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Dynamic Epistemic Logic for
Channel-Based Agent Communication

Katsuhiko Sano1 and Satoshi Tojo1

School of Information Science, Japan Advanced Institute of Science and Technology
{v-sano,tojo }@jaist.ac.jp

Abstract. This paper studies channel-based agent communication in terms of
dynamic epistemic logic. First, we set up two sorted syntax which can deal with
not only each agent’s belief but also agents and channels between them. Second,
we propose a context-sensitive ‘inform’-action operator whose effectivity always
assumes the existence of channel between agents. Its context-sensitivity can be
achieved by downarrow binder from hybrid logic. Third, we provide complete
Hilbert-style axiomatizations for both static and dynamic parts of our logic.

1 Introduction

It has been long since the notion ofagent, by which we mean an independent infer-
ence engine within a computer, became the prevalent idea to represent artificial intel-
ligence. Since the communication is the most distinguished feature of the presence of
intelligence, its logical formalization in multiple rational agents has commonly been ac-
cepted as an important research goal. For example, based on the mobile agents platform
by FIPA/ACL [1], [2] has addedcommunication channelin multi-agent interaction to
represent communicability between agents. Recently, [3] proposed a research program
to investigate how knowledge, belief, and preferences are influenced by social relation-
ship, and set upFacebook Logicfor an analysis of knowledge in a social network.

In the above history of formalization of agent communication, we raise the follow-
ing three requirements for our logical study of agent-communication.

(i) An informing action is basically initiated locally; thus, when information is cor-
rectly transferred, a sender agent should have a communication channel to the re-
cipient agent.

(ii) An existence of channel may vary through a given state.
(iii) An effect of informing action at a state should be valid only on the state.

In this paper, we propose two-dimensional semantics satisfying (ii) and the informing
action operator possessing three indices to implement the context-sensitivity, together
with a sender and a recipient agent ((i) and (iii)). A semantic core of our paper shared
with [3] can be summrized as in the following diagram:

w |= Bap ///o/o/o/o/o/o/o (w, a) |= Bp.

We incorporate the information ‘a’ of agents into the ordinary Kripke semantics ofBap
(the agenta believes thatp) and regardBφ as a property of the agenta, i.e., ‘- believes
that he/she has a propertyp’.



We proceed as follows. Section2 introduces our static syntax and its two-dimensional
semantics, which is the same one as in [3]. Unlike [3], however, we also add a machinery
of hybrid logic (nominals, satisfaction operators, and downarrow binder) to the dimen-
sion of possible worlds. Section3 introduces running examples of this paper. Section4
introduces a dynamic informing action operator and Section5 investigates its semantic
consequences. Section6.1gives a complete axiomatization of two-dimensional hybrid
logic with frame axioms and global assumptions on models (Theorem1). As far as
the authors know, this is an unknown result of a hybrid expansion of Facebook Logic.
Section6.2 employs reduction axioms for our dynamic operator to give a complete
axiomatization of our dynamic logic (Theorem2). Section7 concludes this paper.

2 Two-dimensional Semantics for Agent Beliefs via Channels

Our syntax consists of the setN1 = { i, j, ... } of state nominals, the setN2 = {n,m, ... }
of agent nominals, the setP = { p, q, ... } of unary propertiesof agents (or,concept
namesin description logics [4]), the belief operatorB for agents, the channel operator
C, the boolean connectives¬, ∧, the satisfaction operator@, and the downarrow binder
↓. The setF of all formulasof our syntax is defined inductively as follows:

φ ::= i |n | p | ¬φ |φ ∧ ψ |Bφ |Cφ |@iφ |@nφ | ↓ i. φ | ↓ n. φ,

wherei ∈ N1, n ∈ N2 andp ∈ P. We define⟨C⟩φ := ¬C ¬φ and⟨B⟩φ := ¬B ¬φ.
We also introduce the Boolean connectives as ordinary abbreviations. We can read the
following formulas intuitively as:

p ‘the current agent has a propertyp’.
Cp ‘all the agents accessible via channels from the current agent satisfyp’.

@n ⟨C⟩m ‘there is a channel relation fromn tom’.
⟨C⟩B@np ‘some agents accessible via channels from the current agent

believe that the agentn satisfiesp’.

For the above property (or concept name)p in P, the readers can takeFather, Mother,
Parents, etc. More examples can be found in [4,3].

