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Abstract The aesthetic aspects of products have become crucial factors in achieving

higher consumer satisfaction. This study deals with evaluation of commercial products

according to the Kansei, which is an individual subjective impression reflecting the

aesthetic appeal of products. To do so, we have proposed a three-phase group nonad-

ditive multiattribute Kansei evaluation model. Particularly, a novel approach is first

proposed to generate Kansei profiles involving fuzzy uncertainty as well as semantic

overlapping of Kansei data. Second, a target-oriented Kansei evaluation function is pro-

posed to induce Kansei satisfaction utility according to a consumer’s personal Kansei

preference, which provides a good description of the consumer’s preference. Third, after

formulating a general multiattribute target-oriented (MATO) Kansei evaluation func-

tion, a nonadditive MATO Kansei evaluation function is proposed based on an analogy

between the general MATO Kansei evaluation function and the Choquet integral, in

which an entropy-based method is utilized to estimate the fuzzy measure on a subset

of Kansei attributes. The main advantages of our model are its abilities to deal with

semantic overlapping of Kansei data, different types of personalized Kansei preferences,

as well as mutual dependence among multiple Kansei preferences. An application to

Kansei evaluation for hand-painted Kutani cups, one of the traditional craft items in

Japan, is conducted to illustrate how our model works as well as its effectiveness and

advantages.
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1 Introduction

With the development of global markets and modern technologies, it is very likely that

many similar products are functionally equivalent, thus it is difficult for consumers to

distinguish and choose their desired products. In this sense, the aesthetic quality of

products has become a key consideration in today’s consumer marketplace. Therefore,

it is important for manufacturers to have a consumer-oriented approach in order to

improve the attractiveness of products, which should not only satisfy the functional

requirements of products, defined objectively, but also the aesthetic needs, by essence

subjective (Petiot and Yannou, 2004). For example, the Apple’s iMac was heralded as

an “aesthetic revolution in computing”, which indicates that the aesthetics of comput-

ers has become a key factor in purchase decisions (Postrel, 2001).

The aesthetic aspects of products have actually received much attention since 1970s

from the research community of consumer-focused design and Kansei Engineering

(KE). Particularly, KE is developed as a methodology to “translate the technology

of the consumer’s feeling and image for a product into the design elements of the prod-

uct” (Nagamachi, 2002). Kansei is a Japanese word reflecting a multifaceted expression

that is closely related to Japanese culture and has no direct corresponding word in En-

glish. A specific Kansei arises when a person is exposed to an artifact in a certain

environmental context. According to M. Nagamachi, the founder of KE, Kansei is “an

individual subjective impression from a certain artifact, environment or situation using

all senses of sight, hearing, feeling, smell, taste [and sense of balance] as well as their

recognition,” quoted from Grimsæth (2005). Since its foundation, KE has been widely

applied to the process of new product design in industries such as automotive, home

electronics, office machines, cosmetics, building products, and other sectors (Grimsæth,

2005); especially in Japan and Korea. The main aim of many KE studies is to devel-

op new product prototypes that generate specific aesthetics of products. These studies

utilize multivariate statistical analysis such as principle component analysis and regres-

sion analysis, in order to discover the relationship between design elements (physical

attributes) and Kansei attributes. Different Kansei elements have been studied in the

literature, e.g., form/shape Kansei (Petiot and Yannou, 2004), color Kansei (Lai et al.,

2006), and image Kansei (Chen and Chang, 2009). Kansei design studies concluded

that the aesthetic quality of a design can greatly enhance the desirability of a product

and influence consumer satisfaction in terms of perceived product quality. However,

the relationship between Kansei aspects and consumer satisfaction is seldom discussed

(Chen and Chuang, 2008).

This study regards Kansei as one aspect of quality of products and focuses on

Kansei evaluation of existing commercial products in order to capture the relationship

between Kansei attributes and consumer satisfaction. As consumers’ preferences on

Kansei attributes vary from person to person according to character, feeling, aesthetic

and so on, we assume that a potential consumer has provided his personal preferences

on a subset of Kansei attributes. We refer to our Kansei evaluation as consumer-oriented

Kansei evaluation. Such an evaluation is helpful for marketing and recommendation

purposes, since consumers can make purchase decisions according to the Kansei aspect

of products. Furthermore, by integrating with the relationship between design elements

and Kansei attributes, consumer-oriented Kansei evaluation may provide a support

for consumer satisfactory-oriented design (Yadav and Goel, 2008), i.e., personalized

design, since designers are able to design new products best satisfying consumers’

Kansei preferences. Fig. 1 shows the integrated framework of KE, in which Kansei
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Fig. 1 An integrated framework of Kansei Engineering

acts as a bridge between designers and consumers. Note that many Kansei design

studies have involved an evaluation process, in which a design could be selected for

production (Chen and Chuang, 2008; Petiot and Yannou, 2004, e.g.). However, Kansei

evaluation of existing commercial products for the purpose of purchase decision has

generally received less attention (Mondragón et al., 2005). Also, a similar problem with

Kansei evaluation is sensory evaluation (Ruan and Zeng, 2004), in which knowledge

is acquired from a panel of experts by means of the five senses of sight, taste, touch,

smell and hearing. In fact, KE is also referred to as sensory engineering or emotional

usability (Grimsæth, 2005). Since our research context is closely related to Japanese

culture, we shall use “Kansei” in this study.

In this study, we aim at proposing and developing decision analysis approaches to

consumer-oriented Kansei evaluation by addressing the following three questions:

1. Kansei profile generation: How to generate a Kansei profile involving the fuzzy

uncertainty as well as semantic overlapping of Kansei data?

2. Single attribute Kansei evaluation function: How to quantify a consumer

satisfaction based on our Kansei profile generated?

3. Multiattribute Kansei evaluation function: How to quantify mutual depen-

dence among multiple Kansei preferences in our considered context?

Toward this end, Sec. 2 begins with the preparatory experiment in KE and follows

with detailed formulations of our research problems. To answer question 1, Sec. 3

proposes a novel approach to generating Kansei profiles involving fuzzy uncertainty

and semantic overlapping of Kansei data, the generated Kansei profile results with

a probability distribution on Kansei data. To answer question 2, Sec. 4 proposes a

target-oriented Kansei evaluation function to quantify a consumer satisfaction. Our

evaluation function is based on the appealing idea of target-oriented decision analysis

(Bordley and LiCalzi, 2000; Huynh et al., 2010; Yan et al., 2009, 2008). To answer

question 3, in Sec. 5, target-oriented Kansei evaluation function is extended to multiple

Kansei attributes. Particularly, after formulating the general multiattribute target-

oriented (MATO) Kansei evaluation function based on Bordley and Kirkwood (2004);

Tsetlin and Winkler (2007), an analogy between general MATO Kansei evaluation and

Choquet integral is then proposed. An entropy-based method is used to estimate the

fuzzy measure on a subset of Kansei attributes. Sec. 6 uses hand-painted Kutani cups,

one of the traditional crafts in Japan, to show the effectiveness of our model. Sec. 7

compares our model with related work. Finally, some concluding remarks are presented

in Sec. 8.
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2 The Preparatory Experiment and Problems Formulation

2.1 The Preparatory Experiment

The first step in KE is to select a product domain and collect product samples. It is

easy to collect product images in the marketplace such as websites, producers, catalogs,

and magazines. Researchers then need to eliminate duplicate or similar ones. Let

O = {O1, . . . , Om, . . . , OM }

be a set of representative products.

Second, we have to identify and measure Kansei attributes used by people to ex-

press their psychological feelings. Usually, Kansei attributes are identified by a pan-

el of experts (people familiar with the product types and KE) via a brainstorming

process (Grimsæth, 2005). There are different ways of measuring the Kansei: words,

physiological response, people’s behaviors and actions, and facial and body expressions.

Most KE studies which have been published in English, use words when measuring

the Kansei. The words reflect elements of the Kansei and are also used to measure the

Kansei in this study. Each Kansei attribute is defined by a bipolar pair of Kansei words,

which describe the product domain and can be collected from many sources (Grim-

sæth, 2005): magazines, manuals, product reviews, and users. Researchers then need to

eliminate duplicate or similar Kansei words. The refined bipolar pairs of Kansei words

can be formally expressed as follows:

– let X = {X1, . . . , Xn, . . . , XN} be a set of Kansei attributes;

– let KWn =
〈
kw−

n , kw+
n

〉
be the bipolar pair of Kansei words with respect to Kansei

attribute Xn;

– let KW be the set of bipolar pairs of Kansei words such that

KW =
{
KWn =

〈
kw−

n , kw+
n

〉
|n = 1, . . . , N

}
. (1)

Third, a questionnaire is designed by means of the semantic differential (SD)

method (Osgood et al., 1957). The questionnaire consists of listing N Kansei attributes,

each of which corresponds to a bipolar pair of Kansei words with a G-point odd qual-

itative scale, denoted by

V =
{
V1, . . . ,V(G+1)/2, . . . ,VG

}
, (2)

with the middle point V(G+1)/2 being neutral Kansei kw∼, and the rest of the points

being placed symmetrically around it. The left-most hand point V1 stands for left

Kansei word kw−, and the right-most hand point VG expresses right Kansei word

kw+. Also, we have Vg+1 − Vg = 1, where g = 1, . . . , G − 1. In practice, people can

reasonably manage to keep about seven points in mind (Miller, 1956). For example, a

7-point qualitative scale can be denoted as V = {1, 2, 3, 4, 5, 6, 7} (Petiot and Yannou,

2004) or V = {−3,−2,−1, 0, 1, 2, 3} (Llinares and Page, 2007).

Finally, the questionnaire is distributed to a number K of subjects E , who are asked

to express their subjective assessments for the products in O on Kansei attributes in X

via the G-point odd qualitative scale simultaneously. Formally, the Kansei assessment

provided by subject Ek ∈ E for productOm ∈ O on Kansei attributeXn ∈ X is denoted

as xmn (Ek), where for all xmn (Ek) ∈ V,m = 1, . . . ,M ; n = 1, . . . , N ; and k = 1, . . . ,K.

Table 1 shows the Kansei database of product Om on N Kansei attributes.
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Table 1 Kansei database of product Om on N Kansei attributes

Subjects
Kansei attributes

X1 . . . Xn . . . XN

E1 xm
1
(E1) . . . xm

n (E1) . . . xm
N
(E1)

...
...

