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Abstract

With the improvement in computer graphics (CG), the workload on

creators is increasing to achieve the requirements necessary for the

production of high-quality artwork, images, and movies. To reduce

the time required for the creation of such media, it is necessary to

develop methods that assist creators in their work. In CG, there

are several phases. This dissertation focuses on the shape modeling

phase, looking at the generation of aggregates as a field in need of

assistance. Shape modeling is a creation phase in which objects are

formed for the production of CG. In this phase, there are several op-

erations that currently require intensive manual operations. One of

these operations is the modeling of an aggregate composed of many

components that are nonperiodically arranged. It is difficult to deter-

mine the positions and orientations of many components because of

the complexity of the interrelationship of each component. To reduce

this workload, this dissertation presents three methods for automat-

ically determining the positions and orientations of the components:

generating both 2D and 3D aggregates consisting of arbitrary-shaped

components, and generating an aggregate composed of various-shaped

components. This dissertation focuses on staple fibers as one of the

various-shaped components.

The first method generates a 2D aggregate. To do so, a dart-throwing

method using arbitrary exclusive regions is developed. This method

randomly places a circular exclusive region without overlapping the

placed exclusive regions for Poisson disk distribution. In the proposed

method, the components comprising the aggregate are arranged non-

periodically without any overlaps. This method rapidly generates the

aggregate by filling components in the gaps among already placed

components. By using this method, aggregates of toys, forests, and

leather textures can be generated.



The second method generates a 3D aggregate of piled components.

The inside of a piled aggregate is generally filled. However, the second

proposed method piles components only near the surface of the aggre-

gate and does not fill the inside. This method does not use a physical

simulation to form arbitrary-shaped aggregate because such simula-

tions constrain the shape, and thus the results are limited. While

a physical simulation makes a physically plausible shape, the shape

has to be within the limits of physical existence. In forming various

shapes, an aggregate is generated by a geometric operation without

physical simulation. The first procedure of such a method distributes

components only on the surface of the target aggregate shape. Then,

a pile is constructed by refining the positions of the components. By

this procedure, arbitrary-shaped aggregates, such as a rice ball, are

generated.

The third method generates 3D aggregates composed of staple fibers,

such as a dust ball. A staple fiber is used for making cloth and is

generated daily from our bodies, and dust balls composed of staple

fibers frequently appear; however, it is too difficult to express these

aggregates. Thus, this method generates staple fibers procedurally

using a chain of line segments as a fiber. Here, the curve and length

of a fiber are parameterized and it is easy to change the fiber by

changing the parameters. Thus, varied staple fibers can be generated

without manual operation. Next, an aggregate is generated so that

the generated fibers are converged into the target aggregate shape by

adjusting the positions of the staple fibers. By this method, we can

obtain arbitrary-shaped aggregates composed of staple fibers.

These proposed methods reduce the workload of manual manipulation

for creating objects in CG. Thanks to these methods, creators can

spend their time on more creative work.
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Chapter 1

Introduction

Shape modeling is an indispensable phase in computer graphics (CG), which

produces objects in a computer.

A creator spends a great deal of time in modeling an object. Thus, a method of

assisting creators in rapidly producing CG is desirable. With the aim of reducing

the time required for modeling objects, researchers have proposed numerous shape

modeling methods; however, these methods cannot generate each and every types

of object.

With the aim of assisting shape modeling more effectively, I interviewed three

creators to discover what tasks occupy most of their time. The creators are all

professionals involved in creating commercial and industrial CG, and one is a

winner of a CG contest. In the interview, a creator said “We often create daily

scenes that include many objects. There are many nonperiodic aggregates in

these daily scenes. In 2D aggregates, it is necessary to consider the balance of

gaps and densities of the objects. In representing 3D aggregates, we need to

pile components manually. In addition, we evaluate an aggregate by comparing

variations. Both 2D and 3D aggregates need many manual operations, and we

spend a lot of time on such tasks.” For example, one nonperiodic 3D aggregate is

rice, which appears in daily scenes, as shown in Fig. 1.1. There are many grains

of rice in the picture, and it is exceedingly difficult to manually create such an

aggregate using CG. It would be helpful to be able to automatically generate such

aggregates. The creators commonly prefer optimized tools over a generalized tool.

Therefore, this dissertation proposes two optimized methods for generating 2D

and 3D aggregates.

Here, variations in components for assisting creators are also considered. A

procedural modeling method normally produces many variations. This disserta-
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Figure 1.1: Picture of part of my lunch.

tion will demonstrate a method that produces an aggregate from varied fibers

generated by a procedural modeling method.

Three methods are proposed to automatically generate three types of aggre-

gates. An overview of the methods and the structure of this dissertation are

described in Sections 1.1 and 1.2, respectively. By using these three methods, it

is easy to express various aggregates. The results of the proposed methods are

geometric surfaces, which can be fabricated by a 3D printer, for example, rice

balls shown in Fig. 1.2.

1.1 Overview

The targets of the proposed methods are aggregates composed of 2D and 3D

components, which we frequently see in our daily life. The workload for cre-

ating aggregates can be reduced if automatic aggregate generation methods are

developed. In proposing such useful methods, this dissertation considers con-

trolling the arrangement of these components to obtain the desired aggregates.

The proposed methods generate an aggregate by geometric transformations that

are controlled by parameters used for controlling the arrangement. Nonperiodic
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Figure 1.2: Fabricated rice ball.

arrangements are represented by the Monte Carlo method. Many methods use

physical simulations for realistic representation [20]; however, the proposed meth-

ods do not use physical simulations because the simulations limit the shapes to

physically correct ones.

First, a method for generating a 2D aggregate is presented. For this, an

extension of the dart-throwing method [22] that can place arbitrary shapes is

developed. The calculation time required for exclusive placement is very long,

and so to reduce it, an effective method of placements was developed. The re-

sults produced by this method show that satisfactory nonperiodic arrangements

of arbitrary-shaped components are obtained and that the densities of the ar-

rangements can be controlled. The developed method improves interactivity in

creating 2D aggregates.

Most 3D aggregates consist of components that have been piled up, and each

component touches its neighbors. However, the method used for 2D aggregates

cannot be applied to 3D aggregates because not all components touch their neigh-

bors in the 2D aggregates. This dissertation presents a method that locally con-

structs piles around the arbitrary surface of a target aggregate to generate piled

aggregates. As a result, the required appearances are obtained. The proposed

method removes some of the components used to obtain a 3D aggregate, and

they can be applied to a 2D aggregate; however, this removal procedure is time

consuming for generating 2D aggregates because it increases the process length.

While these methods for 2D and 3D aggregates vary the arrangement of com-

ponents, the shapes of the components are static. In the real world, all compo-

nents have different shapes. Thus, the current methods for generating 2D and

3D aggregates are not sufficient to express variations. To express such variations,
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this dissertation attempts to produce aggregates from objects generated by a pro-

cedural modeling method. A staple fiber is chosen as a modeling target because

there are numerous aggregates composed of staple fibers in our daily life, such

as dust. In addition, fiber modeling is exceedingly difficult because the fiber is

deformable and there are numerous variations in fiber shapes. Therefore, this

dissertation presents a method for generating an aggregate composed of staple

fibers as an example of generating an aggregate procedurally from a scratch. Ex-

isting methods cannot model an aggregate of staple fibers. The proposed method

generates fiber shapes procedurally to produce an aggregate, and then correlates

the generated fibers to form a user-specified shape.

Last, I interviewed two professional groups of creators regarding the usability

and results of the three proposed methods to evaluate them.

1.2 Structure of this dissertation

The structure of this dissertation is organized as follows.

Chapter 2 discusses nonperiodic patterns as related works for generating

aggregates. The chapter consists of five sections. The first section presents a

nonperiodic point set, which is considered to be one of the main nonperiodic

patterns. In addition, an aggregate is a type of nonperiodic pattern. A survey

of the point set is conducted to understand the possible methods for generating

an aggregate. The second and third sections respectively present procedural and

nonparametric approaches for generating an aggregate, and the fourth section

presents a physically-based approach for generating them. Finally, the limitations

of these modeling methods are discussed.

Chapters 3, 4, and 5 present the three proposed methods as described in

Section 1.1. Chapter 3 describes a proposed method for effectively generating

a 2D aggregate after a preliminary experiment is presented for proposing an

effective method. Chapter 4 presents a procedure for modeling a 3D aggregate

and shows objects fabricated from the generated aggregates by means of a 3D

printer. Chapter 5 proposes a method for generating an aggregate composed

of staple fibers. This chapter shows variations in fibers generated by procedural

modeling and aggregates composed of these fibers. The evaluation section in each

chapter presents interviews with creators.