Let us move to the semantics. Roughly speaking, we need to incorporate channel
structures between agents into Kripke frames of logic of belief. It is also natural to as-
sume that channel structures may vary through worlds from a given Kripke frame. We
also reflect this aspect into our semantics. Asocial Kripke frame(s-frame, in short)
F = (W,A,R,≍) consists of a non-empty setW of possible worlds, a non-empty
setA of agents,A-indexed familyR = (Ra)a∈A of binary relations onW , andW -
indexed family≍ = (≍w)w∈W of binary relations onA. Ra is the same concept as
an accessibility relation for the agenta in Kripke semantics for logic of belief, while
≍w⊆ A × A reflect the idea of channel structures varying through worlds. Define
Ra(w) := {w′ ∈W |wRaw′ }, i.e., all theRa-accessible worlds fromw. A social
Kripke model(s-model, in short)M = (F, V ) is a pair ofs-frameF and a valuation
V : N1 ∪N2 ∪P → P(W ×A) satisfyingV (i) = {w }×A for somew ∈W (i ∈ N1),
andV (n) = W × { a } for somea ∈ A (n ∈ N2). If we regardW × A as a two-
dimensional space andW andA asx-axis andy-axis respectively, then the denotation
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V (i) is a vertical line and the denotationV (a) is a horizontal line overW × A. When
V (i) = {w } × A, we usually writei to meanw, and so,V (i) = { i } × A. Similarly,
we use the notationn asV (n) = W × {n }. Given anys-frameF = (W,A,R,≍) and
a valuationV onF, we define asatisfaction relation|= as follows:

M, (w, a) |= i iff i = w,
M, (w, a) |= n iff n = a,
M, (w, a) |= p iff (w, a) ∈ V (p),
M, (w, a) |= ¬φ iff M, (w, a) ̸|= φ,
M, (w, a) |= φ ∧ ψ iff M, (w, a) |= φ andM, (w, a) |= ψ,
M, (w, a) |= Bφ iff wRaw

′ impliesM, (w′, a) |= φ, for all w′ ∈W ,
M, (w, a) |= Cφ iff a ≍w a′ impliesM, (w, a′) |= φ, for all a′ ∈ A,
M, (w, a) |= @iφ iff M, (i, a) |= φ,
M, (w, a) |= @nφ iff M, (w, n) |= φ,
M, (w, a) |=↓ i. φ iff (F, V [i := w]), (w, a) |= φ,
M, (w, a) |=↓ n. φ iff (F, V [n := a]), (w, a) |= φ,

whereV [i := w] (or V [n := a]) is the same valuation asV exceptV (i) = {w } × A
(or V (n) = W × { a }, respectively).↓ i. and↓ n. allow us to ‘bookmark’ the current
world and agent with the labelsi andn, respectively. In order to avoid complication of
notations, we keep using nominals for bound variables of downarrow binders.

In the literatures of logic of belief, it is common to use the belief operatorBnp
(read: ‘the agentn believes thatφ’). In our setting, we can express the same content by
@nBφ whose semantics is calculated as

M, (w, a) |= @nBφ iff wRnw
′ impliesM, (w′, n) |= φ, for all w′ ∈W .

Note thatB@nφ is different from@nBφ, because the former tells the belief of the
current agent but the latter is concerned with the belief of the agentn. We readB@nφ
as ‘the current agent believes that the agentn satisfiesφ’.

Given anys-modelM and any setΓ of formulas,M, (w, a) |= Γ means that
M, (w, a) |= φ for all φ ∈ Γ . Γ valid on M (written: M |= Γ ) if M, (w, a) |= Γ
for all (w, a) of M. Γ is valid onF if Γ is valid on(F, V ) for all valuationsV onF.

3 Running Examples of This Paper

Let us consider the following scenario: Ann just signed up Facebook and has no friend
yet. She is very interested in a new mobile (say, iPhone5) but does not decide to buy it.
She wants to get more friends in Facebook to listen to opinions from the others. Assume
thatP = { p }, where ‘p’ means ‘- will buy a mobile’.

Definition 1. Define anordinary Kripke model(S,R, v) whereS := { su, st, sf }, R
:= { (su, st), (su, sf ) } ∪ { (x, x) |x ∈ S } andv(p) := { st }.

We can regard(S,R, v) as as-modelfor a single agent, say Ann, as follows. LetA =
{ a } (a means ‘Ann’) and defineW := S, Ra := R, ≍x := ∅ for all x ∈ S, andV (p) =
{ (st, a) }. Then, one can easily verify that Ann does not believe atsu that she will buy
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a mobile and that she will not buy it (i.e., neitherBp norB ¬ p is true at(su, a)), while
she believes atst (or sf ) that she will buy a mobile (or will not buy it, respectively).
This is a reason why we employ the indicesu, t, andf in the elements ofS.

Suppose that Ann now got a friend, whose name is Bea. Bea and Cate, another
user, are friends, but Ann and Cate are not friends yet. In syntactic side, let us set up
N2 = {AN,BE,CA }. How can we constructs-model from the Kripke model(S,R, v)
above? We regarded(S,R, v) as modeling a single agent. In order to model a commu-
nity of three agents, it is natural to prepare three copies of(S,R, v).