. . .
...

. . .
...

Ek xm
1
(Ek) . . . xm

n (Ek) . . . xm
N
(Ek)

...
...

. . .
...

. . .
...

EK xm
1
(EK) . . . xm

n (EK) . . . xm
N
(EK)

2.2 Formulations of Research Problems

Based on the Kansei database in Table 1, our main objective is to get the product(s)

best satisfying a consumer’s individual Kansei preference(s). Assume a potential con-

sumer is interested in looking for a product that meets his Kansei preferences given by

a proper subset KW of the set KW of N bipolar pairs of Kansei words. Particularly,

we are concerned with consumer-specified Kansei requests that can be stated generally

in form of the following statement:

“I like products which best meet my Kansei preferences specified in KW ⊆

KW.”

Formally, the problem can be formulated as follows. Given

KW =
{
kw∗

n1
, . . . , kw∗

nn
, . . . , kw∗

nN

}

corresponding to the Kansei request linguistically specified by a consumer, where ∗

stands for −, ∼, or +. Here, −,∼,+ represent left Kansei word preference, neutral

Kansei preference (neither left Kansei word nor right Kansei word), and right Kansei

word preference, respectively. The problem now is how to evaluate the products in O

using the Kansei database based on consumer-specified request KW?

In order to achieve this goal, we consider three subproblems. The first subproblem

is the Kansei profile generation. Traditional KE studies treat the qualitative scale in

Eq. (2) as numerical data and then use the mean scale of questionnaire-collected Kansei

data as Kansei profile. However, the subjective assessments provided by the subjects are

usually conceptually vague, with uncertainty that is frequently represented in linguistic

forms (Zadeh, 1975). Therefore, it is more appropriate to treat the qualitative scale V

as a linguistic variable with a set of G linguistic labels. Formally, the set of linguistic

labels for Kansei attribute Xn can be denoted by

Ln =
{
Ln
1 , . . . , L

n
g , . . . , L

n
G

}
(3)

with Ln
1 < · · · < Ln

g < · · · < Ln
G. We shall call Ln the “Kansei linguistic variable”. In

this sense, if a subject assesses the product Om on Kansei attribute Xn using Vg , it

implies that the subject chooses Kansei label Ln
g as his assessment.

With the linguistic interpretation, if one subject assesses a product Om on an

attribute Xn using Ln
g , it implies that the subject makes an assertion “Om on Xn is

Ln
g ”. From the philosophical viewpoint of the epistemic stance (Lawry, 2008), humans

posses some kind of mechanism for deciding whether or not to make certain assertions.

Furthermore, although the underlying concepts are often vague, the decisions about
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assertions are, at a certain level, bivalent. That is to say for a product Om on an

attribute Xn and a description Ln
g , the subject is willing to assert that “Om on Xn is

Ln
g ” or not. However, the dividing line between those Kansei labels are and those are not

appropriate to use may be uncertain. Therefore, if one subject assesses a product using

Ln
g , other Kansei labels Ln

l (l 6= g) in Ln may also be appropriate for describing Om on

Xn. Such a phenomenon is referred to as the semantic overlapping of Kansei data. The

sensory evaluation model (Mart́ınez, 2007) based on 2-tuple linguistic model (Herrera

and Mart́ınez, 2000) cannot capture the semantic overlapping of Kansei data. Our first

subproblem is how to obtain Kansei profile based on the linguistic interpretation and

semantic overlapping of Kansei?

The second one is single attribute Kansei evaluation function. With a consumer’s

Kansei request kw∗
nn

on a Kansei attribute Xnn , previous KE studies have usually ap-

plied the linear satisfaction utility functions to model consumers’ preferences (Petiot

and Yannou, 2004, e.g.) using the mean scale based Kansei profile. However, the rela-

tionship between Kansei attribute and consumer may be nonlinear (Chen and Chuang,

2008). Also, it is difficult to build rigorous utility functions based on attributes and

the conventional attribute utility function often does not provide a good description

of individual preferences (Bordley and Kirkwood, 2004). In addition, the sensory eval-

uation model (Mart́ınez, 2007) based on 2-tuple linguistic decision analysis assumes a

consistent preference order relation on a linguistic variable, thus it will be inappropri-

ate for our problem. Our second subproblem is how to quantify a product on a Kansei

attribute Xnn meets kw∗
nn

based on our Kansei profile?

The final subproblem is the nonadditive multiattribute Kansei evaluation function.

Extending single Kansei preference to multiple Kansei preferences

KW = {kw∗
n1

, . . . , kw∗
nn

, . . . , kw∗
nN

},

either the traditional KE studies (Chen and Chuang, 2008; Llinares and Page, 2007;

Petiot and Yannou, 2004) or the sensory evaluation model (Mart́ınez, 2007), have

usually applied classical weighted arithmetic mean (WAM) method to obtain global

evaluation without further considering mutual dependence among Kansei attributes.

However, it is well-known that the mutual independence among multiple Kansei aspects

is rarely verified. Our third subproblem is how to quantify mutual dependence among

KW in our considered context?

Due to the above three subproblems, a group nonadditive multiattribute Kansei

evaluation model is given in Fig. 2. Once the preparatory experiment has been con-

ducted, our model consists of three phases: Kansei profile generation involving semantic

overlapping, target-oriented Kansei evaluation, and nonadditive multiattribute target-

oriented Kansei evaluation.

3 Kansei Profile Generation Involving Semantic Overlapping

Having obtained the Kansei database, as shown in Table 1, we have to aggregate the

opinions of all subjects to a final value (Kansei profile) for each product on each at-

tribute. Due to the linguistic interpretation of Kansei data discussed in Sec. 2.2, the

ordered structure approach (Mart́ınez, 2007) can be used to choose linguistic descrip-

tors, e.g., “fairly” and “very”, for Kansei attributes. For example, the Kansei attribute
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Fig. 2 A group nonadditive multiattribute Kansei evaluation model

fun having a bipolar pair of Kansei words <solemn, funny> with a 7-point qualitative

scale, can be implicitly defined by

L = {Very solemn,Solemn,Fairly solemn,Neutral,Fairly funny,Funny,Very funny}.

In the sequel, we shall propose a probabilistic approach to generating Kansei profile

involving semantic overlapping of Kansei data.

3.1 A Probabilistic Approach to Generating Kansei profiles

The Kansei assessment provided by a subject implies that he makes an assertion. Mo-

tivated by the epistemic stance (Lawry, 2008), we assume that any neighboring Kansei

labels have partial semantic overlapping. Thus, when one subject Ek ∈ E assesses a

product Om ∈ O on an attribute Xn using Kansei label xmn (Ek) ∈ Ln, other Kansei

labels in Ln may also be appropriate for describing Om on Xn, but which of these

Kansei labels is uncertain. The Kansei label xmn (Ek) will be referred to as a prototype

label. Lawry (2008) has introduced a new framework for label semantics where the se-

mantics of linguistic labels are described by appropriateness degree, which means the

belief that a linguistic label is appropriate for describing a product. The appropriate-

ness distribution can be represented by a possibility distribution, which is convenient

for representing consonant imprecise knowledge. A possibility distribution, π, describes

the more or less plausible values of some uncertain variable. If subjects can directly

assign the appropriateness degrees of all Kansei labels, then we can obtain a possibility

distribution. However, the need of subjects’ involvement creates the burden of assess-

ment process. Therefore, we assume that the appropriate labels are distributed around

the prototype label xmn (Ek) with a possibility distribution.

Returning back to the Kansei database in Table 1, given the Kansei data [xmn (E1),

. . . , xmn (Ek), . . . , x
m
n (EK)] of product Om on attribute Xn provided by K subjects,

it is very rare that all subjects share the same opinion, since a diversity of opinions

commonly exists. For product Om on Kansei attribute Xn, we first define

Lmin(x
m
n ) = mink=1,...,K

{
xmn (Ek)

}
,

Lmax(x
m
n ) = maxk=1,...,K

{
xmn (Ek)

}
,

(4)
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where xmn (Ek) ∈ Ln and Lmin(x
m
n ), Lmax(x

m
n ) are the smallest and largest Kansei

labels of product Om on Kansei attribute Xn, respectively. The label indices of the

smallest and largest labels are expressed as Indmin(x
m
n ) and Indmax(x

m
n ), respectively.

Also, the label index of the prototype label xmn (Ek) is denoted as Indk(x
m
n ). In the

sequel, without possibility of confusion, we shall drop the subscriptsm and n to simplify

the notations.

The aggregation result of [x(E1), . . . , x(Ek), . . . , x(EK)] should lie between Lmin

and Lmax. Accordingly, we define a possibility distribution of “around the prototype

label x(Ek) ∈ L” as follows:

π (Lg |x(Ek)) =





(
g−Indmin

Indk−Indmin

)γ
, if g ∈ [Indmin, Indk];(

Indmax−g
Indmax−Indk

)γ
, if g ∈ [Indk, Indmax];

0, if g /∈ [Indmin, Indmax].

(5)

Here, γ is a linguistic modifier and γ > 0. When γ > 1, it means that the subject has

an optimistic attitude (he is more sure that the prototype label is appropriate enough

to describe a product); when γ = 1, it means that the subject has a neutral attitude;

when γ < 1, it means that the subject has a pessimistic attitude (he is less sure that

the prototype label is appropriate enough to describe a product). Without additional

information, this study assumes that each subject has a neutral attitude, i.e. γ = 1.

Since π(Lg |x(Ek)) is the possibility distribution of “around prototype label x(Ek)”

on a set of G Kansei labels, then a consonant mass assignment mx(Ek) can be derived

as follows.

Definition 1 Given the possibility distribution π(Lg |x(Ek)), the possibility degrees

are reordered as

{π1(x(Ek)), . . . , πj(x(Ek)), . . . , πJ (x(Ek))}

such that

1 = π1(x(Ek)) > π2(x(Ek)) > · · · > πJ (x(Ek)) ≥ 0,

then the consonant mass selection function identifies the mass assignment

mx(Ek)(φ) = 1− π1(x(Ek)),

mx(Ek)(Fj) = πj(x(Ek))− πj+1(x(Ek)), j = 1, . . . , J − 1,

mx(Ek)(FJ ) = πJ (x(Ek)),

(6)

where Fj = {π(Lg |x(Ek)) ≥ πj(x(Ek))}, j = 1, . . . , J and {Fj}
J
j=1 are the focal

elements of mx(Ek). The mass mx(Ek)(F ) means one’s belief that F is the extension

of the prototype Kansei label x(Ek).

