JAIST Repository

https://dspace.jaist.ac.jp/

based appr
r mai nt ena

19/ 10788

gooooaoo, [

A SOA governance pattern
Title change i mpact analysis fo
oriented applications
Author(s) Nguyen, Huong Lan
Citation
Issue Date 2012-09
Type Thesis or Dissertation
Text version aut hor
URL http://hdl . handle.net/ 101
Rights
Description Supervisor: Masato Suzuki,
JAPAN
ADVANCED INSTITUTE OF
® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

A SOA governance pattern based approach with
change impact analysis for maintenance of service
oriented applications

By NGUYEN, Huong Lan

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Associate Professor Masato Suzuki

September, 2012

A SOA governance pattern based approach with
change impact analysis for maintenance of service
oriented applications

By NGUYEN, Huong Lan (1010221)

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Associate Professor Masato Suzuki

and approved by
Associate Professor Masato Suzuki
Associate Professor Toshiaki Aoki
Associate Professor Kazuhiro Ogata

August, 2012 (Submitted)

Copyright © 2012 by NGUYEN, Huong Lan

Acknowledgement

First and foremost I would like to express my sincerest gratitude to my supervisor,
Associate Professor Masato Suzuki, who has supported me throughout my study with his
knowledge, guidance, useful criticism and encouragement. Without his consistent help
this thesis would not have been completed or written.

I wish to say grateful thanks to Professor Koichiro Ochimizu, Associate Professor Toshi-
aki Aoki and Associate Professor Kazuhiro Ogata for their useful comments for this dis-
sertation and on my defense day.

I would like to thanks to Ministry of Education and Training for their financial support
for my study time in Japan.

I would like to show my sincere appreciation to Japan Advanced Institute of Science
and Technology for supporting me during all the time I study here.l also want to thank
all members in Software Engineering Laboratory for their kindness and friendliness.

Last but not least, I would like to thank my family who always courage, love and
support me to complete my degree.

Contents

1 Introduction

1.1 Problem
1.2 Objective
1.3 Dissertation organization L Lo

2 Background Concepts

2.1 Service Oriented Concepts - SOA
2.1.1 Service Oriented Architecture (SOA)
2.1.2 Services
2.1.3 Business Processes
2.1.4 SOA Layers

2.2 Software Maintenance

2.3 Change Impact Analysis
2.3.1 Process
2.3.2 Analysis.

3 Our method

3.1 Software Change Impact Analysis Overview

3.2 Related Works
3.2.1 Code-based Change Impact Analysis
3.2.2 Model-based Change Impact Analysis

3.3 Our Change Impact Analysis for SOA
3.3.1 Service Oriented Business Process Model
3.3.2 Classification of Service Change

4 Case study

4.1 Virtual Travel Agency
4.1.1 System: Example Overview
4.1.2 0 Services
4.1.3 Business processes

4.2 Change analysis in VTA System

5 Conclusion and future works

i

12
12
13
13
13
14
15
16

23
23
23
24
30
33

37

Bibliography

i1

38

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12

An example of aservice 4
An example of Service Composition 5
An example of Service Consumer L. 6
An example of a business process 7
SOA layers. 8
Change Impact Analysis 12
Our model for Change Impact Analysis 14
An example of the model for BPs and Services 16
Type 1: Operation abstraction before change 17
Type 1: Operation abstraction after change 17
Type 2: Operation decomposition before change 18
Type 2: Operation decomposition after change 18
Signup service before change 19
Signup service after change 19
checkCreditCard service before change 21
Refund service before change 21
Payment service after change L. 21
VTA Functions 24
VTA services 24
An example of checking flight schedule 25
An example of checking availability 25
An example of checking price 25
An example of booking transportation 26
An example of searching accommodation 28
An example of booking accommodation 29
Transportation booking process 32
Accommodation booking process 33
An example of operation abstraction 35
An example of operation decomposition 36

v

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7

The I/O of Schedule Operation 26
The I/O of Availability Operation 27
The I/O of Price Operation 27
The I/O of Booking Operation 27
The request and response message of HotelSearch operation 29
The request and response message of HotelAvailability operation 29
The I/O of Payment Operation 30

Chapter 1

Introduction

Software maintenance has been recognized as the most challenge and costly phase in the
software life cycle. Software systems always change over time not only for error correction,
performance improvement but also new requirements to remain the competitive strategies
among organizations.

A software system is generally designed as a set of logically related components. When
a component changes, it might affect to other components in the system. Therefore,
changes to requirements need to be captured, controlled to ensure the evolution of the
system.

Software systems are usually large and complex. In traditional software development
architectures, software systems are generally developed as a set of logically related objects
or components. When a component changes, it might affect to other components in the
system. So, we need a method or process to specify what effects by a proposed change.
This process is called change impact analysis.

Change impact analysis determines the consequences or effects on the system if a change
is made. Change impact analysis can be used during software maintenance to keep the
system at a high level of quality and reduce the cost to maintain the system.

When building a new system, enterprises always want to reuse existing components
rather than build a wrapper. This is one of the most reason why service oriented archi-
tecture is gaining much attention and can be widely accepted nowadays. SOA support a
methodology to design and develop applications based on Web services. It enhances the
agility and cost-effectiveness for enterprises.

In service architecture (SOA), a service is a unit of solution logic to perform a business
task or process. Unit of logic can be an object or a component. Business applications
are usually built by aggregating a set of services to automate a business process within
the organization. When a business process changes, it might affect to its corresponding
services and versa. Therefore we need methods to specify the impact of a proposed change.

1.1 Problem

In Service oriented architecture, business applications encode various business processes
within an organization [9]. Business processes are a set of logically related activities
that are performed to achieve business objects. Business processes are automated by
implementing services. Each service has many capabilities or operations. Due to compete
strategies, organizations tend to re-engineer their business processes. When a business
process is changed, such as adding a task, or removing a task, the services that implement
the changed task need to be updated in order to support the new business requirements.
However, determining the impact of a business process change is not trivial since business
analysts might not understand the whole system and the relation between services in the
system are very complex. This is one of the cause of expensive cost for maintenance. Also,
with an unmanaged change,software systems can run appropriately or even deterioration.

1.2 Objective

In order to overcome above problems, we introduce a new approach using change impact
analysis on design layers and applying some SOA patterns.

Though change impact analysis are mainly used at the business layer and source code
layer., we extend them at the design layer for modeling services and business processes
and applying some SOA patterns to analyse the impacts for maintenance service oriented
applications.