Definition 2. DefineM1 = (W,A,R,≍, V ) as follows. LetW = S × S × S and
A = { a, b, c }. When(xa, xb, xc) ∈ W , we assume thatxa, xb, and xc represent
the current state of Ann(a), Bea (b), and Cate(c), respectively. As forR, we de-
fineRa by (xa, xb, xc)Ra(xa, xb, xc) iff xaRya, Rb by (xa, xb, xc)Rb(xa, xb, xc)
iff xbRyb, and similarly forRc. Define≍(xa,xb,xc) = { (a, b), (b, a), (b, c), (c, b) }
for all (xa, xb, xc) ∈ W . Finally, define a valuationV so asV (AN) = W × { a },
V (BE) = W × { b }, V (CA) = W × { c } and ((xa, xb, xc), a) ∈ V (p) iff xa =
st, ((xa, xb, xc), b) ∈ V (p) iff xb = st, and ((xa, xb, xc), c) ∈ V (p) iff xc = st.
(remark that we assumeP = { p }, and an arbitrary valuation suffices for anyi ∈ N1.)

An underlying idea of, e.g.,Ra is that Ann cannot guess how Bea and Cate can imagine
their possible states from the current state.

Example 1.Suppose that all the agents except Cate will not buy a mobile, i.e.,(su, su, st) ∈
W is a current tuple of states.

(i) Ann and Bea can see the statesf from su, while Cate cannot do that. Then, each
of Ann and Bea does not believe that she will buy a mobile, but Cate believes so.
In M1, Bea is a friend of Cate, and so,M1, ((su, su, st), b) |= ⟨C⟩Bp (Bea has a
friend who believes that she will buy a mobile).

(ii) Let us also check an example of iterated belief: it is true that Bea does not believe
that Ann believes that she will buy a mobile at(su, su, st) of M1. Let us see why.
Since Ann’s belief state issu, we obtainM1, ((su, su, st), a) |= ¬Bp, which
impliesM1, ((su, su, st), b) |= ¬@ANBp. Since(su, su, st)Rb(su, su, st) holds,
we finally obtainM1, ((su, su, st), b) |= ¬B@ANBp. At (su, su, st) of M1, we
can also verify that Cate does not believe that Ann believes that she will buy a
mobile:M1, ((su, su, st), c) |= ¬B@ANBp. ■

Consider the following modifications toM1: Later Bea and Cate are no longer
friends, but Ann and Bea are still friends. This gives us anothers-modelM2.

Definition 3. Defines-modelM2 as the same models asM1 except that we replace≍
of M1 with ≈(xa,xb,xc) = { (a, b), (b, a) } for all (xa, xb, xc) ∈W .

Example 2.Now, inM2, Bea can no longer access Cate, and so,M2, ((su, su, st), b) |=
¬ ⟨C⟩Bp (Bea does not have a friend who believes that she will buy a mobile). As for
the iterated beliefs above, we can still say that Bea and Cate do not believe that Ann
believes that she will buy a mobile at(su, su, st) of M2, because the truth of them is
independent of channel structures. ■
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Note that both of≍ of M1 and≈ of M2 are constant or rigid, i.e.,≍(xa,xb,xc)

is always the same for all(xa, xb, xc) ∈ W and similarly for≈ (we will consider a
channel relation depending on an element ofW later inExample3).

4 Dynamic Semantics for Context-Sensitive Agent Communication

When an agent informs one of the other agents of something, our basic assumption
is that we need a (context-dependent) channel between those agents. The notion of
channel was formalized in terms of≍-relation in ours-model.

When the agents cooperate to achieve one goal, they need to communicate with each
other. Moreover, we assume that it is important to specifywhenagents communicate,
since each agent’s surroundings are ever changing. Even if a message to an agenta from
an agentb is useful toa at an instancet, it may become useless toa at an instantt+ 1.

For this aim, what we want to do is to introduce the action operator[φ!m], whose
meaning is ‘after thecurrent agentinforms the agentm of “the current agent satisfies
φ” in the current state.’ If there is a channel from the current agent tom, this action
[φ!m] will changem’s belief only at the current state. Otherwise, the action[φ!m] will
not changem’s belief. If φ is @nψ, then [(@nψ)!m] means ‘after the current agent
informs, at the current state, the agentm of “the agentn satisfiesφ”.’

There is a technical problem to introduce[φ!m] into our static syntax. We cannot
reduce the occurrences of[φ!m] when our syntax has two kinds of satisfaction operators
@i and@n. That is,[φ!m]@iψ ↔ @i[φ!m]ψ and[φ!m]@nψ ↔ @n[φ!m]ψ do not hold
in general. Let us concentrate on the first one. Since an inform-action[φ!m] occurs at
the worldi in @i[φ!m]ψ, but it occurs at the current world in[φ!m]@iψ, the effects of
two actions should be different in terms of worlds.