Chapter 6 summarizes what was achieved in this dissertation and discuss

the limitations of the methods. Finally, I conclude this dissertation by describing

areas for future research.



Chapter 2

Related Work

This chapter surveys two previous study fields; the nonperiodic point set and

generation of objects.

Section 2.1 presents a study of the nonperiodic point set. In this study,

methods to distribute and analyze a nonperiodic point set are explored. The

oldest method [22] for the distribution of the nonperiodic point set produces

enough quality results; however, the calculation cost is high. Thereafter, many

researchers have focused on more effective distribution methods for the nonperi-

odic point set. Ordinarily, controllability of point distribution has been desired

for practical use. This study aims to generate a nonperiodic aggregate, and there

is common knowledge to arrange the components comprising an aggregate.

Sections 2.2, 2.3, and 2.4 present studies of the generation of objects. Control-

lability comes before computation cost in these studies, and it is more important

to express desired objects than to propose effective calculations. In the generation

of objects, there are three approaches for generating aggregates: procedural mod-

eling, nonparametric modeling, and physically-based modeling. The procedural

modeling approach, which is described in Section 2.2, automatically generates

aggregates from specified parameters. The nonparametric modeling approach,

which is described in Section 2.3, directly specifies characteristics for generating

aggregates such as objects and structures. Physically-based modeling, which is

described in Section 2.4, produces aggregates by means of a physical simulation.

The objective of several previous methods is similar to that of this study;

however, they all have limitations, as discussed in Section 2.5.
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Figure 2.1: Poisson disk distribution.

2.1 Point Set

The simplest nonperiodic point set is given by random distribution, which is called

Poisson distribution. The distributed points depend on only random function and

the specified density of the points. Poisson distribution is simple, but has not

been investigated in depth.

On the other hand, Poisson disk distribution has been explored in depth.

Poisson disk distribution generates a point set in which a point keeps a specified

distance from its neighboring points. The appearance of the generated point set

is isotropic, as shown in Fig. 2.1. Each point has a circular region whose radius is

r, the point is located at the center of the circular region, and there is no collision

among any of the circular regions in the point set. The point set is widely used

for the distribution of objects [60], rendering [96], procedural modeling [100], and

so on.

To implement a distribution method, there are two major approaches: dart

throwing and relaxation. Dart-throwing methods deterministically place points

[22]. These methods place a circular region with a radius of 2r at a placed

point, as shown in Fig. 2.2 (a). The solid-line circle and the broken-line circle

in this figure indicate the outlines of circular regions, whose radii are r and 2r,
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(a) Point with Circular region. (b) Dart throwing.

Figure 2.2: Dart throwing.

respectively. A random function specifies the position of the point. The point is

placed if the specified position is located outside already placed circular regions.

Otherwise, the point is not placed at that position. These methods iteratively

place a point until a termination condition is satisfied. In the result, there is no

collision among placed circular regions (solid-line circles), as shown in Fig. 2.2

(b). Details of dart-throwing methods are described in Section 2.1.1.

The relaxation methods refine the positions of placed points to obtain ideal

distribution. To refine the positions appropriately, most of the methods apply

minimized energy functions, which indicate the difference between the ideal con-

dition and condition of the placed point set. Details of relaxation methods are

presented in Section 2.1.2.

There are effective methods that use a Wang tile [115] for generating a Poisson

disk distribution [58, 60, 61]. The Wang tile effectively generates a nonperiodic

pattern by tiling square patches. A point set is rapidly generated by preparing

patches that contain distributed points.

In Section 2.1.3, spectral analyses are presented to evaluate the properties of a

point set, which indicate the conditions of related positions among placed points.

2.1.1 Dart-Throwing Method

The first implementation of the dart-throwing method was proposed by Cook

[22]. In this method, random positions are initially prepared as a lookup table.

A position in the lookup table is discarded if the position is closer than a specified

distance from already placed positions. The positions remaining in the lookup
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table are a point set of the Poisson disk distribution. The Poisson disk distribution

can be obtained in a straightforward manner; however, the method involves a high

calculation cost because of the large size of the lookup table required for filling

the region with placing points.

McCool and Fiume proposed a method called the relaxation-dart-throwing

method [75]. In this method, points are placed within a circular region of large

radius initially, and the radius is gradually reduced in order to place a large

number of points. Points are preferentially filled into large gaps among placed

points because a large circle is placed into only large gaps among placed circles.

The results of the method show a certain number of points are placed, and this

ensures stable sampling. In addition, the distribution of a generated point set has

more isotropy than Cook’s method. However, the procedure converges a point

set to partially hexagonal periodic patterns [33, 75].

One drawback of all of above methods is that the calculation times are long.

To reduce the calculation time, researchers have proposed adopting more effective

methods such as sequential methods (Section 2.1.1.1), parallel methods (Section

2.1.1.2), and other methods (Section 2.1.1.3).

In addition, there is a method that focuses on the color of placed points.

Most Poisson disk distribution methods place a point set without considering the

colors of the placed points. In contrast, Wei proposed a dart-throwing method

that considers the colors [118]. A set of points having the same color is called a

class. Wei’s method places a point set having multiple classes, as shown in Fig.

2.3. The distributed points in each class (Figs. 2.3 (b) and (c)) and the amount

of both classes (Fig. 2.3 (a)) are isotropic. The method adjusts radius r of a

circular region and the mixture ratios of the dart-throwing method for each class

in order to place the point set.

2.1.1.1 Sequential Method

Mitchell proposed an effective dart-throwing whose calculation cost is O(N2)

[76]. The termination condition of Cook’s method [22] is that a specified region

is filled with circular regions; however, the termination condition is unexpected

because the position of a placing point is randomly chosen. In contrast, the

method proposed by Mitchell has an obvious termination condition. Until the

desired number of placed points reaches a specified number, points are placed

by the following two-step iteration. In the first step, several random points are

scattered. In the second step, the closest point having the furthest distance from
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(a) Total set. (b) Class red. (c) Class green.

Figure 2.3: Point set of multiple classes of the Wei method [118]. Total set and
each class.

Figure 2.4: Available region of the Jones method [49].

already placed points is placed in the scattered points. Jones proposed a method

having a lower calculation cost than the above-mentioned methods [49]. This

method runs in O(NlogN) time for N points by reducing the available regions

in which points can be placed. In the iteration of placement, a point is randomly

placed in the available regions. An available region is an intersection of the

outside of its circular region and the inside of its Voronoi cell, as shown in Fig.

2.4. Here, black points indicate placed points, green regions indicate available

regions, and white regions indicate the union of circular regions with radii of 2r.

Dunbar and Humphreys also proposed a low-calculation cost method [28]. In

order to run in O(NlogN), this method reduces available regions by specifying

them using a scalloped sector, which is a sector bounded by circular arcs above

and below, as shown in Fig 2.5 (a). The black point indicates a placed point,
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(a) Single point. (b) With placed neighbor.

Figure 2.5: Available region of Dunbar and Humphreys’ method [28].

and the violet, red, and green regions indicate circular regions with radii of r,

2r, and 4r, respectively. The green region is an available region. Figure 2.5 (b)

shows that the available region is reduced after one neighboring point is placed.

As a result, the calculation time is approximately O(N). Bridson proposed an

appropriate grid for distribution [17] in which the diagonal of each cell is r;

therefore, the cell size is bounded by r/
√
n in n-dimension. Using an appropriate

grid, at most one point is placed in a cell. Therefore, there is one point or no

point in a cell. A cell that contains a point and its neighboring cells are flagged

to indicate that an entire cell or a part of a cell is inside a circular region. The

method detects conflicts among circular regions by checking only flagged cells;

hence, the calculation cost is low. An appropriate grid is used by other methods

[14, 29, 117]. Gamito and Maddock proposed an effective method that places

points outside of placed circular regions [35]. In addition, the calculation cost is

O(NlogN). Ebeida et al. used an appropriate grid optimized to run in a low

calculation time, O(N) [29]. This method requires a lower memory resource than

the above-mentioned methods. In addition, it effectively produces a point set in

arbitrary-shaped available regions.

The above sequential methods reduce the calculation costs by limiting avail-

able regions or the size of the lookup table.

2.1.1.2 Parallel Method

Wei proposed a parallel calculation method for Poisson disk distribution [117].

This method places point sets on appropriate grids [17] at multiple resolutions
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using a graphics processing unit (GPU). In addition, the method can adaptively

distribute points in different spatial densities by adapting the radii of the circular

regions in the dart-throwing method. This parallel method runs faster than

sequential algorithms.