1.3 Dissertation organization

In chapter 2, we will discuss about the background knowledge using in this research. In
this chapter, we will deal with some basic concepts related to service oriented architec-
ture, services, business processes, SOA layers and the relationship between services and
business processes. We will present about the software maintenance process, especially
in services oriented applications. The last content in this chapter are some backgrounds
about change impact analysis, change process and change impact analysis process.

In chapter 3, we will present a model for services and business processes. In this chapter,
we will characterize some kind of changes for services. Finally, we will present some SOA
patterns used for change impact analysis.

The next chapter, chapter 4, we will apply our approach to analysis an example of actual
application "Virtual Travel Agency’.We will introduce services of the travel agency and
then applying some requirements change to change impact analysis. Chapter 5 is the
discussion about the conclusion and the future works.

Chapter 2

Background Concepts

2.1 Service Oriented Concepts - SOA

2.1.1 Service Oriented Architecture (SOA)

According to Thomas Erl in [8], service-oriented architecture represents an architectural
model that aims to enhance the agility and cost-effective of an enterprise while reducing
the burden of IT on the over all organization. It accomplishes this by positioning services
as the primary means to develop the system.

2.1.2 Services

From a business prospective, services are I'T assets that correspond to real-world business
activities. Nowadays, most organizations provides services to customers, clients, employee
or business partners. Here are some examples:

e Travel Agency: Airlines reservation, hotel reservation, annual summary of business
travel expenditures.

e Bank: Saving accounts, checking accounts, payment account, loan, mortgages, credit
verification.

e Insurance Agency: Health insurance, car insurance, accident insurance.

These services are generally implemented by the IT systems. Customers or business
parties can access these services according to services policies. The service policies define
who can access the service, when the service is available to use, the cost of using services,
security levels for the service and so on.

From a technical perspective, services are coarse-grained, reusable software program.
Services are exposed to interfaces from the viewpoint of customers.

Each service is assigned its own distinct functional context and consist of one or more
operations. So, a service can be considered as a container of operations associated with a
specified purpose. Figure 2.1 shows the service with its operations.

Account Validating

» GetCustomerlnfo
* \alidateAccount

Figure 2.1: An example of a service

Service Models
Depending on the type of logic which they encapsulate, the reuse potential and the logic
domains within enterprise, services are classified into two types:

e Business Service Model: A business service automates a parent business task
or process that the organization deliver to its customers or business partners. This
type of service tend to be specific to a particular service domain such as finance,
sales, shipment and so on. Therefore, it has less reuse potential and is generally
positioned as the controller of a service composition.

e Utility Service Model: This type of service stands for any generic service or
service agent designed for reuse potential. So utility services are completely generic
and non-application specific in nature, such as data accessing, logging and identity
management.

Service Composition

A service composition is an aggregate of services together to automate a particular task
or business process. Service composition allows us to built new applications and processes
using existing services from the service inventory. Figure 2.2 shows an example of a service
composition. We assume that company A already has two services:

e Customer Information Service: Gather customer information(GetCustomerInfor)
and change customer information (ChangeCustomerInfor).

e Account Validating: Validate account information of customers (ValidateAccount
operation).

Now the company is planning to built a new service which creates new accounts for
customers. The process for opening a new account is as belows:

e Gather customer and account information.

e Validate customer and account information.

e If the information is valid, open a new account. If not, decline the customer’s
request.

The new service will invoke these two existing services without building new function-
alities.

Account Opening

—+—_® _OpenAccount

- S N\

\ A
; LA
%ustomer I7/ormat|on _\ \ Account Validating
| 4 N
!

O*L'G‘e Customerinfo \'“}: ValidateAccount
& ChangeCustomerinfo

Figure 2.2: An example of Service Composition

Service Consumer
When a program invokes and interacts with a service it is called as a service consumer.
Programs can be a desktop application, a web portal or even other services. For example,
we can create a desktop application that is capable of exchanging data with a service.
When this application invokes the service, it is considered as a service consumer.

Account Validating

. I
Ty
® GetCustomerinfo €
* ValidateAccount
Desktop Applications
Service :
Account Opening
W— « \ValidateAccount

* Openfccount

Another Service
Figure 2.3: An example of Service Consumer

SOA and Web service
As we mentioned, SOA accomplishes logic solutions by using services. One of the most
important things in adopting SOA is that it is neutral to any technology platforms. This
characteristic allows enterprises leveraging technology advancements. In SOA, a service
can be built and implemented as a component or a web service. In this research, we
consider services as Web services.

2.1.3 Business Processes

A business process is a set of related logically tasks that are performed in the appropriate
sequence.
A business process include:

e Tasks that perform a specific function.

e The links between the tasks that determine the order in which tasks can be per-
formed.

e The data that is passed between tasks.

Let’s take an example about a company provide a service which allows customers open-
ing a new account. The business process for this service is showed in the figure 2.4). The
steps in the business process are:

Step 1. Receive account information
In this step, the account information of the customer can be gathered by many methods,
such as:

e Customer enters data via a Website.
e Customer sends an email or make a call to a a clerk of the company.
e Customer has an account, so the customer information is recorded in a database.

Step 2. Validate account information

This step is used for validating the account information of the customer that is gathered
in the previous step. If the account information is valid according to the business rules of
the company, step 3a is performed.

Step 3a. Open account

In this step, a new account is created for the customer. Besides, some task might be per-
formed such as update customer information system, update order management system
and so on.

Step 3b. Decline the customer’s request If the account information does not satisfy
all the business rules for opening a new account, then decline the customer’s request to
open a new account.

Step 4. Send confirmation
After the customer account has been successfully opened, a confirmation is sent to the
customer along with details of his or her new account.

Open
Account
Receive Validate l
@ Account > Account
Information Information Send
Confirmation

Decline Account
Information

Figure 2.4: An example of a business process

2.1.4 SOA Layers
Figure 2.5 shows the layers of SOA [18]

e GUI- Graphical user interface is used by customers, such as Web portal or desktop
applications.

e Business processes that coordinate tasks of the organizations in a predefined se-
quence.

e Services that model and define individual tasks of business processes in a reusable
and technology-neutral manner.

e Components that are used to implement services.

e Business data can be a data stores, data warehouses or existing legacy applications.

