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Estimation of Observation Error Probability in
Wireless Sensor Networks

Xin He, Xiaobo Zhou, Khoirul Anwar and Tad Matsumoto

Abstract—In this letter, we first of all propose for a parallel
wireless sensor network (WSN) a decoding technique that well
exploits the correlation knowledge of the sensing data to be
transmitted from each sensor to the fusion center (FC). This
letter then derives an algorithm to estimate the observation
error probabilities, representing the correlation, of the links
between the sensing object and sensors. The convergence of
the algorithm is also evaluated. Furthermore, the comparison
of bit-error-rate (BER) performance between two cases, one uses
estimated observation error probabilities, the other assumes the
full knowledge of the observation error probabilities, is made.
The simulation results show that the difference is only around
0.3 − 0.5 dB in per-link signal-to-noise power ratio (SNR),
depending on the number of sensors.

Index Terms—Error Probability, Estimation, CEO problem,
wireless sensor networks, LLR updating function

I. INTRODUCTION

W IRELESS sensor networks (WSNs) composed of a
large number of sensors, deployed in a geographic

area to perform distributed tasks, have been recognized as an
important technology, since WSNs have significant impacts
on the society. In WSNs, each sensor node is required to
work under very low power consumption restrictions when it
performs specified tasks. Therefore, the sensor nodes have to
transmit their data without requiring high transmission power,
and the WSN itself has to be highly energy efficient. A tech-
nique which is effective in reducing the power consumption
is to design the system so that the fusion center (FC) can
well exploit the correlation knowledge among the observed
data, as supported by the Slepian-Wolf theorem [1]. In fact,
the Slepian-Wolf theorem can be used to compress the data
or to reduce the transmission power, assuming the source-
channel separation [2]. Therefore, in this letter, no specific
source encoding technique is assumed.

Distributed source coding schemes for sensor networks
based on the Slepian-Wolf theorem are investigated in a
tutorial article [3]. In practice, most of WSNs aim to observe
the same sensing object, e.g., the sensors monitor the same
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Fig. 1. Structure of the proposed system model.

physical phenomenon. In network information theory, the
problem of estimating the correct data emitted from the target
over noisy observation link can be modeled by the chief
executive officer (CEO) problem [4], as defined in [5]. The
quadratic Gaussian CEO problem is studied in [6], where
it is assumed that the observed data samples are correlated
Gaussian random variables. Rate-distortion function for a
parallel Gaussian CEO model is investigated in [7], where
also successive coding/decoding strategy is briefly introduced.

In [8], a source type identification technique at the FC using
dumb sensors is investigated from the viewpoint of hypothesis
testing. Instead, this letter focus on the coding/decoding tech-
niques of analog-to-digital (A/D)-converted binary sequence;
the k-th sensor’s observation results are A/D-converted with
m-bit resolution, interleaved by interleaver Π, and then trans-
mitted to the FC by using binary-phased-shift-keying (BPSK).
It should be emphasized that the same Π is commonly used by
the M sensors, and the size is equivalent to the m×K, where
K is number of the samples. It plays a crucial role in making
the length mK bit sequence random so that the observation
error can well be represented by the random bit-flipping model
after the interleaver Π. Both static Additive White Gaussian
Noise (AWGN) and Rayleigh fading channels are assumed for
the channels from sensors to the FC.

A technique that utilizes the knowledge of the observation
error probabilities at the FC is proposed in [9]; each sensor
uses parallel concatenated convolutional codes (PCCC) for the
data transmission to the FC, and the extrinsic log-likelihood
ratio (LLR) from the each decoder is combined; and after they
are combined, the extrinsic information of the combiner is fed
back to the each PCCC decoder, weighted by the observation
error probabilities pk, k = 1, · · · ,M . In [10], we propose
a technique to more efficiently utilize the knowledge about
pk than in [9], where the combined output extrinsic LLR is
updated by using so-called fc-function [10]; it is assumed that
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Fig. 2. Proposed decoding strategy for a parallel sensor network.

the pk values are known to the FC.
The major purpose of this letter is to propose a nonnegative

constrained iterative algorithm to estimate the observation
error probabilities for a WSN having an arbitrary number
of sensors. The estimated observation error probabilities are
used in the LLR exchange between the decoders, referred to
as global iteration (GI), utilized in this letter to exploit the
knowledge of pk and thereby to improve the system perfor-
mance. Furthermore, the decoding-complexity is reduced to a
linear order by introducing local iteration (LI) and GI.

The rest of this letter is organized as follows. In Section II,
the system model of the parallel WSN is described. Section
III describes the decoding strategy which well utilizes the cor-
relation knowledge. The proposed error probability estimation
algorithm is detailed in Section IV. The convergence property
of the proposed observation error estimation algorithm and
bit-error-rate (BER) performances are evaluated in Section V.
We conclude this letter in Section VI with some concluding
statements.

