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Abstract—In this paper, we derive the theoretical outage
probability of a transmission system in the presence of source
and channel correlations in the block Rayleigh fading channels,
based on the Slepian-Wolf theorem. Two transmitters and one
common receiver are assumed, where the correlation knowledge
between the two source information streams can be expressed as
a bit-flipping model. The information bits at each transmitter are
separately encoded and sent to a common decoder. In addition,
we also assume the channels suffering from independent or
correlated Rayleigh fading. It is known that the outage event
happens when the instantaneous signal noise ratio (SNR) is lower
than the given threshold ratio. This paper shows that the outage
probability of the system model described above can be expressed
by double integrals of the admissible rate region according to
the Slepian-Wolf theorem, with respect to the joint probability
density function (pdf ) of the corresponding instantaneous signal
amplitudes (or the equivalent SNRs) of the channels. The results
show that the second order diversity of the theoretical outage
curves can be achieved if and only if the two information streams
are fully correlated, regardless of the channels being independent
or not. On the contrary, the channel correlation makes opposite
influence on the decay of the outage probability. However, if the
two streams are not fully correlated, this influence gradually
disappears as the average SNRs increases. In this sense, the
source and channel correlation problems are dual with each other.

I. INTRODUCTION

According to the remarkable contribution by Slepian and
Wolf in [1], it has been proven that the distributed source
coding scheme can achieve the same compression rate as the
optimum joint encoding approach using one single encoder,
by best exploiting the correlation knowledge of the source
information streams. This theorem can be utilized as a sup-
porting base of many applications, such as the relay system
which comprises three basic components, a source, a relay
and a destination nodes. Specifically, the source broadcasts
the original information signal to both the relay and the
destination nodes. In some of the relay strategies such as
the Decode-and-Forward (DF) or Extract-and-Forward (EF)
[2] schemes, relay aims to recover the original information
before re-encoding and/or forwarding it to the destination. Due
to the noise happening in the source-relay (SR) channel, the
recovered information may contain some errors, but they are
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Fig. 1. System model of correlated source-channel transmission

still correlated with the original data. The common destination
node receives two correlated signal streams sent from the
source and the relay via the source-destination (SD) and relay-
destination (RD) channels, respectively. The joint decoding
takes place at the receiver utilizing the source correlation
knowledge.

For simplicity, in this paper the two correlated information
streams, represented by b1 and b2 as shown in Fig. 1, are
generated by a bit-flipping model satisfying the equations:
b2 = b1 ⊕ e and P (e = 1) = pe, where pe denotes
the flipping probability [3]. Obviously, pe = 0 indicates the
extreme situation of full correlation while pe = 0.5 implies the
completely independent case. The Source-Channel separation
[4] is assumed.

The two channels shown in Fig. 1 are assumed to suffer
from block Rayleigh fading, where the channel realization
changes frame by frame. Moreover, we consider Channel 1 and
2 being either independent or correlated. The instantaneous
channel gains of either one of the channels or both may
be faded below the transmission requirement that depends
on channel coding and modulation schemes. The admissible
Slepian-Wolf rate region of the correlated source transmission
is defined in [1], and it can be converted into the signal
amplitude (or equivalently the SNRs) region. In this case,
the outage capacity is dominated by the instantaneous channel
realizations. Hence, it is straightforward to derive the outage
probability by a double integral over the achievable regions
with respect to the joint probability density function (pdf ) of
the instantaneous signal amplitudes of the both channels.



This paper is organized as follows. First of all, the Slepian-
Wolf theorem and the bit-flipping model are discussed in
Section II. In Section III, the outage probability is defined
and derived based on the Slepian-Wolf theorem in the case
when Channel 1 and 2 are either independent or correlated.
Moreover, the asymptotic analysis of the outage performance
is also presented in this section. Finally, the conclusions are
given in Section IV with some remarks.

