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An integer programming approach to optimal control

problems in context-sensitiveprobabilisticBooleannetworks

Koichi Kobayashi a, Kunihiko Hiraishi a,

aSchool of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan

Abstract

A Boolean network is one of the models of biological networks such as gene regulatory networks, and has been extensively
studied. In particular, a probabilistic Boolean network (PBN) is well known as an extension of Boolean networks, but in the
existing methods to solve the optimal control problem of PBNs, it is necessary to compute the state transition diagram with
2n nodes for a given PBN with n states. To avoid this computation, an integer programming-based approach is proposed for
a context-sensitive PBN (CS-PBN), which is a general form of PBNs. In the proposed method, a CS-PBN is transformed into
a linear system with binary variables, and the optimal control problem is reduced to an integer linear programming problem.
By a numerical example, the effectiveness of the proposed method is shown.

Key words: context-sensitive probabilistic Boolean networks; optimal control; integer programming; biological networks.

1 Introduction

In recent years, there have been a lot of studies in anal-
ysis and control of biological networks such as gene reg-
ulatory networks. One of the final goals in these studies
is to find a method for a suitable medication which can
be used for drug discovery and cancer treatment [10].
In order to deal with such a system, it is important to
consider a simple model, and various models have been
developed so far. In particular, Boolean networks [8] are
well known as one of the models, and have been exten-
sively studied (see e.g., [2]). In this model, dynamics such
as interactions between genes are expressed by a set of
Boolean functions. So this model is simple, and can be
applied to large-scale systems. In addition, since the be-
havior of biological networks is probabilistic by effects of
noise, it is appropriate that Boolean functions are ran-
domly decided at each time. From this viewpoint, a prob-
abilistic Boolean network (PBN) has been proposed in
[14]. Furthermore, a context-sensitive PBN (CS-PBN)
in which the deciding time is randomly selected has been
proposed as a general form of PBNs [7,12].
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entists (B) 20760278 and Scientific Research (C) 21500009.
Corresponding author K. Kobayashi. Tel. +81-761-51-1282.
Fax +81-761-51-1149.

Email addresses: k-kobaya@jaist.ac.jp (Koichi
Kobayashi), hira@jaist.ac.jp (Kunihiko Hiraishi).

In a similar way to standard dynamical systems, CS-
PBNs including PBNs have the state and the control
input. We assume that the value (0 or 1) of the control
input can be arbitrarily determined. The control input
in biological networks has the following significance. For
example, the value of the control input expresses whether
a stimulus is given to a cell. Then the control input is de-
signed to obtain the state trajectory that transits from
the initial state to the desired one. So the control in-
put can represent the current status of therapeutic in-
terventions, which are realized by radiation, chemother-
apy, and so on. Thus, in order to develop gene therapy
technologies (see e.g., [9,13]) in future, it is important
to consider control methods of CS-PBNs. Motivated by
the above discussion, control methods of CS-PBNs have
been developed so far [7,12]. However in these existing
works, the state transition diagram with 2n nodes must
be computed for a CS-PBN with n states. This is a cru-
cial weakness.

In this paper, for CS-PBNs, we propose a new control
method in which the state transition diagram is not com-
puted. In the proposed method, first, a linear state equa-
tion and linear inequalities with binary variables are de-
rived from given Boolean functions expressing dynamics.
A random decision of Boolean functions is expressed as a
discrete-time Markov chain. This chain is also expressed
as a linear form by using binary variables. Therefore, a
CS-PBN is expressed as a constrained linear system with
binary variables. Then the problem of finding a control
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input minimizing the lower bound of the cost function is
rewritten as an integer linear programming problem. By
using the proposed method, for CS-PBNs such that the
existing method cannot be applied, we can derive the
control input within the practical computation time.

Notation: For a matrix M , lnM denotes the matrix
such that the (i, j)-th element is given as the natural
logarithm of the (i, j)-th element in M .

