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The notion of graph powers is a well-studied topic in graph theory and its applications. In this paper, we investigate a
bipartite analogue of graph powers, which we call bipartite powers of bigraphs. We show that the classes of bipartite
permutation graphs and interval bigraphs are closed under taking bipartite power. We also show that the problem of
recognizing bipartite powers is NP-complete in general.

Keywords: Bipartite power, Interval bigraph, Bipartite permutation graph, Closure property, NP-completeness

1 Introduction
For a positive integer k, the kth power Gk of a graph G has the same vertex set as G, and two vertices are
adjacent in Gk if and only if their distance in G is at most k. If Hk = G, then H is called a kth root of G.
(In general, kth roots of a graph are not unique and do not necessarily exist.) The concept of graph powers
has been extensively studied in graph theory and its algorithmic applications (see Prisner (1995) and the
references therein). It is known that several important graph classes are closed under the power operation.
That is, for some graph class C, G ∈ C implies Gk ∈ C as well. The recognition problem has also been
studied for graph powers. It was shown that recognizing graph powers is NP-complete in general while it
is solvable in polynomial time for some special graph classes (Chang et al. (2006); Farzad et al. (2009);
Kearney and Corneil (1998); Lau (2006); Lau and Corneil (2004); Le and Nguyen (2010); Lin and Skiena
(1995); Motwani and Sudan (1994)).

A graph is bipartite if its vertices can be partitioned into two parts in such a way that the endpoints of
every edge belong to different parts. Bipartite graphs are also known as bigraphs. It is known that the
class of bigraphs coincides with the class of graphs with no cycle of odd length. If a bigraph is connected
and has at least three vertices, then clearly its kth power (for k ≥ 2) has a cycle of length three. Hence,
the class of bigraphs is not closed under the power operation. Furthermore, any non-trivial subclass of the
class of bigraphs is not closed under the power operation.
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Chandran et al. (2011) introduced a bipartite analogue of graph powers. For odd k ∈ Z+, the kth
bipartite power G[k] of a bigraph G has the same vertex set as G, and two vertices are adjacent in G[k]

if and only if their distance in G is at most k and odd. It is easy to see that G[k] is also bipartite. They
showed that for any tree T and for any odd k, T [k] is a chordal bipartite graph. They used this fact to
prove that chordal bipartite graphs can have arbitrarily large boxicity. Recently, Chandran and Mathew
(2012) have strengthened the closure-property result by showing that the class of chordal bipartite graphs
is closed under the bipartite power operation.

In this paper, we complement the known closure-property results by proving that some subclasses of
the class of chordal bipartite graphs are closed under the bipartite power operation. Note that the closure
property of a graph class C under the bipartite power operation is not implied by the closure property
of a superclass of C, and vice versa. We also focus on the computational complexity of the problem
for recognizing the kth bipartite power graphs. We prove that given a bipartite graph G, the problem of
determining whether there exists a bipartite graph H such that G = H [k] is NP-complete for any fixed
odd k ≥ 3.

2 Preliminaries
In this paper, graphs are finite, simple, and undirected. We denote by NG(v) the neighborhood of a vertex
v in a graph G. We denote by distG(u, v) the distance between u and v in G.

A graph G = (V,E) with V = {1, 2, . . . , n} is a permutation graph if there is a permutation π over V
such that {i, j} ∈ E(G) if and only if (i− j)(π(i)−π(j)) < 0. A graph is a bipartite permutation graph
if it is bipartite and a permutation graph. A bi-interval representation of a bigraphG = (U, V ;E) is a pair
(IU , IV ) of sets of closed intervals such that IU = {[`u, ru] | u ∈ U} and IV = {[`v, rv] | v ∈ V }, and
{u, v} ∈ E(G) if and only if [`u, ru] ∩ [`v, rv] 6= ∅ for u ∈ U and v ∈ V . A bi-interval representation
(IU , IV ) is unit if for each interval [`, r] ∈ IU ∪ IV , r − ` = 1. A bigraph is an interval bigraph if it
has a bi-interval representation. An interval bigraph is a unit interval bigraph if it has a unit bi-interval
representation. A bigraph is a chordal bipartite graph if every induced cycle is of length four. We denote
the classes of bipartite permutation graphs, unit interval bigraphs, interval bigraphs, and chordal bipartite
graphs by BP, UIB, IB, and CB, respectively. The following relations among these classes are known.