The notion of mass assignment suggests a means of defining probability distri-

bution (Lawry, 2004). For any prototype Kansei label, we can derive a probability

distribution as follows.

Definition 2 We can then obtain the least prejudiced distribution of “around the

prototype label x(Ek)” on the set of Kansei labels as follows:

p(Lg|x(Ek)) =
∑

Fj :Lg∈Fj

mx(Ek)(Fj)

|Fj |
, Lg ∈ L, (7)

where mx(Ek) is the mass assignment of π(x(Ek)) and {Fj}j is the corresponding set

of focal elements.
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Table 2 Collective probability distributions for Om.

Attribute
G-scale Kansei data

V1 . . . Vg . . . VG

X1 pm1 (L1
1) . . . pm1 (L1

g) . . . pm1 (L1
G)

...
...

. . .
...

. . .
...

Xn pmn (Ln
1 ) . . . pmn (Ln

g ) . . . pmn (Ln
G)

...
...

. . .
...

. . .
...

XN pmN (LN
1 ) . . . pmN (LN

g ) . . . pmN (LN
G )

The idea underlying this probability distribution is that, for each focal set F containing

Kansei label L, a uniform proportion 1
|F |

is allocated to L. In other words, the value

p(Lg|x(Ek)) reflects the probability that Lg ∈ L belongs to the extensions of the

prototype label x(Ek).

Therefore, we obtain a probability distribution

[p(L1|x(Ek)), . . . , p(Lg|x(Ek)), . . . , p(LG|x(Ek))]

of “around the prototype label x(Ek)” on the set of Kansei labels. In KE, a number K

of subjects E are asked to provide their judgements for the products. We assume that

each subject is assigned a degree of importance or weight wk, the weighting vector is

denoted as

W = [w1, . . . ,wk, . . . ,wK ]

such that
∑K

k=1 wk = 1. The assignment of weight information for subjects is useful

when different groups of subjects are selected in Kansei evaluation. This is motivated by

the fact there still remains a gap between designers’ and consumers’ perception, due to

the fact that subjective functions and criteria are often neither named nor objectively

assessed (Hsu et al., 2000). With the weighting vector, a collective probability distri-

bution under different prototype Kansei labels x(Ek)(k = 1, . . . ,K) is then defined as

follows:

p(Lg) =

K∑

k=1

p(Lg |x(Ek)) · wk, g = 1, . . . , G. (8)

Extending this definition to M products and N Kansei attributes, we can obtain

a G-tuple probability distribution on the set of Kansei labels Ln for product Om

regarding Kansei attribute Xn such that

Xn(Om) = [pmn (Ln
1 ), . . . , p

m
n (Ln

g ), . . . , p
m
n (Ln

G)],

which will be called Kansei profile. Table 2 shows the Kansei profiles of product Om

on the set of N Kansei attributes.

With the Kansei data provided by the subjects for product Om on Kansei attribute

Xn, and the importance weight wk for subject Ek, we can obtain a weighting vector

of all the possible prototype Kansei linguistic labels Ln
p for Om on Xn. The weight of

each prototype Kansei label is denoted as ̟m
n (Ln

p) and can be obtained by

̟m
n (Ln

p) =
∑

Ek∈E,

xm
n (Ek)=Ln

p

wk,p = 1, . . . , G (9)
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where p denotes the index of a prototype label. Especially, when all the subjects are

equally important, i.e., wk = 1/K, ̟m
n (Ln

p) reduces to

̟m
n (Ln

p) =
|Ek ∈ E : xmn (Ek) = Ln

p|

K
,p = 1, . . . , G. (10)

Similar to Eq. (8), we obtain the collective probability distribution for Om on Xn as

follows:

pmn (Ln
g ) =

G∑

p=1

pmn (Ln
g |L

n
p) ·̟

m
n (Ln

p), (11)

where pmn (Ln
g |L

n
p), g = 1 . . . , G, is the probability distribution of “around the prototype

Kansei label Ln
p” on the set Ln of Kansei labels, and can be derived by Eqs. (4)-(7).

3.2 Properties of Kansei profiles Generated

Our Kansei profile has several interesting properties.

Property 1 Instead of viewing Kansei data as numerical data, our approach treats

Kansei data as linguistic labels, in which fuzzy uncertainty of Kansei data can be

taken into account.

Property 2 It can treat different groups of subjects by incorporating a weighing vector

for the subjects such that

W = [w1, . . . ,wk , . . . ,wK ],

K∑

k=1

wk = 1.

Property 3 The maximum probability in the Kansei profile generated for product Om

on Kansei attribute Xn could only happen between Lmin(x
m
n )) and Lmax(x

m
n ).

Proof From Eqs. (4)-(5), it is obvious that our Kansei profile generation approach is

bounded, thus the maximum probability in the Kansei profile generated could only

happen between Lmin(x
m
n )) and Lmax(x

m
n ). ⊓⊔

Property 4 Our approach to generating Kansei profile involves the semantic overlap-

ping of Kansei data, which results with a probability distribution on the set of Kansei

labels. The sum of probability distributions of all the Kansei labels in the Kansei profile

generated is equivalent to one.

Proof

G∑

g=1

pmn (Ln
g ) =

G∑

g=1





G∑

p=1

pmn (Ln
g |L

n
p) ·̟

m
n (Ln

p)





=

G∑

p=1





G∑

g=1

pmn (Ln
g |L

n
p) ·̟

m
n (Ln

p)





=

G∑

p=1



̟m

n (Ln
p) ·

G∑

g=1

pmn (Ln
g |L

n
p)





=

G∑

p=1

̟m
n (Ln

p) = 1
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Thus,
∑G

g=1 p
m
n (Ln

g ) = 1. Such a probability distribution reflects the fuzzy uncertainty

as well as the semantic overlapping of Kansei data. ⊓⊔

4 Single Attribute Kansei Evaluation Function

The Kansei profile Xn(Om) =
[
pmn (Ln

1 ), . . . , p
m
n (Ln

g ), . . . , p
m
n (Ln

G)
]
of product Om

on Kansei attribute Xn can viewed as a decision making under uncertainty prob-

lem, described as follows. Om(m = 1, . . . ,M) represent the alternatives available

to a consumer, one of which must be selected. Kansei attribute Xn has G possi-

ble values (Ln={Ln
1 , . . . , L

n
g , . . . , Ln

G}) corresponding to the so-called state space

S = {S1, . . . , Sg, . . . , SG}, which is characterized by a probability distribution pS on

the state space S . pmn (Ln
g )(g = 1, . . . , G) on Ln acts as the the probability distribution

on the state space S .

Due to the inconsistent preference order relations on Ln, the sensory evaluation

model (Mart́ınez, 2007) based on the 2-tuple linguistic representation model (Herrera

and Mart́ınez, 2000) cannot be used in our problems. Also, we can use the expected

utility value function (discrete case) for our problems such that

Um
n =

G∑

g=1

U(Ln
g ) · p

m
n (Ln

g ), (12)

where U is a utility function. For example, Petiot and Yannou (2004) have defined

three types of satisfaction utility functions in Kansei evaluation problems. However,

substantial empirical evidence has shown that it is difficult to build mathematically

rigorous utility functions based on attributes (Bordley and Kirkwood, 2004).

Assume a consumer has specified his preference toward Kansei attribute Xn in

terms of Kansei words kw∗
n, where ∗ stands for −,∼ or +. Intuitively, if a consumer

expresses his preference for Kansei attribute Xn with kw−
n , he might implicitly assume

a preference order on the Kansei data toward Ln
1 where the left Kansei word is placed.

Conversely, if the consumer’s preference for Kansei attribute Xn is kw+
n , the preference

order on the Kansei data corresponding to the Kansei attribute Xn should be deter-

mined adaptively according to particular consumer’s preference toward the end Ln
G

where right Kansei word is placed. Moreover, sometimes a consumer may express his

preference for the Kansei attribute with kw∼
n . Given a consumer’s Kansei preference

kw∗
n for Kansei attribute Xn, the preference relation �n can be formally expressed as

follows:

�n⇔





Ln
1 � · · · � Ln

(G+1)/2 � · · · � Ln
G, if kw∗

n = kw−
n ;

Ln
1 � · · · � Ln

(G+1)/2 � · · · � Ln
G, if kw∗

n = kw∼
n ;

Ln
1 � · · · � Ln

(G+1)/2 � · · · � Ln
G, if kw∗

n = kw+
n .

(13)

In addition, due to the vagueness inherent in consumer’s expression of preference

in terms of Kansei words, each is considered as a Kansei target of Xn, denoted by Tn,

which can be represented as a possibility variable defined as

πTn
(Ln

g ) =





[
(G−g)
(G−1)

]λ
, if kw∗

n = kw−
n ;

[
1−

|(G+1)/2−g|
(G+1)/2−1

]λ
, if kw∗

n = kw∼
n ;

[
(g−1)
(G−1)

]λ
, if kw∗

n = kw+
n ,

(14)
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where g = 1, . . . , G, and λ > 0 represents a degree of intensity toward the Kansei

target of a consumer. Intuitively, when a consumer expresses his Kansei targets using

Kansei words combined with linguistic modifiers (e.g. very, slightly) to emphasize his

intensity about target, the degree of intensity λ can then be determined similarly as

in Zadeh’s method of modeling linguistic modifiers via power functions in approximate

reasoning (Zadeh, 1975). Without additional information, λ is set to one for default.

With the Kansei targets and their preference order relations, we are able to eval-

uate how well the Kansei profile Xn(Om) meets the Kansei target Tn. We define the

following value function for a single Kansei attribute

Pr(Xn(Om) � Tn) =

G∑

g=1

Pr(Ln
g � Tn) · p

m
n (Ln

g ), (15)

where Tn is a consumer’s Kansei target toward Kansei attribute Xn, and Tn is stochas-

tically independent of Ln
g (g = 1, . . . , G) and Om(m = 1, . . . ,M). Eq. (15) is referred

to as target-oriented Kansei evaluation model, and Pr is called target-oriented utility.