Bowers et al. extended Wei’s method [117] for isotropic sampling on a three-

dimensional (3D) surface [14]. Similar to Wei’s method, the method of Bowers et

al. divides a 3D surface into appropriate grids on geodesic distance. In general,

the geodesic distance is calculated by a sequential algorithm [77, 108] consisting

of two steps: (1) finding the shortest path on the surface of a 3D mesh, and (2)

searching the geodesic distance between the vertices of the shortest path. How-

ever, parallelization is needed for estimating geodesic distances when applying

Wei’s method to a 3D surface. Bowers et al. proposed a method for approx-

imating the geodesic distance dg between two points p1 and p2 without using

sequential methods. This approximation method can calculate dg in random or-

der; therefore, it can be parallelized. The method assumes that there is a smooth

curve on the surface that passes through p1 and p2, and dg is estimated as the

length of the smooth curve. The smooth curve is defined by interpolating two

cosine angles obtained from normals n1 and n2 at p1 and p2 on the surface. The

method estimates dg by calculating the direct integral of the smooth curve, as

given by Eq. 2.1:

dg =

∫ 1

0

de√
1− {(1− t)c1 − tc2}2

dt, (2.1)

where de = ||p2−p1||, v = (p2−p1)/de, c1 = n1 ·v, and c2 = n2 ·v. This method

also runs faster than sequential algorithms by parallelization.

Xiang et al. proposed another parallel method for generating a point set using

a geodesic distance metric [125], which directly implements Cook’s method [22].

The parallel method generates a lookup table using the point-distribution method

on a surface [84]. A thread in a GPU chooses a point on the lookup table, and

determines whether the chosen point can be placed.

2.1.1.3 Other Methods

Ostromoukhov produced effective calculations using tiles to reduce the available

regions in which points can be placed. One of his papers presents a method for

generating a point set given an importance density [86]. The plane on which

points are placed is hierarchically subdivided into Penrose tiling to create suf-
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ficient sample points, which are numbered using the Fibonacci number system.

These numbers are used to set the threshold value for the samples against the

local value of the importance density. By using Penrose tiling, the distribution

of a point set is isotropic and random. In addition, another method based on

self-similar tiling of a plane or the surface of a sphere with polyominoes [85] has

been proposed for hierarchical importance sampling. Sampling points are associ-

ated with polyominoes, one point per polyomino. Each polyomino is recursively

subdivided until the desired local density of samples is reached. A numerical code

generated during the subdivision process is used for determining a threshold to

accept or reject the sample. The exact position of the sampling point within

the polyomino is determined according to a structural index that indicates the

polyomino local neighborhood. The variety of structural indices and associated

sampling point positions are computed during the offline optimization process,

and then tabulated. Consequently, the sampling is extremely fast because the

calculation cost for constructing the graph is low.

2.1.2 Relaxation Method

In the method proposed by McCool and Fiume [75], first, Lloyd relaxation [70]

using a Voronoi diagram is introduced after the relaxation-dart-throwing method.

This relaxation has an iteration process consisting of three steps. In the first step,

a Voronoi diagram is constructed from already placed points as sites, and these

sites divide a plane into Voronoi cells. Any positions in a Voronoi cell are closer

to its site than other sites. In the second step, the centroid of every Voronoi

cell is calculated. In the final step, every placed point is moved to the centroid

of its Voronoi cell. The points are iteratively moved until every point is located

on the centroid of its Voronoi cell. The point set generated by relaxation has

a strong isotropy because each placed point is constrained so as to maintain a

specific relative distance from each of its neighbors. In applications such as gen-

erating mosaics [23, 55] and remeshing [1, 64, 68], the relaxation method is called

centroidal Voronoi tessellation or centroidal Voronoi diagram. A drawback of the

relaxation method is that the randomness of sampling decreases because regular

hexagonal lattices are produced. Balzer et al. proposed the capacity-constrained

point-distribution method in order to avoid this drawback [4]. This distribution

method applies a capacity-constrained method to a centroidal Voronoi diagram.

In constructing the Voronoi diagram, each cell is constrained so that its area is

uniform. This method produces a point set by the center of each cell as a point.
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Because the areas of the cells are uniform, the density of the placed points in the

cells is also homogeneous.

As another approach, methods that move points as particles along formulated

energies have been proposed. Fattal presented an approach for generating a

point set using a statistical mechanics interacting particle model [33]. To control

randomness of placed points, the formulation of the particle model unifies the

randomness with the requirement for equal distance between points, as shown in

Fig. 2.6. He assumed that each point is equally important and assigns an equal

amount of matter, for example integrated density, to every kernel as a formulated

function. The kernel converges the average point density on target density ρ(x),

where x is a point in Ω ⊂ Rd and Ω is the domain of interest. The j-th kernel

centered around the point xj is defined by Eq. 2.2:

K(x,xj) =
1

σ(xj)d
φ(
||x− xj||
σ(xj)

), (2.2)

where σ(x) = −d
√
ρ(x). Then, point density at x is approximated by Eq. 2.3:

A(x) =
n∑
j=1

K(x,xj). (2.3)

Error of point density E is defined by Eq. 2.4:

E =

∫
Ω

|A(x)− ρ(x)|dx. (2.4)

This process uses the Langevin method [38] to produce a new configuration

by altering a single point so that E is minimized.

For distributing arbitrary-shaped components, Hiller et al. proposed an ex-

tension of the centroidal Voronoi diagram [42]. The method iteratively moves

placed components. An ideal distribution lets components spread over their re-

gion. Because the boundary of a component maintains a distance from those of

its neighbors, the appearance of distributed components is homogenous. In this

method, in the first step, a Voronoi diagram is constructed form the components

as sites. A Voronoi cell includes a position set of the nearest neighbors from the

boundary of a component. In the second step, the component is rotated along

its inertia axis so that the main inertia axis is oriented to the largest eigenvector

(orientation of the longest diagonal) of the cell. By iterating these steps, an ideal

distribution is obtained, as shown in Fig. 2.7.



14

(a) Low randomness. (b) Middle randomness. (c) High randomness.

Figure 2.6: Point set using particle system [33].

(a) Initial condition. (b) After 150 iteration.

Figure 2.7: Centroidal Voronoi diagram for line segment [42].
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2.1.3 Analysis of Point Set

To date, distribution properties of point sets have been analyzed using several

methods. Robinson evaluated regular lattices using a Fourier transform [98];

however, only periodic point sets were considered. Dippe and Wold [26] analyzed

the distribution of stochastic sampling, which evaluates relative distances between

points. Ulichnev [113] used spectra for expressing the properties of a point set.

In general, the spectra of a point set s, which is composed of n points, is defined

by Eq. 2.6:

F (f) =
n−1∑
k=0

e−2πi(f ·s), (2.5)

where f is a frequency vector. The power spectrum P (f) is derived from the

spectra and periodogram [6] as given by Eq. 2.6:

P (f) = |F (f)|2 = Pr(f) + Pi(f), (2.6)

Pr(f) = (
n−1∑
k=0

cos(2πf · s))2/n,

Pi(f) = (
n−1∑
k=0

sin(2πf · s))2/n.

The spectra is based on a periodogram that is the squared magnitude of the

Fourier transform. This spectrum is still used, and most papers that evaluate

the spectra of a point set use Ulichnev’s analysis method. However, there is a

drawback to this analysis method, i.e., it is not applicable to adaptive sampling.

In order to evaluate adaptive sampling, Wei and Wang [121] developed an analysis

method that uses a distance metric to the point density around each point.

The above analysis methods have been applied to halftoning [36, 37, 114] to

ascertain the qualities of their results.

2.2 Procedural Modeling

Procedural modeling generates geometry and color from numerical parameters

or contexts. Noise-based texturing functions are well-known techniques and are

widely used to represent natural objects that have diverse colors and shapes such

as the surfaces of bubbles and oceans [30, 91], as shown in Fig. 2.8. In addition,

there are procedural modeling methods with context for modeling structural ob-
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(a) Bubble. (b) Ocean.

Figure 2.8: Noise-based texturing of Perlin [91].

jects such as buildings [13, 81, 82, 122], cities [19, 90, 112], and trees [8]. However,

these methods cannot generate an aggregate.

On the other hand, there are procedural modeling methods for generating an

aggregate. Discrete components comprising the aggregate are frequently gener-

ated by constructing a controllable graph or curves. In other words, an algorithm

consists of two phases: 1) controlling graphs or curves and 2) generating target

components from them.