Theorem 2.1 (Hell and Huang (2004); Müller (1997)) BP = UIB ⊂ IB ⊂ CB.

3 Closure properties of bipartite powers of bigraphs
It is known that several important (non-bipartite) graph classes are closed under the power operation. For
example, the classes of unit interval graphs, interval graphs, strongly chordal graphs are closed under the
kth power for any k (Chen and Chang (2001); Dahlhaus and Duchet (1987); Lubiw (1987); Raychaudhuri
(1987, 1992)). On the other hand, few things are known on bipartite powers of bigraphs. To the best of
our knowledge, the following is the only known closure property.

Theorem 3.1 (Chandran and Mathew (2012)) If G is a chordal bipartite graph, then so is G[k] for any
odd k ∈ Z+.

In this section, we show that the closure property holds also for smaller graph classes.

Theorem 3.2 If G is an interval bigraph, then so is G[k] for any odd k ∈ Z+.

Theorem 3.3 If G is a bipartite permutation graph, then so is G[k] for any odd k ∈ Z+.
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We note that the closure property is not hereditary for the graph classes. That is, Theorem 3.1 does not
imply Theorem 3.2, and Theorem 3.2 does not imply Theorem 3.3.

3.1 Bipartite powers of interval bigraphs
Now we prove Theorem 3.2. Let G = (U, V ;E) be an interval bigraph, and (IU , IV ) be a bi-interval
representation of G. For odd k ∈ Z+ and Iw ∈ IU ∪ IV , we form a new interval Iw(k) = [`w, rw(k)],
where

rw(k) = max{lx | distG(w, x) is odd and at most k}.

This extension of intervals is inspired by the proof of Agnarsson et al. (2000), who showed that the kth
power of an interval graph is also an interval graph. Note that Iu ∩ Iv 6= ∅ if and only if max{`u, `v} ≤
min{ru, rv}. The following two lemmas show that for u ∈ U , v ∈ V , and odd k ∈ Z+, Iu(k)∩Iv(k) 6= ∅
if and only if distG(u, v) ≤ k. Since u ∈ U and v ∈ V , clearly distG(u, v) is odd. Thus we have the
theorem by the two lemmas.

In what follows, we assume u ∈ U and v ∈ V . We also assume that G is connected. It is easy to see
that if Theorem 3.2 is valid for connected graphs, then it is also valid for disconnected graphs.

Lemma 3.4 If distG(u, v) ≤ k, then Iu(k) ∩ Iv(k) 6= ∅.

Proof: Without loss of generality, we assume `u ≤ `v . Since distG(u, v) is odd and at most k, it holds that
`v ≤ ru(k) from the definition of ru(k). Hence `v ∈ [`u, ru(k)] = Iu(k), and thus Iu(k)∩ Iv(k) 6= ∅. 2

Lemma 3.5 If Iu(k) ∩ Iv(k) 6= ∅, then distG(u, v) ≤ k.

Proof: Without loss of generality, we assume `u ≤ `v . By this assumption and Iu(k) ∩ Iv(k) 6= ∅,
it holds that `u ≤ `v ≤ ru(k). Let v′ ∈ V be a vertex such that distG(u, v′) ≤ k and ru(k) = `v′ .
Let P = (u0, v1, u2, . . . , u2d, v2d+1) denote a shortest u–v′ path in G, where u0 = u and v2d+1 = v′.
Clearly, 2d + 1 ≤ k. If {v, ui} ∈ E(G) for some i, there is a u–v path (u0, v1, u2 . . . , vi−1, ui, v) of
length i+1 ≤ 2d+1 ≤ k in G and this implies that distG(u, v) ≤ k. Hence, we assume there is no such
index i. Then, the following claim holds.

Claim 3.6 There is some index j such that Iv ⊆ Ivj .

Proof (Claim 3.6): Since Iv does not intersect with any Iui , we can partition U ∩ V (P ) into two
parts L(P ) = {ui | rui < `v} and R(P ) = {ui | rv < `ui}. By the assumption `u ≤ `v and
{u, v} = {u0, v} /∈ E(G), it holds that ru < `v . Furthermore, since `v ≤ ru(k) = `v′ and {u2d, v′} =
{u2d, v2d+1} ∈ E(G), we have `v ≤ `v′ ≤ ru2d

. Because {u2d, v} /∈ E(G), it holds that rv < `u2d
.

