JAIST Repository

https://dspace.jaist.ac.jp/

pplication

on
mo t ¢
Not ¢

The origi

sSproi

978-3-642-

20

: Accel erated UCT and I ts A
Title
Games
Hashi mot o, Juni chi ; Ki shi mot o, Aki hi
Author(s) _
Kazuki ; Il keda, Kokol o
Citation Lecture Notes in Computer| Science,
Issue Date 2012
Type Journal Article
Text version aut hor
URL http://hdl . handle.net/ 10109/ 10792
This is the author-createfd versi
Juni chi Hashi mot o, Aki hirp Kishi
: Yoshi zoe, Kokol o | keda, Lecture
Rights _
Science, 7168, 201 2, 1-12
publication is available pt www.
http://dx.doi.org/10.100°7
13th I nternational Conferpence, ACG |
Description The Netherlands, November| 20-22,
Selected Papers
JAPAN
ADVANCED INSTITUTE OF
® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Accelerated UCT and Its Application to
Two-Player Games

Junichi Hashimoto!, Akihiro Kishimoto?, Kazuki Yoshizoe®, and Kokolo Ikeda!

1 Japan Advanced Institute of Science and Technology
2 Tokyo Institute of Technology and Japan Science and Technology Agency
3 The University of Tokyo

Abstract. Monte-Carlo Tree Search (MCTS) is a very successful ap-
proach for improving the performance of game-playing programs. This
paper presents the Accelerated UCT algorithm, which overcomes a weak-
ness of MCTS caused by deceptive structures which often appear in game
tree search. It consists in using a new backup operator that assigns higher
weights to recently visited actions, and lower weights to actions that have
not been visited for a long time. Results in Othello, Havannah and Go
show that Accelerated UCT is not only more effective than previous ap-
proaches but also improves the strength of FUEGO, which is one of the
best computer Go programs.

1 Introduction

MCTS has achieved the most remarkable success in developing strong
computer Go programs [6,7,10], since traditional minimax-based algo-
rithms do not work well due to a difficulty in accurately evaluating
positions. The Upper Confidence bound applied to Trees (UCT) algo-
rithm [13] is representative of MCTS. It is applied to not only Go but
also other games such as Amazons [12,15] and Havannah [19].

MCTS consists of two procedures, the Monte-Carlo simulation called
playout, and tree search. In a playout at position P, each player keeps
playing a randomly selected move until reaching a terminal position
where the outcome of the terminal position (e.g., win, loss or draw)
o is defined by the rule of the game. The outcome of the playout at P
is defined as o. In the tree-search procedure, each move contains a value
indicating the importance of selecting that move. For example, UCT uses
the Upper Confidence Bound (UCB) value [1] (explained later) as such
a criterion.

MCTS repeats the following steps until it is time to play a move. First,
starting at the root node, MCTS traverses the current tree in a best-first
manner by selecting the most promising move until reaching a leaf node.
Then, if the number of visits reaches a pre-determined threshold, the leaf
is expanded to build a larger tree. Next, MCTS performs a playout at
the leaf to calculate its outcome. Finally, MCTS traces back along the
path from the leaf to the root and update the values of all the affected
moves based on the playout result at the leaf.

At each internal node n, UCT selects move j with the largest UCB value
defined as:

ucb; :=r; +C loﬁ, (1)
U]

where r; is the winning ratio of move j, s is the number of visits to n, n;
is the number of visits to j, and C' is a constant value that is empirically
determined.
The inaccuracy of the winning ratio is measured by the second term, the
bias term, which decreases as the number of playouts increases. Given
infinite number of playouts, selecting the move with the highest winning
ratio is proved to be optimal. However, the transitory period in which
UCT chooses the suboptimal move(s) can last for a very long time [4]
due to the over-optimistic behavior of UCT.
One way to overcome the above situation is to discount wins and losses
for the playouts performed previously. Because the current playout is
performed at a more valuable leaf than previously preformed ones, the
current playout result is considered to be more reliable. Thus, MCTS
can search a more important part of the search tree by forgetting the
side effects of previous playouts. Although Kocsis and Szepesvari’s Dis-
counted UCB algorithm [14] is an example of such an approach, results
for adapting it to tree search have not been reported yet except for an
unsuccessful report in the Computer Go Mailing List [8].
This paper introduces a different way of focusing on more recent winning
ratios than Discounted UCB. Its contributions are:

1. Development of the Accelerated UCT algorithm that maintains the
reliability of past winning ratios and focuses on exploring the sub-
trees where playout results are recently backed up.