2 Context-sensitive probabilistic Boolean net-
works

First, we introduce a probabilistic Boolean network
(PBN). Consider the following PBN

x(k + 1) = f(x(k), u(k)) (1)

where x ∈ {0, 1}n is the state, u ∈ {0, 1}m is the con-
trol input, and k = 0, 1, 2, . . . is the discrete time. f :
{0, 1}n×{0, 1}m → {0, 1}n is a given Boolean function.
The i-th element of the state x and the i-th element of
the Boolean function f are denoted by xi and f (i), re-
spectively. In deterministic Boolean networks, the next
state x(k +1) is uniquely determined for given x(k) and
u(k). In PBNs, candidates of f (i) are given, and selecting
one Boolean function is probabilistically independent at
each time. The candidates of f (i) are denoted by f

(i)
j ,

j = 1, 2, . . . , l(i), and the probability that f
(i)
j is selected

is denoted by c
(i)
j = Prob(f (i) = f

(i)
j ) ∈ [0, 1]. Then the

relation
∑l(i)

j=1 c
(i)
j = 1 must be satisfied.

Example 1 As a simple example, consider the following
deterministic Boolean network of an apoptosis network
[6]: x1(k+1) = ¬x2(k)∧u(k), x2(k+1) = ¬x1(k)∧x3(k),
and x3(k + 1) = x2(k) ∨ u(k), where the concentration
level (high or low) of the inhibitor of apoptosis proteins
(IAP) is denoted by x1, the concentration level of the ac-
tive caspase 3 (C3a) by x2, and the concentration level of
the active caspase 8 (C8a) by x3. The concentration level
of the tumor necrosis factor (TNF, a stimulus) is de-
noted by u, and is regarded as the control input. Although
Boolean dynamics in the above system are synchronous,
both synchronous and asynchronous dynamics will be in-
cluded. From this viewpoint, we consider the following
PBN induced by the above system

f (1) =

{
f

(1)
1 = ¬x2(k) ∧ u(k), c

(1)
1 = 0.6,

f
(1)
2 = x1(k), c

(1)
2 = 0.4,

(2)

f (2) =

{
f

(1)
1 = ¬x1(k) ∧ x3(k), c

(2)
1 = 0.7,

f
(1)
2 = x2(k), c

(2)
2 = 0.3,

(3)

f (3) =

{
f

(3)
1 = x2(k) ∨ u(k), c

(3)
1 = 0.8,

f
(3)
2 = x3(k), c

(3)
2 = 0.2

(4)

where l(1) = l(2) = l(3) = 2, and we give c
(i)
j satisfy-

ing
∑l(i)

j=1 c
(i)
j = 1. In addition, all state orbits can be

expressed as the state transition diagram with 2n nodes.

Although in PBNs selecting one Boolean function is
probabilistically independent at each time, it will be nat-
ural to consider that switchings of Boolean functions do
not occur frequently, and may depend on the occurrence
of an external stimulus. From this viewpoint, a context-
sensitive PBN (CS-PBN) has been proposed in [7,12].
In CS-PBNs, the deciding time of Boolean functions is
also selected randomly. Hereafter, the probability that
Boolean functions are switched at time k is given as
q(k) ∈ [0, 1], and a pair of the system (1) and the prob-
ability q(k) is called a CS-PBN.

3 Problem formulation

First, the following two notations are defined. Suppose
that j(i, k) ∈ {1, 2, . . . , l(i)} is given for fixed i-th ele-
ment of a given Boolean function and time k, and q(k) is
also given. Then by πj(1,k),j(2,k),...,j(n,k)(k) or πj̄(k) for
short, denote the probability that the Boolean function
[ f

(1)
j(1,k) f

(2)
j(2,k) · · · f

(n)
j(n,k) ]T is selected at time k. Fur-

thermore πj̄(k1, k2) :=
∏k2

s=k1
πj̄(s) is defined. πj̄(k1, k2)

implies the probability that some sequence of Boolean
functions is selected at time interval [k1, k2].

Next, consider the following optimal control problem.

Problem 2 Suppose that for the CS-PBN, the initial
state x(0) = x0, ρ ∈ [0, 1], the control time N , and the
desired state xd ∈ {0, 1}n are given. Then solve the fol-
lowing two problems.

Problem A: For all combinations of Boolean functions
satisfying the following constraint

πj̄(0, N − 1) ≥ ρ, (5)

find a control input sequence u(0), u(1), . . . , u(N − 1)
minimizing the lower bound of the following cost function

J =
N−1∑
i=0

{‖Wxx̂(i)‖p + ‖Wuu(i)‖p} + ‖Wf x̂(N)‖p

where x̂(i) := x(i)−xd, Wx, Wf ∈ Rn×n, Wu ∈ Rm×m,
and ‖ · ‖p denotes p-norm of a vector.