Hence, both L(P ) and R(P ) are non-empty since u ∈ L(P ) and u2d ∈ R(P ). Since P is a connected
subgraph ofG, there is a vertex vj that has neighbors both in L(P ) and inR(P ). Then, the corresponding
interval Ivj contains Iv (see Fig. 1). 2

SinceG is connected, v has a neighbor u′ inG. Thus, we have Iv∩Iu′ 6= ∅, which implies Iu′∩Ivj 6= ∅.
It is easy to see that (u0, v1, . . . , uj−1, vj , u′, v) is a u–v path of length j + 2, where j − 1 ≤ 2d − 2.
Therefore, the lemma holds. 2
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ℓu ru ℓu2d ru2dℓv rv

L(P ) R(P )

ℓvj rvj

Fig. 1: The bridge interval Ivj between L(P ) and R(P ).

3.2 Bipartite powers of bipartite permutation graphs

Next we prove Theorem 3.3. An asteroidal triple is a set of three pairwise non-adjacent vertices such that
there is a path between any pair of them avoiding the neighbors of the third. If a graph has no asteroidal
triple, then it is AT-free. We use the following characterization of bipartite permutation graphs.

Theorem 3.7 (Hell and Huang (2004)) A bipartite graph is a permutation graph if and only if it is AT-
free.

By the theorem above, it is sufficient to show the following lemma. Our proof is inspired by the proof
of Raychaudhuri (1987), who proved that the kth power of an AT-free graph is also AT-free.

Lemma 3.8 If G is bipartite and AT-free, then so is G[k] for any odd k ∈ Z+.

Proof: Let v1, v2, v3 be any pairwise non-adjacent triple of vertices in G. Without loss of generality,
assume that any v1–v2 path in G passes through a neighbor of v3. We shall prove that any v1–v2 path in
G[k] passes through a neighbor of v3.

Let P = (u1, u2, . . . , up) be a v1–v2 path in G[k] such that u1 = v1 and up = v2. For 1 ≤ i ≤
p− 1, let P (ui, ui+1) denote a shortest ui–ui+1 path in G. Replacing every edge {ui, ui+1} in P by the
corresponding path P (ui, ui+1), we obtain a walk WP in G. Clearly, WP contains a v1–v2 path in G,
and hence, NG(v3) ∩ V (WP ) 6= ∅. Let w ∈ NG(v3) ∩ V (WP ). Assume, without loss of generality,
w ∈ V (P (ui, ui+1)) for some i, 1 ≤ i ≤ p − 1. Since {ui, ui+1} ∈ E(G[k]), distG(ui, ui+1) is odd
and at most k. If w ∈ {ui, ui+1}, then NG[k](v3) ∩ V (P ) 6= ∅. Thus, we assume w /∈ {ui, ui+1}.
Since P (ui, ui+1) is a shortest ui–ui+1 path in G and w ∈ V (P (ui, ui+1)), we have distG(ui, w) +
distG(w, ui+1) = distG(ui, ui+1). Thus, distG(ui, ui+1) ≤ k and w /∈ {ui, ui+1} together imply
distG(ui, w) < k and distG(w, ui+1) < k. Hence, distG(v3, ui) ≤ k and distG(v3, ui+1) ≤ k. Since
distG(ui, ui+1) is odd, one of distG(ui, w) and distG(w, ui+1) is also odd.

Without loss of generality, we assume distG(ui, w) is odd, and distG(w, ui+1) is even. Then, G has a
v3–ui+1 path with length distG(w, ui+1) + 1, which is odd and at most k. Since G is bipartite, G cannot
have any v3–ui+1 path of even length. Hence distG(v3, ui+1) is odd and at most k. This implies that
ui+1 ∈ NG[k](v3) and therefore, NG[k](v3) ∩ P 6= ∅. 2
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4 Recognizing bipartite powers of bigraphs is hard
Powers of graphs are studied also in computational complexity aspects. Motwani and Sudan (1994) first
showed that given a graph G, it is NP-complete to decide whether there exists a graph H such that
H2 = G. Following their result, several related results have been obtained (Chang et al. (2006); Farzad
et al. (2009); Kearney and Corneil (1998); Lau (2006); Lau and Corneil (2004); Le and Nguyen (2010);
Lin and Skiena (1995)). Recently, Le and Nguyen (2010) have shown the following hardness result.