In general, a graph consists of nodes and links. In computer graphics, nodes

have positions; therefore, links and cycles (also called circuits or polygons in graph

theory) represent line segments and regions, respectively. Procedural modeling

uses the links and cycles to generate discrete components. Miyata generated

stone wall patterns [78]. His method generates cycles along lengths in speci-

fied ranges so that stones are piled up. Then, the method subdivides the links

and provides noise in order to obtain jittered edges to the stones. Finally, 3D

stone shapes are added into the graph. The result is composed of individual

stones. Worley generated a graph with cells that have variations for general 2D

and 3D textures. [123]. The graph is constructed of distance metric and ran-

dom distributed points. Cell regions are defined by a specified distance metric

from the distributed points, as shown in Fig. 2.9. Itoh et al. generated or-

ganic patterns considering anisotropic directions using an anisotropic graph [48].

The patterns are constructed by a pseudo-Voronoi diagram, which is constructed

from anisotropic points. The anisotropic points are distributed by a particle sys-

tem having anisotropy. Peytavie et al. stacked nonperiodic 3D stones using a
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Figure 2.9: Cellular texturing of Worley [123].

(a) Specified aggregate shape. (b) Extracted stone.

Figure 2.10: Stone aggregate of Peytavie et al. [92].

Voronoi diagram [92]. To construct nonperiodic stone piles, this method uses

Wang tiling of Voronoi cells. The stone shapes are simulated by erosion simu-

lation considering the contact points between neighboring stones. The method

extracts an arbitrary-shaped aggregate from generated stones, as shown in Fig.

2.10. Sakurai and Miyata represented piles of stones using a physical simula-

tion [103]. The stones are generated by 3D Voronoi diagrams, and the sites are

generated by a 3D Poisson disk distribution. The generated sites are isotropic

points, and the distances between neighbors depend on the radius of the sphere

for Poisson disk distribution. The size of the Voronoi cell can be controlled by

changing the radius because the cell size depends on the distances between sites.
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Kita and Miyata generated mosaic patterns so that placed stones are arranged

along specified stream lines [57]. This method controls the orientations of stones

using directions on a flow field.

Nowadays, procedural modeling methods are used for not only imagery or

movies but also industrial products such as synthetic leather sheets [72, 73, 74]

and wall-papers [101, 102] because procedural modeling methods rapidly generate

variations of desired objects.

2.3 Nonparametric Modeling Approach

An inherent limitation of procedural modeling methods is that they generate only

specific objects. To reduce this limitation, researchers have proposed nonpara-

metric modeling in which users directly specify an intended shape. There are

several approaches for nonparametric modeling such as sketch-based [109, 110],

capturing shapes from real objects [7, 11, 88], editing shapes [16], mesh filters

[21], and generating variations [52, 56, 111, 126, 127]. These methods do not con-

sider aggregates composed of discrete components. On the other hand, texture

synthesis methods, placement methods, and physically-based modeling methods

can generate an aggregate.

2.3.1 Texture Synthesis

Example-based texture synthesis methods generate a large-scale texture from

parts of small exemplars as input images. The generated large texture has a pat-

tern similar to the exemplars. This approach lets users directly specify patterns

using exemplars.

There are two approaches to texture synthesis: pixel-based and patch-based

approaches [119]. The pixel-based approach considers the area around a pixel for

synthesis. A texture is synthesized by finding and copying pixels that have the

most similar local neighborhoods [3, 31, 32, 63, 120].

On the other hand, the patch-based approach considers appropriate regions

for synthesis. To reduce the artifact of appearance, most methods using this

approach extract boundaries of discrete components. Praun et al. constructed

a texture from user-specified regions of texture [94]. Although this method does

not automatically extract discrete components, it synthesizes the boundaries for

representing discrete components. Dischler et al. automatically extracted the

distribution by color quantization of input texture images to place user-specified
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(a) Input and arrangement. (b) Synthesized texture.

Figure 2.11: Texture synthesis of Hurtut et al. [45].

discrete components [27]. This method considers the boundaries for representing

discrete components. Kwatra et al. used a graph cut to automatically find bound-

aries from a specified texture [59]. The method considers only the boundaries of

patches comprised of components, although it does not consider individual com-

ponents. Wu and Yu maintained boundaries by detecting strong edges in an input

texture [124]. The results of this method show smoother boundaries of compo-

nents than those of a previous method [59]. Barla et al. extracted meaningful

shapes of patterns to detect discrete components [5]. The target of this method

is a sparse texture in which gaps exist among neighbor components. The compo-

nents are classified by Hausdorff distances. To calculate the Hausdorff distance,

a center and two eigenvectors of components are extracted. In generating a new

texture, the components are arranged by a centroidal Voronoi diagram. Ijiri et

al. arranged components from the referred component arrangements in an input

texture [46]. In the arrangements, a placing component is determined from the

relation of its neighboring components. By editing neighboring links, the results

of the method are changed. Hurtut et al. arranged components drawn by strokes

whose arrangement is similar to the specified texture [45]. The method consists of

an analysis and a synthesis of 2D arrangements of the components. The analysis

uses a method that classifies shapes using a histogram of the texton properties in

the input texture [24]. The analysis method is called the contrario method in the

computer vision field. The synthesis iteratively rearranges classified components

along the probability density points of the input. The results of this method show

similar textures to the inputs, as shown in Fig. 2.11. Liu et al. synthesized a
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(a) Input. (b) Synthesized texture.

Figure 2.12: Texture synthesis of Ma et al. [71].

distribution and components from two different textures [69]. To extract the dis-

tribution and the components, this method also uses texton analysis. In addition,

a texton is used for adding its component. A method that adds components with

their textons [63] is applied to discrete components. However, these methods are

not able to maintain the boundaries of individual discrete components. In order

to maintain boundaries, Ma et al. generated new textures or aggregates from an

input texture that included user-specified sample points [71]. The method eval-

uates the relative distances between sample points in the input texture. In the

new texture, the relative distances of the distributed points are approximated to

those of the input texture. The relative distances of the result are similar to those

of input components, as shown in Fig. 2.12. However, preparing an aggregate is

time consuming.

2.3.2 Placement

Placement methods that generate textures or aggregates by distributing com-

ponents have been proposed. Unlike the texture synthesis methods, the aim

of placement methods is to generate desired pictures or positioning and not a

large texture. The placement methods use discrete components as input. This

approach has frequently appeared in non-photorealistic rendering and modeling

fields, particularly as representations of packing and mosaic.

Miyata et al. proposed a method that packs a square cell into a specified

region to generate a pavement [79]. The position and orientation of the square

cell are determined by a bubble mesh method and a specified direction field
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in the specified region, respectively. As another solution, Hausner [41] used a

centroidal Voronoi diagram for positioning square cells. To arrange the edges of

square cells, the centroids of the cells are changed in iteration so that they avoid

specified curves. Di Blasi and Gallo arranged rectangle components along offset

curves as a directional guideline for determining the directions of the components

[25]. In their method, to obtain a mosaic appearance, overlapped regions are

removed from the components. Orchard and Kaplan [83] extended this method

[25] to construct a mosaic of arbitrary-shaped components.

Kim and Pellacini proposed a method for generating a picture consisting of

arbitrary-shaped components [55]. In their method, a centroidal Voronoi diagram

determines the initial positions of components, and then the components are de-

formed to reduce gaps and overlaps among components. However, the centroidal

Voronoi diagram is not suitable for generating dense aggregates composed of long

components because large gaps occur in a generated aggregate composed of long

components. In order to place the long components, Smith et al. proposed a

method called animosaics [106] that uses an area-based Voronoi diagram [42] to

determine the appropriate position and orientation of the components. Dalal et

al. proposed a packing method [23] that extends a Jigsaw mosaic to reduce over-

lapping mosaic components [55]. This method rotates the components so that

the summation of distances between component boundaries is minimized.

Gal et al. proposed a method called 3D collage for generating an aggregate

composed of arbitrary-shaped components so that the components approximate

the shape of the target aggregate [34]. The approximation mainly considers fitting

the surface of the target aggregate with the surfaces of components, as shown in

Fig. 2.13. Thus, this method arranges components and does not pile them on

the surface of an aggregate.

Lagae and Dutre determined the positions of components by Poisson disk

distribution [60]. By controlling the radius of the distribution, components of

any size are distributed without overlapping, as shown in Fig. 2.14. However,

the method is not suitable for long or concave shaped components because large

gaps may occur among the placed components.

Kaplan and Salesin proposed a method for periodically tiling arbitrary-shaped

components of the same type [53]. The tiling method deforms the components

using the knowledge of periodic patterns [39]. According to this knowledge, any

tiling component can be partitioned into precisely 93 combinatorial types. From

the combinatorial types, the method parameterizes a component into 45 geo-

metric parameterizations. Using parameterizations, the tiling method generates
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(a) Specified aggregate shape. (b) Generated aggregate.

Figure 2.13: 3D collage of Gal et al. [34].