Problem B: Apply the control input sequence obtained
in Problem A to the given CS-PBN. Then for all com-
binations of Boolean functions satisfying the constraint
(5), find the upper bound J

∗
of the above cost function.
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Let J∗ denote the minimum value of the lower bound
obtained by solving Problem A. In the existing method
[12] for control of CS-PBNs, the expected value of a
given cost function is minimized. In also standard con-
trol methods of stochastic systems, the expected value
is evaluated. However, for CS-PBNs, it is difficult to
evaluate the expected value, because all combinations of
Boolean functions must be enumerated. So the method
in [12] can be applied to only small-scale systems. In this
paper, instead of the expected value, the lower bound
of a given cost function is minimized, and the control
performance is evaluated by using the lower and the up-
per bounds. Then, if the constraint (5) is not imposed
in Problem 2, i.e., ρ = 0, then behaviors of CS-PBNs
are regarded as uncertain behaviors, and the best and
worst performances are derived in Problem 2. However,
since combinations of Boolean functions selected with
low probability are included, the derived performances
may not be appropriate. So in order to exclude such com-
binations, we impose the constraint (5). See also Section
5 for a method for deciding ρ. Similar problem formula-
tions have been considered in optimal control of stochas-
tic hybrid systems (see e.g. [1,4]).

Example 3 As a simple example, consider the optimal
control problem for the PBN (2), (3), (4) expressing an
apoptosis network. Suppose that q(k), ρ, and the initial
state are given as q(k) = 1, ρ = 0.05, and x(0) = x0 =
[ 1 1 1 ]T , respectively. For this system, find a control
strategy such that a stimulus is not applied as much as
possible, and cell survival is achieved. u = 0 implies that a
stimulus is not applied to the system, and x1 = 1, x2 = 0
express cell survival [6]. Then as one of appropriate cost
functions, we can consider the following cost function:
J =

∑2
i=0 u(i)+|10(x1(3)−1)|+|10(x2(3)−0)|. Consider

to solve Problem 2 with this cost function. Then by simple
calculations, we obtain J∗ = 1 and J

∗
= 21 for u(0) =

0, u(1) = 0, u(2) = 1 or u(0) = 0, u(1) = 1, u(2) = 0.
From this result, we see that dynamical control is more
effective than simple control such that the value of the
control input is alway 0 or 1. Finally, consider the case
of ρ = 0. In this case, we obtain J∗ = 0 and J

∗
= 20

for u(0) = u(1) = u(2) = 0. Then the probability that
J∗ = 0 is achieved is 0.0403456, and is small.

Hereafter, for simplicity of discussion, we assume that
xd = [ 0 0 · · · 0 ]T . In addition, although a quadratic
cost function (p = 2) can also be considered, we consider
the following form of 1-norm (linear) cost functions

J =
N−1∑
i=0

{Qx(i) + Ru(i)} + Qfx(N). (6)

where Q, Qf ∈ R1×n, R ∈ R1×m are vectors whose
element is a non-negative real number.

4 Proposed solving method

In this section, a solving method for Problem 2 will be
proposed. After the outline of a solving method for Prob-
lem A is explained by a very simple example, a general
case is considered.

4.1 Simple example

Consider a single-state and single-input system. Boolean
functions are given as

f (1) =

{
f

(1)
1 = x1(k) ∧ u(k), c

(1)
1 = 0.8,

f
(1)
2 = ¬x1(k), c

(1)
2 = 0.2.

(7)

Then a random decision of Boolean functions can be
expressed as the discrete-time Markov chain (DT-MC)
of Fig. 1, where the label of each node implies the index
of candidates f

(1)
1 , f

(1)
2 of Boolean functions, and the

weight pij(k) from node i to j is defined as pij(k) :=
Prob(f (1) = f

(1)
j at k | f (1) = f

(1)
i at k − 1).

Next, we will explain a modeling method of (7) and the
DT-MC of Fig. 1. From the fact 1 in [15], Boolean func-
tions in (7) can be transformed into polynomials on the
real number field. Then consider the following system

x1(k + 1) = δ1,1(k){x1(k)u(k)} + δ1,2(k){1 − x1(k)}
(8)

where δ1,1(k), δ1,2(k) are binary variables satisfying

δ1,1(k) + δ1,2(k) = 1. (9)

If δ1,1(k) = 1 is satisfied, then x1(k)u(k) corresponding
to f

(1)
1 is selected. In a similar way, if δ1,2(k) = 1 is

satisfied, then 1−x1(k) corresponding to f
(1)
2 is selected.