II. SYSTEM MODEL

The system model of the correlated source-channel trans-
mission is shown in Fig. 1, where b1 and b2 denote the source
bit streams transmitted from the first and second transmitters,
respectively. The two information streams are correlated and
b2 is a flipped version of b1 with a flipping probability pe.
The source correlation value can be further utilized at the
joint decoder in order to enhance the decoding performance,
based on the Slepian-Wolf theorem. Let s1 and s2 denote the
transmitted symbols. The received signals y1 and y2 from the
first and the second time slots, respectively, can be expressed
as:

y1 = h1s1 + n1, (1)
y2 = h2s2 + n2, (2)

where n1 and n2 are the zero-mean additive white Gaussian
noise (AWGN) components, both having the same variance
σ2
n per dimension. h1 and h2 represent the complex Rayleigh

fading envelops of the two channels, and the both are kept
constant within a frame duration due to the block fading
assumption. The instantaneous SNR of the i -th (i = 1, 2)
channel γi = |hi|2 Ei/N0, where Ei represents the per-symbol
signal power which is normalized to 1, and N0 = 2σ2

n which
denotes the noise power spectral density. By assuming the
independent block Rayleigh fading for both channels, the pdf
of the instantaneous amplitude Ri of the i -th channel can be
expressed as [5]

p (Ri) =
2Ri

Pri
exp(−R2

i

Pri
), (3)

where Pri =
⟨
|hi|2 Ei

⟩
, denoting the average received signal

power of the i-th channel. Therefore, the average SNR of the
i -th channel is Γi = Pri/N0. In this paper, we also examine
the impact of the correlation ρ = ⟨h1h

∗
2⟩. The joint pdf of

instantaneous amplitudes R1 and R2 is then given by [5]

p(R1, R2) =
4R1R2

Pr1Pr2(1− |ρ|2)
I0

[
2 |ρ|R1R2√

Pr1Pr2(1− |ρ|2)

]

exp

[
− 1

1− |ρ|2

(
R2

1

Pr1
+

R2
2

Pr2

)]
, (4)

where I0(·) is the zero-th order modified Bessel’s function of
the first kind. According to [1], the admissible rate region is
constituted as an unbounded polygon, represented by Part 3 as
shown in Fig. 2. The original bits can be recovered if and only
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Fig. 2. Achievable rate region of Slepian-Wolf theorem

if the transmitting rates are within this area. For instance, if
b1 is transmitted at the rate R1 which is equal to its entropy
H(b1), then b2 can be transmitted at the rate R2 which is less
than H(b2), but must be larger than their conditional entropy
H(b2 | b1). In other words, R1 and R2 should satisfy three
equations [1]:

R1 > H(b1 | b2), (5)

R2 > H(b2 | b1), (6)

R1 +R2 > H(b1,b2). (7)

where H(b1,b2) denotes the joint entropy of the correlated
source information streams. Since we assume the binary
symmetric source model (P (1) = P (0) = 0.5), H(b1) =
H(b2) = 1, H(b1 | b2) = H(b2 | b1) = H(pe),
H(b1,b2) = 1 +H(pe) with H(pe) = −pe log2(pe) − (1 −
pe) log2(1− pe). The threshold amplitude is given by

R[H] =
√
(2RcH − 1) N0, (8)

where Rc represents the rate which takes into account of the
channel coding and the modulation scheme [3]. However, the
specific practical coding and modulation schemes are out of
the scope of this paper. Equivalently, the inverse transform is
defined as H[R] = 1

Rc
log2(1 +

R2

N0
).

III. OUTAGE DERIVATION

Besides the typical admissible region, the entire Slepian-
Wolf rate region can be divided into 4 parts as shown in Fig. 2.
In this paper, Part 4 should also be included as the admissible
region, such as in the relay system, where b1 is the source
information stream which we are interested in, while b2 can
be seen as the recovered version of b1 at the relay. Although
b2 may contains some errors due to the fading variation
of the SR channel, it is still correlated with b1. By using
Eq. (8), the Slepian-Wolf rate constraint can be transformed
into the corresponding signal amplitude domain. It is known
that the outage event happens when the instantaneous signal
amplitudes of Channel 1 and 2 are out of the admissible region,



and therefore the outage probability of our assumed model can
be defined as [6]

Pout = P1 + P2, (9)

where P1 and P2 denote the probabilities that the rates R1

and R2 fall into the inadmissible regions Part 1 and Part 2, as
shown in Fig. 2. Therefore, the mathematical expressions of
P1 and P2 are defined as follows:

P1 =

∫ R[H(b1|b2)]

R1=R[0]

∫ R[∞]

R2=R[0]

p (R1, R2) dR1dR2, (10)

P2 =

∫ R[H(b1)]

R1=R[H(b1|b2)]

∫ R[H(b1,b2)−H(R1)]

R2=R[0]

p (R1, R2) dR1dR2.