Figure 2.14: Distribution of component of Lagae and Dutre [60].
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a patch of the periodic pattern. In the tiling method, components are packed

without controlling their positions and orientations and the results are determin-

istically generated. In addition, they extended two types of components [54] in

the same manner. The extended method adds parameterizations to tile two types

of components.

2.4 Physically-based Modeling

Using physical simulation, some methods are capable of generating aggregates

that consist of a large number of objects [66, 80]. Various methods have been

proposed for easily generating the desired piles using a guide that specifies the

shape of an aggregate [20, 44]. However, these methods might generate periodic

arrangements using components of isotropic and near-isotropic shapes. In addi-

tion, the position of each component is unstable if conflicts among components

occur, and it is difficult to determine the termination condition of the simulation.

Although the simulation is appropriate in representing dynamics, it is not suit-

able for determining the layout of nonperiodic aggregates because it is difficult

to create an intended aggregate by only specifying the physical parameters.

2.5 Discussion

In the above methods, the aims of the three methods proposed by Lagae and

Dutre [60], Gal et al. [34] and Ma et al. [71] are similar those of this study. Their

methods generate aggregate composed of arbitrary-shaped discrete components.

However, there are differences in the targets and characteristics in these meth-

ods. Table 2.1 compares the characteristics of these methods and three methods

proposed in this study. Each column indicates one method. The “2D agg.”,

“3D agg.”, and “Pile” rows show the characteristics of generated aggregates. A

method marked “2D agg.” and “3D agg.” rows can generate 2D and 3D ag-

gregates, respectively. A method checked “Pile” row can generate an aggregate

so that the components are piled up. A “Dens.” row presents controllability of

density of aggregates. A method marked “Arb.” row lets the user to arbitrarily

specify the shapes of components. In a method checked “Easy,” it is unnecessary

to prepare an aggregate exemplar as an input.

The aim of the method of Lagae and Dutre [60] is to procedurally generate

a 2D texture in which the components do not overlap each other. The size and
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Table 2.1: Comparison of characteristics.
√

indicates the available characteris-
tics. agg., dens., and arb., are abbreviations for aggregate, density, and arbitrary
components, respectively.

2D agg. 3D agg. Pile Dens. Arb. Easy
Lagae et al. [60]

√ √ √

Gal et al. [34]
√ √ √ √

Ma et al. [71]
√ √ √ √ √

My 2D
√ √ √ √

My 3D
√ √ √ √ √

My Staple
√ √ √

orientation of the components can be easily manipulated. The method can be ap-

plied to real-time applications by effective Poisson disk distribution. In essence,

the method is supported by a distribution method based on the Wang tile. Pois-

son disk distribution maintains a minimum specified distance between neighbors.

Components are placed at a position so that the outline of the component is inside

the circular region. Thus, a component does not touch neighboring components.

In addition, the orientations of components can be changed to any direction in-

side their circular regions. The study by Lagae and Dutre [60] shows generated

aggregates composed of discrete components; however, large gaps occur in the

results because of placing long components as the circular region includes large

voids. This dissertation will show these results in Chapter 3. In a centroidal

Voronoi diagram, the same problem occurs because a Voronoi cell tends to shape

an isotropic convex hull that resembles a circular region. To reduce the gaps, this

dissertation considers generating aggregate composed of long and concave-shaped

components. In addition, relaxation algorithms yield homogenous gaps [4, 42].

However, conflicts among placed components may occur.

Gal et al. proposed a 3D collage method [34] in which the surface of a user-

specified target shape is approximated by those of the components. In the place-

ment process, the position, orientation, and type of a component are determined

without considering arrangement. In contrast, the proposed method generates

nonperiodic arrangements and the appearance of piles without large gaps as de-

scribed in Chapter 4.

Ma et al. generated a large aggregate from user-specified aggregates [71]. The

problem with the method is the need to prepare a small aggregate, which requires

tedious manual operation. The range of searching number for neighbors is 3N to

7N in N dimension. Thus, the user needs to prepare an aggregate that includes
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(a) Example of Ma et al. [71]. (b) Aggregate constructed by my-
self in 90 min.

Figure 2.15: Small aggregates for generating large aggregates.

at least 3N neighbors. However, the number of searching neighbors depends on

the shapes of the components and their arrangement; therefore, it is not obvious.

I attempted to create a similar exemplar in this paper, as shown in Fig. 2.15 (a).

Fifty-three bananas appear in the screen space. Here assumes the aggregate as a

cube, and the camera view is diagonally upward. One face has approximately 18

bananas, and one edge has approximately four bananas. Therefore, the aggregate

as a whole has approximately 70 bananas.

It is too difficult to manually create an aggregate as an input for the method

of Ma et al. [71]. I could not create an adequate aggregate within 90 minutes

because it is too difficult to adjust the positions and orientations of components,

as shown in Fig. 2.15 (b). To avoid these tedious operations, the proposed

methods do not require constructing exemplars.



Chapter 3

2D Aggregate Generation

Method

This chapter presents a method for modeling nonperiodic aggregates composed

of arbitrary components in a two-dimensional (2D) plane. The method effec-

tively generates a dense aggregate from the components to be arranged. In this

method, exclusive regions on behalf of the components’ regions are nonperiodi-

cally arranged without overlapping of the exclusive regions. The exclusive regions

are inputs for this method, which nonperiodically distributes instances of the ex-

clusive regions without overlapping. A transformation matrix is used to represent

positions, orientations, and scaling of the instances. The method outputs these

transformation matrices. An aggregate is generated by transforming components

using these transformation matrices. The density of an aggregate depends on the

shapes of the exclusive regions. To date, Poisson disk distribution has been used

to generate nonperiodic aggregates; however, this approach creates large gaps

among components. Dense aggregates of arbitrary components can be generated

by using a dart-throwing method; however, this approach is time consuming. To

improve the usability for creators, it is necessary to reduce the calculation time.

This chapter presents a method that fills the gaps with components to reduce the

calculation time. To effectively fill these gaps, the proposed method quantifies

the gaps and finds additional positions for the components. This study showed

that this method is more effective than the dart-throwing method. In addition,

examples using 2D- and three-dimensional (3D) components are shown to confirm

that the proposed method is generic.
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(a) Previous method (16 components). (b) The proposed method (224 components).

Figure 3.1: Comparison of results.

3.1 Introduction

Nonperiodic aggregates of components are common in daily life and in natural

phenomena such as toys on a table and cristae on a leather-textured surface. Ag-

gregates are often represented by computer graphics, but creating and manually

controlling the arrangement of the components are tedious. To reduce this time-

consuming work, a method to generate a layout of the components is needed.

Aggregates in daily life or natural phenomena have periodic (lattice) or nonpe-

riodic arrangements. In this study, only the nonperiodic arrangement [104] is

considered because it is easy to create periodic arrangements by placing compo-

nents using placement rules and mathematical functions. The goal of this study

is to effectively generate nonperiodic aggregates of arbitrary components without

overlapping the components in a 2D plane. To achieve this goal, the proposed

method utilizes to the dart-throwing method [22]that is used for Poisson disk dis-

tribution, which uniformly places points. Each point has a circular region with

its center located at a point that avoids overlapping other circular regions. The

dart-throwing method controls the layout of the distributed points by deforming

the circular regions [65], and it is applied to randomly distribute components. To

control the layout, the proposed method uses arbitrary-shaped regions called as

“exclusive regions, ” instead of circular regions. The positions of the components

are not limited to the blue-noise properties, which are exhibited by uniformly

and randomly distributed points, because the exclusive region can be specified as

something other than a circle.

Several methods use Poisson disk distribution for placing components [60, 97],
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and they can generate various aggregates of components having isotropic shapes

such as spheres or cylinders. However, these methods cannot generate dense ag-

gregates of components that are concave or are of a variety of sizes because large

gaps are produced among the components, as shown in Fig. 3.1(a). For gener-

ating a dense aggregate, two approaches are considered. In the first approach,

the components are placed as it checks for component overlapping, similar to the

naive dart-throwing method that uses arbitrary-shaped exclusive regions. Al-

though this approach can generate a dense aggregate of many components, the

calculation cost of the naive dart-throwing method is too expensive because of its

repetitive placement trials. In the second approach, components are placed us-

ing collision and reaction in a physical simulation. This approach also generates

dense aggregates, but it might also generate periodic arrangements when using

isotropic shapes. To avoid periodic arrangements, the proposed method employs

the first approach. The proposed method assumes that it is effective to iteratively

fill the gaps among placed components to reduce redundant cancelations. In this

experiment, the proposed method effectively generates an aggregate that includes

only a few gaps, as shown in Fig. 3.1 (b). The experiment demonstrates that this

approach is more effective than the naive dart-throwing method that iteratively

places components while checking overlapping of exclusive regions.