This technique is frequently used in control of hybrid
systems [3]. Furthermore, from (8) we obtain

x1(k + 1) = z1,1(k) + δ1,2(k) − z1,2(k) (10)

where z1,1 = δ1,1x1u and z1,2 = δ1,2x1.

To express the DT-MC of Fig. 1, a binary variable is as-
signed to each arc. In the DT-MC of Fig. 1, we use four bi-
nary variables δ1,11(k), δ1,12(k), δ1,21(k), δ1,22(k). Then
by defining the relation δ1,pq(k) := δ1,p(k−1)δ1,q(k), we
have

δ1,1(k) = δ1,11(k) + δ1,21(k), (11)
δ1,2(k) = δ1,12(k) + δ1,22(k). (12)

1 For two binary variables δ1, δ2, the following relations hold:
(i) ¬δ1 is equivalent to 1 − δ1, (ii) δ1 ∨ δ2 is equivalent to
δ1 + δ2 − δ1δ2, and (iii) δ1 ∧ δ2 is equivalent to δ1δ2.
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Fig. 1. Discrete-time Markov chain in CS-PBNs

By using a binary variable δ1,pq(k), dynamics of the DT-
MC of Fig. 1 can be expressed as the following input-
output relation at each node:

δ1,11(k + 1) + δ1,12(k + 1) = δ1,11(k) + δ1,21(k), (13)
δ1,21(k + 1) + δ1,22(k + 1) = δ1,12(k) + δ1,22(k). (14)

We may also use the inequality-based representation [3].
However, the use of the above input-output relation is
desirable in the sense that the computation time for solv-
ing the optimal control problem is decreased (see [11]).

Furthermore, by using δ1,pq(k), we can calculate ln πj̄(k).
Noting that δ1,11(k) + δ1,12(k) + δ1,21(k) + δ1,22(k) = 1
holds from (9), (11) and (12), we obtain

ln πj̄(k) = L1(k)δa
1 (k),

L1(k) := ln [ p1,11(k) p1,12(k) p1,21(k) p1,22(k) ] ,

δa
1 (k) := [ δ1,11(k) δ1,12(k) δ1,21(k) δ1,22(k) ]T .

So by the use of natural logarithm, the constraint (5)
in Problem A can be expressed as the following linear
inequality: ln πj̄(0, N − 1) =

∑N−1
i=0 L1(i)δa

1 (i) ≥ ln ρ.
Thus Problem A can be equivalently rewritten as the
following problem:

find u(k), δ1,1(k), δ1,2(k), δa
1 (k),

z1,1(k), z1,2(k), k = 0, 1, . . . , N − 1
min Cost function (6)

subject to System (10), x(0) = x0,
Equality constraint

(9),(11),(12),(13),(14),
Inequality constraint

ln πj̄(0, N − 1) ≥ ln ρ,

z1,1(k) = δ1,1(k)x1(k)u(k),
z1,2(k) = δ1,2(k)x1(k).

Since by the result described in [5], z1,1 = δ1,1x1u and
z1,2 = δ1,2x1 can be expressed as linear inequalities, this
problem is reduced to an integer linear programming
(ILP) problem.

4.2 Solving method for Problem A

Based on the above discussion, we will derive a solving
method for Problem A under a general setting. First,
by using the fact in [15], f

(i)
j (x(k), u(k)) in (1) can be

equivalently transformed into some polynomial. The ob-
tained polynomial is denoted by f̂

(i)
j (x(k), u(k)). Then

consider the following system

xi(k + 1) =
l(i)∑
j=1

{
δi,j(k)f̂ (i)

j (x(k), u(k))
}

(15)

where i = 1, 2, . . . , n and δi,j(k) ∈ {0, 1}1. In (15), prob-
abilistic behaviors are not considered, but (15) expresses
the switching of the function f̂

(i)
j at each time. So we

must impose the following constraint

l(i)∑
j=1

δi,j(k) = 1, i = 1, 2, . . . , n. (16)

For simplicity of notation, by δv(k) ∈ {0, 1}lv denote a
vector consisting of all δi,j(k), where lv :=

∑n
i=1 l(i).