2. Experimental results showing the potential of Accelerated UCT over
plain UCT and Discounted UCT, which is an application of Dis-
counted UCB to tree search, in Othello, Havannah and Go.

3. Experimental results clearly showing that Accelerated UCT with
Rapid Action Value Estimate [9,20] further improves the strength
of FUEGO [7], a strong computer Go program that is freely available.

The structure of the paper is as follows: Section 2 explains a drawback
of UCT. Section 3 reviews the literature. Section 4 describes Accelerated
UCT, followed by experimental results in Section 5. Section 6 discusses
conclusions and future work.

2 Drawback of UCT

Kocsis and Szepesvari proved that the UCB value converges on the opti-
mal value [13]. This indicates that UCT can eventually select an identical
move to the minimax (i.e., optimal) strategy. However, while this theo-
retical property assumes the condition of which unlimited time is given
to UCT, UCT must determine the next move to play in limited time, that
is, the number of playouts UCT can perform in practice is not usually
large enough to converge on the optimal value. As discussed in details

|:| First player's node

O Second player's node

---»lll Playout with 1% player's win
---#[] Playout with 2 player's win

Fig. 1. An example of a deceptive structure which leads UCT to select a losing move
even if playout results are accurate. The winning ratio of the first player is shown.

below, UCT therefore suffers from a deceptive structure in its partially
built tree, which may be a cause of selecting a wrong move that may
lead to losing a game.

Because UCT’s playouts often mistakenly evaluate winning positions as
losses or vice versa, one example of deceptive structures is caused by an
inaccurate winning ratio computed by such faulty playout results. Play-
out policies could be modified to decrease the frequency of encountering
the deceptive structures with knowledge-based patterns (e.g., [5,10]).

However, even if playout results are accurate, UCT may still suffer from
deceptive structures in the currently built tree. This drawback of UCT is
explained with the help of Fig. 1. Assume that D, E and H are winning
positions and F' and I are losing positions for the first player. Then, A —
B and A — C are losing and winning moves with the optimal strategy,
respectively, because A -+ B — Fisalossand A - C - G — H is
a win. Also assume that UCT has currently performed only one playout
at each leaf in the tree built as in this figure®. If the playout results at
D, E and H are wins and the playout results at I’ and I are losses, the
winning ratio of A — B is larger than that of A — C (2/3 versus 1/2),
resulting in UCT choosing a losing move. UCT can obviously calculate
the more accurate winning ratio by visiting B more frequently. However,
UCT remains to be deceived to select A — B as a more promising move
than A — C until A — B turns out to be valueless.

In general, deceptive structures tends to appear when MCTS must select
the best move at a node with only a few promising children (e.g., ladders
in Go).

4 For simplicity, we also assume that C' in equation 1 is very small (close to 0), although
the drawback of UCT occurs even with large C.

3 Related Work

A number of approaches have been presented to correct the deceived
behavior of MCTS in the literature, including modified playout policies
(e.g., [6,10,11,17]). Although modifying playout policies is presumed to
decrease deceptive structures in the search tree, these techniques are
mostly based on domain-dependent knowledge. Additionally, this ap-
proach cannot completely remove the deceptive structures as shown in
Fig. 1. In contrast, we aim at avoiding the deceptive structures in a
domain-independent way.

The rest of this section deals with related work based on different formu-
las than UCB to bypass such deceptions. These approaches are orthogo-
nal to modifying playout policies and can be usually combined with these
policies.

Coquelin and Munos showed an example in which UCT works poorly
due to its over-optimistic behavior if it performs only a small number
of playouts [4]. They presented the Bandit Algorithm for Smooth Trees
(BAST) to overcome this issue by modifying the bias term of the UCB
formula. A theoretical property was proved about the regret bound and
the playout sizes performed on suboptimal branches, when their smooth-
ness assumption is satisfied in the tree. Since they did not show empirical
results in games, it is still an open question whether BAST is effective
for two player games or not.