GUI

|
L Web Portal

Business Processes

e ——

Services

Components

T

Business Datg

Existing Applications

Figure 2.5: SOA layers

2.2 Software Maintenance

Software maintenance is a phase in software life cycle. Software maintenance is the modi-
fication of a software product after the deployment of that product. Software maintenance
purpose is correcting failures, improving the performance or adapting new requirements
from customers. The IEEE definition is as below:

”Software maintenance is the process of modifying a software system or compo-
nent after delivery to correct faults, improve performances or other attributes,
or adapt to a changed environment.”

Software maintenance can be classified into three categories: Corrective maintenance,
adaptive maintenance and perfective maintenance [3].

e Corrective maintenance: The maintenance involves the failure repairs in the soft-
ware, after software is deployed to the customer.

8

e Adaptive maintenance: The maintenance involves modifications in data and pro-
cessing environments or new requirements from customers.

e Perfective maintenance: The maintenance is performed to eliminate processing in-
efficiencies, enhance performance or improve maintainability.

Software maintenance has recognized as the most costly, difficult and time-consuming
phase in the software life cycle. The effort in which enterprises have to pay for software
maintenance more than 50 percent of the total life cycle.

Unlike many other types of products, software products are progressive change. Even
though software neither deteriorates nor changes with age if its media are well-presented,
software maintenance is an expensive process where an existing program is modified for
a variety of reasons, including correcting errors, adapting to different data or processing
environments, enhancing to add functionality, and altering to improve efficiency.

For programs with many interacting modules, modifying and then revalidating a pro-
gram is complex: analysis, testing, and debugging may be required for each module in-
dividually and for the interactions among modules. The problem is further compounded
because the maintainers are rarely the authors of the code and usually lack a complete
understanding of the program. Even worse, maintainers often do not have access to spec-
ifications or design documents just the code. As software ages and evolves, the task of
maintaining it becomes more complex and more expensive. Some of the other causes of
software maintenance problems are:

e Software maintainability is often not a major consideration during design and im-
plementation.

e Maintenance has been largely ignored in software engineering research.

e Maintenance activities are not well understood

2.3 Change Impact Analysis

The two most expensive activities in software maintenance are the understanding of prob-
lems or other expressed needs for change, in relation with the understanding of the main-
tained software system, and the mastering of all the ripple effects of a proposed change.
A small change can ripple throughout the system to have major unintended impacts else-
where. As a result, software developers need mechanisms to understand how a change to
a software system will impact the rest of the system. This process is called change impact
analysis.

2.3.1 Process

To put change impact analysis in perspective, we first need to understand the process of
change. Madhaji [17] defines the process of change as:

1) Identify the need to make a change to an item in the environment

2) Acquire adequate change related knowledge about the item

4

(1)
(2)
(3) Assess the impact of a change on other items in the environment
(4) Select or construct a method for the process of change

(5)

5) Record the details of the changes for future reference, and release the changed item

back to the environment

One key problem in accommodating changes in an environment is to know all the factors
that impact a given change, and the consequences of this change.

2.3.2 Analysis

Impact analysis(IA), as dened by Arnold and Bohner in [5], ”is the activity of identifying
what to modify to accomplish a change, or of identifying the potential consequences of a
change,”.

In SOA, change impact analysis is used to specify what will be impacted in services and
related service functionality if a proposed change is maded. It is defined as the process of
determining the effects on other components of the services resulting from the proposed
changed.

There are two main approaches to impact analysis: dependency analysis and traceability
analysis.

e Dependency analysis is the analysis of relationships between functionalities or op-
erations inside a service and among services.

e Traceability analysis, on the other hand, is the analysis of relationships among
architectural components.

Typical Change Impact Analysis Process
The process for impact analysis for a proposed change consists of following steps:

Stage 1. Convert proposed change into a system change specification.

Stage 2. Extract information from information source and convert into Internal Repre-
sentation Repository.

Stage 3. Calculate change impact for these change proposals. Do Stage 1-3 again for
other competing change proposals.

Stage 4. Develop resource estimates, based on considerations such as size and soft-
ware complexity.

10

Stage 5. Analyze the cost and benefits of the change request, in the same way as for a
new application.

Stage 6. The maintenance project manager advises the users of the implications of
the change request, in business rather than in technical terms, for them to decide whether
to authorize proceeding with the change.

11

Chapter 3

Our method

3.1 Software Change Impact Analysis Overview

Figure 3.1 describes the basic software change impact analysis process|1].

o .,
request Examine : Starting
Sofware and Impact Set
(S1S)
Determine Candidate
Potential Impat Set
Impacts (CIS)

False Positive
Impact Set .,
(FPIS) ™)

Discovered
Impact Set ~,
(DIS)y

Actual Impact
Set (AIS)

Figure 3.1: Change Impact Analysis

Based on the requests from users and current systems, we specify the change and
determine what parts will be directly impacted by this change. The Starting Impact Set
(SIS) is the initial set of objects or components thought to be affected by a change. The
SIS is normally determined when examining the change specification. The Candidate
Impact Set (CIS) is the set of objects estimated to be affected. The CIS is produced
while conducting the impact analysis. The Actual Impact Set(AIS) is the set of the
objects actually modified.

The impact analysis process is iterative and discovery in nature. While a change is
being performed, there are likely to be more impacts discovered. The discovered impact
set (DIS) represents an under-estimate of impacts. The false-positive impact set (FPIS)

12

represents the over-estimate of impacts in the analysis. The CIS plus additions of the DIS
and minus deletions of FBIS should represent the AIS. The accuracy (error) is obtained
by adding the number of impacts in the DIS and FPIS then dividing them by the number
of impacts in the CIS. This represents the number of errors (DIS and FBIS) divided by
the estimate. The objective of the analysis is to have the Candidate Impact Set produced
from tracing potential impacts (manually or with automation) as close to the Actual
Impact Set as possible by identifying true impacts while eliminating false-positives.

3.2 Related Works

Currently, researches focus on change impact analysis for object-oriented or component-
based software systems. A number of impact analysis methods have been developed and
can be classified into two categories: code-based and model-based.

3.2.1 Code-based Change Impact Analysis

Current works for change impact anlysis of object oriented software systems often base on
the dependency between classes, methods and data members to impact analysis. In [14],
they investigate the change impact analysis of object-oriented software in the distributed
environment. They first categorize the types of change elements in object-oriented soft-
ware into three types: data, method, and class level changes. They then analyze the
impact of each set of changes and represent it in the form of a Distributed Program De-
pendency Graph(DPDG). The DPDG is a graph showing relationship of object oriented
software - with data elements, classes, design documents, servers and its minimized fire-
wall in the distributed environment. Thus, the DPDG reduce the effort and element of
software to retest. In [19], they also proposed a technique for determining the effects of
source code changes for object-oriented software systems.