We denote Pr(Xn(Om) � Tn) as Pr
m
n .

We then proceed as follows. First, we derive a consonant mass assignment function

mπTn
for the possibility distribution πTn

(Ln
g )(g = 1, . . . , G). The possibility degrees

are reordered as {π1(Tn), . . . , πj(Tn), . . . , πJ (Tn)} such that 1 = π1(Tn) > π2(Tn) >

· · · > πJ (Tn) ≥ 0. Second, we obtain the least prejudiced distribution of Tn such that

pTn
(Ln

g ) =
∑

Fj :Ln
g∈Fj

mπTn
(Fj)

|Fj |
, (16)

where Ln
g ∈ Ln, g = 1, . . . , G, mπTn

is the mass assignment of πTn
, Fj = {πTn

(Lg) ≥

πj(Tn)}, j = 1, . . . , J and {Fj}
J
j=1 are referred to as the focal elements of mπTn

. Third,

we obtain the target-oriented utility for each Kansei label Ln
g of Xn based on the con-

tinuous target-oriented decision model with different types of target preferences (Yan

et al., 2009) as follows. In case of left and right Kansei preferences, the consumer has

monotonic preferences, the probability of Ln
g meeting Tn is

Pr(Ln
g � Tn) =

{∑G
l=g pTn

(Ln
l ), if kw

∗
n = kw−

n ;∑g
l=1 pTn

(Ln
l ), if kw

∗
n = kw+

n .
(17)

In case of neutral Kansei preference (kw∗
n = kw∼

n ), the probability of Ln
g meeting Tn

is

Pr(Ln
g � Tn) =





∑g

l=1 pTn(Ln
l )

∑ (G+1)
2

l=1 pTn(Ln
l
)

, g < G+1
2 ;

1, g = G+1
2 ;

∑G
l=g pTn (Ln

l )∑
G

l=
(G+1)

2

pTn (Ln
l
)
, g > G+1

2 .

(18)

Substituting Eqs. (17)-(18) into Eq. (15), we are able to obtain the probability of

product Om on Kansei attribute Xn meeting three types of Kansei targets kw−
n , kw∼

n ,

kw+
n , respectively.

Generally, our Kansei evaluation function is based on the appealing idea of target-

oriented decision model (Bordley and LiCalzi, 2000; Yan et al., 2009). Interestingly,

despite the differences in approach and interpretation, both the utility-based procedure

Eq. 12 and target-oriented procedure Eq. 15 essentially lead to only one basic model for
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decision making (Bordley and LiCalzi, 2000). Note that Eq. 15 is strictly more general

than Eq. 12, in the sense that equivalence holds under stochastic independence of the

target.

5 Nonadditive Multiattribute Kansei Evaluation Function

For the sake of simplicity of notation, we assume the consumer prefers N Kansei

attributes. A natural question that arises is how to extend our target-oriented Kansei

evaluation function to multiple Kansei attributes?

5.1 General Multiattribute Target-Oriented Kansei Evaluation Evaluation

Assume that a consumer has linguistically specified his Kansei preferences toward N

Kansei attributes in terms of Kansei words such that {kw∗
1, . . . , kw

∗
n, . . . , kw

∗
N}, we

can then build a set of Kansei targets {T1, . . . , Tn, . . . , TN}. Following Bordley and

Kirkwood (2004), we have

Definition 3 With N Kansei attributes X = {X1, . . . , Xn, . . . , XN} and N Kansei

targets T = (T1, . . . , Tn, . . . , TN ), a consumer is defined to be target oriented if his

utility for a product Om = (X1(Om), . . . , Xn(Om), . . . , XN (Om)) depends only on

which Kansei targets are met by that Om. The utility function for a Kansei target-

oriented consumer is completely specified by 2N constants where these constants are

the utilities of achieving specific combinations of the various Kansei targets.

Let I = {I1, . . . , In, . . . , IN} be a set of indicator variables, where In = 1, if Xn(Om) �

Tn; 0, otherwise. Then a target-oriented consumer has a function UI(I) assigning u-

tilities to the 2N possible values of I. Note that, here, we first assume there is no

uncertainty about the Kansei profile Xn(Om) of product Om on Kansei attribute Xn

and the Kansei target Tn, i.e., Xn(Om) and Tn are specific Kansei labels in Ln. Similar

to Tsetlin and Winkler (2007), let UI (I) = νA, where A is the set of indices {n|In = 1}

corresponding to the attributes in I for which the targets are met. For example,

UI(1, 0, . . . , 0) = ν1, UI(0, 1, 1, . . . , 0) = ν2,3 and so on. If A1 ⊆ A2, then νA1
≤ νA2

; u-

tility can never be reduced by meeting additional targets. We also know that 0 ≤ νA ≤ 1

for all A, with ν∅ = UI (0, . . . , 0, . . . , 0) and ν1,...,n,...,N = UI (1, . . . , 1, . . . , 1) = 1, leav-

ing 2N − 2 utilities νA to be assessed. Consider a simple example with N = 2, we

know

UI(I) = ν∅I∅ + ν1I1 + ν2I2 + (1− ν1 − ν2)I1I2.

Recall that In depends on whether Xn(Om) � Tn, ν∅ = 0, and ν12 = 1, and that Tn
is independent of Xn(Om). Integrating out the uncertainty about Tn and Xn(Om), we

can get

Val(Om) = ν1Pr
m
1 + ν2Pr

m
2 + (1− ν1 − ν2)Pr

m
1,2, (19)

where Prm1,2 is the joint probability of meeting targets T1 and T2, Pr
m
1 and Prm2 are the

probabilities of meeting targets T1 and T2, respectively. Extending this to N targets,

the target-oriented Kansei evaluation function for the product Om is as follows

Val(Om) =
∑

A

ωA · Prm{n|n∈A}, where
∑

A

ωA = 1. (20)
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With the mutual independent and additive preferences of Kansei targets, Eq. (20)

reduces to

Val(Om) =

N∑

n=1

Prmn · ωn, (21)

where for all n = 1, . . . , N , ωn ≥ 0 is the weight of attribute Xn and
∑N

n=1 ωn = 1. The

assumption of mutual independence among Kansei targets is however rarely verified.

5.2 An Analogy between MATO Kansei Evaluation function and Choquet Integral

The fuzzy measure and Choquet integral have been widely applied in multiattribute

decision making problems. One natural question is that whether we can apply them

directly in our MATO Kansei evaluation framework. In this section, we shall provide an

axiomatic approach to interdependent multiattribute target-oriented (MATO) Kansei

evaluation model based on fuzzy measure and Choquet integral. The fuzzy measure

and Choquet integral are briefly introduced in the appendix part.

Proposition 1 The utility function ν in MATO Kansei evaluation function is a fuzzy

measure.

Proof The utility function ν in MATO evaluation function Eq. (20) satisfies the axioms

of the fuzzy measure: boundary, ν∅ = 0 and ν1,2,...,N = 1; and monotonic, if A1 ⊆ A2,

then νA1
≤ νA2

. Thus, consumer’s utility function νA over A is a fuzzy measure. ⊓⊔

Proposition 2 The weight ωA in Eq. (20) acts as the interaction among Kansei tar-

gets.

Proof Following Eq. (19), with two Kansei attributes we know that νn = ωn(n = 1, 2)

and ω1,2 = 1− ν1 − ν2. With 3 attributes, Eq. (20) becomes

Val(Om) =ν1Pr
m
1 + ν2Pr

m
2 + ν3Pr

m
3 +

(ν1,2 − ν1 − ν2)Pr
m
1,2 + (ν1,3 − ν1 − ν3)Pr

m
1,3 + (ν2,3 − ν2 − ν3)Pr

m
2,3+

(1− ν1,2 − ν1,3 − ν2,3 + ν1 + ν2 + ν3)Pr
m
1,2,3,

which implies that ωn = νn(n = 1, 2, 3); ωn,l = νn,l − νn − νl(n 6= l, n, l = 1, 2, 3), and

ω1,2,3 = 1−ν1,2−ν1,3−ν2,3+ν1+ν2+ν3. Recursively extending this to N attributes,

we can have

ωA =
∑

B⊆A

(−1)|A|−|B| · νB , A ⊆ X . (22)

Since ν is a fuzzy measure and Eq. (22) is equivalent to Möbius transform Eq. (36) of

ν, ωA is the interaction index among Kansei targets. ⊓⊔

Proposition 3 MATO Kansei evaluation function Eq. (20) is linear with respect to

the consumer’s utility function νA.

Proof Following Propositions 1-2, a consumer’s utility function ν can be expressed in

a unique way as

νA =
∑

B⊆A

ωB , A ⊆ X ,
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which is equivalent to (Eq. 36). Pr(X(Om) � T ) =
∑

A ωA ·PrmA is linear with respect

to the weight information ωA. Since conversion formulas between ν and ω are linear,

Eq. (20) can also be expressed as

Val(Om) =
∑

A⊆X

νA · fmA ,

where there exist 2N functions fmA . Thus Pr(X(Om) � T ) is linear with respect to

consumer’s utility function νA. ⊓⊔

Proposition 4 Nonlinear MATO Kansei evaluation can be modeled by the Choquet

integral.

Proof MATO Kansei evaluation function can be expressed as

Pr(X(Om) � T ) =
∑

A⊆X

ωA · PrmA

=
∑

A⊆X

νA · fmA ,

where there exist 2N functions PrmA and fmA . Such two equivalent functions can be

modeled by the Choquet integral, see Marichal (2000). ⊓⊔

5.3 Entropy-Based Fuzzy Measure in Kansei Evaluation

Before being able to use the Choquet integral in our Kansei evaluation, it is clearly

necessary to identify the weights of all subsets of Kansei attributes. However, unlike

WAM, it is rather unrealistic to identify 2N−2 coefficients of fuzzy measures, especially

if the number of Kansei attributes is large. The need of the consumer’s involvent in

specifying the fuzzy measures on the subsets of Kansei attributes creates the burden of

evaluation process. The products in Kansei evaluation are usually representative with a

large number showing a statistical properties of the product domain. This is why many

KE studies have applied statistical analysis. In this sense, it is possible to consider non-

additive MATO Kansei evaluation from a probabilistic view. Fortunately, Kojadinovic

(2008) has proposed an identification method by means of information-theoretic func-

tionals to cope with exponentially increasing complexity of fuzzy measures, in which

each attribute is viewed as a random variable taking a finite number of values. Such

a fuzzy measure is referred to as entropy-based fuzzy measure and will be used in our

framework. One basic assumption of the entropy-based fuzzy measure is that each ran-

dom variable can only take a finite number of values. Should the attributes happen

to have a continuous nature, they can be straightforwardly transformed into discrete

random variables by discretizing the value domain. The discretization procedure is e-

quivalent to considering that the associated discrete random variable can take only a

finite set of values.