Discounted UCB [14] gradually forgets past playout results to value more
recent playout results. It introduces the notion of decay, which was tradi-
tionally presented in temporal difference learning [18]. The original UCB
value is modified to the Discounted UCB value as explained below.

In the multi-armed bandit problem, let rfj and ntDJ- be the discounted
winning ratio of branch j and the discounted visits to j, respectively,
after the t-th playout is performed. The Discounted UCB value ducby,;
is defined as®:

1 D
duchby ; == rtDJ- +C OgDSt , (2)

N

where s? = Z ngi and C is a constant. Discounted UCB incrementally

k2
updates rfj and nfj in the following way:

neny 6 Aney 1+ 1,5), (3)
Py (A nly g FRE+1L7) / (Anls 41+ 1,0) (@)

where X is a constant value of decay ranging (0, 1], I(¢,j) is set to 1 if
j is selected at the ¢-th playout or 0 otherwise. R(¢,j) is defined as the
result of the t-th playout (0 or 1 in this paper for the sake of simplicity)
at j if j is selected, or 0 if j is not selected. We assume TOD,]- = n(?j =0

® Precisely, Kocsis and Szepesvéri used the UCB1-Tuned formula [10] to define the
Discounted UCB algorithm. However, we use the standard UCB1 formula here, since
we believe that this difference does not affect the properties of Discounted UCB.

for any j but ducbo,; has a very large value so that j can be selected at
least once. Note that Discounted UCB is identical to UCB if A = 1.0.
Additionally, selecting the right A\ plays an important role in Discounted
UCB'’s performance.

Discounted UCB selects branch j with the largest discounted UCB value
and performs a playout at j, and then updates the discounted UCB
values of allthe branches. In other words, while Discounted UCB updates
ducby,; for selected branch j, the Discounted UCB values for the other
unselected branches are also discounted. Discounted UCB repeats these
steps until it performs many playouts enough to select the best branch.
While Discounted UCB could be applied to tree search in a similar man-
ner to UCT, one issue must be addressed (see Subsection 5.1 for details)
and no success in combining Discounted UCB with tree search has been
reported yet.

Ramanujan and Selman’s UCTMAX g combines UCT and minimax tree
search [16]. It simply replaces performing a playout with calling an evalu-
ation function at each leaf and backs up its minimax value instead of the
mean value. Although they showed that UCTMAXy outperforms UCT
and minimax search in the game of Mancala, their approach is currently
limited to domains where both minimax search and UCT perform well.
Other related work includes approaches using other algorithms as base-
lines rather than UCT and their applicability to UCT remains an open
question. For example, instead of computing the winning ratio, Coulom
introduced the “Mix” operator that is a linear combination of robust
max and mean [6].

4 Accelerated UCT

Our Accelerated UCT algorithm aims at accelerating to search in a direc-
tion for avoiding deceptive structures in the partially built tree. Similarly
to Discounted UCB, Accelerated UCT considers recent playouts to be
more valuable. However, unlike the decay of Discounted UCB, Acceler-
ated UCT non-uniformly decreases the reliability of subtrees that contain
the past playout results.

As in UCT, Accelerated UCT keeps selecting the move with the largest
Accelerated UCB wvalue from the root until reaching a leaf. The Acceler-
ated UCB value aucb; for move j is defined as:

aucb; := 73 + C loﬁ, (5)
nj
where the bias term is identical to UCB and r? is the accelerated winning
ratio (explained later) defined by the notion of welocity. If Accelerated
UCT is currently at position P for the ¢t-th time, the velocity v; ; of each
of legal moves j at P is updated in the following way:

Vit1,5 < Vi A+ I(E+ 1, 5), (6)

where I(t + 1,7) is 1 if move j is selected at P and is 0 otherwise, and
A is a decay ranging (0, 1], which has a similar effect to the decay of

Discounted UCB and is empirically preset. For any move j, vo ; is set to
0.