3.2 Preliminary Experiment

As a preliminary experiment, this section attempts to determine the layout of

components by using the naive dart-throwing method using arbitrary-shaped ex-

clusive regions. This experiment confirmed the effects and drawbacks of the naive

dart-throwing method.

3.2.1 Exclusive Region

The proposed method considers placing exclusive regions only in a 2D plane. The

exclusive region is independent of the component shapes, and it determines the

distance between a component and each of its neighbors. The position, orienta-

tion, and the size of the exclusive regions are specified by transformation matrices,

and the components are attached to the exclusive regions. The exclusive regions

are defined by 2D triangular meshes. With meshes, transformation calculations

and overlap checking can be accelerated by the use of a graphics processing unit

(GPU). A user specifies the vertices of the triangular meshes and the inner regions
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(a) Input. (b) Triangulation. (c) Exclusive
region.

Figure 3.2: Specification of an exclusive region.

of the shapes, as shown in Fig. 3.2(a). Through a Delaunay triangulation, a tri-

angular mesh is used to construct a convex hull from the vertices, as shown in Fig.

3.2(b). To construct the concave mesh, the triangular mesh is extracted from the

inner regions, as shown in Fig. 3.2(c). Aggregate coordinates are simultaneously

specified when constructing a mesh. The center of transformation is the center

of the bounding box of an exclusive region. Transformation is determined by Eq.

3.1:

x = (RS + T)x0, (3.1)

where x is the transformed position of a vertex, R is the rotation matrix, S

is the scaling matrix, T is the translation matrix, and x0 is the initial position of

the vertex. The transformation matrix is applied to placements of components.

3.2.2 Procedure for Naive Dart-throwing Method

The naive dart-throwing method consists of the following steps:

(1) Random placement of a rotated exclusive region.

(2) Collision detection of an exclusive region to be placed with already placed

exclusive regions.

(3) Cancellation of placement if collisions occur.

Step (1) is repeated until the termination conditions are satisfied.

The naive dart-throwing method places a nonperiodically component. To en-

sure a consistent placement frequency, the exclusive region is cyclically selected

from among the input exclusive regions when several exclusive regions are spec-

ified. The procedure is terminated when the number of consecutive cancelations
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(a) E1. (b) E2. (c) E3.

(d) E1(Region). (e) E2(Region). (f) E3(Region).

Figure 3.3: Components and exclusive regions. Images (a)–(c) are components
and (d)–(f) are their exclusive regions. The black region denotes an inner region,
and a magenta pixel indicates a vertex in (d)–(f).

(a) Placed exclusive regions. (b) Placed components.

Figure 3.4: Result of the naive dart-throwing method (210 components).
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Figure 3.5: Relationship between number of consecutive cancelations, number of
components, and calculation time of Fig. 3.3.

exceeds a user-specified number. In the dart-throwing method for Poisson disk

distribution, the number of placed points can be estimated from the sizes of the

placed circles [62]. Therefore, the termination condition is easily determined. In

contrast, the number of placed exclusive regions is uncertain in the dart-throwing

method using arbitrary-shaped exclusive regions. The number of placed exclu-

sive regions depends not only on the size but also on the shape of the exclusive

regions. However, the placement tends to be consecutively cancelled when a spe-

cific region in a 2D plane is filled with exclusive regions. The proposed method

uses the number of consecutive cancelations as the termination condition.

3.2.3 Results of Preliminary Experiment

The naive dart-throwing method was implemented on a Windows PC with an

Intel Core i7, 3.07 GHz CPU, and a 12.0 GB RAM. For this experiment, com-

ponents E1, E2, and E3 are used, as shown in Figs. 3.3 (a)–(c). The exclusive

regions are created by projection onto the XZ-plane in 3D as shown in Figs.

3.3 (d)–(e). Figure 3.4 shows the result of the naive dart-throwing method with

termination condition specified as 10,000 consecutive cancelations. Here demon-

strates the generation of an aggregate without scaling. Figure 3.4 (a) shows

the placed exclusive regions, and their transformation matrixes are applied to

the components as shown in Fig. 3.4 (b). The dart-throwing method generates
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(a) E1. (b) E2.

(c) E3.

Figure 3.6: Results of each of three types of components.
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Figure 3.7: Relationship between number of consecutive cancelations, number of
components, and calculation time of Fig. 3.6.
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(a) Step 1. (b) Step 2 (one iteration). (c) Step 2 (termination).

Figure 3.8: Overview of the proposed method.

nonperiodic dense aggregates without overlapping of the components on the XZ-

plane. Figure 3.5 shows the number of placed components and the calculation

time of every termination condition for generating Fig. 3.4. The graphs are

plotted for each of the 50 consecutive cancelations. Overall, a positive correla-

tion appears in the graph. The calculation time (red line) is very short until

100 consecutive cancelations. The number of components (blue line) dramati-

cally increases until approximately 2,000 consecutive cancelations, and then the

increase becomes gentle. In addition, for approximately 7,000 consecutive cance-

lations, the calculation time dramatically increases while only nine components

are added. The calculation time of the naive dart-throwing method depends on

the position and orientation of the components, which are randomly determined.

The method is not robust, and the calculation cost is high. As another example,

Fig. 3.6 shows the results of distributing components E1 through E3. Figure 3.7

confirms that the calculation costs are in the same range as in Fig. 3.5. To reduce

calculation time, the proposed method refers to the dart-throwing method to pro-

duce uniform points. There are two approaches to place points: parallelization

[14, 117, 125] and specification of regions [28, 85]. Parallelization approaches are

only used for points having blue-noise properties. These methods cannot be used

because nonperiodic arrangements of the proposed method do not have blue-noise

properties. The specification approaches, on the other hand, reduce the number

of placement cancelations.
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(a) E1. (b) E2. (c) E3.

Figure 3.9: Circular region O. The green circle indicates the circular region’s
boundary for each component.

3.3 Fill-Gap Method

To effectively generate an aggregate, the proposed method iteratively attempts

to place several exclusive regions into gaps among already placed exclusive re-

gions. This method assumes that having many placement cancelations increase

the calculation cost. Thus, to reduce this cost, this method prepare a set of

candidate points P where the exclusive region can be placed. In the prelimi-

nary experiment (Section 3.2.3), the calculation time was shortened by setting

the termination condition to less than 100 consecutive cancelations. From this

result, the proposed method specified the number of P as 100, thereby limiting

the number of consecutive cancelations to 100. To avoid overlapping of exclusive

regions as far as possible, instances of P are preferentially distributed in the large

gaps among the placed exclusive regions. All processes use exclusive regions to

determine the position, orientation, and scaling of components, as described in

Section 3.2.1. The proposed method consists of two steps:

(1) Placement of exclusive regions sparsely

(2) Placement of additional regions in the gaps

Figure 3.8 shows the two steps: the black regions indicate exclusive regions,

and the orange points indicate instances of P . Step 1 is an initial placement of

exclusive regions, which ensures that there is no overlapping of exclusive regions

by Poisson disk distribution. However, some gaps among placed exclusive regions

are usually generated. Step 2 iteratively fills the gaps by using positions P . In the
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(a) α = d2. (b) α = d4. (c) α = d8.

(d) α = d16. (e) α = d32.

Figure 3.10: Comparisons of yielded points Q (orange).

step, the cancelations of placements frequently occur when P and the boundaries

of placed exclusive regions are too close. In this experiment, the proposed method

specifies the termination condition to be 200 consecutive placement cancelations.

3.3.1 Sparse Placement

Step 1 sparsely places exclusive regions at the points distributed by the dart-

throwing method for Poisson disk distribution. The Poisson disk distribution

ensures that circular regions do not overlap. By specifying a circular region O

involving an exclusive region, nonperiodic arrangements can be quickly calculated

with no overlapping of exclusive regions. The value of T is determined by the

position of a placed point, and the values of R and S refer to a random angle and

scale in a specified range. The dart-throwing method uses an exclusive circular

region O for point distribution, where the center of O is the placed point. Here

the largest circle is specified for Poisson disk distribution; thus, the radius of O

is determined by the distance between the center and the farthest point on the

boundary as shown in Fig. 3.9.
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(a) α = d2. (b) α = d4. (c) α = d8.

(d) α = d16. (e) α = d32.

Figure 3.11: Comparisons of points P (orange) chosen from Fig. 3.10.

3.3.2 Placement in Gaps

In the preliminary experiment (Section 3.2.3), the calculation time is shortened

by setting the termination condition to less than 100 consecutive cancelations.