II. SYSTEM MODEL

Fig. 1 depicts the model of the parallel WSN system,
investigated in this letter. A set of sensors S produces the error-
corrupted versions of the binary sequence uk, k = 1, · · · ,M ,
obtained after the interleaver Π following the A/D conver-
tor, corresponding to the observed samples generated by the
sensing object. The observations made by the sensors are
correlated, which, as noted above, are modeled by bit-flipping
models with flipping probabilities pk for the sensor k, k =
1, · · · ,M . Let P = [p1, p2, · · · , pM ]T denote the vector sort-
ing the observation error probabilities. The sensor k interleaves
the observed bit sequence uk first, using interleaver Πk,1,
and then encode the interleaved bit sequence Πk,1(uk) with a
channel encoder Ck. The encoded bit sequence ck is further
interleaved by the interleaver Πk,2 and doped-accumulated by
ACC [11] with doping ratio Pd for k = 1, · · · ,M . It should
be noted that the lengths of Πk,1 should not necessarily be
the same as that of Π. Finally, the doped-accumulated bit
sequence is modulated by BPSK and transmitted to the FC
over independent static AWGN channels or Rayleigh fading
channels. As shown in Fig. 1, the signal received from the
k-th sensor can be written as:

yk = hk · sk +wk, (1)

where, hk represents the channel coefficient. The BPSK mod-
ulated symbol sequence at the sensor k is denoted by sk. wk

is a zero mean Gaussian noise sequence with variance σ2 per
dimension.

III. DECODING ALGORITHM

A block diagram of the proposed decoding algorithm is
shown in Fig. 2. It includes LI, which performs the extrinsic
LLR exchange between the decoder ACC−1 of the doped-
accumulator and the channel code decoders Dk, and the GI,
which performs the extrinsic LLR exchange among decoders
Dk. The aim of performing GI is to utilize the correlation
knowledge among the sensors through the LLR updating
function fc [2], as shown in Fig. 2. As we can see in the
BER performance curves presented in Section V, the effect
of performing GI is significant, hence to achieve such large
gain through GI, we need to estimate the observation error
probabilities.

After the LI, a posteriori LLR Lp
uk

of systematic bits
(information part corrupted by the observation error) output
from Dk are fed into the P estimator to obtain the observation
error probabilities pk which can be utilized in fc(·, pk). The
algorithm used in the P estimator is detailed in the next
section. Then, the extrinsic LLR Le

u,k are input into a priori
LLR calculator after performing fc(·, pk) and de-interleaved.
The a priori LLR calculator obtains Lp

u as:

Lp
u =

M∑
k=1

La
u,k =

M∑
k=1

fc[Π
−1
k,1(L

e
uk
), pk]. (2)

As indicated in Fig. 2, the extrinsic LLR fc[L
e
uk
, pk] is

equivalent to a priori LLR La
u,k of the a priori LLR cal-

culator. Hence, La
u,k has to be subtracted from Lp

u. The
interleaved version of Lp

u − La
u,k is input to fc(·, pk) as

fc[Πk,1(L
p
u − La

u,k), pk], and then its output is fed back to
Dk as the a priori LLR, La

uk
= fc[Πk,1(L

p
u − La

u,k), pk].
The LI and GI are performed until no more relevant gain can

be achieved in a posteriori LLR Lp
u,final. Then hard decisions

are made based on Lp
u,final given by:

Lp
u,final =

M∑
k=1

fc[Π
−1
k,1(L

p
uk
), pk]. (3)

It should be noticed that the proposed decoding tech-
nique is equivalent to performing the LLR updating by fc-
function between arbitrary M pairs of the sensors, however,
the computational complexity for decoding is reduced from a
combinatorial order

(
M
2

)
to a linear order M .

IV. ERROR PROBABILITY ESTIMATION ALGORITHM

Because of the fact that all the observations made by the
sensors are correlated, the following pair-wise equations1 hold:

p̂i + p̂j − 2 · p̂i · p̂j = q̂ij ,

where, i = 1 · · ·M,

j = i+ 1 if i = 1 · · ·M − 1,

j = 1 if i = M, (4)

1qij can be understood as the bit error probability of the j(i)-th sensor’s
link, assuming that the i(j)-th sensor’s link is error free. Furthermore, j should
not necessarily be i+1. In this case, according to the selected pairs, the form
the matrix J changes.



3

where following [2],

q̂ij =
1

N

N∑
1

exp(Lp
ui
) + exp(Lp

uj
)

[1 + exp(Lp
ui)] · [1 + exp(Lp

uj )]
. (5)

N represents the number of the a posteriori LLR pairs from
the two decoders with their absolute values larger than a given
threshold T . Since the reliability of q̂ij is influenced by N , it
is very important to choose an appropriate T value. However,
how to determine the optimal T is out of the scope of this
letter.

We can reformulate (4) by introducing the identity matrix
I of size M and a matrix J defined by (7), into the following
form:

[(I+ J)− 2 · diag(P̂) · J] · P̂ = q̂, (6)

where, P̂ = [p̂1, p̂2, · · · , p̂M ]T , and q̂ = [q̂12, q̂23, · · · , q̂M1]
T .