In order to define[φ!m], we borrow the idea of [3, pp.184-6] to define an indexical
public announcement operator into this context. That is, we first introduce[φ!i(n,m)]
(‘after the agentn informs, in the statei, the agentm of “n is φ”, ψ’) for context-
sensitive agent communication, and then define our intended operator[φ!m] with the
help of two kinds of downarrow binders.

Definition 4. Let us expand our static syntax with a new dynamic operator[φ!i(n,m)]

and denote the set of all formulas of this new syntax byF+. Given anys-modelsM =
(W,A,R,≍, V ), we can provide the semantic clause for[φ!i(n,m)]ψ as follows.

M, (w, a) |= [φ!i(n,m)]ψ iff Mφ!i(n,m) , (w, a) |= ψ,

whereMφ!i(n,m) = (W,A,Rφ!
i
(n,m) ,≍, V ) andR

φ!i(n,m)
a is defined by

R
φ!i(n,m)
a (w) =

{
Rm(w) ∩ JφKn if a = m andn ≍w m andw = i;

Ra(w) o.w.

whereJφKa = {w ∈W |M, (w, a) |= φ } for all a ∈ A.

Similarly to the static syntax, let us define the notion of validity forF+. Now, we
can define the following operators for context sensitive agent communication.
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– [φ!(n,m)]ψ := ↓ i. [φ!i(n,m)]ψ.
(‘after the agentn informsm of “n satisfiesφ” in the current state,ψ’).

– [φ!m]ψ := ↓ n. ↓ i. [φ!i(n,m)]ψ.
(‘after the current agent informsm of “I satisfyφ” in the current state,ψ’).

We can also provide a set of reduction axioms for[φ!i(n,m)] as in Table1.

Proposition 1. All the axioms in Table1 are valid on alls-frames.

Proof. The validity of the reduction axiom for[φ!i(n,m)]Bψ just reflects the definition

of Rφ!
i
(n,m) . For the proof, we need to use the equivalenceJφKn = J@nφKa. ⊓⊔

Table 1.Reduction Axioms for[φ!i(n,m)]

[φ!i(n,m)]ψ ↔ ψ (ψ ∈ P ∪ N1 ∪ N2)

[φ!i(n,m)]¬ψ ↔ ¬[φ!i(n,m)]ψ

[φ!i(n,m)]ψ ∧ θ ↔ [φ!i(n,m)]ψ ∧ [φ!i(n,m)]θ

[φ!i(n,m)]Cψ ↔ C[φ!i(n,m)]ψ

[φ!i(n,m)]Bψ ↔ ((m ∧ @n ⟨C⟩m ∧ i) → B(@nφ → [φ!i(n,m)]ψ))∧
(¬(m ∧ @n ⟨C⟩m ∧ i) → B[φ!i(n,m)]ψ)

[φ!i(n,m)]@jψ ↔ @j [φ!
i
(n,m)]ψ (j ∈ N1)

[φ!i(n,m)]@lψ ↔ @l[φ!
i
(n,m)]ψ (l ∈ N2)

[φ!i(n,m)] ↓ j. ψ ↔ ↓ j. [φ!i(n,m)]ψ (j ∈ N1 is fresh inφ)
[φ!i(n,m)] ↓ l. ψ ↔ ↓ l. [φ!i(n,m)]ψ (l ∈ N2 is fresh inn,m, andφ)

[φ!i(n,m)][ψ!
j
(l,e)

]θ ↔ ((m ∧ @n ⟨C⟩m ∧ i ∧ e ∧ @l ⟨C⟩ e ∧ j) → [(φ ∧ @l[φ!
i
(n,m)]ψ)!

i
(n,m)]θ)∧

(¬(m ∧ @n ⟨C⟩m ∧ i) ∧ e ∧ @l ⟨C⟩ e ∧ j) → [(@l[φ!
i
(n,m)]ψ)!

i
(n,m)]θ)∧

(¬(e ∧ @l ⟨C⟩ e ∧ j) → [φ!i(n,m)]θ) (n,m, l, e ∈ N2)

Proposition 2. The following are valid on alls-frames.

(i) @i@n ⟨C⟩m→ @i([φ!
i
(n,m)]@mBψ ↔ @mB(@nφ→ [φ!i(n,m)]ψ)).

(ii) @i ¬@n ⟨C⟩m→ @i([φ!
i
(n,m)]@mBψ ↔ @mB[φ!i(n,m)]ψ).

(iii) ¬@lm→ @i([φ!
i
(n,m)]@lBψ ↔ @lB[φ!i(n,m)]ψ).