In order to apply the entropy-based fuzzy measure in our framework, each Kansei

attribute will be viewed as a random variable. It then follows that the partial target-

oriented utility Prmn of product Om on Kansei attribute Xn can be interpreted as a

realization of the random variable Xn. Despite the linguistic interpretation of Kansei

data, the partial utilities Prmn of products Om(m = 1, . . . ,M) on attributes Xn(n =
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1, . . . , N) have a continuous nature regarding our Kansei profiles. According to the

G-point qualitative scale, we divide the domain of each attribute, into G− 1 classes D.

Accordingly, we can transform the partial utilities Prmn (m = 1, . . . ,M ;n = 1, . . . , N)

into associated range levels rmn according to the division classes such that rmn ∈ D. The

division classes are expressed as

D =

{
d1 =

[
0,

1

G− 1

)
, . . . , dG−2 =

[
G− 3

G− 1
,
G− 2

G− 1

)
, dG−1 =

[
G− 2

G− 1
, 1

]}
.

Using the range level matrix rmn , we can then obtain a probability distribution

on the finite number of values for a subset of Kansei attributes. For a single Kansei

attribute, the probability distribution p{Xn} can be obtained as

p{Xn}(dgn) =
|{dgn ∈ D : rmn = dgn}|

M
, (23)

where m = 1, . . . ,M , and dgn(gn = 1, . . . , G− 1) denote the range levels in D. In case

of two attributes Xn and Xl, their probability distribution can be obtained as

p{Xn,Xl}(dgn , dgl) =
|{dgn , dgl ∈ D : rmn = dgn , r

m
l = dgl}|

M
, (24)

where m = 1, . . . ,M , and gn, gl ∈ {1, 2, . . . , G − 1}. Recursively extending this to a

more general situation, we can obtain the probability distribution pA of any subset

A = {X1, X2, . . . , Xl} of Kansei attributes X .

The fundamental concept of entropy of a probability distribution is initially pro-

posed by Shannon (1948). It can be interpreted as measure of the uncertainty or the

information or, equivalently, the structure contained in a probability distribution, and

is defined as follows.

Definition 4 Let p be a discrete probability distribution on a set Θ. The Shannon

entropy of p is defined by

H(p) = −
∑

θ∈Θ

p(θ) ln θ.

The quantity H(p) can also be seen as measure of the uniformity of the discrete prob-

ability distribution p. The entropy of Kansei attribute Xn with the probability distri-

bution p{Xn} is given by H(p{Xn}). More generally, the entropy of a subset of Kansei

attributes A = (X1, . . . , Xl) with the probability distribution pA is given by

H({X1, X2, . . . , Xl}) = H (pA) , l = 1, . . . , N. (25)

From the properties of the Shannon entropy (Shannon, 1948), it is easy to check

that H as a set of function on X is always non-negative and monotonic. Also, Ko-

jadinovic (2008) has proved an analogy between mutual information and the Möbius

representation of fuzzy measure. Thus H is a fuzzy measure on X that simply does

not satisfy the boundary condition H(X ) = 1. It is natural to define the weights of the

subsets of attributes of X using

ν̂A =
H(A)

H(X )
. (26)
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The Choquet integral of Prm = [Prm1 , . . . ,Prmn , . . . ,PrmN ] with respect to the entropy

based fuzzy measure ν̂ is defined by

Val(Om) =

∑N
n=1 Pr

m
(n)

[
H(A(n))−H(A(n+1))

]

H(X )
, (27)

where (·) indicates a permutation of the partial utilities regarding product Om such

that Prm(1) ≤ · · · ≤ Prm(n) ≤ · · · ≤ Prm(N). Also A(n) = {X(n), . . . , X(N)}, for all

n ∈ {1, . . . , N}, A(N+1) = ∅, and H(A(n)) = H(pA(n)
).

6 Kansei Evaluation for Hand-Painted Kutani Cups

In this section, we use the hand-painted Kutani cups in Japan to illustrate how our

model works in practice as well as its effectiveness.

6.1 An Experimental Study

In Japan, there are a large number of traditional craft items which are closely related

to Japanese traditional culture. These items can be traced back through the ages, each

is unique fostered through regional differences and loving dedication and provides a

continual wealth of pleasure. In this study, a particular emphasis is laid on the hand

painted Kutani cups in Ishikawa Prefecture, Japan. The Kutani cup is a traditional

craft item with a long history of over 400 years. Hand-painted Kutani cups are func-

tionally equivalent and have high prices ranging from $10 to $100, as searched from

the website 1. Due to the equivalent physical quality as well as high price, the aesthetic

aspects play a crucial role in human purchase choice of these items, especially in the

era of e-commerce. Kansei evaluation of the hand-painted Kutani cups would be of

great help for purchase and recommendation purposes. Within the framework of our

research project, a total of 35 representative products of hand painted Kutani cups

were first selected for Kansei evaluation, as shown in Fig. 3.

Second, 26 refined bipolar pairs of Kansei words were selected through a brain-

storming process by consulting with local manufacturers and selling shops. The 26

refined bipolar pairs of Kansei words were first used in Japanese, and then approxi-

mately translated into English, as shown in Table 3.

A 7-point scale was used to put a value for each Kutani cup with respect to 26

Kansei attributes such that V = {V1 = 1,V2 = 2,V3 = 3,V4 = 4,V5 = 5,V6 =

6,V7 = 7}. Finally, a total of 60 people, including relevant researchers of KE, senior

residents in Ishikawa, and certified masters of traditional crafts, were chosen as subjects.

The 60 subjects were asked to provide their Kansei assessments for the 35 Kutani cups

on the 26 Kansei attributes simultaneously.

6.2 Kansei Evaluation

Assume a consumer prefers four Kansei attributes {X1, X9, X11, X17} and specifies

his Kansei requests as {kw−
1 , kw+

9 , kw∼
11, kw

−
17}. Verbally, the consumer would like

1 http://search.borderless.rakuten.com

http://search.borderless.rakuten.com
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Fig. 3 The 35 hand-painted Kutani cups to be evaluated

Table 3 26 Kansei attributes with bipolar pairs of Kansei words

Xn
Bipolar Kansei words

Xn
Bipolar Kansei words

< kw−

n , kw+
n > < kw−

n , kw+
n >

X1 <conventional,unconventional> X14 <delicate,large-hearted>

X2 <simple,compound> X15 <luxurious,frugal>

X3 <solemn,funny> X16 <gentle,pithy>

X4 <formal,casual> X17 <bright,dark>

X5 <serene,forceful> X18 <reserved,imperious>

X6 <still,moving> X19 <free,regular>

X7 <pretty,austere> X20 <level,indented>

X8 <friendly,unfriendly> X21 <lustrous,matte>

X9 <soft,hard> X22 <transpicuous,dim>

X10 <blase,attractive> X23 <warm,cool>

X11 <flowery,quiet> X24 <moist,arid>

X12 <happy,normal> X25 <colorful,sober>

X13 <elegant,loose> X26 <plain,gaudy-loud>

Table 4 Preferred 4 Kansei attributes with 4 Kansei requests

Attribute Bipolar Kansei words Kansei preference
X1 <conventional,unconventional> conventional

X9 <soft,hard> hard

X11 <flowery,quiet> neutral

X17 <bright,dark> bright

to ask for a Kutani cup meeting his Kansei preferences of conventional, hard, neither

flowery nor quiet, and bright, as shown in Table 4.
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As discussed in Sec. 3, a linguistic variable with a set of 7 Kansei linguistic labels can

be defined implicity for each Kansei attribute, denoted as Ln={Ln
1 , L

n
2 , L

n
3 , L

n
4 , L

n
5 ,

Ln
6 , L

n
7 }. Assuming all the 60 subjects are equivalently important, i.e., wk = 1/60(k =

1, . . . , 60), we can derive a weighting vector ̟m
n (Ln

p)(p = 1, . . . , 7) of 7 Kansei labels

for product Om on Kansei attribute Xn based on the Kansei assessments provided by

the 60 subjects such that

̟m
n (Ln

p) =
|{Ek ∈ E : xmn (Ek) = Ln

p}|

60
,p = 1, . . . , 7,

where n = 1, 9, 11, 17. The weights ̟m
n (Ln

p) are then used to generate a Kansei profile

for product Om on Kansei attribute Xn. To do so, we first obtain the bounded domain

of product Om on attribute Xn via Eq. (4). We then build the possibility distributions

of “around prototype Kansei labels” on the set of 7 Kansei labels via Eq. (5). Finally,

we can obtain the Kansei profile via Eqs. (5)-(8), which results with a probability dis-

tribution pmn (Ln
g ), g = 1, . . . , 7. Such a probability distribution reflects the uncertainty

of Kansei data and acts as a decision making under uncertainty problem.

According to Table 4, the consumer has a left Kansei preference on Kansei at-

tributes X1 and X17, a neutral Kansei preference on Kansei attribute X11, and a right

Kansei preference on Kansei attribute X9, respectively. We then determine preference

orders on Ln for X1, X9, X11, and X17 via Eq. (13). Particularly, the preference order

relations are expressed as follows:

�n⇔





Ln
1 � Ln

2 � Ln
3 � Ln

4 � Ln
5 � Ln

6 � Ln
7 , if n = 1, 17;

Ln
1 � Ln

2 � Ln
3 � Ln

4 � Ln
5 � Ln

6 � Ln
7 , if n = 9;

Ln
1 � Ln

2 � Ln
3 � Ln

4 � Ln
5 � Ln

6 � Ln
7 , if n = 11.

With the Kansei preference order relations on Ln, we are now able to define Kansei

targets T1, T9, T11, and T17 for attributes X1, X9, X11, and X17 via Eq. (14), respec-

tively. Each Kansei target derives a possibility distribution on Kansei labels, as shown

in Table 5 (indexed by π). Furthermore, we can derive a probability distribution on 7

Kansei labels for each Kansei target via Eq. (16), as shown in Table 5 (indexed by p).