Let 7 be the accelerated winning ratio of move i that creates position
P and rjA be the accelerated winning ratio of move j at P. When Accel-
erated UCT backs up a playout result, it updates r?* with the following
velocity-based weighted sum of rJA:

T;\ = Z wj - T?? (7)

JELM(P)

where LM (P) is all the legal moves at P and w; := vy ;/(Z Vi k).
kELM(P)

If move j is selected, v;,; and w; are increased, resulting in giving rf‘

a heavier weight. Additionally, Accelerated UCT is identical to UCT if

A=1.

: wins
1* player's node |:| visits --- Pl Playout with 1% player's win

n . wins) .
2" player's nodeO Disits ---9[] Playout with 2 player's win

Fig. 2. An example illustrating the necessity of virtual child in Accelerated UCT

When a leaf is expanded after performing several playouts, Accelerated
UCT must consider a way of reusing these playout results. We prepare
an additional child called wvirtual child for this purpose.

Fig. 2 illustrates the virtual child of node a, represented as a’. Nodes
a, b and c are leaves in the left figure. Assume that three playouts are
performed at a and the winning ratio of move r — a is 2/3. Then, if
a is expanded, Accelerated UCT generates two real children (i.e., d and
e) and one virtual child a’ as shown in the right figure. Additionally,
assume that one playout per real child is performed (the playout results
are a win at d and a loss at e).

In case of plain UCT, the winning ratio of — a can be easily calculated
as 3/5 in this situation, because the playout results previously performed
at a (i.e.,the winning ratio of 2/3) are accumulated at r — a. However,
Accelerated UCB updates the accelerated winning ratio r2,, of 7 — a

based on the winning ratios of @ — d and @ — e in the original definition.
These moves do not include the value of 2/3. We therefore add one virtual
child @’ and (virtual) move a — a’ to set the winning ratio of a — a’ to
2/3. That is, as if there were three moves (a — a’, a — d and a — e) at
a, Accelerated UCT updates r2,,.

Note that the velocity of a’ is also considered but is always decayed
because a’ is never selected.

5 Experiments

5.1 Implementation Details

We implemented the plain UCT, Discounted UCT (Discounted UCB
plus tree search), and Accelerated UCT algorithms to evaluate the per-
formance of these algorithms in the games of Othello, Havannah and Go.
All the algorithms were implemented on top of FUEGO 0.4.1° in Go. In
contrast, we implemented them from scratch in Othello and Havannah.

Since Discounted UCB updates all the branches of the root in the multi-
armed bandit problem, one possible Discounted UCT implementation is
to update all the Discounted UCB values in the currently built tree. How-
ever, because this approach obviously incurs non-negligible overhead, our
implementation updates the Discount UCB values in the same way as
Accelerated UCT updates velocities. In this way, our Discounted UCT
implementation can recompute the Discounted UCB values of “impor-
tant” moves with a small overhead.

5.2 Setup

Experiments were performed on a dual hexa-core Xeon X5680 machine
with 24 GB memory. While this machine has 12 cores in total, we used
a single core to run each algorithm with sufficient memory.

We set a limit of the playout size to 50,000 when each algorithm deter-
mined the move to play. Although Discounted/Accelerated UCT requires
an extra overhead to compute Discounted/Accelerated UCB values com-
pared to plain UCT, we observed that this overhead was negligible.

We held a 1000-game match to compute the winning percentage for each
algorithm in each domain. A draw was considered to be a half win when
the winning percentage was calculated. The ratio of draws to the total
number of games ranged 0.9-2.2% in Havannah, while this number was
at most 7.8% in Othello. The games results were always either wins or
losses in 9 X 9 Go with 7.5 komi. Because MCTS has randomness for
playout results, we disabled the opening book for the experiments and
thus obtained a variety of games per match.

Table 1. Performance comparison

(a) Accelerated vs plain UCT (b) Discounted vs plain UCT
Winning percentage (%) Winning percentage (%)
Othello [Havannah [Go Othello [Havannah [Go
39.24+3.11 24.2+£27 08=%0.6 0.0£0.0/ 0.0+0.0f 0.0£0.0
52.5+£3.2] 25.1 £2.7| 41.3+ 3.1 1.3£0.7 0.0£0.00 0.0+0.0
56.3 £3.2| 47.8 £3.2| 54.5+ 3.1 28.0+2.8 8.0+£1.7 0.0=£0.0
52.7+3.1/58.24+3.1|56.0 £ 3.1 475+ 3.2| 31.3£2.9| 186+ 2.5
51.3 £3.2] 50.6 £3.2| 53.0 + 3.2 49.0 £3.2] 48.5 £3.2| 45.8 + 3.2
47.44+3.2] 48.0£3.2| 51.0+ 3.2 49.2 + 3.2|52.0 + 3.2| 46.6 £ 3.2
48.2 +3.2| 50.2 £ 3.2| 50.1 £ 3.2 48.2 + 3.2| 50.0 £ 3.2|48.7 + 3.2