Proposition2 says that, if there is a channel fromn tom in the statei, then the informing
action [φ!i(n,m)] will change the agentm’s belief, but otherwise, the informing action
will not changem’s belief.

5 Running Examples in Dynamic Context

In order to demonstrate that the action[φ!(n,m)] captures our motivation, let us consider
the following three successive inform-actions in Example1 of section3. Suppose that
the current world is(su, su, st) of M1.

(i) Bea informs Ann that Ann will buy a mobile:[(@ANp)!(BE,AN)]
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(ii) Ann informs Bea that Ann believes that she will buy a mobile:[(Bp)!(AN,BE)]

(iii) Bea informs Cate that Ann believes that she will buy a mobile:[(@ANBp)!(BE,CA)]

Recall from Example1 that, at(su, su, st) of M1, Ann does not believe that she will
buy a mobile (¬@ANBp). Recall also that Bea and Cate do not believe that Ann believes
that she will buy a mobile (¬@BEB@ANBp and¬@CAB@ANBp). Let us see each effect
of the inform-actions above one by one.

After the first inform action[(@ANp)!(BE,AN)] (this succeeds, since there is a channel
from Bea to Ann), Ann’s accessible worlds from(su, su, st) becomes{ st }×S×S =
Ra((su, su, st)) ∩ J@ANpKb 1. Therefore, after the first action, Ann changes her belief,
i.e., she now believes that she will buy a mobile (@ANBp).

Since there is a channel from Ann to Bea inM1, the second action[(Bp)!(AN,BE)]
changes Bea’s accessible worlds from(su, su, st) into { st, su } × S × S (note that
the first action does not change Bea’s accessibility relation). After the second inform-
action, Bea changes her belief on Ann , i.e., Bea nowbelievesthat Ann believes that
she will buy a mobile (@BEB@ANBp) at (su, su, st).

Because there is a channel from Bea to Cate inM1, the third action[(@ANBp)!(BE,CA)]
also succeeds in changing Cate’s accessible worlds from(su, su, st) into { st, su } ×
S × S. Then, after the above successive inform-actions, Cate changes her belief on
Ann, i.e., Catebelievesthat Ann believes that she will buy a mobile (@CAB@ANBp) at
(su, su, st). This example demonstrates that, even if there is no direct channel between
Ann and Cate, message passing via channels can change Cate’s belief on Ann.

For comparison, consider the effect of the successive actions above at(su, su, st)
of M2 from Example2 of section3, where there is no channel from Bea to Cate. At this
world of M2, recall from Example2 that Cate still does not believe that Ann believes
that she will buy a mobile (¬@CAB@ANBp). Unlike the case ofM1, the third action
does not succeed in changing Cate’s accessible worlds from(su, su, st). Therefore,
Cate does not change her belief on Ann, i.e., Cate still does not believe that Ann believes
that she will buy a mobile (¬@CAB@ANBp) at (su, su, st).

Example 3(Informing Channels).In our running example, channel relations ofM1

andM2 are rigid, i.e., channel relations are invariant through all elements ofW =
S × S × S. Let us consider non-rigid channels in this example and see an effect of
informing a channel itself between agents. Let us take the following requirement on a
relationship on Bea and Cate: Bea and Cate are friends in Facebook only when they
have the same opinion for deciding to buy a mobile. Following this requirement, define
a new channel relation∼ by: ∼(xa,xb,xc) = { (a, b), (b, a), (b, c), (c, b) } (if xb = xc)
and∼(xa,xb,xc) = { (a, b), (b, a) } (if xb ̸= xc). We defineM3 as the sames-models
except we use∼ instead of≍. Note that channels between Ann and Bea are still rigid.
Throughout this example, we always assume that our current state is(su, su, st). Then,
we can say at(su, su, st) of M3 that Beadoes notbelieve that she has a friend who
will buy a mobile:

M3, ((su, su, st), b) |= ¬B ⟨C⟩ p.

1 Note thatJ@ANpKb = JpKa = { st } × S × S in M1 andRa((su, su, st)) = S × S × S.
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This is because(su, su, st)Rb(su, su, st) and Bea does not have a friend who will buy
a mobile at(su, su, st) of M3 (note that Bea’s belief statesu is different from Cate’s
belief statest).

Suppose that Ann and Cate are not friends in Facebook, but they are so in real life.
Cate told Ann that she will buy a mobile and that she wants to be a friend of Bea in
Facebook. After chatting with Cate, Ann made the following successive inform-actions
in Facebook:

(i) Ann informs of Bea that Cate will buy a mobile:[(@CAp)!(AN,BE)].
(ii) Ann informs of Bea that Cate is a friend of Bea:[(@CA ⟨C⟩BE)!(AN,BE)].

