,
41(3):40, Mar. 2006.

[10] A. S. Christensen and M. I. Schwartzbach. Precise Analysis of String Expressions. In
Proceedings of the 10th international conference on Static analysis, number February,
pages 1–18, San Diego, CA, USA, 2003. Springer-Verlag.

[11] A. U. Department of Computer Science. Java String Analyzer.
http://www.brics.dk/JSA/, 2003.

[12] G. Egan, K. Haley, D. Mckinney, T. Millington, J. Mulcahy, T. Parsons, A. Wat-
son, M. Nisbet, N. Johnston, and S. Hittel. Internet Security Threat Report 2011.
Technical Report April, Symantec, 2012.

50

[13] A. Einarsson and J. D. Nielsen. A survivor’s guide to Java program analysis with
soot. Technical report, McGill University, 2008.

[14] U. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy, number May,
pages 1–27, 2000.

[15] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Computer Aided Verification, volume 1, pages
232–247. Springer, 2000.

[16] A. Feldthaus and A. Moller. The Big Manual for the Java String Analyzer. Technical
report, Department of Computer Science, Aarhus University, 2009.

[17] E. Geay, M. Pistoia, B. G. Ryder, and J. Dolby. Modular string-sensitive permission
analysis with demand-driven precision. 2009 IEEE 31st International Conference on
Software Engineering, pages 177–187, 2009.

[18] T. Habeck, L. Koved, M. Pistoia, and Y. Heights. SWORD4J : Security WORkbench
Development environment 4 Java. Technical report, IBM, 2008.

[19] S. Jha, A. Datta, N. Li, D. Melski, and T. Reps. Analysis Techniques for Information
Security. Morgan and Claypool Publishers, 2010.

[20] Y. Kim. Visualization of permission checks in java using static analysis. Information
Security Applications, pages 133–146, 2007.

[21] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights analysis for Java. In
Proceedings of the 17th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, volume 37, pages 359—-372. ACM, Nov. 2002.

[22] G. Li. Inside Java 2 platform security architecture, API design, and implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1999.

[23] G. Li and M. Mueller. Going beyond the sandbox: An overview of the new security
architecture in the Java Development Kit 1.2. In Proceedings of the USENIX Sympo-
sium on Internet Technologies and Systems, number December, Monterey, California,
1997.

[24] X. Li and M. Ogawa. Interprocedural program analysis for Java based on weighted
pushdown model checking. In The 5th International Workshop on Automated Ver-
ification of Infinite-State Systems (AVIS 2006), ETAPS (April 2006), pages 1–13,
2006.

[25] X. Li and M. Ogawa. Stacking-based context-sensitive points-to analysis for Java.
Hardware and Software: Verification and Testing, pages 133–149, 2009.

51

[26] X. Li and M. Ogawa. Conditional weighted pushdown systems and applications.
Proceedings of the ACM SIGPLAN 2010 workshop on Partial evaluation and program
manipulation - PEPM ’10, page 141, 2010.

[27] G. McGraw and E. Felten. Securing Java: Getting Down to Business with Mobile
Code. Wiley, 2nd edition, 1999.

[28] Y. Minamide and S. Mori. Reachability Analysis of the HTML5 Parser Specification
and its Application to Compatibility Testing. In 18th International symposium on
formal methods, 2012.

[29] A. Moller. dk.brics.automaton – Finite-State Automata and Regular Expressions for
Java, 2010.

[30] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[31] N. Nitta and Y. Takata. An efficient security verification method for programs with
stack inspection. Computer and Communications Security, pages 68–77, 2001.

[32] M. Pistoia, A. Banerjee, and D. Naumann. Beyond stack inspection: A unified access-
control and information-flow security model. Security and Privacy, 2007, 2007.

[33] M. Pistoia, R. Flynn, and L. Koved. Interprocedural analysis for privileged code
placement and tainted variable detection. ECOOP 2005-Object-Oriented, pages 362–
386, 2005.

[34] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill
Science/Engineering/Math, 3rd edition, 2002.

[35] T. Reps, A. Lal, and N. Kidd. Program analysis using weighted pushdown systems.
FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Sci-
ence, pages 23–51, 2007.

[36] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their
application to interprocedural dataflow analysis. Science of Computer Programming,
58(1-2):206–263, Oct. 2005.