Theorem 4.1 (Le and Nguyen (2010)) For any fixed k ≥ 2 and given a graph G, it is NP-complete to
determine whether there exists a graph H such that Hk = G.

In this section, we prove that the problem of recognizing bipartite powers is also hard.

Theorem 4.2 For any fixed odd k ≥ 3 and given a bipartite graph G, it is NP-complete to determine
whether there exists a bipartite graph H such that H [k] = G.

The problem is clearly in NP. Thus, it is sufficient to show that the problem is NP-hard. We reduce SET
SPLITTING, a well-known NP-complete problem, to ours.

Problem: SET SPLITTING (Garey and Johnson, 1979, SP4)

Instance: Collection C of non-empty subsets of a finite set S.

Question: Is there a partition of S into two subsets S1 and S2 such that no subset in C is entirely con-
tained in either S1 or S2?

Without loss of generality, we assume that every element of S belongs to at least one set in C.

4.1 An auxiliary lemma
Before presenting the reduction, we show a useful lemma. In their proof of NP-hardness, Le and Nguyen
(2010) used the following tail structure presented first by Motwani and Sudan (1994) and generalized
later by Lau (2006). Note that for two sets A and B, we mean by A ⊂ B that A ⊆ B and A 6= B; that is,
A is properly included in B.

Lemma 4.3 (Lau (2006)) Let G be a connected graph with {v1, . . . , vk+1} ⊂ V (G) where NG(v1) =
{v2, . . . , vk+1}, and NG(vi) ⊂ NG[vi+1] for all 1 ≤ i ≤ k. If Hk = G for some graph H , then

1. NH(v1) = {v2}, NH(vi) = {vi−1, vi+1} for all 2 ≤ i ≤ k, and

2. NH(vk+1) \ {vk} = NG(v2) \ {v1, v2, . . . , vk+1}.
The tail structure played an important role in the proofs of NP-hardness of recognizing powers of graphs
(Lau (2006); Le and Nguyen (2010); Motwani and Sudan (1994)). Although we cannot use the structure
directly, we show the following similar structure for bipartite powers.

Lemma 4.4 Let k ≥ 3 be odd, and G be a connected bipartite graph with {v0, . . . , vk+1} ⊂ V (G)
where NG(v0) = {v1, v3, . . . , vk−2, vk}, NG(v1) = {v0, v2, . . . , vk−1, vk+1}, and NG(vi) ⊂ NG(vi+2)
for 0 ≤ i ≤ k − 1. If H [k] = G for some bipartite graph H , then

1. NH(v0) = {v1}, NH(vi) = {vi−1, vi+1} for 1 ≤ i ≤ k, and

2. NH(vk+1) \ {vk} = NG(v2) \ {v0, v1, . . . , vk+1}.
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To prove Lemma 4.4, we need some definitions. A vertex u ∈ U in a bipartite graph G = (U, V ;E) is
bipartite universal if NG(u) = V . We denote by Nd

H(v) the set of vertices in H such that the distance
from v is exactly d; that is, Nd

H(v) = {u ∈ V (H) | distH(u, v) = d}.
Proof (Lemma 4.4): First, observe that the vertices v0 and v1 are not bipartite universal in G.

Since v0 is not bipartite universal in G = H [k] and G is connected, there is a vertex u ∈ V (H) such
that distH(v0, u) is finite and greater than k. This implies that N2i+1

H (v0) 6= ∅ for all 0 ≤ i ≤ (k − 1)/2.
Moreover, since |NG(v0)| = |{v1, v3, . . . , vk−2, vk}| = (k + 1)/2, it follows |N2i+1

H (v0)| = 1 for all
0 ≤ i ≤ (k− 1)/2. Then, the assumption NG(vi) ⊂ NG(vi+2) implies that N2i+1

H (v0) = {v2i+1} for all
0 ≤ i ≤ (k − 1)/2 (see Fig. 2).

...

vk−2v5v3v1 vk

N2
H(v0) N4

H(v0) Nk−1
H (v0) Nk+1

H (v0)

v0

Fig. 2: Partial tail structure of vertices.