(11)

The derivations of P1 and P2 are presented for different
scenarios as follows and the numerical results are shown by
assuming Rc equals to 1 and Γ1 = Γ2.

A. Independent Channels

If both Channel 1 and Channel 2 are statistically inde-
pendent, the joint pdf of R1 and R2 can be expressed as
p(R1, R2) = p(R1)p(R2), and P1 and P2 can be further
derived as

P1 =

∫ R[H(b1|b2)]

R1=R[0]

p(R1)dR1

∫ R[∞]

R2=R[0]

p(R2)dR2

=

∫ R[H(b1|b2)]

R1=R[0]

2R1

Pr1
exp(− R2

1

Pr1
)dR1

= 1− exp

[
− (2RcH(pe) − 1)N0

Pr1

]
, (12)

P2 =

∫ R[H(b1)]

R1=R[H(b1|b2)]

p (R1) dR1

·
[
− exp

(
− R2

2

Pr2

)]√(2
[RcH(b2,b1)−log2(1+

R1
N0

)]
−1)N0

R2=0

=

∫ R[H(b1)]

R1=R[H(b1|b2)]

2R1

Pr1
exp(− R2

1

Pr1
)

·

[
1− exp

(
− (2[RcH(b2,b1)−log2(1+

R1
N0

)] − 1)N0

Pr2

)]
dR1.

(13)

Since no explicit solution is found for P2, the numerical
method may be used with sufficient accuracy. The theoretical
outage curves of the system assumed are shown in Fig. 3,
where the outage probability with maximum-ratio-combing
(MRC) scheme [7] is also shown for comparison. Obviously,
the second order diversity of the outage curve can be achieved
only if b1 and b2 are fully correlated (pe = 0), the math-
ematical proof of which is given in Appendix 1. It should
be noted that the outage performance of the Slepian-Wolf
transmission system is slightly better than that of the MRC
scheme with diversity two. The mathematical proof of the
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Fig. 3. Outage probabilities with source correlation, |ρ| = 0

asymptotic tendency is given in Appendix 2, but only for
Γ1 = Γ2.

It is also found in Fig. 3 that with pe ̸= 0, the decay of
the outage curve converges into the first order diversity, as Γ1

and Γ2 increases. The mathematical proof of this asymptotic
tendency is shown in Appendix 3. Finally, with pe = 0.5, the
outage curve of our model is exactly the same as that with
no-diversity.

B. Correlated Channels

With an assumption that Channel 1 and 2 are correlated, the
signal amplitudes R1 and R2 follow the joint pdf p(R1, R2)
as shown in Eq. (4). Since the zero-th order modified Bessel
function of the first kind I0(x) can be expanded as I0(x) =∑∞

n=0
(x/2)2n

(n!)2
, Eq. (4) can be re-written as:

p(R1, R2) =
4R1R2

Pr1Pr2(1− |ρ|2)
exp

(
−R2

1/Pr1

1− |ρ|2
− R2

2/Pr2

1− |ρ|2

)
∞∑

n=0

1

(n!)
2

(
|ρ|R1R2√

Pr1Pr2(1− |ρ|2)

)2n

=
∞∑

n=0

q
(n)
1 q

(n)
2 , (14)

where q
(n)
1 and q

(n)
2 are expressed as

q
(n)
1 =

2R2n+1
1 |ρ|n

Pn+1
r1 (1− |ρ|2)n+1/2

exp

(
−R2

1/Pr1

1− |ρ|2

)(
1

n!

)
,

(15)

q
(n)
2 =

2R2n+1
2 |ρ|n

Pn+1
r2 (1− |ρ|2)n+1/2

exp

(
−R2

2/Pr2

1− |ρ|2

)(
1

n!

)
.