After the first action at(su, su, st) of M3 (note that there is always a channel between
Ann and Bea), Bea’s accessible worlds from(su, su, st) becomeS × S × { st }. Fur-
thermore, the second action will change Bea’s accessible worlds from(su, su, st) into
S × { st } × { st }. After these two actions, Bea can only accesses to the tuple of states
where both Bea and Cate will buy a mobile, i.e., Bea and Cate are friends by our defi-
nition of∼. Therefore, after the above successive inform-action, Bea now believes that
she has a friend who will buy a mobile. That is,

M3, ((su, su, st), b) |= [(@CAp)!(AN,BE)][(@CA ⟨C⟩BE)!(AN,BE)]B ⟨C⟩ p.

In this way, an action of informing a channel itself can also change agents’ belief.■

6 Complete Axiomatizations of Static and Dynamic Logics

6.1 Hilbert-style Axiomatization of Static Logic with Global Assumptions

This section give a complete axiomatization of our intended logic in thestaticsyntax.
If concept namesMother, Father,Parents are inP, it is natural to assume the equiv-

alence(Mother∨Father) ↔ Parents (regarded as ‘TBox’ in description logic [4]). We
want to validate this particular equivalence at all agents and worlds in a givens-model.
In this sense, we call it aglobal assumption. A global assumption could be any formula
of F but it should be regarded as axioms in the level ofs-model but not in the level ofs-
frame. In what follows, we will give a semantic consequence relation and a deducibility
relation of our static syntax under the existence of global assumptions.

Definition 5. Given a setΦ of global assumptions and a classF of s-frames,φ is a
local consequence ofΨ under global assumptionsΦ for F (notation:Φ;Ψ |=F φ) if,
for all F = (W,A,R,≍) ∈ F and all valuationsV onF such that(F, V ) |= Φ holds,
(F, V ), (w, a) |= Ψ implies(F, V ), (w, a) |= φ for all (w, a) ∈W ×A.

Note that we restrict our attention to the set of valuationsV onF such thatΦ is valid on
s-model(F, V ) in this definition.

Let us move to the corresponding proof-theoretic derivability relation toΦ;Ψ |=F φ.
First of all, we do not allow the followinguniform substitutionsto global assumptions.

Definition 6. σ is a uniform substitutionif it is the inductive extension of a mapping
sendingp ∈ P to a formula and a nominal ofNu to a nominal ofNu (u = 1, 2).
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Table 2.Axioms and Rules of Two-dimensional Hybrid Logic for Agent Beliefs via Channels

Modal Axioms
CT all classical tautologies
K □(p → q) → (□p → □q) (□ ∈ {B,C }).

Hybrid Axioms for Nominals and Satisfaction Operators
K@ @α(p → q) → (@αp → @αq), whereα = i orn.
Dual ¬@αp ↔ @α ¬ p, whereα = i orn.
Ref @αα, whereα = i or a.
Intro α ∧ p → @αp, whereα = i orn.
Agree @α@βp → @βp, where(α, β) = (i, j) or (n,m).
BackB @ip → B@ip.
BackC @np → C@np.

Hybrid Axioms for Downarrow Binders
DA1 @j(↓ j. φ ↔ φ[i/j])
DA2 @n(↓ m.φ ↔ φ[n/m])

Interaction Axioms
Com@ @n@ip ↔ @i@np
Red@1 @ia ↔ a
Red@2 @ni ↔ i
DcomB@2 @nBp ↔ @nB@np
DcomC@1 @iCp ↔ @iC@ip

Rules
MP φ → ψ, φ/ψ
Nec□ φ/□φ(□ ∈ {B,C }).
Nec@ φ/@αφ(α ∈ N1 ∪ N2).
Name α → φ/φ, whereα ∈ N1 ∪ N2 does not occur inφ.
BGB @i ⟨B⟩ j → @jφ/@iBφ,wherei, j ∈ N1 andj ̸= i does not appear inφ.
BGC @n ⟨C⟩m → @nφ/@nCφ,wheren,m ∈ N2 andm ̸= n does not appear inφ.

If we allows global assumptions to be closed under uniform substitutions, we can derive
from (Mother∨Father) ↔ Parents that(Woman∨Man) ↔ Parents, which is undesir-
able. On the other hand, we want to allow uniform substitutions to logical axioms such
as tautologies, basic axioms of modal logic. Therefore, in order to incorporate global
assumptions to a deducibility relation, we need to restrict the use of uniform substitu-
tions carefully. First, we define the theoremhood under frame axioms (to capture the
information ofF in Φ;Ψ |=F φ) and global assumptionsΦ, and then define our intended
deducibility relation.