[37] Sable research group McGill University. Soot: a Java Optimization Framework.
http://www.sable.mcgill.ca/soot/, 2012.

[38] S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Universitat
Munchen, 2002.

[39] S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On generalized authorization
problems. In Computer Security Foundations Workshop, 2003. Proceedings. 16th
IEEE, pages 202–216. IEEE, 2003.

52

[40] D. Suwimonteerabuth. Reachability in Pushdown Systems: Algorithms and Applica-
tions. PhD thesis, Technische Universität München, 2009.

[41] R. Vall, L. Hendren, P. Lam, and C. Phong. Soot - a Java Bytecode Optimization
Framework . In IBM Centre for Advanced Studies Conference, pages 1–11, 1999.

[42] B. Venners. Inside the Java 2 Virtual Machine. McGraw-Hill Companies, 2nd edition,
2000.

[43] D. Wallach and E. Felten. Understanding Java stack inspection. In Security and
Privacy, 1998. Proceedings. 1998 IEEE Symposium on, pages 52–63. IEEE, 1998.

[44] J. Whaley. BDD-Based Deductive DataBase.
http://bddbddb.sourceforge.net/index.html, 2004.

[45] J. Whaley. Context-Sensitive Pointer Analysis using Binary Decision Diagrams. PhD
thesis, Stanford, 2007.

[46] J. Whaley, D. Avots, and M. Carbin. Using datalog with binary decision diagrams
for program analysis. Programming Languages and Systems, 3780, 2005.

53

Appendix A

Sample Usage of Package cwpds

This appendix displays full sample program of using package cwpds. The conditional
weighted pushdown system created by below code is one described in Example 5.5.4;
more gentle explanation could be found in Chapter 5 Section 5.6.

1 package cwpds . t e s t ;
2

3 import com . goog le . common . c o l l e c t . Sets ;
4 import cwpds . ∗ ;
5 import cwpds . a n a l y s i s . PERSemiring ;
6 import cwpds . r egex .RE;
7 import org . j u n i t . Test ;
8

9 import java . u t i l . ∗ ;
10

11 /∗∗
12 ∗ Permiss ion Ana lys i s Framework demonstrat ion .
13 ∗ @author HUA, Vy Le Thanh
14 ∗/
15 pub l i c c l a s s FrameworkDemo {
16 @Test pub l i c vo id t e s t 1 () {
17 System . out . p r i n t l n (”=== Permiss ion Ana lys i s Framework demo ===”) ;
18

19 St r ing p = ” . ” ;
20 St r ing n1 = ”n1” , n1R = ”n1R” , n2 = ”n2” , n2R = ”n2R” ,
21 n3 = ”n3” , n3R = ”n3R” ;
22 St r ing eA = ”eA” , xA = ”xA” , eCP = ”eCP” , xCP = ”xCP” ;
23 St r ing eMain = ”eMain” , xMain = ”xMain” ;
24

25 // Stack alphabet
26 Lis t<Str ing> alphabet = Arrays . a sL i s t (eMain , xMain , eA , xA,
27 eCP , xCP, n1R , n1 , n2R , n2 , n3R , n3) ;
28 System . out . p r i n t l n (”Stack alphabet = ” + alphabet) ;

Figure A.1: Sample Usage of Package cwpds - Part I

54

30 /∗ c r e a t e r e gu l a r e xp r e s s i o n s f o r pattern o f s tack cond i t i on ∗/
31 St r ing CONDITION1 = ” ((eMain | xMain | n1 | n1R | n2 | n2R | n3 | n3R | eCP |xCP) ∗) ”
32 + RE.INTERSECTION + ” ((@) (n1R) (@)) ” ;
33 // !CONDITION1 & C1
34 St r ing NOT CONDITION1 = ” (” + RE.COMPLEMENT + ”(”
35 + ” ((eMain | xMain | n1 | n1R | n2 | n2R | n3 | n3R | eCP |xCP) ∗) ” + ”)) ”
36 + RE.INTERSECTION + ” ((@) (n1R) (@)) ” ;
37 St r ing CONDITION2 = ” ((eA |xA | eCP |xCP) ∗) ” + RE.INTERSECTION
38 + ” ((@) (n3R) (@)) ” ;
39 // !CONDITION2 & C2
40 St r ing NOT CONDITION2 = ” (” + RE.COMPLEMENT + ”(”
41 + ” ((eA |xA | eCP |xCP) ∗) ” + ”)) ”
42 + RE.INTERSECTION + ” ((@) (n3R) (@)) ” ;
43