The advantages of code-based methods is that we often gather an accurate analysis of
the change impact set, but it is extremely time consuming.

3.2.2 Model-based Change Impact Analysis

In order to determine change impacts in earlier phase, and to make proper decision before
considering any change implementation details, there is a need of a method to identify
change impacts without using program code. These methods are called model-based
methods.

Kung et al. [13] describes how change impact analysis can be performed from a class
diagram, introducing the notion of class firewall (i.e., classes that may be impacted by a
change in a given class), and discusses the impact of object-oriented characteristics (e.g.,
encapsulation, inheritance, polymorphism, dynamic binding) on such an analysis.

Briand [6] proposed a UML model-based approach to impact analysis that can be ap-
plied before any implementation of the changes. They first verify that the UML diagrams

13

are consistent. Then changes between two different versions of a UML model are identi-
fied according to a change taxonomy, and model elements that are directly or indirectly
impacted by those changes are determined using formally defined impact analysis rules.
A measure of distance between a changed element and potentially impacted elements is
also proposed to prioritize the results of impact analysis according to their likelihood
of occurrence. They also present a prototype tool that provides automated support for
our impact analysis strategy, that we then apply on a case study to validate both the
implementation and methodology.

In [11], they proposed an approach to apply a light-weight proactive requirement change
impact analysis based on Use Case Maps. This approach identifies and assesses the change
impact proactively at the requirement level before a change is actually performed on the
source code.

3.3 Owur Change Impact Analysis for SOA

Nowaday, Service oriented architecture is adopted widely because of the reuse and cost-
effective of using services. Service oriented applications automate business processes by a
set of services. Each service contain many operations to perform different functions. Like
traditional applications, service oriented application are always change over time. When
a change request is proposed, such as change in data type of it may affect to other services
or operations in each service. Therefore, we need methods to change impact analysis for
these applications. Our methods is proposed to solve this problem. Figure 3.2 depicts the
proposed model to change impact analysis. Our approach contain 4 steps:

Mechanism specification
usage

Change of data type /
Data type
decomposition
Customize SOA
Data type patterns where we
abstraction apply to

Business Processes

Figure 3.2: Our model for Change Impact Analysis

e Model Services and Business Process
e Characterize kind of change by change in input/output of each service

e Apply impact analysis on the model which represents relationship among input and
output data for all of services

14

e Check the condition for 4 SOA patterns are applicable or not: Operation Abstrac-
tion, Operation Decomposition, Service Decomposition and Service Abstractions

3.3.1 Service Oriented Business Process Model

In service oriented architecture, business applications encode business processes to achieve
the business objectives. A business process is a set of logically related tasks to achieve
the business objectives [20]. Tasks are usually implemented by services.

When a business process is changed (e.g., adding a task, and removing a task), the
services which are invoked by a step of the business process need to be updated to support
the new requirements. To determine which part need to be changed, we first model the
relationship between business processes and services

Let us consider a opening account scenario for a banking system as an example. An
account opening process receives an request information from a customer, validate if the
account information is valid or not and then sends confirmation to the customer. So, the
business process contain the following steps:

Step 1. Get information from the customer

Step 2. Validate the account and customer information. If the account is valid: go
to step 3. If not, cancel the customer’s request.

Step 3. Open a new account

Step 4. Send confirmation to the customer.

These tasks are performed by invoking the corresponding services. Figure 3.3 shows
the relations between the business process and its services. For example, to perform the

task ”validate account and customer information”, the business process might invoke the
corresponding service ” AccountValidating” .

15

Open Azcournt
Receive waliclet e Aocourt ¥
L i
1 Apeourt —w Inform aticn _
it Information Send Caonfirmation
a 7 _{ e
2 /
I./ .'/ f | Dedine Accourt | | | ||ll
| J. | | Infoktm ation 7 |
| \ f |
g1 __| Pl |]
/ |
o . =y L,'
[. b L
= A . fal hecountop
Accoi Eii i ! kt .
m Accountinfor Accountvali Confirmation
ol amtian datng ening
]
c
]
wi

Figure 3.3: An example of the model for BPs and Services

Service model

A service is built and implemented to perform one or more tasks in the business process.
Each service contains a set of operations and each operation receives the data input,
process requirements and return the output to the customer.

3.3.2 Classification of Service Change

We know that a service oriented application consist of many services. Each service has
its operations and it can relate to other services. Therefore, the change also has many
different types. In our research, we categorize change into four types:

e Operation abstraction

e Operation decomposition
e Service abstraction

e Service decomposition

Operation Abstraction

In the case O; and O, in the figure 3.4 may contain some common information which
can be abstracted, we can combine these two operations and get a new operation. This
is called Operation Abstraction.

After applying operation abstraction, we get a new operation as showed in the figure 3.5.

Change specification

16

Before Change

Service A has two operations: O; and O,
01 =(iny, outy)

Oy =(ing, outy)

After Change
Service A has 3 new operations:
O?e'w - (?nnewly OUtnew)
O/1 = (m/l, OUt;)

Oy = (iny, out,)

In which,

Mpew = N1 N outy
OUtpew = OUt1 N outy
mll = 1M1 — Mpew

outll = out; — oUlpew
m; = 1M9 — Mpew

outl2 = outy — oUtpew

R 0, - outy '—‘
— E S
1 i | O, | | oun | —
L F

Figure 3.4: Type 1: Operation abstraction before change

s F Ouow 1 outow '7

%
] — II'u:. : D'] | | ou-'_i' j
— b | L—F >
| inz (i Dld || outz
I L7

Figure 3.5: Type 1: Operation abstraction after change

Operation Decomposition
Operation decomposition means to decompose one operation into a set of operations.

Change specification

17

Before Change
Service A has a new operation: O
01 =(iny,outy)

After Change

Service A has two operations: Oq; and Oy,
O11 =(in11, outyy)

O12 =(in12, outys)

inl :in11+ in12

out1= outi; + outqs

| i I (o]} | out: >

Before Change

Figure 3.6: Type 2: Operation decomposition before change

| M 013 | | outin |
>
— in,, Oz .| out, |
I 4

After Change

Figure 3.7: Type 2: Operation decomposition after change

Let take an example. We have an web portal which allows customer sign up a mobile
phone when they buy a phone.Figure 3.8 depicts the signup service with one operation

18

allocatePhoneNumber. The business process of signup service consist of the following
steps:

e Step 1: Randomize a phone number
e Step 2: Validate the phone number

e Step 3: Assign the phone number to customer

Signup

gllocatePhoneMumber

Figure 3.8: Signup service before change

Now we have a change for the sign up process. The customer should be able to choose a
phone number he/she prefers. The new process is:

e Step la: Send a list of available phone number to the customer
e Step 1b: Customer choose one of them
e Step 2: Validate the phone number

e Step 3: Assign the phone number to the customer

The operation allowcatePhoneNumber of the signup service is decomposed into two op-
erations as showed in the figure 3.9.