Definition 7. Given any setA of formulas, regarded as theframe axioms, we write
Φ ⊢A φ if φ in the smallest set of formulas that containsΦ and all thesubstitution
instancesof bothA and all the axioms listed in Table2 and is closed under all the
rules of Table2. We say thatφ is derivable fromΨ under global assumptionsΦ and
frame axiomsA (written: Φ;Ψ ⊢A φ) if there is a finite subsetΨ ′ ⊆ Ψ such that
Φ ⊢A

∧
Ψ ′ → φ, where

∧
Ψ ′ is the conjunction of all finite elements ofΨ ′ (if Ψ ′ = ∅,

we define
∧
Ψ ′ := ⊤ ).

Remark that we donot require global assumptionsΦ to be closed under uniform sub-
stitutions in this definition, while we require frame axiomsA and the axioms in Ta-
ble 2 to be closed under uniform substitutions. Therefore,B(φ → ψ) → (Bφ →
Bψ) is derivable (from∅) under any global assumptions and any frame axioms, but
(Woman ∨ Man) ↔ Parents is not derivable(from ∅) under a global assumption
(Mother ∨ Father) ↔ Parents and no frame axioms.
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Definition 8. We say that a setΓ of formulasdefinesa classF of s-frames if, for all
F ∈ F, Γ is valid onF iff F ∈ F.

In what follows in this paper, we denote the class of alls-frames byFall.

Proposition 3 (Soundness).LetA,Φ,Ψ∪{φ } ⊆ F andA defineF. Then,Φ;Ψ ⊢A φ
impliesΦ;Ψ |=F φ. In particular,Φ;Ψ ⊢∅ φ impliesΦ;Ψ |=Fall

φ.

Proof. Let us only check the validity of@nBp ↔ @nB@np. Fix anys-modelM and
any(w, a) of M. Then,M, (w, a) |= @nBp iff M, (w, n) |= Bp iff wRnw

′ implies
M, (w′, n) |= p for all w′ ∈W iff wRnw

′ impliesM, (w′, n) |= @np for all w′ ∈W
iff M, (w, n) |= B@np iff M, (w, a) |= @nB@np, as required. ⊓⊔

Let us say thatφ ∈ F is apure formulaif it does not contain any symbol fromP.

Theorem 1 (Strong Completeness).LetA be a set of pure formulas andA define a
classF of s-frames. Given any setsΦ, Ψ ∪ {φ } ⊆ F , Φ;Ψ |=F φ impliesΦ;Ψ ⊢A φ.
In particular,Φ;Ψ |=Fall

φ impliesΦ;Ψ ⊢∅ φ.

Proof (Sketch).A basic idea of the proof is a combination of completeness arguments
in [5] (to deal with global assumptions) and [6] (to handle two-dimensionality of our
static syntax). We show the contrapositive implication. Let us say thatΨ is (A, Φ)-
consistentif Φ;Ψ ⊬A ⊥. SupposeΦ;Ψ ⊬A φ, i.e.,Ψ ∪ {¬φ } is (A, Φ)-consistent. A
key idea for global assumptions here is to employ the following ‘doubly’@-prefixed for-
mulas: Given any setΣ ⊆ F , we define@Σ := {@i@nφ |φ ∈ Σ and(i, n) ∈ N1 × N2 }.
A subset of@F is called anABox(we followed the terminology of [5]). A maximally
(A, Φ)-consistent ABoxis a⊆-maximal element among(A, Φ)-consistent ABoxes. By
Lindenbaum construction, we use fresh nominals as if Henkin-constants in FOL and
construct a maximally(A, Φ)-consistent ABoxΣ such that@i@nΨ ∪ {¬φ } ⊆ Σ
for some nominals(i, n). Then, we define the Henkin-style canonical modelMΣ =
(WΣ , AΣ , RΣ ,≍Σ , V Σ) consisting of:

– WΣ := { |i| | i ∈ N1 }, where|i| := { j |@i@nj ∈ Σ for somen ∈ N2 }.
– AΣ := { [n] |n ∈ N2 }, where[n] := {m |@i@mj ∈ Σ for somei ∈ N1 }.
– |i|RΣ

[n]|j| iff @i@n ⟨B⟩ j ∈ Σ

– [n] ≍Σ
|i| [m] iff @i@n ⟨C⟩m ∈ Σ.

– (|i|, [n]) ∈ V (φ) iff @i@nφ ∈ Σ (φ ∈ P ∪ N1 ∪ N2).