44 System . out . p r i n t l n (”Regular expr e s s i on f o r L1 = ” + CONDITION1) ;
45 System . out . p r i n t l n (”Regular expr e s s i on f o r ! L1 = ” + NOT CONDITION1) ;
46 System . out . p r i n t l n (”Regular expr e s s i on f o r L2 = ” + CONDITION2) ;
47 System . out . p r i n t l n (”Regular expr e s s i on f o r ! L2 = ” + NOT CONDITION2) ;
48

49 /∗ c r e a t e cond i t i on DFA f o r Gamma∗ ∗/
50 DFA A0 = new RE(RE.ALL, a lphabet) . toDFA() ;
51

52 /∗ c r e a t e s p e c i f i c cond i t i on DFA f o r permis s ion
53 Fi l ePe rmi s s i on (” a . txt ” , ” read ”) ∗/
54 DFA A1 = new RE(CONDITION1, a lphabet) . toDFA() ;
55 DFA A2 = new RE(NOT CONDITION1, a lphabet) . toDFA() ;
56

57 /∗ c r e a t e s p e c i f i c cond i t i on DFA f o r permis s ion
58 Fi l ePe rmi s s i on (”b . j a r ” , ” execute ”) ∗/
59 DFA A3 = new RE(CONDITION2, a lphabet) . toDFA() ;
60 DFA A4 = new RE(NOT CONDITION2, a lphabet) . toDFA() ;
61

62 /∗ c r e a t e product automaton ∗/
63 DFAProduct productDFA = new DFAProduct () ;
64 productDFA . add (A0) ;
65 productDFA . add (A1) ;
66 productDFA . add (A2) ;
67 productDFA . add (A3) ;
68 productDFA . add (A4) ;
69

70 /∗ c r e a t e c ond i t i o na l weighted pushdown system ∗/
71 CPDS cpds = new CPDS() ;
72 cpds . s e tSemi r ing (new PERSemiring(true , t rue)) ;
73 // <. , xMain> −A 0 , 1−> <. , ep s i l on>
74 cpds . add (0 , PERSemiring .ONE, p , xMain , p) ;

Figure A.2: Sample Usage of Package cwpds - Part II

55

75 // <. , xCP> −A 0 , 1−> <. , ep s i l on>
76 cpds . add (0 , PERSemiring .ONE, p , xCP, p) ;
77 // <. , xA> −A 0 , 1−> <. , ep s i l on>
78 cpds . add (0 , PERSemiring .ONE, p , xA, p) ;
79 // <. , eMain> −A 0 , 1−> <. , n1>
80 cpds . add (0 , PERSemiring .ONE, p , eMain , p , n1) ;
81 // <. , n1> −A 0 , 1−> <. , eCP n1R>
82 cpds . add (0 , PERSemiring .ONE, p , n1 , p , eCP , n1R) ;
83 // <. , eCP> −A 1 , 1−> <. , xCP>
84 cpds . add (1 , PERSemiring .ONE, p , eCP , p , xCP) ;
85 // <. , eCP> −A 2 , ANY−> <. , xCP>
86 cpds . add (2 , PERSemiring .ANY, p , eCP , p , xCP) ;
87 // <. , eCP> −A 3 , 1−> <. , xCP>
88 cpds . add (3 , PERSemiring .ONE, p , eCP , p , xCP) ;
89 // <. , eCP> −A 4 , ANY−> <. , xCP>
90 cpds . add (4 , PERSemiring .ANY, p , eCP , p , xCP) ;
91 // <. , n1R> −A 0 , 1−> <. , n2>
92 cpds . add (0 , PERSemiring .ONE, p , n1R , p , n2) ;
93 // <. , n2> −A 0 , 1−> <. , eA n2R>
94 cpds . add (0 , PERSemiring .ONE, p , n2 , p , eA , n2R) ;
95 // <. , eA> −A 0 , 1−> <. , xA>
96 cpds . add (0 , PERSemiring .ONE, p , eA , p , xA) ;
97 // <. , n2R> −A 0 , 1−> <. , n3>
98 cpds . add (0 , PERSemiring .ONE, p , n2R , p , n3) ;
99 // <. , n3> −A 0 , 1−> <. , eCP n3R>