Next, a random decision of f̂
(i)
j is expressed as a DT-

MC for each i. Then using c
(i)
j , i = 1, 2, . . . , n, j =

1, 2, . . . , l(i), the transition probability matrix express-
ing a DT-MC can be derived as

Pi(k) =

⎡
⎢⎢⎢⎢⎢⎣

c
(i)
1 q(k) + (1 − q(k)) c

(i)
2 q(k)

c
(i)
1 q(k) c

(i)
2 q(k) + (1 − q(k))

...
...

c
(i)
1 q(k) c

(i)
2 q(k)

· · · c
(i)
l(i)q(k)

· · · c
(i)
l(i)q(k)

. . .
...

· · · c
(i)
l(i)q(k) + (1 − q(k))

⎤
⎥⎥⎥⎥⎥⎦ .

By P
(p,q)
i (k) denote the (p, q)-th element in Pi(k). Then

we define the following row vector of size l(i)2:

Li(k) := ln
[

P
(1,1)
i (k) P

(1,2)
i (k) · · · P

(1,l(i))
i (k)

P
(2,1)
i (k) P

(2,2)
i (k) · · · P

(2,l(i))
i (k) · · ·

P
(l(i),1)
i (k) P

(l(i),2)
i (k) · · · P

(l(i),l(i))
i (k)

]
.

Furthermore, we assign a binary variable δi,pq(k) :=
δi,p(k−1)δi,q(k) to each arc of the derived DT-MC. From
the definition, the relation between δi,pq(k) and δi,j(k)
must satisfy the following equality constraint:

δi,j(k) =
l(i)∑
p=1

δi,pj(k) (17)
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where i = 1, 2, . . . , n and j = 1, 2, . . . , l(i). In addition,
using δi,pq(k), dynamics of the DT-MC are expressed as
the following input-output relation at each node:

Eiδ
a
i (k + 1) = Fiδ

a
i (k) (18)

where Ei, Fi ∈ {0, 1}l(i)×l(i)2 and

δa
i :=

[
δi,11 δi,12 · · · δi,1l(i) δi,21 δi,22 · · · δi,2l(i)

· · · δi,l(i)1 δi,l(i)2 · · · δi,l(i)l(i)

]T ∈ {0, 1}l(i)2.

Using Li(k) and δa
i (k), ln πj̄(k) is derived as ln πj̄(k) =∑n

i=1 Li(k)δa
i (k) = L(k)δa(k), where L(k) := [ L1(k)

L2(k) · · · Ln(k) ], δa(k) := [ δa
1 (k) δa

2 (k) · · · δa
n(k) ]T ∈

{0, 1}la, and la :=
∑n

i=1 l(i)2. Therefore, the constraint
(5) in Problem A can be expressed as the following
linear inequality with respect to δa(i):

N−1∑
i=0

L(i)δa(i) ≥ ln ρ. (19)

From the above, we obtain the following lemma.

Lemma 4 Problem A is equivalent to the following prob-
lem.

Problem C:

find u(k), δv(k), δa(k), k = 0, 1, . . . , N − 1
min Cost function (6)

subject to System (15), x(0) = x0,
Equality constraint (16), (17), (18)
Inequality constraint (19)

To express the inequality constraint (5) in Problem A as
a linear form, the natural logarithm of the probability
is used in Problem C. The system (15) is a polynomial
nonlinear system, but by using the result described in [5],
the system (15) and the equality/inequality constraints
in Problem C can be equivalently transformed into the
following constrained linear system:

{
x(k + 1) = Ax(k) + Bv(k),

Cx(k) + Dv(k) ≤ E
(20)

where v(k) = [ uT (k) δT (k) zT (k) ]T , and δ(k) :=
[ (δv(k))T (δa(k))T ]T ∈ {0, 1}l, l := lv + la. In ad-
dition, z(k) ∈ {0, 1}p is an auxiliary variable, and p is
determined from the number of the product of binary
variables. In (20), x(k) becomes a binary variable thanks
to x(0) = x0 ∈ {0, 1}n, v(k) ∈ {0, 1}m+l+p. So we set
x(k) ∈ Rn, k ≥ 1. By using (20), we obtain the following
theorem immediately.

Theorem 5 Problem C is equivalent to the ILP problem
with (m + l + p)N binary variables.