By @i@nΨ ∪ {¬φ } ⊆ Σ, we can showMΣ , (|i|, [n]) |= Ψ but MΣ , (|i|, [n]) ̸|=
φ (here we need interaction axioms of Table2). By construction, we can assure that
MΣ |= Φ. Moreover,(WΣ , AΣ , RΣ ,≍Σ) is in F, sinceA definesF andA is a set of
pure formulas and all points ofWΣ andAΣ are named by some nominals. Therefore,
Φ;Ψ ̸|=F φ, as required. ⊓⊔

Example 4. (i) A1 = {@n ¬ ⟨C⟩n,@n ⟨C⟩m→ @m ⟨C⟩n } defines irreflexivity and
symmetry of≍w andA2 = {@i ⟨B⟩ i,@i ⟨B⟩ j → @j ⟨B⟩ i, (@i ⟨B⟩ j ∧@j ⟨B⟩ k) → @i ⟨B⟩ k }
defines thatRa is an equivalence relation. By Theorem1, the union of thosepure
axioms provides a complete axiomatization of a hybrid expansion of Facebook
Logic [3].
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(ii) Global axiomsΦ1 = { (Mother ∨ Father) ↔ Parents } assure us that concept name
Parents has an intended definition in the level ofs-model.Φ2 = {@AN ⟨C⟩BE,@BE ⟨C⟩AN }
assure us that we can restrict our attension to thes-models where there are two-way
channels between Ann and Bea. We can augment our logic with global assumptions
Φ1 ∪ Φ2 and frame axiomsA1 ∪ A2 without losing our completeness result. ■

6.2 Complete Axiomatization of Dynamic Logic via Reduction Axioms

Similarly to the static syntax, we define the notions of definability, semantic conse-
quence relationΦ;Ψ |=F φ, etc. also for the setF+ of all formulas in the static syntax
with [φ!i(n,m)]. For simplicity, this section does not consider any frame axioms of Sec-
tion 6.1. Given anyΦ, Ψ ⊆ F+, let us defineΦ;Ψ ⊢+ φ if there exists some finite
subsetΨ ′ such that

∧
Ψ ′ → φ is in the smallest set ofF+ such that it containsΦ, all

reduction axioms of Table1 and all the substitution instances of axioms of Table2 and
that it is closed under all the rules of Table2. Note that we do not require that global
assumptionsΦ and the reduction axioms are closed under uniform substitutions.

Theorem 2 (Strong Completeness).LetΦ ⊆ F be any global assumptions containing
no occurrence ofB. Then, for anyΨ ∪ {φ } ⊆ F+, Φ;Ψ ⊢+ φ iff Φ;Ψ |=Fall

φ.

Proof. Here we only establish the right-to-left direction (completeness), since sounde-
ness follows Proposition1. By reduction axioms of Table1, let us fix a translation
τ : F+ → F such thatφ↔ τ(φ) is valid onFall for all φ ∈ F+. For our goal, let us as-
sume thatΦ;Ψ |=Fall

φ. We can showΦ; t[Ψ ] |=Fall
t(φ) in the syntax ofF as follows.

Take anys-frameF ∈ Fall and any valuationV such thatM |= Φ, whereM = (F, V ).
Moreover, assume thatM, (w, a) |= t[Ψ ]. We need to establishM, (w, a) |= t(φ).
Then, also in the syntax ofF+, we obtainM |= Φ andM, (w, a) |= t[Ψ ], which
implies M, (w, a) |= Ψ by definition of τ . By assumption,M, (w, a) |= φ hence
M, (w, a) |= t(φ), as desired. Then, we can proceed as follows:Φ; t[Ψ ] |=Fall

t(φ)
iff Φ; t[Ψ ] ⊢∅ t(φ) by Proposition3 and Theorem1. By definition of ⊢+ in F+,
Φ; t[Ψ ] ⊢+ t(φ). By the translationτ by reduction axioms, this is equivalent with
Φ;Ψ ⊢+ φ, as required. ⊓⊔

7 Conclusion

In connection with our three requirements: (i), (ii), and (iii) in the introduction, our con-
tribution can be summarized as follows. (i) First, we employed the notion of local an-
nouncement, contrary to thepublicannouncement operator [7], assuming the existence
of channels between agents for the individual announcement. (ii) Next, we proposed
that agents’ communicability should depend on agents’ belief situation. As preceding
works, [8,9] assumed that the social network relations were context-independent. How-
ever, we regarded that communicability might change dependent on environments in
which the agent is embedded. (iii) Finally, we contended that an effect of informing
action at a given state should be valid only on the state. The act of commanding by
Yamada [10] at a given statew required us to change the agent’s other accessible states
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besidesw. We, however, shared the idea of [11], wheretime-dependentcommand was
proposed.

In this paper, we have specified agent communication in rather strict formalisms.
For example, our information transfer may be considered as commanding or forcing,
and no room for alternative belief for each agent. In addition, even though an agent
changed his/her belief, other agents cannot know such belief changes unless there ex-
ists an explicit informing action. Furthermore, a belief change minimally propagates,
dependent on the exact state of the sender agent’s informing action. We admit these set-
tings reflect only an aspect of agent communication; we need to consider the feasibility
of our logic (or its possible extended version, cf. [12]), and the comparison to the other
options is our future work.
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