Based on the preference orders on Ln for X1, X9, X11, and X17 and the probability

distribution on 7 Kansei labels for each Kansei target, we can induce the target-oriented

utility of each Kansei label with respect to three types of Kansei targets via Eqs. (15)-

(18), as shown in Table 5 (indexed by Pr). Using the Kansei profiles Xn(Om) of 35

Kutani cups on the 4 attributes and the derived utilities of the 7 Kansei labels, we

obtain the target-oriented utility Prmn for each Kutani cup on each of the four at-

tributes via Eq. (15). The rows (indexed by “Target-oriented utility”) in Table 6 show

the target-oriented utility of product Om on attribute Xn.

We now consider the nonadditive aggregation. According to the entropy-based fuzzy

measure introduced in Sec. 5.3, the target-oriented utilities of the 35 hand-painted

Kutani cups on each of the selected four Kansei attributes can be divided into 6 range

levels such that {[0, 1/6), [1/6, 2/6), [2/6, 3/6), [3/6, 4/6), [4/6, 5/6), [5/6, 1]}. A range

level matrix can then be derived for all cups on the four Kansei attributes, as shown in

Table 6 (indexed by “Range levels”). Using the range level matrix, we can obtain the

probability distributions of the subsets of Kansei attributes via Eqs. (23)-(24) and their

extensions. The associated probability distributions of the subsets of Kansei attributes

are then used to derive the fuzzy measures via Eq. (26). The derived fuzzy measures

on the subsets of Kansei attributes are shown in Table 7. Based on the partial utilities

and derived fuzzy measures, we can obtain the results of nonlinear aggregation for cups
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Table 5 Possibility, probability, and target-oriented utility of each Kansei label regarding
different Kansei targets

Request Value Ln
1

Ln
2

Ln
3

Ln
4

Ln
5

Ln
6

Ln
7

kw−

n

π 1 5/6 4/6 3/6 2/6 1/6 0
p 49/120 29/120 19/120 37/360 11/180 1/36 0
Pr 1 71/120 7/20 23/120 4/45 1/36 0

kw+
n

π 0 1/6 2/6 3/6 4/6 5/6 1
p 0 10/360 22/360 37/360 19/120 29/120 49/120
Pr 0 1/36 4/45 23/120 7/20 71/120 1

kw∼

n

π 0 1/3 2/3 1 2/3 1/3 0
p 0 3/45 8/45 23/45 8/45 3/45 0
Pr 0 3/34 11/34 1 11/34 3/34 0

Table 6 Induced utilities and range levels of all the 35 Kutani cups

No.
Target-oriented utility Range level

No.
Target-oriented utility Range level

X1 X9 X11 X17 X1 X9 X11 X17 X1 X9 X11 X17 X1 X9 X11 X17

O1 0.249 0.405 0.317 0.329 2 3 2 2 O19 0.115 0.281 0.424 0.180 1 2 3 2

O2 0.121 0.281 0.378 0.245 1 2 3 2 O20 0.135 0.393 0.358 0.143 1 3 3 1

O3 0.273 0.238 0.381 0.362 2 2 3 3 O21 0.236 0.223 0.397 0.288 2 2 3 2

O4 0.133 0.122 0.343 0.436 1 1 3 3 O22 0.208 0.228 0.377 0.319 2 2 3 2

O5 0.318 0.243 0.290 0.133 2 2 2 1 O23 0.335 0.325 0.298 0.122 3 2 2 1

O6 0.226 0.149 0.343 0.468 2 1 3 3 O24 0.199 0.132 0.337 0.510 2 1 3 4

O7 0.306 0.101 0.409 0.461 2 1 3 3 O25 0.203 0.213 0.389 0.331 2 2 3 2

O8 0.269 0.075 0.388 0.406 2 1 3 3 O26 0.165 0.226 0.409 0.369 1 2 3 3

O9 0.262 0.113 0.389 0.401 2 1 3 3 O27 0.228 0.200 0.339 0.249 2 2 3 2

O10 0.244 0.070 0.394 0.470 2 1 3 3 O28 0.201 0.239 0.383 0.225 2 2 3 2

O11 0.244 0.106 0.403 0.466 2 1 3 3 O29 0.189 0.113 0.438 0.466 2 1 3 3

O12 0.272 0.381 0.398 0.210 2 3 3 2 O30 0.176 0.288 0.387 0.266 2 2 3 2

O13 0.202 0.063 0.439 0.520 2 1 3 4 O31 0.144 0.142 0.371 0.448 1 1 3 3

O14 0.091 0.089 0.435 0.393 1 1 3 3 O32 0.162 0.268 0.389 0.278 1 2 3 2

O15 0.291 0.154 0.402 0.374 2 1 3 3 O33 0.175 0.196 0.316 0.475 2 2 2 3

O16 0.194 0.150 0.378 0.300 2 1 3 2 O34 0.205 0.294 0.361 0.139 2 2 3 1

O17 0.314 0.278 0.373 0.296 2 2 3 2 O35 0.158 0.150 0.36 0.35 1 1 3 3

O18 0.134 0.377 0.258 0.341 1 3 2 3

Table 7 Entropy based capacities

No. X1 X9 X11 X17 Capacity No. X1 X9 X11 X17 Capacity

1 0 0 0 0 0.0 9 0 0 0 1 0.474

2 1 0 0 0 0.299 10 1 0 0 1 0.733

3 0 1 0 0 0.404 11 0 1 0 1 0.741

4 1 1 0 0 0.689 12 1 1 0 1 0.950

5 0 0 1 0 0.171 13 0 0 1 1 0.621

6 1 0 1 0 0.446 14 1 0 1 1 0.860

7 0 1 1 0 0.529 15 0 1 1 1 0.803

8 1 1 1 0 0.784 16 1 1 1 1 1.0

Om(m = 1, . . . , 35) via Eq. (27). The top 3 hand-painted Kutani cups are shown in

Fig. 4 such that O13 ≻ O7 ≻ O24.
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≻ ≻

O13 O7 O24

Fig. 4 Top 3 recommended Kutani cups

Table 8 Population distributions of the top 3 Kutani cups on the four Kansei attributes

V
O13 O7 O24

X1 X9 X11 X17 X1 X9 X11 X17 X1 X9 X11 X17

V1 3 25 1 16 9 9 2 9 3 14 14 15

V2 5 17 10 30 15 32 6 24 7 26 16 28

V3 10 16 26 13 10 16 20 25 9 19 16 16

V4 1 1 5 0 3 2 4 0 1 0 2 0

V5 14 1 15 1 11 0 16 2 6 0 4 1

V6 17 0 3 0 9 1 11 0 18 0 6 0

V7 10 0 0 0 3 0 1 0 16 1 2 0

6.3 Analysis of the Results Obtained

For the sake of facilitating the analysis of the results obtained, the original Kansei

assessments of the top 3 Kutani cups on the selected 4 Kansei attributes X1, X9, X11,

and X17, are shown in Table 8, in which the number stands for the population number

of subjects who assess a Kutani cup on an attribute using the same scale value.

6.3.1 Kansei profile generation

Due to subjective assessment, our approach treats V as a linguistic variable with a set of

7 linguistic labels for each Kansei attribute. Taking Kutani cup O13 on Kansei attribute

X17 as an example, the set of linguistic labels are {L17
1 , L17

2 , L17
3 , L17

4 , L17
5 , L17

6 , L17
7 }.

From Table 8, it is obvious that the population distribution of subjects’ assessments

on V is [16, 30, 13, 0, 1, 0, 0], which indicates that no subject assesses O13 on X17 using

L17
4 . However, due to the interpretation of semantic overlapping introduced in Sec. 3, it

is undeniable that if one subject assesses O13 on X17 using a prototype label L17
g , other

labels is also appropriate to describe O13 on X17. Also, we know that Lmin(x
13
17) =

L17
1 and Lmax(x

13
17) = L17

5 via Eq. (4). Then we have 5 possible prototype Kansei

linguistic labels and can build the possibility distributions of “around prototype Kansei

labels” via Eq. (5), as shown in Table 9 (indexed by “Possibility distribution”). We

can then derive the least prejudiced distribution of “around prototype Kansei labels”

via Eqs. (6)-(7), as shown in Table 9 (indexed by “Probability distribution”).

In addition, the population distribution of subjects’ assessments defines a weighting

vector for prototype Kansei labels such that

̟13
17(L

17
p ) =

[
0.267/L17

1 , 0.5/L17
2 , 0.217/L17

3 , 0.0/L17
4 , 0.017/L17

5 , 0/L17
6 , 0/L17

7

]
.
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Table 9 Possibility and probability distributions of “around prototype label Lp” for O13 on
X17

L17
p

Possibility distribution Probability distribution

L17
1

L17
2

L17
3

L17
4

L17
5

L17
6

L17
7

L17
1

L17
2

L17
3

L17
4

L17
5

L17
6

L17
7

L17
1 1 3

4

2

4

1

4
0 0 0 25

48

13

48

7

48

3

48
0 0 0

L17
2 0 1 2

3

1

3
0 0 0 0 11

18

5

18

2

18
0 0 0

L17
3

0 1

2
1 1

2
0 0 0 0 1

6

2

3

1

6
0 0 0

L17
4

0 1

3

2

3
1 0 0 0 0 1

9

5

18

11

18
0 0 0

L17
5

0 1

4

2

4

3

4
1 0 0 0 3

48

7

48

13

48

25

48
0 0

With the probability distributions in Table 9 and the weighting vector ̟13
17(L

17
p ), we

are able to induce a collective probability distribution for the products O13 regarding

X17 on the set of 7 Kansei labels. Particularly, the collective probability of O13 on

Kansei label L17
2 is calculated as

p1317(L
17
2 ) = 0.267 ·

13

48
+ 0.5 ·

11

18
+ 0.217 ·

1

6
+ 0.017 ·

1

16

= 0.415.