Signup

s petAvailablePhoneMumber
s assignPhoneMurber

Figure 3.9: Signup service after change

19

Service Abstraction
In service oriented architecture, services are often aggregated into a composited service to
perform a specific some business objective. So, there are many services and the business
logics may become overlapped or duplicated among these services. It would be nice if we
can abstract these business logics and make them as separated services. There are two
types of service abstraction:

e Service simple combination: Business logics of the same domain separated in differ-
ent services, it would be better to simply combine them to centralize them as one
service.

e Service layering: Business logics are overlapping and duplicated in different services,
we can abstract the overlapping part into separated services, usually by putting them
into different service layers.

Change specification for combing two simple services:

Before Change
Service S7 has k operations O1, Os...Oy
Service Sy has m operations Oy/, Oy ...0,

After Change
A new service S has m+k operations: Oy, O,...Oy,
Oy, Oy .0,

Change specification for layering services:

Before Change
Service S; has k operations Oy,...0;, O;41...04
Service Sy has m operations Oy,...0;, O;...O;n

After Change

System has 3 new service:

S has j operations: Oy, O,...0;
Sy has (k — j) operations: Oj41...0y
Sy has (m — j) operations: Oj_;...0,

m

For example, we have the 2 services which are dealing with payment. The logics of
payment are separated into two services:

e 'checkCreditCard’ service receives credit card information from a customer and val-
idates the credit card is valid or not (Figure 3.10).

e 'Refund’ service allows customer to check the amount of their credit card account
and perform payment online (Figure 3.11).

20

Both of these services provide functionalities related to credit card account.
we should combine them into a new service checkCreditCard’ (Figure 3.12).

checkCreditCard

s peiCreditCardinfo
¢ vyalicateCreditCard

Figure 3.10: checkCreditCard service before change

Refund

s petdmount
s refund

Figure 3.11: Refund service before change

Payment

s petCreditCardinfo
s validateCredizCard
* petAmount

« refund

Figure 3.12: Payment service after change

21

Therefore,

Service Decomposition
Service decomposition simply means to split a large service into several smaller services.
Change specification for decomposing a large service:

Before Change
Service S has k operations O, O,...Oy

After Change

Two new services

Sy has j operations Oy, ...0;

Sy has (k — j) operations Ojq, ...Oy

22

Chapter 4

Case study

The main focus of this chapter is to show the effect of our approach for detecting the part
need to change by impact analysis with an example of actual application 'virtual travel
agency’. This example describes travel agency system for booking travels to its customers.
It is expected that a Web Application provides these services automatically. For simplicity
reasons, we will concentrate just on accommodation service and transportation service
which can be carried out using planes.

4.1 Virtual Travel Agency

We use Virtual Trave Agency (VTA) as an example by the following reasons:

(1)This system has a simple structure of services. VTA has two services for ”booking
transportation” and 'making an accommodation’ and these services are independent.

(2) The input and output of each services are clearly defined by a collection of ’String’ or
a date type. This is easy to specify data types.

4.1.1 System: Example Overview

The travel agency would like to build a system which provides its customers the following
functions (Figure 4.1)

e Search flights for a city pairs on a specified day.

Request a flight availability for a specified flight with a particular cabin type.

Get the fare information about a given flight with a predefined fare type.

Book a specific flight with a predefined fare type.

Find the hotels in a specified city

Make a reservation to a specified hotel in a duration time.

23

e Send an invoice for payment.

< iy oke =

E —

Customer

Search Search
Flgiht Hital
Frovide
Book Flight Book Hotel e
Provider
Get Price Pay Eill

Figure 4.1: VTA Functions

To satisfy these functionalities, the IT engineers of the travel agency is planning to develop
the system with a collection of services. Figure 4.2 shows services used to accomplish the

logic solution.

Tranlspon:nicln Accommaodation Payment
Service Service Service

s Srhadule i Saant = Payment
s Availability s Reservation

& Price

» Booking

4.1.2 Services

Transportation Service

Figure 4.2: VTA services

This service is used for booking the transport.At first, transportation with airlines is
considered, but in the future it can be extended more choices such as railways, cars, ships
and so on. Transportation Service contains the following operations:

24

(1) Schedule: This operation shows the flight schedule for connecting two specified
cities. The input of the operation contains (Date, Porg, Pdst) which Porg and Pdst
are the location for origin and destination of transportation. The output contains the
information of a list of flights. The details of the output is described later.

Let us take an example. A passenger want to travel from Tokyo to Osaka for a business
meeting. He would like to take a flight that will leave on August 09, 2012. He will receives
a list of options as follows:

input={"0G/08", Tokyo', "‘Osaka’}

Schedule N o P
output ={flightinfol={JL103", "Tokya','Osaka’, "07:30°,"08:30°),

flightinfo2={"JL113", "Tokyo', 'Osaka’, "10:00","11:00")}

Figure 4.3: An example of checking flight schedule

(2) Availability: This operation shows the number of available seat for the specified
flight. The input contains (FlightInfo, CabinTyle) and the output contains (FareType,
Vacancy).

We assume that Mr Smith would like to fly from Tokyo to Osaka on August 09, 2012.
He want to fly on the flight 103 of Japan Airline, depart at 9:00 and in the business cabin.
Mr Smith requests availability for this flight. He will receive information as showed in the
figure 4.11.

input={JL103", Tokyo', 'Osaka’, '07:30°,'08:30", ‘ECconomy’}
Availability

output={{"Nomal’, 10}, ‘Advanced’, 10)

Figure 4.4: An example of checking availability

(3) Price: This operation shows the prices of specified seat (FareType) and flight
information. The input contains (FlightInfo, FareType) and the output contains the
price.

input={"JL103", Tokyo", Osaka’, ‘07:30°,"08:30", ‘Economy’, ‘Mamal’)
Price

output=20 000
Figure 4.5: An example of checking price

(4) Booking: This operation shows the result of booking (succeed or not). The
input contain (FlightInfo, PassengerInfo, CabinType, FareType) and the output contains
(RefInfo, Fare, Tax, DueDate).