100 cpds . add (0 , PERSemiring .ONE, p , n3 , p , eCP , n3R) ;
101 // <. , n3R> −A 0 , 1−> <. , xMain>
102 cpds . add (0 , PERSemiring .ONE, p , n3R , p , xMain) ;
103

104 /∗ c r e a t e i n i t i a l P−automaton , g iven the entry po int o f program i s
eMain ∗/

105 PAutomaton pa = new PAutomaton() ;
106 St r ing f i n a l S t a t e = ”q” ;
107 pa . s e t S t a r t S t a t e s (Sets . newHashSet (p)) ;
108 pa . addTrans i t ion (PERSemiring .ONE, p , eMain , f i n a l S t a t e) ;
109 pa . s e tF i na l S t a t e s (Sets . newHashSet (f i n a l S t a t e)) ;
110

111 /∗ compute post ∗ P−automaton by package cwpds ∗/
112 long startTime = System . cur r entT imeMi l l i s () ;
113 CPDSSat cpdsSat = new CPDSSat (cpds) ;
114 PAutomaton paPost = cpdsSat . getPostStar (pa , productDFA) ;
115 System . out . p r i n t l n (”= post ∗ P−automaton produced by cwpds package =”) ;
116 System . out . p r i n t l n (paPost) ;
117 System . out . p r i n t l n (”Number o f s t a t e s = ” + paPost . g e tS t a t e s () . s i z e ()) ;
118 System . out . p r i n t l n (”Number o f t r a n s i t i o n s = ” + paPost . s i z e ()) ;
119 System . out . p r i n t l n (”Ana lys i s r e s u l t at n1R i s : ”
120 + cpdsSat . getValue (p , n1R)) ;
121 System . out . p r i n t l n (”Ana lys i s r e s u l t at n3R i s : ”
122 + cpdsSat . getValue (p , n3R)) ;

Figure A.3: Sample Usage of Package cwpds - Part III

56

123 /∗∗ Obtain per formance s t a t i s t i c s ∗/
124 long stopTime = System . cur r entT imeMi l l i s () ;
125 long elapsedTime = stopTime − startTime ;
126 System . e r r . p r i n t l n (”Running time : ” + elapsedTime + ” mi l i s e cond (s) . ”) ;
127

128 // Get the Java runtime
129 Runtime runtime = Runtime . getRuntime () ;
130 // Run the garbage c o l l e c t o r
131 runtime . gc () ;
132 // Ca l cu la t e the used memory
133 long memory = runtime . totalMemory () − runtime . freeMemory () ;
134 System . e r r . p r i n t l n (”Used memory i s bytes : ” + memory) ;
135 System . e r r . p r i n t l n (”Used memory i s k i l o by t e s : ” + (memory / (1024L))) ;
136 }
137 }

Figure A.4: Sample Usage of Package cwpds - Part IV

57

	Introduction
	The Motivating Big Picture
	Overview of Permission Analysis Framework
	Contributions
	Thesis Outline

	Stack-Based Access Control
	Access Control Mechanism in Java
	Primitives
	Security Policy
	Permissions
	Protection Domain
	Policy Configuration by Policy File

	Access Control by Stack Inspection
	Basic Algorithm
	Extended Algorithm with Privileged Operation

	Pushdown Systems and Reachability Problem
	Pushdown System (PDS)
	Reachability Problem
	Weighted Pushdown System (WPDS)
	Conditional Weighted Pushdown System (CWPDS)

	On-The-Fly CWPDS Algorithm and Data Structure
	On-The-Fly Algorithm
	Data Structure for Conditional Pushdown System
	Performance of On-The-Fly Algorithm

	Permission Analysis
	Problem Statement and Challenges
	Prerequisites
	Abstraction of Java Programs
	Abstraction of Policy System
	Permission Analysis
	Determining Analysis Points
	Permission Check

	Demonstration of Permission Analysis Framework
	Sample Usage of Package cwpds for Permission Check
	Blueprint for Realization of the Framework

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Sample Usage of Package cwpds