The collective probabilities on other Kansei labels can be obtained as

p1317(L
17
p ) =

[
0.139/L17

1 , 0.415/L17
2 , 0.325/L17

3 , 0.113/L17
4 , 0.009/L17

5 , 0/L17
6 , 0/L17

7

]
,

which means our Kansei profile generation approach results with a probability distri-

bution around L17
2 having the maximal probability 0.415. Also, Kansei label L17

4 has

a probability 0.113 reflecting the semantic overlapping of Kansei data. This probabil-

ity distribution represents the uncertainty of subjects’ assessments. Fig. 5 shows the

Kansei profiles of the top 3 Kutani cups on the 4 Kansei attributes, where each Kansei

profile is a probability distribution around a Kansei linguistic label.

6.3.2 Single Attribute Kansei Evaluation Function

With a consumer’s Kansei preference kw∗
n onXn, our target-oriented Kansei evaluation

is expressed as

Prmn =
∑7

g=1
Pr(Ln

g � Tn) · p
m
n (Ln

g ),

where Tn is the Kansei target corresponding to kw∗
n. It is clearly that Prmn depends on

two factors: an uncertain Kansei profile Xn(Om)=[pmn (Ln
1 ), . . . , p

m
n (Ln

g ), . . . , p
m
n (Ln

7 )]

and target-oriented utility Pr(Ln
g � Tn) of Kansei label Ln

g meeting a consumer’s Kan-

sei target Tn. Such an evaluation function acts as a decision making under uncertainty

problem.

Fig. 6 shows the target-oriented utility Pr(Ln
g � Tn) of each Kansei label with

respect to three types of Kansei preferences. The derived target-oriented utility function

Pr(Ln
g � Tn) is convex-shaped, which could be justified by the psychological finding of

target-oriented decision model (Bordley and LiCalzi, 2000) and fuzzy target-oriented

decision model (Yan et al., 2009). To explain this point in more detail, consider the

case of left Kansei preference. With a left Kansei preference kw−
n , we assume that the
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Fig. 5 Kansei profiles of top 3 recommended Kutani cups

consumer assesses higher possibility about his target toward the Ln
1 , which corresponds

to the fact that the consumer believes that ‘best thing may happen’, Ln
1 is viewed as

the reference label and other labels Ln
g (g > 1) will be viewed as a loss. The convex-

shaped function is consistent with the psychological finding that people tend to be

risk seeking over looses (convex over losses) (Kahneman and Tversky, 1979). In this

regard, target-oriented utility acts as a psychological distance. The same reasoning can

be applied to the right and neutral Kansei preferences.

We know that the consumer has a left Kansei preference on Kansei attributes X1

and X17. Seen from the Kansei profiles of cup O13 on X1 and X17 in Fig. 5, it is

clear that X1(O13) is distributed around the 5th Kansei label L1
5 on [L1

1, L
1
7], whereas

X17(O13) is mainly distributed around the second Kansei label L17
2 on [L17

1 , L17
4 ].

Also, Pr(L17
g � T17) and Pr(L1

g � T1) are monotonically decreasing with g, thus we

can conclude that Pr131 < Pr1317. From Table 6, we know Pr131 = 0.202 < Pr1317 = 0.52.

As discussed previously, the Kansei profile generated by our approach can capture the

fuzzy uncertainty as well as semantic overlapping of Kansei data.

6.3.3 Nonadditive multiattribute Kansei Evaluation Function

The estimated fuzzy measures of the subsets of Kansei attributes by means of the

entropy-based method are given in Table 7. Note that, because of the way ν{A} was

defined, the weight of a nonempty subset of Kansei attributes directly depends on the

uniformity of the distribution of the target-oriented utilities for these attributes. To

explain this point in more detail, consider the case of a subset reduced to a single

Kansei attribute. If most of the 35 Kutani cups have a similar utility for the considered

attribute, the weight of the attribute will be low, which could be justified by the fact it

does not clearly discriminate between ‘good’ and ‘bad’ Kutani cups. On the contrary,
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Fig. 6 Target-oriented utility of each label w.r.t. three types of Kansei preferences

the more the utilities are uniformly distributed, the higher the weight of the attribute.

For example, from Table 7, we know ν{X17} = 0.474 > ν{X9} = 0.404 > ν{X1} =

0.299 > ν{X11} = 0.171. Seen from Table 6, almost all of the cups have the same range

level 3 regarding attribute X11, so the weight ν{X11} is low. The same reasoning can

be applied to subsets containing more one Kansei attributes.

In addition, the sum of fuzzy measures of each attribute is (much) higher than one

such that

ν{X1} + ν{X9} + ν{X11} + ν{X17} = 1.348 > 1,

which indicates the substitutivity (also called redundancy) among attributes. The same

observations are suitable to the subsets of Kansei attributes. Such phenomena could

be explained by the fact that in our Kansei evaluation framework, an unsupervised

approach is used to estimate fuzzy measures of the subsets of Kansei attributes. As

observed in Kojadinovic (2008), indeed, in an unsupervised setting, two attributes

should be able to interact only in a redundant way since, to detect multiplicative effects

between two Kansei attributes, initial preferences on weights would be necessary.

Now that the weights of the nonempty subsets of Kansei attributes are estimated,

the global evaluations of the cups can be computed by means of the Choquet integral

w.r.t. ν{A}. These global evaluations are given in Fig. 7 (indexed by Choquet integral).

The global evaluations by means of the WAM will also be used to in order to compare

with the Choquet integral. Similar to Mon et al. (1994), the entropy-based weight for

each of the four Kansei attributes can be defined as wn =
H(Xn)∑
n H(Xn)

, and then the

global evaluations by means of the WAM are

Val(Om) = Prmn · wn = Prmn ·
H(Xn)∑
n H(Xn)

, (28)

and are shown in Fig. 7.

By considering Fig. 7, one can notice that the global evaluations computed by the

Choquet integral are always superior to that by the WAM. This disjunctive behavior of
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Fig. 7 Global utility computed by Choquet integral and WAM

Table 10 Partial utility scores of the cup designated best by WAM and Choquet integral

Aggregation type
Partial utility

X1 X9 X11 X17

WAM (O1) 0.249 0.405 0.317 0.329

Choquet integral (O13) 0.202 0.063 0.439 0.52

the Choquet integral is due to the strong redundancy among Kansei attributes modeled

by ν{A}. To study the effects of the redundant interaction phenomena among Kansei

attributes modeled by ν{A}, we compare the partial utilities of the cup designated

best by the WAM to that designated best by the Choquet integral w.r.t. ν{A}. By

observing Fig. 7, it appears that, the best cup designated by WAM is O1 and the

best cup designated by Choquet integral is O13. Their partial utilities are given in

Table 10. By observing Table 10, one can see that cup O1 has good results on average,

but that the utilities of cup O13 are globally superior, except in X9 where its utility

0.063 is extremely low. The fact that O13 is designated better than O1 by the Choquet

integral can be explained by O13’s high score in X17 and the disjunctive behavior of

the Choquet integral due, among other attributes, to the negative interaction between

X9 and X17. In fact, by means of the Pearson correlation computation method, the

correlation between X9 and X17 is −0.748. In other terms, a high score in X9 or in

X17 is sufficient to significantly influence the global evaluation. In summary, we could

say that, globally, the WAM tends to underestimate the Kutani cups since it does not

take into account the redundancy effects among Kansei attributes.

7 Comparative Analysis with Related Work

In this section, we shall compare our model with related work in the literature. Two

types of models, namely numerical model and linguistic model, are briefly introduced.
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7.1 Two Models in KE

7.1.1 Numerical model

Almost all KE studies treat the G-point odd qualitative scale V as numerical data, i.e.

the Kansei assessment provided by subject Ek ∈ E for product Om ∈ O on Kansei

attribute Xn ∈ X , denoted as xmn (Ek), is a numerical data, where for all xmn (Ek) ∈

V, m = 1, . . . ,M ; n = 1, . . . , N ; and k = 1, . . . ,K. We refer to this type of approaches

as numerical model. The numerical model consists of three phases as follows.

– Phase I: Mean scale based Kansei profile

Prior KE studies use the mean scale of the questionnaire-collected data as Kansei

profile (Chen and Chuang, 2008; Grimsæth, 2005; Petiot and Yannou, 2004, e.g.)

such that

xmn =

G∑

g=1

(
|{Ek ∈ E : xmn (Ek) = Vg}|

K
× Vg

)
, (29)

where xmn (Ek) ∈ V, Ek ∈ E , K = |E|, and g = 1, . . . , G.

– Phase II: Consumer satisfaction utility

Prior KE studies define three linear utility functions to model the three types of

Kansei preferences such that (Petiot and Yannou, 2004, e.g.)

umn =





VG−xm
n

VG−1 , left Kansei;

1−
|xm

n −xob
n |

max{VG−xob
n ,xob

n −V1}
, neutral Kansei;

xm
n −V1

VG−V1
, right Kansei.

(30)

where xobn is the target value toward Kansei attribute Xn and V1 ≤ xobn ≤ VG. In

our problem, xobn is set to V(G+1)/2.

– Phase III: Global satisfaction utility

Using the WAM method (Petiot and Yannou, 2004; Chen and Chuang, 2008) to

obtain global satisfaction utility for each product Om such that

U(Om) =

N∑

n=1

wn · umn , (31)

where wn is the weight of Kansei attribute Xn. The weighting vector can be ob-

tained by various ways such as AHP, OWA, and the entropy-based method.

7.1.2 Linguistic Model

In a different, but similar context, Mart́ınez (2007) has proposed a sensory evalu-

ation based on the linguistic 2-tuple representation model (Herrera and Mart́ınez,

2000). The 2-tuple Linguistic representation model are briefly introduced in the ap-

pendix 2. The sensory evaluation model considers the evaluation problem as a multiex-

pert/multiattribute decision making problem, and assumes a consistent order relation

over the qualitative evaluation scale treated as a linguistic variable with a set of lin-

guistic labels. In addition, the sensory evaluation model assumes all attributes are

represented by only one linguistic variable L = {L1, . . . , LG}. With the sensory assess-

ment provided by subject Ek ∈ E for product Om ∈ O on attribute Xn ∈ X , denoted
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as xmn (Ek), where for all xmn (Ek) ∈ L,m = 1, . . . ,M ; n = 1, . . . , N ; and k = 1, . . . ,K.

The sensory evaluation model consists of two steps as follows.