Let us take an example. John Smith wants to fly from Tokyo to Osaka on the flight 103
of Japan Airline. on Agust 09, 2012, at 9:00 AM. He also wants to book in business cabin

25

and with a normal fare. He makes a request via the web portal of the Travel Agency and
then receive an email consisting of the information as showed in the figure 4.6.

input={flightinfo= {"JL103", "Tokyo','Osaka’, "07:30","08: 30", ‘Economy’),

Passengerinfo={"Adult’, "John’, "Smith’, ‘080-8050-1111", Iohn@cse.com'’],
Booking CabinType="Economy’, FareType="Normal’}

outpui={BookRef="XYZ123", Fare=20000, SeatNumber="16F",

DueDate="08/08"

Figure 4.6: An example of booking transportation

FlightInfo contains:

AirName: Name of airline (e.g. Japan Airlines)

FlightNum: Flight number (e.g. Flight 103)

Porg and Pdst: The original and destination location (e.g. Tokyo to Osaka)

DepTime and ArrTime: The departure time and the arrival time of the flight (e.g.
DepTime 07:30, ArrTime 08:30)

CabinType: The type of cabin of the flight. CabinType is one of a string ”Econ-
omy” /”Business” /" First”.

FareType is one of a string "Normal” /” Advanced”.

PassengerInfo contains:

PassengerType is one of a string ” Adult” /” Child”

FirstName is a string (e.g. ”John”)

LastName is a string (e.g. ”Smith”)

PhoneNumber is a string (e.g. ”090-8090-1111")

Email is a string(e.g. ”johnSmith@gmail.com”)

BookRef is a string used to uniquely identify your booking (e.g. "XYZ123")

Schedule Operation Input | Schedule Operation Output

- Date: DateTime FlightInfo
- Porg: String - AirName: String
- Pdst: String - FightNum: String

- Porg: String

- Pdst: Integer

- DepTime: Integer
- ArrTime: String

Table 4.1: The I/O of Schedule Operation

26

Availability Operation Input

Availability Operation Output

FlightInfo

- AirName: String

- FlightNum: String
- Porg: String

- Pdst: String

- DepTime: String

- ArrTime: Stirng
CabinType: String

FareType: String
Vacancy: Number

Table 4.2: The I/O of Availability Operation

Price Operation Input

Price Operation Output

FlightInfo

- AirName: String
- FlightNum: String
- Porg: String

- Pdst: String

- DepTime: String
- ArrTime: Stirng
FareType: String

Fare: Number

Table 4.3: The I/O of Price Operation

Reservation Operation Input

Price Reservation Output

FlightInfo

- AirName: String

- FlightNum: String

- Porg: String

- Pdst: String

- DepTime: String

- ArrTime: Stirng
PassengerInfo

- PassengerType: String
- FirstName: String

- LastName: String

- PhoneNumber: String
- Email: String
FareType: String
SeatNumber: String

BookRef: String
Fare: Number

Tax: Number
DueDate: DateTime

Table 4.4: The 1/O of Booking Operation

27

Accommodation Service

This service is used for searching and booking hotel. This service provides a wide range
of functionalities, including:

(1) Search Operation provides the ability to search for hotels. The input contains
(City, CheckinDate, CheckoutDate). The output contains a list of Hotellnfo which is
described later.

Let us take an example. We assume that Ms Minamoto wants to travel to Tokyo for
10 days (from June 04 to June 14).SHe doesn’t know any hotels in Tokyo and want to
get a list of hotels corresponding to her criteria:

e City: Tokyo
e Check in date:2012 June 04

e Check out date: 2012 June 14

A list of hotels is returned including information hotel name, hotel address and the pair
(Room Type, Available rooms)as showed in the figure 4.7.

input={"Takya', "2012/06/04","2012/06/14"}

output =thotelinfol=l’ Metropolitan Tokyo *, “171-8505 Tokyo, Toshima-
Search leu, Mishi-lkebulkura®, {‘Double’, 10}, (‘Single’, 10], {Suite’, 4])

hotelinfo2={" £ Hotel Higashi Shinjulu’, “160-0021 Tokyo,
Shinjuku-ku, Kabukicho 2-3-15 7, (‘Double’, 5), (*Single’, 10), {(*Suite’, 4] |

Figure 4.7: An example of searching accommodation

(2) Reservation
This operation provides customers to reserve an accommodation. The input contains
(Hotellnfo,ChkinDate, ChkoutDate, RoomType). The output contains (BookingRef, RoomName
Pricelnfo) that is described later.

For illustrating, we assume that Mr John Smith is planning to travel to Tokyo and
has decided to book his hotel reservation online for 4 days from August 09 to August 12.
Before booking, he made an availability request to determine which hotel he would like
to book. He found that the Metropolitan Tokyo hotel has 5 available double rooms 3
available single rooms. Therefore, he decided to make a reservation for one single room
to this hotel.

After that, he received a booking reference number and price information as showed in
the figure 4.9.

28

input =fhotelinfol=("Metropolitan Tokyo *, "171-8505 Tokyo, Tashima-
leu, Mishi-lkebukure’, (‘Double’, 10}, (*Single’, 10], (Suite’, 4],

REsENVation | n10/08/09, '2012/08/12', ‘Single’}

Outpu={'"ABC123", "'5201", 100, 0.05, 420}
Figure 4.8: An example of booking accommodation

Hotellnfo contains:
- HotelName is a string, the name of the hotel (e.g. ”Shinjuku Prince Hotel”)
- HotelAddress is a string, the address of the hotel (e.g. ”1-30-1 Kabuki-cho, Tokyo”)

- The pair (RoomType, AvailRooms) is the type of room and the corresponding avail-
able rooms for this type. RoomType is one of a string ”Single” /” Double” /7 Suite”

Pricelnfo contains:
- RatePerNight: is the rate per night (e.g 100USD)
- TaxInfo: The information about the tax (e.g. TaxInfo 0.05)

- TotalAmount is the total amount which customer has to pay for accommodation.