(16)
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Now, given the fact that p(R1, R2) are factored into a
product of two independent terms, as shown by Eqs. (14)-(16),
P1 and P2 can easily be calculated numerically. The results
are shown in Fig. 4, where we assume the source streams
are fully correlated (pe = 0). Clearly, the larger the channel
correlation, the larger the outage probability. However, the
second order diversity can finally be achieved with arbitrary
value of |ρ| ̸= 1, when increasing the average SNRs. This
asymptotic tendency is proven in Appendix 4.

Fig. 5 shows that when pe ̸= 0, the outage cavers change
within a certain range of the average SNR values, giving
different correlation factors. However, the outage curves can
not achieve the second order diversity over the entire range
of the average SNRs. See Appendix 4 for the proof of this
tendency.

C. Duality Consideration

As observed before, when Γ1 → ∞, Γ2 → ∞ and |ρ| = 0,
the outage probability yields the equivalent diversity order 1
asymptotically, as far as pe ̸= 0. On the other hand, when pe =
0, the equivalent diversity order converges into two, so far as
|ρ| ̸= 1. This duality can easily be understood by considering
that when Γ1 → ∞, Γ2 → ∞, only either the source bits
transmitted from the two transmitters being different, or the
complex fading envelops of the two channels having different
values determines the diversity order.

IV. CONCLUSION

In this work, the outage probability of the correlated source
transmission based on the Slepian-Wolf theorem has been
derived, as well as the asymptotic tendency analysis, with
the aim of its applications on DF or EF relay system. It has
been shown mathematically that when the channel correlation
ρ = 0, the second order diversity can always be achieved
if pe = 0. In the case when 0 < pe < 0.5, the diversity
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order gradually changes and finally converges into one, as
the average SNRs become large. When sources are fully
correlated, the second order diversity can always be achieved
as long as the channels are not fully correlated. According to
the observations described above, it can be concluded that the
source and channel correlations are dual with each other.

APPENDIX 1

When pe = 0, P1 is always equal to 0, and therefore
the outage probability is only dominated by the value of P2.
For the mathematical simplicity, the pdf of the instantaneous
SNR p(γi), instead of p(Ri), is used to prove the asymptotic
tendency of the outage curve, as p(γi) =

1
Γi

exp(− γi

Γi
). In the

independent channels, by setting H (b1,b2) = 1 and Rc = 1

P2 =

∫ 1

γ1=0

∫ 2[1−log2(1+γ1)]−1

γ2=0

p(γ1)p(γ2)dγ1dγ2

=

∫ 1

0

p(γ1) ·
[
− exp

(
− γ2
Γ2

)]2[1−log2(1+γ1)]−1

0

dγ1

=
1

Γ1

∫ 1

0

[
exp(− γ1

Γ1
)− exp

(
− γ1
Γ1

− 1− γ1
Γ2 (1 + γ1)

)]
dγ1.

(17)

With the approximation that e−x =
∑∞

n=0
(−x)n

n! ≈ 1 − x,
Eq. (17) can be reduced to

P2 ≈ 1

Γ1

∫ 1

0

[
1− γ1

Γ1
−
(
1− γ1

Γ1
− 1− γ1

Γ2 (1 + γ1)

)]
dγ1

=
1

Γ1

∫ 1

0

[
1− γ1

Γ2 (1 + γ1)

]
dγ1

=
1

Γ1

[
2 ln (1 + γ1)− γ1

Γ2

]1
0

=
2 ln 2− 1

Γ1Γ2
. (18)



The results shows that with pe = 0 the outage curve follows
the tendency of the second order diversity.

APPENDIX 2

Here, the proof of the advantage of the Slepian-Wolf relay
system over MRC is presented. Assuming that Γ1 = Γ2(> 0)
in both the schemes with pe = 0 and Rc = 1, Eqs. (13) can
be further reduced to

P2 =
1

Γ1

∫ 1

0

{
exp

(
− γ1
Γ1

)
− exp

[
1

Γ1

(
−1 + γ2

1

1 + γ1

)]}
dγ1.