Next we apply a similar argument to v1. Since v1 is not bipartite universal in G, N2i+1
H (v1) 6= ∅ for all

0 ≤ i ≤ (k − 1)/2. Since NH(v0) = {v1} and |NG(v1)| = |{v0, v2, . . . , vk−1, vk+1}| = (k + 1)/2 + 1,
it follows |NH(v1)| = 2 and |N2i+1

H (v1)| = 1 for all 1 ≤ i ≤ (k − 1)/2. By the assumption NG(vi) ⊂
NG(vi+2), we have NH(v1) = {v0, v2} and N2i+1

H (v1) = {v2i+2} for 1 ≤ i ≤ (k − 1)/2 (see Fig. 3).
Thus the first property holds. The second property immediately follows from the first one. 2

...

vk−2v5v3v1 vkv0 vk+1vk−1v4v2

Fig. 3: Tail structure of vertices.

4.2 Reduction
Let (S,C) be an instance of SET SPLITTING, where S = {u1, . . . , un} is the ground set, and C =
{c1, . . . , cm} is a set of non-empty subsets of S. For any fixed odd k ≥ 3, we construct a graph G from
(S,C). The vertex set V (G) of G consists of the following vertices:

• Element vertices ui for all element ui ∈ S;

• Subset vertices c0j , . . . , c
k+1
j for all cj ∈ C; and

• Partition vertices S0
1 , . . . , S

k−2
1 and S0

2 , . . . , S
k−2
2 .
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The edge set E(G) of G consists of the following edges: For each subset cj ∈ C,

• cpj is adjacent to cqj if p 6≡ q (mod 2),

• cpj is adjacent to cqj′ if p+ q ≤ k − 4 and p 6≡ q (mod 2);

• cpj is adjacent to cqj′ if cj ∩ cj′ 6= ∅ and p+ q = k − 2,

• cpj is adjacent to all ui ∈ S if p is even and 0 ≤ p ≤ k − 3,

• ck−1j is adjacent to each ui ∈ cj ,

• cpj is adjacent to Sq
1 and Sq

2 if p+ q ≤ k − 2 and p 6≡ q (mod 2),

For each element ui ∈ S,

• ui is adjacent to S0
1 , S

2
1 , . . . , S

k−3
1 and S0

2 , S
2
2 , . . . , S

k−3
2 ;

For each i ∈ {1, 2},

• Sp
i is adjacent to Sq

i if p 6≡ q (mod 2),

• Sp
1 and Sq

2 are adjacent if p+ q ≤ k − 4 and p 6≡ q (mod 2).

4.3 Equivalence
Now we prove that (S,C) has a desired partition if and only if there exists a bipartite graph H such that
H [k] = G.

Lemma 4.5 If there exists a partition of S into two disjoint subsets S1 and S2 such that each subset in C
intersects both S1 and S2, then there exists a bipartite graph H such that G = H [k].

Proof: Let V (H) = V (G). We define E(H) as follows (see Fig. 4).

• For each cj ∈ C, {cij , ci+1
j } ∈ E(H) for 0 ≤ i ≤ k, and {c0j , ui} ∈ E(H) for each ui ∈ cj .

• For each ui ∈ S, {ui, S0
j } ∈ E(H) if ui ∈ Sj .

• For j ∈ {1, 2}, {Si
j , S

i+1
j } ∈ E(H) for 0 ≤ i ≤ k − 3.

It is a routine exercise to verify that G = H [k]. 2

Lemma 4.6 If there is a bigraphH such thatH [k] = G, then there exists a partition of S into two disjoint
subsets S1 and S2 such that each subset in C intersects both S1 and S2.

Proof: We construct a partition (S1, S2) of S such that S1 = {ui | {ui, S0
1} ∈ E(H)} and S2 = S \ S1.

We show that (S1, S2) is a good partition; that is, cj ∩Si 6= ∅ for each cj ∈ C and i ∈ {1, 2}. To this end,
we show that

1. for any cj ∈ C and ` ∈ {1, 2}, some ui ∈ cj has S0
` as a neighbor in H , and
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c04c14c24c34c44c54c64

c03c13c23c33c43c53c63

c02c12c22c32c42c52c62

c01c11c21c31c41c51c61

u5

u4

u3

u2

u1

S0
2 S1

2 S2
2 S3

2

S0
1 S1

1 S2
1 S3

1

k = 5

Fig. 4: An example (k = 5).