The diag(·) is the operator that forms a diagonal matrix from
its argument vector, and J is denoted as follows:

J =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

1 0 0 0 · · · 0

 . (7)

Now, our objective is to find a nonnegative vector P̂ that
minimizes ∥AP̂− q̂∥2, which is formulated as follows:

min ∥AP̂− q̂∥2

s.t P̂ ≽ 0, (8)

where, A = [(I+ J)− 2 · diag(P̂) · J].
To solve (8), this letter proposes an iterative algorithm

summarized in Algorithm 1. In this algorithm, we use the
standard Nonnegative Least Squares (lsqnonneg) described in
[12], proposed by Lawson and Hanson.

Algorithm 1: P Estimator
Input: q̂, ϵ, Pre-defined maximum iterations ITm

Output: P̂ ≽ 0 such that ∥AP̂− q̂∥2 is minimized.
Initialization: P̂(0) = 0, Calculate A and
∆(0) = ∥AP̂(0) − q̂∥2
for l = 1 to ITm do

Calculate P̂(l) by using lsqnonneg algorithm;
Update A = [(I+ J)− 2 · diag(P̂(l)) · J];
∆(l) = ∥AP̂(l) − q̂∥2;
if ∆(l) ≥ ∆(l − 1) then

Exit For;
end
if ∥P̂(l) − P̂(l−1)∥2 ≤ ϵ then

Exit For;
end

end
P̂ = P̂(l);
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V. PERFORMANCE EVALUATION

A. Convergence Property

Fig. 3 shows the mean square estimation error of the
observation error probability vector P versus the GI times
where one LI was followed by one GI. The code parameters
are the same as in the case of Fig. 4 described in the next
subsection. The results are plotted for sensor number 12 with
per-link SNR and LLR threshold T as parameters.

As shown in Fig. 3, the mean square estimation error |P̂−
P|2 decreases as iteration times increased, indicating that the
more GIs performed, the more accurate the estimate of P.
Furthermore, the rate of convergence depends on the values
of per-link SNR and T , because the values of per-link SNR
and T affect the reliability of q̂ij given by (5).

B. BER Comparison

Fig. 4 illustrates the difference on BER performances be-
tween the case of involving GIs and that of not involving GI. In
this simulation, a half rate memory-1 nonrecursive systematic
convolutional code with the polynomial G = [3, 2]8 was used
for Ck. The doping ratio Pd was set to 1. The observation
error probabilities pk were all set to 0.01, and block length
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Fig. 5. BER performance comparison for different number of sensors.

was 103 bits. We performed 25 GIs for P estimation. The
channels between sensors and the FC are independent AWGN
channels, where the channel coefficient hk = 1. Fig. 5 shows
the BER performances for the cases where P̂ and P are used
at the FC, with the numbers M of sensors as a parameter. The
other transmission parameters are the same as for Fig. 4. In
the observation error probability estimator, T and ϵ were set
to 2 and 10−6, respectively, and the maximum iteration times,
ITm, were set at 20. The channels are assumed to be the same
as in Fig. 4.

The BER performances in the case sensors-FC links suffer
from block Rayleigh fading are shown in Fig. 6. We also
evaluate the gain with GI over without GI in Rayleigh fading
channel. We can still achieve around 4 dB gain when M = 8
at 10−4 BER range. Furthermore, it is found that the BER
curves obtained by using actual P and its estimate P̂ are very
close (around 0.2 dB loss) with each other.

It is found from the figure that the BER performance can
be improved by increasing the number of sensors M . With
M = 4, the error floor can not be reduced to less than 10−4

by increasing per-link SNR, however it can be reduced to less
than 10−6 with M ≥ 7. Nevertheless, we believe that it is
impossible to totally eliminate the error floor, even though
it may happen at a very small BER region. The reason is
because we can not completely eliminate the distortion due to
the observation error, which is common to the CEO problems.
Compared with the case where P is known, only 0.3−0.5 dB
loss in per-link SNR is observed when using estimated P̂,
where the loss depends on M . Furthermore, our proposed
technique has around 1− 3 dB improvement in per-link SNR
compared with the scheme proposed in [9].

VI. CONCLUSION

In this letter, we have investigated for a parallel wireless
sensor network the transmission techniques of data gathered
by multiple sensors to the fusion center. We first proposed
a new algorithm that, instead of exploiting the correlation
knowledge over all the possible combinations of the sensor
pairs, combines the local and the global iterations to avoid
the necessity of heavy computational complexity. We also
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Fig. 6. BER performance in block Rayleigh fading channels.

proposed a nonnegative constrained iterative algorithm to
estimate the observation error probabilities. It has been shown
through simulations that the algorithm converges only after
several iterations. In addition, the results of BER performance
show that the proposed technique using P̂ can achieve only
roughly 0.3 − 0.5 dB loss in per-link SNR compared to the
case actual P is used in static AWGN channel, and 0.2 dB
loss in Rayleigh fading channel.
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