| O O | W| D] ||
| O O | W[N —]| &

5.3 Performance Comparison of the Plain, Discounted,
and Accelerated UCT Algorithms

Table 1 shows the winning percentages of Accelerated/Discounted UCT
with various decays against plain UCT in Othello, Havannah and 9x9 Go
with 95% confidence intervals, calculated by 24/p(100 — p)/1000, where
p is the winning percentage. The best results are marked by bold text.
We varied decay A = 1 — 0.1 (1 < k < 7) for both Discounted and
Accelerated UCT. For example, A = 0.9999999 with £ = 7 and A = 0.9
with & = 1. This implies that A becomes close to 1 more extremely
with larger k, resulting in Discounted/Accelerated UCT behaving more
similarly to plain UCT.

FUEGO’s default policy that performs a smarter playout based on game-
dependent knowledge was used in the experiments in Go. Addition-
ally other important enhancements except Rapid Action Value Estimate
(RAVE)” [9] were turned on there. In contrast, in Havannah and Othello,
when a playout was performed, one of the legal moves was selected with
uniform randomness without incorporating any domain-specific knowl-
edge. Additionally no techniques enhancing the performance of UCT
variants were incorporated there. C' was set to 1.0 in all the domains.
The winning percentages in the table indicate that Accelerated UCT was
consistently better than Discounted UCT. There is at least one case of k
where Accelerated UCT was statistically superior to plain UCT in each
domain, although the best k& depends on the domain. In contrast, even
with the best k, Discounted UCT was at most as strong as plain UCT,
implying the importance of introducing a different way of decaying the
winning ratio than the Discounted UCB value.

5 The source code is available at http://fuego.sourceforge.net/. The latest imple-
mentation is version 1.1. However, version 0.4.1 was the latest one when we started
implementing the aforementioned algorithms.

" We intend to show the potential of the Accelerated and Discounted UCT algorithms
against UCT in this subsection. See the performance comparison with turning on
RAVE in the next subsection.

The constant value of C' may impact the performance of Discounted UCT
since the best C' might be different from plain and Accelerated UCT due
to the different formula of the biased term in Discounted UCT. However,
we did not exploit the best C for plain and Accelerated UCT either.
Moreover, we verified that the values of the biased terms of Discounted
and Accelerated UCT with the best A\ were very similar when we ran
these algorithms with many positions.

Despite inclusions of FUEGO’s essential enhancements to improve its
playing strength except RAVE, Accelerated UCT still achieved non-
negligible improvement. Additionally even if no enhancements were in-
corporated in Othello and Havannah, Accelerated UCT was better than
plain UCT. These results indicate that Accelerated UCT was able to
remedy the deceived behavior of UCT which could not be corrected com-
pletely by the enhancements presented in the previous literature (e.g.,
modifications to playout policies).

If the winning ratio was over-discounted (i.e., in case of small k), both
Discounted and Accelerated UCT performed poorly. However, Acceler-
ated UCT was still more robust than Discounted UCT to the change of
A (see Table 1 again). In the extreme case of of k = 1 where A = 0.9,
we observed that Discounted UCT won no games against plain UCT.
This result indicates that Discounted UCT suffers from undesirable side
effects if it eventually forgets all the past playout results that often con-
tain useful information. In contrast, Accelerated UCT often bypasses this
drawback of Discounted UCT, because the backup rule of Accelerated
UCT still takes into account the past valuable playout results.

5.4 Performance Comparison with RAVE in Go

The RAVE enhancement [9] plays a crucial role in drastically improv-
ing the strength of many computer Go programs including FUEGO. One
question is how to combine Discounted or Accelerated UCT with RAVE.
This subsection answers the question and shows experimental results
when RAVE is turned on in FUEGO, that is, we used the best configura-
tion of FUEGO as a baseline.