2. no ui ∈ S has both S0
1 and S0

2 as neighbors in H .

They will conclude the proof. Let cj ∈ C. From Lemma 4.4, NH(ck+1
j ) = {ckj }, NH(cij) = {ci+1

j , ci−1j }
for 1 ≤ i ≤ k, and NH(c0j ) = {c1j} ∪ {ui | ui ∈ cj}. Obviously, distH(cpj , c

q
j) = |p − q|. For

v /∈ {c0j , . . . , ck+1
j }, every cpj–v path in H has cqj as an internal node if p > q. Hence, distH(cpj , v) =

p− q + distH(cqj , v). Note that this also holds when p ≤ q.

Claim 4.7 For ` ∈ {1, 2} and a, b ≥ 0, distH(caj , S
b
` ) = a+ b+ 2.

Proof (Claim 4.7): First, we show that distH(ck−b−2j , Sb
` ) = k.

Since {ck−b−2j , Sb
`} ∈ E(G), distH(ck−b−2j , Sb

` ) is odd and at most k. Clearly, distH(ck−bj , Sb
` ) is also

odd. Thus {ck−bj , Sb
`} /∈ E(G) implies that

distH(ck−bj , Sb
` ) = 2 + distH(ck−b−2j , Sb

` ) > k.

Hence, distH(ck−b−2j , Sb
` ) = k since k is odd. Recall that distH(cpj , v) = p−q+distH(cqj , v). Therefore,

distH(caj , S
b
` ) = a− (k − b− 2) + distH(ck−b−2j , Sb

` ) = a+ b+ 2.

Thus, the claim holds. 2

Let ` ∈ {1, 2}. From Claim 4.7, we have distH(c0j , S
0
` ) = 2. Since NH(c0j ) = {c1j} ∪ {ui | ui ∈ cj}

and NH(c1j ) = {c2j , c0j}, some ui ∈ cj must be adjacent to S0
` in H . Thus, we have the first property. To

show the second property, we use the following fact.
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Claim 4.8 distH(S0
2 , S

k−2
2 ) = k − 2.

Proof (Claim 4.8): By Claim 4.7, any shortest c0j–Sk−2
2 path inH is of length k. Let P = (p0, p1, . . . , pk)

be such a path, where p0 = c0j and pk = Sk−2
2 . It is easy to see that p1 = ui for some ui ∈ cj . Also,

it is not difficult to see that either p2 = c0j′ for some cj′ ∈ C, or p2 = Sx
` for some x ∈ {0, . . . , k − 2}

and ` ∈ {1, 2}. If p2 = c0j′ , then distH(c0j′ , S
k−2
2 ) = k − 2. This contradicts Claim 4.7. Hence, we

have p2 = Sx
` . Since (c0j , ui, S

x
` ) is a shortest path in H , distH(c0j , S

x
` ) = 2. Thus we have x = 0 from

Claim 4.7. If p2 = S0
1 , then (p2, . . . , pk) is a S0

1–Sk−2
2 path of length k−2. So, distH(S0

1 , S
k−2
2 ) = k−2.

This contradicts {S0
1 , S

k−2
2 } /∈ E(G) = E(H [k]). Hence, we can conclude that p2 = S0

2 , and thus
(p2, . . . , pk) is a shortest S0

2–Sk−2
2 path of length k − 2 in H . 2

Now we prove the second property. Suppose some ui ∈ cj has both S0
1 and S0

2 as neighbors in H .
Then, distH(S0

1 , S
0
2) = 2. Since distH(S0

2 , S
k−2
2 ) = k − 2 by Claim 4.8,

distH(S0
1 , S

k−2
2 ) ≤ distH(S0

1 , S
0
2) + distH(S0

2 , S
k−2
2 ) = k.

Since there is a S0
1–Sk−2

2 path of odd length in G and because G is bipartite, distH(S0
1 , S

k−2
2 ) is odd.

Hence, {S0
1 , S

k−2
2 } ∈ E(H [k]). This contradicts {S0

1 , S
k−2
2 } /∈ E(G) = E(H [k]). 2
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