By limiting the number of consecutive cancelations to 100, the proposed method

assumes that the calculation time for placement will be shortened. The following

two steps place instances of P : the first step places candidate points Q of P by

means of GPU acceleration. The second step chooses 100 instances of P from Q to

place exclusive regions for reducing the calculation time. To avoid concentrating

Q at a few positions, Q are scattered across wide areas. The abundance of Q

is in proportion to the distance from the placed exclusive regions. Here GPU

acceleration is applied to quickly calculate distances by using an image plane as

a distance field. The probability α of a pixel in the probability field is defined

by dn, where d is the value of a pixel in a normalized distance field. With a

normalized distance field, the method can place exclusive regions of any size

in the same manner. In addition, by using dn, a higher probability is given to

farther positions and a lower probability to nearer positions. Therefore, a larger or

smaller number of points are placed at farther and nearer positions. The proposed
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method determines whether a point is placed by comparing the probability with

a random number [0, 1]. When the random number is over the probability α for

each pixel, a point q in Q is placed. Figure 3.10 shows the comparisons of points

of different exponential variable n. The result shows that the 16th power yields

acceptable results. The points Q placed between the 16th and 32nd powers are

similarly distributed. The proposed method deduces that using the 16th power of

normalized distances for the probability α is sufficient. The next step is to choose

100 points P from the placed points Q. Figure 3.11 shows comparisons of points

P taken from points Q for each probability α. Points P chosen from α = d16

and α = d32 are similarly distributed in positions farther from the boundaries

of placed exclusive regions. The results show that it is sufficient to use the 16th

power for probability α.

3.4 Result

This section discusses the results of the proposed method. Sections 3.4.1 and 3.4.2

show the calculation times of the proposed method and examples of changing

exclusive regions. Section 3.4.3 shows variations of the generated aggregates.

3.4.1 Calculation Time

The proposed method was implemented on a Windows PC with an Intel Core

i7, 3.07 GHz CPU, and 12.0 GB RAM. Figure 3.1(b), which shows an aggregate

having three types of components, was calculated in 18.3 s and includes 224

components. Figure 3.12 shows placed exclusive regions. The naive dart-throwing

method needs approximately 250 s to generate an aggregate of 210 components

as shown in Fig. 3.3. A comparison of the number of components placed by

the proposed method and by the naive dart-throwing method reveals that the

proposed method placed 14 more components, an increase of around 6.7%, which

shows it can place a sufficient number of components. The other results exhibit

the same trend as the above, as shown in Fig. 3.13. Table 3.1 shows a comparison

of calculation times between the proposed method and the naive dart-throwing

method. Figure 3.13 (d) consists of two types of trees with scaling ranging from

0.2 to 1.0.
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Table 3.1: Comparison of calculation time between the proposed method and the
naive dart-throwing method

As shown in Fig.
3.13 image

The proposed method Naive method

Time (s) No. of com-
ponents

Time (s) No. of com-
ponents

(a) 17.2 321 316.2 323
(b) 11.5 64 93.3 61
(c) 13.2 58 177.8 61
(d) 31.5 244 488.0 258

3.4.2 Changing Exclusive Region

The proposed method can control the densities of generated aggregates by chang-

ing the size of the exclusive regions. Figure 3.14 shows controlled densities of

aggregates accomplished by changing the exclusive regions. Smaller or larger

exclusive regions create denser or sparser aggregates, respectively.

3.4.3 Example

The proposed method places arbitrary components not only in 2D but also in

3D. Figure 3.15 shows examples of placing 2D and 3D components. Traditional

Japanese textures are expressed by placing 2D components. Examples of a 3D-

component distribution express disarranged objects on a floor. The method can

also be used to generate height maps. Figures 3.16–3.18 show height maps of a

leather texture composed of cristae and sulci. The sulci are placed at the same

positions as the cristae. This shows that the proposed method can be generically

used for generating aggregates.

3.5 Evaluation

I interviewed two professional groups of creators. Concerning aggregates of 3D

components as shown in Figs. 3.12–3.13, they said: “These results look like

natural aggregates. We often use a crowd of people in a still image. The method

can be applied to represent a crowd of people.” This response suggests that this

method may be sufficient for generating 2D aggregates.

Commenting on the variations of densities, as shown in Fig. 3.14, they said,
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(a) Placed exclusive regions. (b) Placed components.

Figure 3.12: Exclusive regions placed by the proposed method.

“There are many plant types and environments, for example soils and the amount

of solar radiation. These affect the densities of plants, and various densities of

plants exist in a scene.” To reflect these commons, the user interface should

be able to interactively edit exclusive regions and areas to be placed for each

component.

As for the height fields, as shown in Figs. 3.16–3.18, they said, “It is a highly

effective method for texturing. It can generate the hide texture of any animal.”

They clearly appreciated the applicability of this method as a texturing method.

They concluded that the method makes it easy to control the densities of

aggregates by directly editing exclusive regions, and the results are of a sufficient

high quality for practical applications.

3.6 Discussion and Conclusion

This chapter proposed a procedure for determining the layout of the nonperiodic

aggregates of arbitrary components. The proposed method was implemented

on the basis of dart-throwing method using exclusive regions that prohibit each

component from overlapping another. The method was used to fill the gaps

among placed exclusive regions. The method is also dramatically faster than the

naive dart-throwing method. The chapter has illustrated a few representative

examples of nonperiodic textures in the figures. The proposed method enhances
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(a) E1. (b) E2.

(c) E3. (d) Tree.

Figure 3.13: Generated aggregates.
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(a) Dense.

(b) Middle.

(c) Sparse.

Figure 3.14: Variations of densities.
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Figure 3.15: Variations of examples.
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(a) Cristae
comp.

(b) Sulci
comp.

(c) Cristae. (d) Sulci. (e) Synthesis.

(f) Rendering image.

Figure 3.16: Generated height maps of leather texture # 1.
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(a) Cristae
comp.

(b) Sulci
comp.

(c) Cristae. (d) Sulci. (e) Synthesis.

(f) Rendering image.

Figure 3.17: Generated height maps of leather texture # 2.
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(a) Cristae
comp.

(b) Sulci
comp.

(c) Cristae. (d) Sulci. (e) Synthesis.

(f) Rendering image.

Figure 3.18: Generated height maps of leather textures # 3.
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the interactivity for distributing components by accelerating the calculation.

The method has advantages and disadvantages compared with the related

method [71] for generating aggregates. The related method synthesizes an aggre-

gate from an exemplar. The distribution of the components of an aggregate is

similar to that of the exemplar; however, the distribution can be periodic. An

exemplar is not used in this method, and only nonperiodic aggregates are gen-

erated. This method is effective for a user who intends to obtain nonperiodic

aggregates without specifying their distribution. However, it cannot generate

periodic aggregates even if exclusive regions are given.

Spectrum analysis for distributed points is used to justify a point distribution

method in general. However, these analysis methods are not applicable for the

results of the proposed method. I will consider an adequate method for analyz-

ing the distribution of arbitrary-shaped components in the future. The method

currently does not apply to practical design tools. To achieve this, I would like

to consider functions editing for exclusive regions and for areas in which the

components will be placed.



Chapter 4

3D Aggregate Generation

Method

This chapter presents a procedure for modeling aggregates such as piles that con-

sist of arbitrary components. The method generates an aggregate of components

that need to be accumulated, and an aggregate shape represents the surface of

the target aggregate. The number of components and their positions and orien-

tations are controlled by five parameters. The components, the aggregate shape,

and the parameters are the inputs for the method, which involves placement and

refinement steps. In the placement step, the orientation and initial position of

a component are determined by a nonperiodic placement such that each compo-

nent overlaps its neighbors. In the refinement step, to construct a pile structure,

the position of each component is adjusted by reducing the overlap. Finally, the

method outputs a number of components and the positions and orientations of

all the components to construct an aggregate.

4.1 Introduction

Representation of surface details enhances the quality of computer-generated im-

agery. Numerous methods have been proposed for generating surfaces, such as

noise-based texturing functions, texture generation, and displacement mapping

[30]. However, it is difficult to generate aggregates such as heaps of steamed

rice and fruit by these methods. In addition, representation of piles generally

requires many tedious and time-consuming manual operations. This disserta-

tion proposes a procedural modeling method that generates aggregates and free
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(a) Steamed rice. (b) Bunny-shaped rice.

(c) Bunny-shaped bananas. (d) Bunny-shaped bunnies.

Figure 4.1: Generated aggregates.
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shapes that consist of arbitrary components, as shown in Fig. 4.1. To achieve a

natural appearance, the components are placed nonperiodically in the generated

aggregate.