RAVE assumes that there is a strong correlation between the result of
a playout and the moves that appear during performing that playout
as in [2,3]. RAVE then sets the playout result as the value of these
moves (we call this value the RAVE playout value) so that the UCB
values of the moves (called the RAVE values precisely) can be updated
with their RAVE playout values even at different positions. While the
original RAVE formula appears in [9], FUEGO uses a slightly different
formula in [20]. The RAVE value of move j (rave;) is defined as®:

nj
Tj
n; + Wj

W] TRAVE (8)

+7L]‘+Wj J

rave; :=

8 The RAVE value could have a bias term as in the UCB value. However, it is omitted
in many computer Go programs in practice because the second term of rave; often
has a similar effect to the bias term. The bias term was not therefore included in
the experiments here since FUEGO also performs best with no bias term.

where r; is the winning ratio of j, n; is the number of visits to j, ri*VE i

s
J
the RAVE playout value of j, and Wj is the unnormalized weight of the
RAVE estimator (see [20] for details). Instead of using the UCB value,
FUEGO keeps selecting move j with the highest rave; from the root until

reaching a leaf to perform a playout.

RAVE tries to empirically converge the value more quickly than UCT,
which is successful in current Go programs. As a result, this property
might have a complementary effect on avoiding deceptive structures in
the tree.

In our Discounted UCT implementation, r; and n; in rave; are replaced
by rEj and ”]tD,j in Equations 3 and 4, respectively®. In contrast, in our
Accelerated UCT implementation, only r; is replaced by r;'-\ in Equation
7.

Table 2. Performance comparison with FUEGO with switching on RAVE and all im-
portant enhancements in Go

(a) Accelerated vs FUEGO (b) Discounted vs FUEGO
[k][Winning percentage (%)| [k[[Winning percentage (%)|
1 51.24+3.2| |1 0.0£0.0
2 51.9+3.3| |2 0.0+0.0
3 54.5+3.4| |3 44+0.3
4 55.9+3.5 |4 41.6 £2.6
5 53.8£3.4| |5 479+£3.0
6 54.6 = 3.4| |6 498 £3.1

Table 2 shows the winning percentages of Discounted and Accelerated
UCT with RAVE against FUEGO with the best configuration which
also includes RAVE. Accelerated UCT statistically performs better than
FuEGo, which implies that RAVE does not always fix the problem of
deceptions in MCTS and Accelerated UCT may correct some of the de-
ceived behaviors of MCTS. In the best case, the winning percentage of
Accelerated UCT against FUEGO was 55.9 % if X is set to 0.9999. In
contrast, Discounted UCT was again at most as strong as FUEGO, as
we saw similar tendencies in the previous subsection. Discounted UCT
lost all the games if the winning ratio is over-discounted with small &
(i-e., k < 2), while Accelerated UCT was very robust to the change of k.
Again, this indicates that Discounted UCT inherently has a side effect
of forgetting past valuable playout results.

9 Unlike in the definition of Discounted UCB, t and j indicate the situation after the
tth update for move j is performed.

6 Concluding Remarks

We have developed the Accelerated UCT algorithm that avoids some
of the deceptions that appear in the search tree of MCTS. Our experi-
mental results have shown that Accelerated UCT not only outperformed
plain and Discounted UCT in a variety of games but also contributed
to improving the playing strength of FUEGO, which is one of the best
computer Go programs.

Although Accelerated UCT is shown to be promising, the most impor-
tant future work is to develop a technique that automatically finds a
reasonable value of decay A. At present, we must try to find a good value
of A empirically by hand. In our experiments, the best A depends on
the target domain. Additionally, since we believe that the best A also
depends on the time limit, it would be necessary for Accelerated UCT
to automatically change the value of A\, based on a few factors such as
the shape of the current search tree.

Acknowledgements. This research was supported by the JST PRESTO
program. We thank Tomoyuki Kaneko and Martin Miiller for their valu-
able comments on the paper.

References

1. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2-3):235-256,
2002.