Search Operation Input | Search Operation Output

- City: String - HotelName: String

- CheckinDate: Date - HotelAddress: String

- CheckoutDate: Date - (RoomType, AvailRooms): String

Table 4.5: The request and response message of HotelSearch operation

Reservation Input | Reservation Output
Hotellnfo BookingRef: String

- HotelName: String | Pricelnfo

- HotelAddress: Date | - RatePerNight: Number
CheckinDate: Date - TaxInfo: Number
CheckoutDate:Date | -TotalAmount: Number
RoomType RoomName

Table 4.6: The request and response message of HotelAvailability operation

Payment Service Payment service (refer to figure 4.2) is used to pay the bill online
via a credit card account. This service has only one operation: Payment Operation

29

The input contains (AccInfo, PayDetail, CusInfo) and the output contains a receipt num-
ber and total amount paid. The detail of data input and ouput are described later.

AccInfo contains

e CCNumber: is a string, the credit card number of the customer (e.g. 74111 1111
1111 11117).

e CCHolderName: is a string, the holder of the credit card account.
e ExpDate: is the expiration date of the credit card (e.g. ”2012-09-06").
PayDetail contains:

e PaymentType: is a string, decribes the type of payment in which customers want
to pay. (e.g. 7Airline ticket payment”).

e Amount: The total amount is paid.

CuslInfo contains customer information such as the first name, last name, address, phone
number and email.

Payment Input Payment Output
Acclnfo BookingRef: String
- CCNumber: String Amount

- CCHolderName: String
- ExpDate: String
PayDetail

- PaymentType:String

- Amount: Number
Cuslnfo

- FirstName: String

- LastName: String

- Address: String

- PhoneNumber: String

Table 4.7: The I/O of Payment Operation

4.1.3 Business processes

To understand how the travel agency automate its business process, we consider some
business processes, the transportation booking process and accommodation booking pro-
cess.

Transportation Booking Process

We assume that a customer named ’John Smith’ want to book a flight from Tokyo to Os-
aka on August 09 for his business. The process of his booking contains the following steps:

30

Step 1. Search flights which match his requirements
This step is performed by invoking ’Schedule’ operation of "Transportation’ service.

Step 2. Check if the flight has available seats or not
After receiving a list of flights in the step 1, he will select a flight and check if this flight
has tickets. This step is performed by invoking ’Availability’ operation of "Transportation’

service.

Step 3. Check the price of the ticket. This step is performed by invoking ’Price’ opera-
tion of "Transportation’ service.

Step 4. Book the flight This step is performed by invoking 'Booking’ operation of of
"Transportation’ service.

The booking process is showed in the figure 4.9.

31

Start

input={'09,/08', Tokyo', ‘Gsaka'}

Schedule
output =f{flightinfol={"JLLO3", Tokye', 'Osaka’, "07:30°,'08:307),
flightinfo2={"JL113", "Tokyo' Osaka’, "10:00',"11:00")}
Select 3 Flight=flightfinfo 1, CabinType="Economy’

flightinfol

!

input={"JL103" Tolkyo','Osaka’, '07:30','08:30", "Economy’}
Availability
output={{‘Nomal’, 10}, ‘Advanced’, 10)

¥

OK

' !

input=("JLL03", ‘Tolkyo','Osaka’, "07:30°,'08:30", ‘Econemy’, ‘Womal’)

FareType="Narmal

Price
output=20 000
Passenger Information
input={flightinfo={JLLO3', Tokyo', "Osaka’, '07:30','08:20°, ‘Economy’),
Passengerinfo={"Adult’, John', ‘Smith’, ‘090-8090-1111", ‘John@cse.com’),
Booking CabinType="Economy’, FareType="Mormal}

output={BookRef="{¥Z123", Fare=20000, SeatNumber="16F",
DusDate='08/08")

{

Send Receipt to
Customer

Figure 4.9: Transportation booking process

Accommodation Booking Process

We assume that Mr ’John Smith’ want to book a hotel in Tokyo from August 09 to
August 12 for his accommodation. The process of his booking contains the following two
steps:

32

Step 1. Search hotels which match his requirements
This step is performed by invoking ’Search’ operation of "Accommodation’ service.

Step 2. Make an reservation to the hotel which he chooses from the list of hotels in
the step 1. This step is performed by invoking 'Reservation’ operation of ’Accommoda-
tion’ service.

The booking process is showed in the figure 4.10.

input={Taokyo', 2012/06/04""2012/06/14"}

output ={hotelinfol=(" Metropolitan Tokyo *, *171-8505 Tokyo, Toshima-
Search lew, Mishi-lkebukura’, ('Double’, 10], ('Single’, 10), {‘Suite’, 4])

hotelinfol={" L Hotel Higashi Shinjuku’, “160-0021 Tokya,
Shinjulcu-ku, Kabukicho 2-3-15 7, (*Double’, 5], (*Single”, 10}, {*Suite’, 4] |

v

Flight=hotelfinfo 1, checkinDate=2012/08,/0%",

Select
hoteltinfol checkoutDate="2012/08/12", Room Type="Single
input ={hotelinfol=l" Metropolitan Tokyo *, “171-8505 Tokyo, Toshima-
leu, Mishi-llkebukure’, {‘Double’, 10), (*Single’, 10], {‘Suite’, 4) |,
Reservation

‘2012/08/08", 2012/08/12", *Single’}

Outpui={"ABC123", 'S201", 100, 0.05, 420}

Figure 4.10: Accommodation booking process

4.2 Change analysis in VTA System

We assume that customers want to change some requirements in the VTA system. We
need to specify what things will be affected by these proposed changes.

Case 1. A customer requires to know the prices of more than one flights.
Change of input/output

e Before Change
Operation ’Availability’

in =(flightInfo, CabinType)
out=(list of (FareTypye, vacancy))

33

Operation "Price’

in =(flightInfo, CabinType, FareType)
out=(Fare)

e After Change
New operation: CheckFlightPrice

in =(list of flightInfo, CabinType)
out=(list of (flightInfo, list of (FareType, Vacancy, Fare)

Here is an example. assume that:
flightinfol=(JL,103, Tokyo, Osaka, 07:30, 08:30)
flightinfo2=(JL,107, Tokyo, Osaka, 08:30, 09:30)
Before change
[Specification for Operation ’Availability’]
input = ("August 09’, "Tokyo’, ’Osaka’)
output=((JL,103, Tokyo, Osaka, 07:30, 08:30),
(JL,107, Tokyo, Osaka, 08:30, 09:30))
[Specification for Operation ’Price’]
input=(flightinfol, Economy, normal) output = 16000
input=(flightinfol, Economy, advanced) output = 13000
input=(flightinfo2, Economy, normal) output = 16000
input=(flightinfo2, Economy, advanced) output = 11000
After change
input = ((flightinfol, Economy), (flightinfo2, Economy))

output = ((flightinfol, ((normal, 10, 16000), (advanced, 10, 13000))), (fliightinfo2,
((normal, 3, 16000), (advanced, 6 11000))))

Change in datatype: input of "Availability’

34

Impact to : input of "Price’

Applicable Patterns : Operation Abstraction

The operation ’Availability’ and operation ’Price’ are combined into the new operation
"CheckFlightPrice’

Reason: a set of info conbining input of ’Availability’ and ’Pricing’ are identical between
before and after changing.