– Phase I: Computing collective evaluations for each attribute

V m
n = ∆




G∑

g=1

(
|{Ek ∈ E : xmn (Ek) = Lg}| ×∆− (xmn (Ek), 0)

K

)
 (32)

where xmn (Ek) ∈ L, Ek ∈ E , and K = |E|.

– Phase II: Computing collective evaluations for each product

The collective performance of Om is calculated by aggregating all of them such

that

V (Om) = F(V m
1 , . . . , Vm

n , . . . , V m
N ), (33)

where F is an aggregation function with respect to the 2-tuple linguistic model.

For more detail about the aggregation of 2-tuples linguistic mode, see appendix 2.

7.2 Comparative Analysis

7.2.1 Kansei profile generation

First, let us consider the Kansei profile generation. The numerical model uses Eq. (29)

to derive a Kansei profile for each product on each Kansei attribute. The 2-tuple

linguistic model uses Eq. (32) to derive a Kansei profile for each product on each Kansei

attribute. It is obvious that the Kansei profile derived by either the numerical model

or linguistic model is a numerical number or 2-tuple Kansei linguistic representation.

Taking Kutani cup O13 on Kansei attribute X17 as an example. The Kansei profiles

generated by the two model are 2.0 and (L17
2 , 0), respectively. Whereas, our approach

results with a probability distribution around a specific Kansei label, as shown in Fig. 5.

Such a probability distribution reflects the semantic overlapping of Kansei data. In

summary, the numerical model cannot model the fuzzy uncertainty as well as semantic

overlapping of Kansei data. The 2-tuple model cannot capture the semantic overlapping

of Kansei data.

7.2.2 Consumer satisfaction utility

Second, let us consider the consumer satisfaction utility. Numerical model uses E-

q. (30) to get partial utility. The main question in Eq. (30) is that the relationship be-

tween Kansei attribute and consumer is usually nonlinear (Chen and Chuang, 2008).

Thus, it is too arbitrary to specify a linear utility function. Also, it is difficult to

build a rigorous utility function based on attribute (Bordley and Kirkwood, 2004) and

traditional utility often does not provide a good description of the consumer. Since

the 2-tuple linguistic model assumes a consistent preference order relation such that

�n= Ln
1 � . . . Ln

(G+1)/2 � Ln
G, it directly uses the Kansei profile V m

n in Eq. (32) as

the utility value. However, in our research context, a consumer may have three types

of preference order relations, namely left Kansei preference, neutral Kansei preference,

and right Kansei preference. Thus, the 2-tuple linguistic model is not suitable to our

research.
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Our Kansei profile generated perform well than those generated by the numerical

model and 2-tuple linguistic model, thus we now analyze the satisfaction utility function

based on our Kansei profile generated. Our satisfaction utility is expressed as

Prmn =

G∑

g=1

pmn (Ln
g ) · Pr(L

n
g � Tn),

where Tn a Kansei target corresponding to the consumer-specified Kansei request kw∗
n

toward Kansei attribute Xn. The traditional utility theory used in the numerical model

can also be applied to our Kansei profile generated such that

Um
n =

G∑

g=1

pmn (Ln
g ) · U(Ln

g ), (34)

where U(Ln
g ) is a consumer’s utility toward Kansei label Ln

g . Similar to the linear sat-

isfaction utility function in Eq. (30), it is easy to specify three discrete linear utility

functions U(Ln
g ). Moreover, if we assume the possibility distribution target Tn is ex-

pressed as πTn
(Ln

g ) = 1, according to the single attribute Kansei evaluation function

discussed in Sec. 4, we will also have three linear satisfaction utility functions. In this

sense, the linear utility function reflects a neutral attitude of the consumer. As dis-

cussed in Sec. 6, our target-oriented Kansei evaluation function provide a support for

psychological preference.

7.2.3 Multiattribute Kansei evaluation function

Third, let us consider the multiattribute evaluation function. Either the numerical

model or the 2-tuple linguistic model uses a WAM method to obtain a global evaluation

result. However, they cannot model the interaction among multiple Kansei attributes.

As we have mentioned in the analysis of the results obtained in Sec. 6, the WAM tends

to underestimate the Kutani cups since it does not take into account the redundancy

effects among Kansei attributes.

8 Concluding Remarks

This paper focuses on evaluation of commercial products according to the Kansei,

which is an individual subjective impression reflecting the aesthetic appeal of prod-

ucts. To do so, a preparatory experimental study was carried out to obtain Kansei

database of the products to be evaluated. Based on the Kansei database obtained, a

probabilistic approach to generating Kansei profiles was first proposed to involve the

fuzzy uncertainty as well as partial semantic overlapping of Kansei data. It resulted

with a probability distribution on the Kansei labels. Second, the single attribute Kansei

evaluation function was formulated to induce consumer’s satisfaction utility function

based on the appealing idea of target-oriented decision model. Third, after formulat-

ing multiattribute target-oriented Kansei evaluation function, an analogy between the

nonadditive multiattribute Kansei evaluation and Choquet integral was given. Based

on the analogy, an entropy based method fuzzy measure was chosen to induce the fuzzy

measure for each subset of attributes. Finally, as the aesthetic aspects play a crucial

role in human choice of traditional crafts, an application to evaluating hand-painted
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Kutani cups, one of the traditional crafts in Japan with a long history, was conducted

to illustrate the effectiveness of our model. A comparative analysis with prior research

was also given.

Although our model only focuses on Kansei evaluation of commercial products, it

has some relationships with Kansei design problems in KE. In Kansei design, discover-

ing relationships between Kansei data and design elements is essential. For this task,

traditional KE methodologies utilize multivariate statistical analysis by treating Kan-

sei data as numerical data. This paper treats the Kansei data as linguistic variables

and proposes a Kansei profile generation method, which results with a set of Kansei

labels having a probability distribution. The main advantage of our proposed Kansei

profile generation method is its ability to deal with fuzzy uncertainty as well as se-

mantic overlapping of Kansei labels. A possible solution to discover the relationships

between Kansei data and design elements using our Kansei profiles is to conduct re-

gression analysis by means of belief functions (Petit-Renaud and Denœux, 2004). This

study is left for the future work.

Appendix 1: Fuzzy Measures and Choquet Integral

Given a finite attributes set X , the power set P (X ) is a class of all of the subsets of

X . Although the fuzzy measure can be continuous and discrete, only the discrete case

is considered in this paper.

Definition 5 A discrete fuzzy measure on X is a set function µ : P (X ) → [0, 1]

satisfying the following conditions: Axiom 1: boundary, µ∅ = 0 (∅ is the empty set)

and µX = 1; Axiom 2: monotonic, if A1 ⊆ A2, then µA1
≤ µA2

, ∀A1, A2 ∈ P (X ).

For each subset of the attributes A ⊆ X , µA can then be interpreted as the weight or

the importance of the coalition A. The monotonicity of µ means that the weight of a

subset of the attributes can only increase when one adds new attributes to it. For all

A1, A2 ⊆ X , A1 ∩A2 = ∅, the discrete fuzzy measure is further said to be (Marichal,

2000): additive whenever µA1∪A2
= µA1

+ µA2
; multiplicative whenever µA1∪A2

>

µA1
+ µA2

; substitutive whenever µA1∪A2
< µA1

+ µA2
.

When using a fuzzy measure to model the importance of each subset of attributes,

a suitable aggregation operator is the discrete Choquet integral, which is defined as

follows (Marichal, 2000).

Definition 6 Let µ be a discrete fuzzy measure on X and h : X → [0, 1], where X is

a finite attributes set. The Choquet integral Cµ of h with respect to µ is defined by

Cµ(h) =

N∑

n=1

h(X(n))
[
µA(n)

− µA(n+1)

]
, (35)

where (·) indicates a permutation of X such that h(X(1)) ≤ · · · ≤ h(X(n)) ≤ · · · ≤

h(X(N)). Also A(n+1) = ∅ and A(n) = {X(n), . . . , X(N)}.

A fuzzy measure µ on X and its Möbius representation aµ : P (X ) → R can be

mutually expressed by (Marichal, 2000)

µ(A) =
∑

B⊆A

aµ(B), aµ(A) =
∑

B⊆A

(−1)|A|−|B|µ(B), (36)
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where ∀A ⊆ X and the set function aµ is called the Möbius transform or Möbius

representation of µ. aµ(A) can be interpreted as the interaction index of the attributes

in the subset A.

Appendix 2: Computational Model Based on 2-Tuple Linguistic Model

The 2-tuple linguistic representation model has been proposed by Herrera and Mart́ınez

(2000) in order to provide an appropriate tool for computing with words, which aims at

overcoming the limitation of the loss of information caused by the process of linguistic

approximation in the conventional fuzzy set-based and symbolic approaches.

Let L = {L1, . . . , LG} be a linguistic term set on which a total order is defined as

Li ≤ Lj ⇔ i ≤ j. In general, applying a symbolic method for aggregating linguistic

information often yields a value β ∈ [1, G] and β /∈ {1, . . . , G}, then a symbolic ap-

proximation must be used to get the results expressed in L. Alternatively, the 2-tuple

linguistic representation model takes L × [0.5, 0.5) as the underlying space for repre-

senting information. Under such a representation, if a value β ∈ [1, G] representing

the result of a linguistic aggregation operation, then the two-tuple that expresses the

equivalent information of β is obtained by means of the following transformation:

△: [1, G] −→ L× [−0.5, 0.5)

β −→ (Lg , α)
(37)

with n = round(β) and α = β − g, where round(·) is the usual round operator and

Lg means the linguistic label having the closest index to β. Inversely, a two-tuple

(Lg , α) ∈ L× [−0.5, 0.5) can be equivalently represented by a numerical value in [1, G]

by the following transformations:

△
−1: L × [−0.5, 0.5) −→ [1, G] (38)

such that △−1 (Lg , α) = g + α. Under such transformations, it should be noted here

that any original linguistic term Lg in L is then represented by its equivalent 2-tuple

(Lg , 0) in the 2-tuple linguistic model.

When K linguistic information expressed by 2-tuple is available, the aggregation

result can be derived by using weighted average operator as follows. Let x = {(r1, α1),

. . . , (rk, αk), . . . , (rK , αK)} be a set of linguistic 2-tuples, the 2-tuple weighted average

is computed as

xe =△

(∑K

k=1
(rk + αk) · wk

)
, (39)

where W = [w1, . . . , wK ] is the weighting vector associated with x.
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