The obtained ILP problem can be solved by using a suit-
able solver. In the case using quadratic cost functions,
the ILP problem is replaced to an integer quadratic pro-
gramming problem. Finally, consider to derive a solving
method for Problem B. In Problem C, assume that u(k)
is given as the control input obtained by solving Prob-
lem A, and replace “min” to “max”. Then by solving the
replaced ILP problem, J

∗
can be derived.

5 Numerical example

Consider a CS-PBN with 15 states and 3 control inputs,
which is derived based on random graphs. See [16] for
details of Boolean functions, q(k), weighting vectors, and
the initial state. From a given CS-PBN, we obtain the
system (20) with n = 15, m = 3, l = 90, p = 103. The
number of inequalities in (20) is 386. To our knowledge,
CS-PBNs with such a size have not been considered so
far. Furthermore, we stress that for this CS-PBN the
existing method in [12] cannot be implemented using
the standard environment (e.g., MATLAB), because it
is necessary to compute 2m matrices with size 2n × 2n.

Next, we consider how to decide ρ in (5). In control
of stochastic systems, the expected value of a given
cost function is frequently minimized. Then the cost
for combinations of Boolean functions that the real-
ized probability is high is dominant. Based on this fact,
ρ is given as the mean probability that some combi-
nation of Boolean functions is selected at [0, N − 1].
In this example, for N = 2, 3, . . . , 10, we obtain
ρ = 2.9×10−6, 1.8×10−8, 2.0×10−11, 9.4×10−15, 5.7×
10−17, 8.1× 10−19, 2.1× 10−21, 1.3× 10−23, 6.2× 10−27,
respectively.

We show the computation result. In this simulation, we
used ILOG CPLEX 11.0 as an ILP solver on the com-
puter with Windows Vista 32-bit, the Intel Core 2 Duo
CPU 3.0GHz and the 4GB memory. J0, J0 denote the
lower and the upper bounds of the cost function sat-
isfying u(k) = 0 and the constraint (5). Then Table 1
shows J0, J0 and J∗, J

∗
. Table 2 shows the computation

time. Focusing on both the difference between J0 and J∗

and the difference between J0 and J
∗
, the effectiveness

of control synthesis is clear for N = 4, 5, 6. From this
result, we see that minimizing the lower bound of the
cost function is effective. On the other hand, although
for N = 7, 8, 9, 10 the lower bound of the cost function
is improved by designing the control input, the upper
bound is not improved. This is because for a large N
the number of combinations of Boolean functions is very
large, and several cases are included. Then we will indi-
cate that for such a case the effectiveness of minimizing
the expected value of the cost function is also low. In
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Table 1
Lower and upper bounds of the cost function

N 2 3 4 5 6 7 8 9 10

J0 22 22 22 27 30 32 34 35 36

J0 136 157 176 189 200 211 224 236 247

J∗ 21 20 22 23 23 24 25 26 27

J
∗

136 157 157 179 191 210 222 234 247

Table 2
Computation time [sec] to derive J0, J0 and J∗, J

∗

N 2 3 4 5 6 7 8 9 10

J0 0.02 0.06 0.06 1.01 2.47 4.71 14.87 27.68 35.45

J0 0.06 0.08 0.81 1.91 3.07 4.13 9.08 19.78 34.97

J∗ 0.46 1.15 2.70 15.58 4.98 7.10 14.60 31.63 18.96

J
∗

0.07 0.09 1.95 7.72 16.43 12.95 21.29 254.19 98.60

addition, we remark that J0 ≥ J
∗

is not in general guar-
anteed from Problem A and Problem B. Finally, from
Table 2, we see that the optimal control problem can be
solved within the practical computation time.

6 Conclusion

In this paper, a new control method of context-sensitive
probabilistic Boolean networks (CS-PBNs) has been
proposed. The proposed method is based on an integer
programming problem, and the lower and upper bounds
of the cost function are focused. By using the proposed
method, for CS-PBNs such that the existing method
cannot be applied, the optimal control problem can be
solved by using a suitable ILP solver.

The most important future work is to apply the proposed
method to several biological systems. In addition, it is
important to consider how to determine the switching
probability q(k). In [7], the relation between the value
of the cost function and q(k) = q has been discussed.
Inferring CS-PBNs is also one of the significant topics.
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