2. B. Bouzy and B. Helmstetter. Monte Carlo Go developments. In
Proc. of the 10th International Conference on Advances in Com-
puter Games, (ACG10), volume 263 of International Federation for
Information Processing, pages 159-174. Kluwer Academic, 2003.

3. B. Briigmann. Monte Carlo Go. 1993. http://www.ideanest.com/
vegos/MonteCarloGo.pdf.

4. P.-A. Coquelin and R. Munos. Bandit algorithms for tree search.
In Proc. of the 23rd Conference on Uncertainty in Artificial Intelli-
gence, (UAI2007), pages 67-74. AUALI press, 2007.

5. R. Coulom. Computing Elo ratings of move patterns in the game of
Go. ICGA Journal, 30(4):198-208, 2007.

6. R. Coulom. Efficient selectivity and backup operators in Monte-
Carlo tree search. In Proc. of the 5th International Conference on
Computers and Games, (CG2006), volume 4630 of Lecture Notes in
Computer Science, pages 72—-83. Springer, 2007.

7. M. Enzenberger, M. Miiller, B. Arneson, and R. Segal. Fuego -
an open-source framework for board games and Go engine based
on Monte-Carlo tree search. IEEE Transactions on Computational
Intelligence and Al in Games, 2(4):259-270, 2010.

8. S. Gelly. Discounted UCB. posted to Computer Go Mailing List,
2007. http://www.mail-archive.com/computer-go@computer-go.
org/msg02124 . html.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Gelly and D. Silver. Combining online and offline knowledge in
UCT. In Proc. of the 24th International Conference on Machine
Learning, (ICML2007), volume 227 of ACM International Confer-
ence Proceeding Series, pages 273-280, 2007.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of
UCT with patterns in Monte-Carlo Go. Technical Report RR-6062,
INRIA, 2006.

S.-C. Huang, R. Coulom, and S.-S. Lin. Monte-Carlo simulation
balancing in practice. In Proc. of the 7th International Conference
on Computers and Games, (CG2010), volume 6515 of Lecture Notes
in Computer Science, pages 81-92. Springer, 2010.

J. Kloetzer, H. Iida, and B. Bouzy. A comparative study of solvers
in Amazons endgames. In Proc. of the IEEE Symposium on Compu-
tational Intelligence and Games, (CIG2008), pages 378-384. IEEE
Press, 2008.

L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning.
In Proc. of the 17th European Conference on Machine Learning,
(ECML2006), volume 4212 of Lecture Notes in Computer Science,
pages 282-293. Springer, 2006.

L. Kocsis and C. Szepesvari. Discounted UCB. Video Lecture,
2006. In the lectures of PASCAL Second Challenges Workshop
2006, Slides are available at http://www.lri.fr/~sebag/Slides/
Venice/Kocsis.pdf. Video is available at http://videolectures.
net/pcw06_venice/.

R. Lorentz. Amazons discover Monte-Carlo. In Proc. of the 6th Inter-
national Conference on Computers and Games, (CG2008), volume
4630 of Lecture Notes in Computer Science, pages 13—24. Springer,
2008.

R. Ramanujan and B. Selman. Trade-offs in sampling-based ad-
versarial planning. In Proc. of 21st International Conference on
Automated Planning and Scheduling, (ICAPS2011), pages 202-209.
AAATI, 2011.

D. Silver and G. Tesauro. Monte-Carlo simulation balancing. In
Proc. of the 26th International Conference on Machine Learning,
(ICML2009), volume 382 of ACM International Conference Proceed-
ing Series, pages 945-952, 2009.

R. S. Sutton. Learning to predict by the methods of temporal dif-
ferences. Machine Learning, 3(1):9-44, 1988.

F. Teytaud and O. Teytaud. Creating an upper-confidence-tree pro-
gram for Havannah. In Proc. of the International Conference on
12th Advances in Computer Games, (ACG12), volume 6048 of Lec-
ture Notes in Computer Science, pages 65—74. Springer, 2009.

D. Tom and M. Miiller. A study of UCT and its enhancements in
an artificial game. In Proc. of the 12th International Conference on
Advances in Computer Games, (ACG12), volume 6048 of Lecture
Notes in Computer Science, pages 55—64. Springer, 2009.