Transportation Transportation
Service Service
& Schedule - s« Schedule
* Awvailability # CheckFlightPrice
* Price * Booking
+ Booking

Before Change After Change

Figure 4.11: An example of operation abstraction

Case 2. A customer want to know schedule of all flights in the duration from August
10 to August 20 because his/her schedule are flexible.
Change of input/output

e Before Change
Operation "Schedule’

in =(Date, Porg, Pdst)
out=(FlightInfo)

e After Change

in =(From, To, Porg, Pdst)
out=(list of (flightInfo, Date)

Here is an example. assume that:
flightinfol=(JL,103, Tokyo, Osaka, 07:30, 08:30)
flightinfo2=(JL,107, Tokyo, Osaka, 08:30, 09:30)

Before change

35

[Specification for Operation ’Schedule’]

input = ("August 09’, "Tokyo’, ’Osaka’)

output=(JL,103, Tokyo, Osaka, 07:30, 08:30)

(JL,107, Tokyo, Osaka, 08:30, 09:30)

After change

input = ("August 09, "Agust 15’, "Tokyo’,’Osaka’)

output = ((JL,103, Tokyo, Osaka, 07:30, 08:30),” August 09’),

(JL,103, Tokyo, Osaka, 08:30, 09:30),"August 09’),

(JL,105, Tokyo, Osaka, 07:30, 08:30),’ August 10), (JL,106, Tokyo, Osaka, 11:30, 12:30)," Au-
gust 127)

Change in datatype: input of 'Schedule’

Impact to : 'Schedule’ operation

Applicable Patterns : Operation Decomposition

The operation ’Schedule’ is decomposed into two coarse-grained: ’ScheduleofDate’ and
"ScheduleofDuration’.

Reason: a set of info conbining input of Availability’ and "Pricing’ are identical between
before and after changing.

Transportation Transportation
Service Service

Schedule —>

. & ScheduleofDate
* CheckFlightPrice ¢ ScheduleofDuration
s Booking # CheckFlightPrice
* Booking
Before Change After Change

Figure 4.12: An example of operation decomposition

36

Chapter 5

Conclusion and future works

This thesis presented an approach for change impact analysis for services at the design
level. In this thesis, we presented a model for business processes and services. Based on
the relationship between business processes and services. We also presented four types
of service governance patterns used for change impact analysis: operation abstraction,
operation decomposition, service abstraction and service decomposition. we also evaluated
the effectiveness of our approach with a case study, a virtual travel agency system. We
proposed some change of requests and apply to each pattern.

However there are still some limitations in our approach. In the future, we would like
to develop an executable model for change impact analysis that can be built in the real
world.

37

Bibliography

1]

[10]

[11]

Software change impacts - an evolving perspective. In Proceedings of the International
Conference on Software Maintenance (ICSM’02), ICSM 02, pages 263—, Washington,
DC, USA, 2002. IEEE Computer Society.

N. Bieberstein, S. Bose, L. Walker, and A. Lynch. Impact of service-oriented ar-
chitecture on enterprise systems, organizational structures, and individuals. IBM
Systems Journal, 44(4):691-708, 2005.

H. Bilal and S. Black. Computing ripple effect for object oriented software.

S. Bohner. Impact analysis in the software change process: a year 2000 perspective.
Software Maintenance, IEEE International Conference on, 0:42, 1996.

S. A. Bohner. Software change impact analysis. 1996.

L. C. Briand, Y. Labiche, and L. O’Sullivan. Impact analysis and change manage-
ment of uml models. In Proceedings of the International Conference on Software
Maintenance, ICSM ’03, pages 256—, Washington, DC, USA, 2003. IEEE Computer
Society.

T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2005.

T. Erl. SOA Design Patterns. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1st edition, 2009.

G. Feuerlicht. Service-oriented computing — icsoc 2008 workshops. chapter Design
of Composable Services, pages 15-27. Springer-Verlag, Berlin, Heidelberg, 2009.

J. Han. Supporting impact analysis and change propagation in software engineering
environments. Software Technology and Engineering Practice, International Work-
shop on, 0:172, 1997.

J. Hewitt and J. Rilling. A light-weight proactive software change impact analy-
sis using use case maps. In Proceedings of the IEEE International Workshop on
Software Evolvability, SOFTWARE-EVOLVABILITY ’05, pages 41-48, Washington,
DC, USA, 2005. IEEE Computer Society.

38

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. N. Huhns and M. P. Singh. Service-oriented computing: Key concepts and prin-
ciples. IEEE Internet Computing, 9(1):75-81, Jan. 2005.

D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen. Change impact
identification in object oriented software maintenance. pages 202-211, 1994.

M. Lee, A. J. Offutt, and R. T. Alexander. Algorithmic analysis of the impacts
of changes to object-oriented software. In Proceedings of the Technology of Object-
Oriented Languages and Systems (TOOLS 384°00), TOOLS ’00, pages 61—, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

D. Leffingwell and D. Widrig. Managing software requirements: a unified approach.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

D. Leffingwell and D. Widrig. Managing Software Requirements: A Use Case Ap-
proach. Pearson Education, 2 edition, 2003.

N. Madhavji. Environment evolution: The prism model of changes. IEEE Transac-
tions on Software Engineering, 18:380-392, 1992.

E. Newcomer and G. Lomow. Understanding SOA with Web Services (Independent
Technology Guides). Addison-Wesley Professional, 2004.

B. G. Ryder and F. Tip. Change impact analysis for object-oriented programs. In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, PASTE ’01, pages 46-53, New York, NY, USA,
2001. ACM.

H. Xiao, J. Guo, and Y. Zou. Supporting change impact analysis for service oriented
business applications. In Proceedings of the International Workshop on Systems De-
velopment in SOA Environments, SDSOA 07, pages 6—, Washington, DC, USA,
2007. IEEE Computer Society.

39