(19)

According to [7], by setting the same threshold, the outage
probability of the MRC scheme with the second order diversity
can be expressed as

Pout,mrc =
1

Γ1

∫ 1

γ1=0

γ1
Γ1

exp

(
− γ1
Γ1

)
dγ1. (20)

To prove that Pout,mrc − P2 > 0, we define that Pgap =
Pout,mrc − P2 as

Pgap =
1

Γ1

∫ 1

γ1=0

{
exp

[
1

Γ1

(
1− γ1 −

2

1 + γ1

)]
+(

γ1
Γ1

− 1) exp

(
− γ1
Γ1

)}
dγ1

=
1

Γ1

{∫ 1

γ1=0

exp

[
− 1

Γ1

(
1 + γ2

1

1 + γ1

)]
dγ1 − exp(− 1

Γ1
)

}
.

(21)

Let y1(x) = exp
(
− 1+γ2

1

1+γ1

)
. It is found that y1(x) > −1

hold within the range of [0, 1] if y1(x) is concave, since
y1(x) > min {y1(0), y1(1)} = −1, according to the property
of the concave function. y1(x) can be proven to be concave
by showing that

y1(x)
′′
=exp(−1 + x2

1 + x
)

[
2

(1 + x)
2 − 1

]2

−
4 exp(− 1+x2

1+x )

(1 + x)
3 < 0. (22)

By ignoring the common exponential terms in Eq. (22),
because they are positive, it is found that giving a
proof to Eq. (22) is equivalent to proving that y2(x) =[
2− (1 + x)

2
]2

− 4 (1 + x) < 0. Let t = 1 + x (t ∈ [1, 2]).

Then, y2(t) =
(
2− t2

)2− 4t = t4− 4t2− 4t+4. The second
order derivative of y2(t) can be expressed as

y2(t)
′′ = 12t2 − 8. (23)

Obviously, y2(t)′′ > 0 within the range of [1, 2]. Therefore
y2(t) is convex, and y2(t) < max {y2(1), y2(2)} = −3.
Hence, y2(t) < 0, which is equivalent to y1(x)

′′ < 0. Now
y1(x) is proved to be concave, and consequently Pgap is
proven to be positive.

APPENDIX 3
When b1 and b2 are not fully correlated (pe ̸= 0), as Pr1 →

∞ and Pr2 → ∞, P2 will approaches 0 as seen in Eq. (13) and
only P1 dominates the outage performance. Since Pr1 = Γ1N0

and Rc = 1 are assumed, Eq. (12) can be written as

P1 = 1− exp

(
−2RcH(pe) − 1

Γ1

)
≈ 2RcH(pe) − 1

Γ1
. (24)

Obviously, when the average SNR Γ1 becomes large, the
value of P1 is inversely in proportion to Γ1 and hence the
diversity order converges into one.

APPENDIX 4
In the presence of the channel correlation, regardless of the

source correlation, increasing the average SNRs Γ1 and Γ2, or
equivalently increasing Pr1 and Pr2 yields:

2 |ρ|R1R2√
Pr1Pr2(1− |ρ|2)

≈ 0 (Pr1 → ∞, Pr2 → ∞) (25)

Hence, with I0(0) = 1, Eq. (4) can be approximated as

p(R1, R2) ≈
4R1R2

Pr1Pr2(1− |ρ|2)
exp

(
−R2

1/Pr1

1− |ρ|2
− R2

2/Pr2

1− |ρ|2

)

=
2R1

Pr1

√
1− |ρ|2

exp

(
− R2

1

Pr1(1− |ρ|2)

)

2R2

Pr2

√
1− |ρ|2

exp

(
− R2

2

Pr2(1− |ρ|2)

)
=p(R1

′)p(R2
′). (26)

where R1
′ = R1

√
1− |ρ|2 and R2

′ = R2

√
1− |ρ|2, with

Pr1
′ =

⟨
R1

′⟩ = Pr1(1 − |ρ|2) and Pr2
′ =

⟨
R2

′⟩ = Pr2(1 −
|ρ|2). Hence, with Pr1 → ∞ and Pr2 → ∞ (equivalently,
Pr1

′ → ∞ and Pr2
′ → ∞ ), the asymptotic property of the

outage probability exhibits the same tendency as in the case
of independent channels, which indicates that the tendency of
the diversity order only depends on the source correlation.
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