Recently, Ma et al. proposed a method for synthesizing repetitive components

from the input of small patch exemplars and large output domains [71]. The

method preserves the properties of the individual components and their relative

distances. However, it is exceedingly difficult to achieve a natural appearance

by manual aggregate modeling even if the aggregate is a small patch because, in

the abovementioned modeling, the position and orientation of each component

need to be adjusted to reduce the gaps among the components. In contrast, an

approach proposed in this chapter does not require the construction of exemplars

to generate aggregates.

An aggregate comprises a large number of arbitrary components that include

invisible components (inner components). To reduce the data volume of compo-

nents, the proposed method assumes that it is sufficient to generate an aggregate

only around the surface of the target shape. In addition, inner components are

sometimes required to generate an aggregate, for example, a solid texture that

represents inner components, such as a basket of fruits. By using conical meshes

that have planar faces and possess offset meshes [67, 93], the proposed method

can generate an aggregate that includes inner components.

4.2 Overview of Aggregate Modeling

This section is an overview of proposed procedure. The details are described in

Section 4.3.

The proposed method generates aggregates containing pile structures that are

constructed of arbitrary components. Here, a pile structure is defined as a state

in which objects are placed one upon another. To construct an aggregate, it

is necessary to determine the number of components, their orientation, and the

position of each component. The proposed method includes a placement step and

a refinement step, which are used to place components into an aggregate. The

method does not use any iteration process for determining the orientations of the

components to reduce the computational cost.

Figure 4.2 outlines this method. Two types of input data are first prepared:

components and aggregate shapes, as shown in Figs. 4.2 (a) and (b), respectively.

The placement step distributes the components on the aggregate shapes such that

all components overlap their neighbors, as shown in Fig. 4.2 (c). The number of
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(a) Component (banana). (b) Aggregate shape.

(c) After placement. (d) After refinement.

Figure 4.2: Process overview.
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Figure 4.3: Constructing a pile structure from overlapped components in the
refinement step. F indicates a part of the aggregate shape.

components and the orientation of each component are fixed in this step. Next,

the refinement step sets the position of each component. This step reduces the

overlap of each component by translation along the normal of the aggregate shape

to construct a pile structure, as shown in Fig. 4.3. The pile structure is obtained

by reducing the overlaps among the component, as shown in Fig.4.2 (d).

The proposed method does not consider any physical simulations, because

it is difficult to create an intended aggregate solely by specifying the physical

parameters. This method focuses on generating various aggregate models.

4.3 Aggregate Modeling Procedure

The proposed method specifies the aggregate shapes and components using a 3D

polygon mesh. Here components are defined by closed meshes to quantify the

overlapping domains among components.

4.3.1 Component Placement

This subsection describes a method for placement of single and multiple types of

components.

4.3.1.1 Overview of Placement

This placement step has three requirements (R1), (R2), and (R3). In R1, a

uniform arrangement of a component is required to avoid the holes that are

included in the aggregates. In R2, the generated aggregates are constructed with

nonperiodic arrangements to avoid an artificial appearance. The procedure uses
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Figure 4.4: Two spheres in contact with radii 2r (dotted line).

a dart-throwing method to distribute a uniform, nonperiodic point set in the

specified regions [22] to satisfy these two requirements. Here 3D components are

arranged such that each component is located at a distributed point. To form a 3D

shape, the dart-throwing method is used, in which the Euclidean distance is used

as the measure of the distance between the points. In R3, to obtain a pile structure

in the refinement step, it is necessary to place components such that they overlap

their neighbors. Here exploits the distribution property of the dart-throwing

method in which the distance between a point and its neighbors depends on the

user-specified distance r, which is known as the distribution radius. At least one

point should be located within the range of the distance between each point [2r, 4r]

[28]. This indicates that all distances between a point and its neighbors should be

less than 4r. Figure 4.4, in which two spheres with radii of 2r are in contact, shows

the maximum distance between two points in the dart-throwing method. When

the distance is less than 4r, these spheres overlap. In the proposed method,

a component is placed at the distributed point obtained by the dart-throwing

method. In this example, the component must overlap its neighbors if a sphere

with a radius of 2r is considered as the largest inner sphere of a component, as

shown in Fig. 4.5.

4.3.1.2 Distribution Radius

The distribution radius, r, is defined as half of the radius of the largest inner

sphere of each type of component to guarantee sufficient overlap of the compo-

nents. A medial axis is used to construct the largest inner sphere. The medial

axis consists of the centers of the medial balls, which are maximally empty balls

of the closed surfaces [2]. This method chose the largest inner sphere from a set of

maximally empty balls calculated using Amenta’s method, which uses a Voronoi

diagram [2].
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Figure 4.5: Largest inner sphere.

Figure 4.6: Two components in contact. e2’s center is located at a distance of 4r
from e1’s point.

Figure 4.6 illustrates two pentagonal components, e1 and e2, of the same size,

which have been put in place. In this case, these components share an edge. If

the distance is less than 4r, then these components overlap each other.

This method can control the density of a component by applying the pa-

rameter Cradius, which can change the distribution radius using the formula

r′ = rCradius. The components are found to be tightly or loosely packed by

using the condition Cradius <1 or Cradius >1, respectively.

4.3.1.3 Implementation of Dart-throwing Method

This method used a parallel dart-throwing method [125] accelerated by a graph-

ics processing unit (GPU). This method selects points on a surface with geodesic

distances; in contrast, the implementation of the proposed method uses the Eu-

clidean distance to place the 3D points. The geodesic distance measures the

length of the shortest path on the surfaces. The geodesic distance between two

points on a curved surface is longer than the Euclidean distance. The number of
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points distributed on the surface by using the geodesic distance is higher than that

using the Euclidean distance, especially on a highly curved surface. Therefore,

to avoid the generation of excessive points, the method uses the Euclidean dis-

tance in the parallel dart-throwing method. The parallel dart-throwing method

needs to input a high-density point set P by shape distribution [84]; however, the

required density is unknown, and it needs to be established by maintaining the

distance among the points at a value less than r. The proposed method calcu-

lates P by emplying a Catmull–Clark subdivision surface, which can be applied

to any polygon [18]. The subdivision surface enables easy control of the density

of vertices by adjusting the number of recursions. The Catmull–Clark subdivi-

sion surface is advantageous because it can be applied to all types of polygons,

whereas the other subdivision methods cannot be applied to all types of polygons.

The Catmull–Clark subdivision is iterated until the value of the edge length is

less than r, and the obtained vertices are used as P .

4.3.1.4 Orientation

The orientation of a component is determined by rotation. The rotation cen-

ter of a component is defined as the center of the largest inner sphere of the

component to maintain the overlapping of components, as described in Sub–

subsection 4.3.1.2. To determine the orientation of each component, the local

uvw-coordinate system is used, the v-axis of which is oriented along the surface

normal. To produce different orientations, such as randomly or neatly directed

orientations, the direction of a component is perturbed from the surface normal

within a specified angle range in the local coordinate system. Each component

is randomly rotated within user-specified ranges in the local coordinate system.

Parameters ur, vr, and wr denote the range of rotation angles around the u-, v-,

and w-axes, respectively.

4.3.1.5 Placement of Multiple Types of Components

To construct aggregates with multiple types of components, aggregates for each

type of component are generated in the placement step and then merged to form

an aggregate. This step discretely chooses each component to merge components,

as shown in Fig. 4.7. Figures 4.7 (a) and (b) show the results of discretely select-

ing large and small components, respectively. The small component is removed,

as shown in Fig. 4.7 (b), if the center of the small component is included within

the distribution radius of a large component. The small components are placed in



56

(a) Aggregation of larger com-
ponents.

(b) Aggregation of smaller
components.

(c) Final aggregation.

Figure 4.7: Placement of multiple types of components. Chestnuts and rice in a
rice-ball shape.

the gaps among the large components, which are generated by loosely distribut-

ing the components, as shown in Fig. 4.7 (a). The loosely packed aggregation

in Fig. 4.7 (a) is produced by setting a suitable value for the parameter Cradius.

Figure 4.7 (c) shows the result of aggregating compound components of different

sizes.

4.3.2 Refinement

At this point, components whose orientations were already determined are placed

on an aggregate shape surface, and all the components overlap their neighbors.

In the refinement step, each component is translated along the surface normal,

n, to construct a pile structure so that the number of overlapping components is

reduced.

Wei’s experiments in Poisson disk distribution [117] indicate that sampling

of a scan-line order makes similar bias artifacts to the scan line, and sampling

of random order tends to nonperiodic arrangement. Therefore, the refinement

process is separately applied for each component in a random order to maintain

a nonperiodic arrangement.

4.3.2.1 Quantification of Overlap

To reduce the overlap, the proposed method determines the minimum distance,

t, of the translation along the normal within the range [0, rCrefine], which is

obtained by minimizing a cost function c(t, T ) and is given by Eq. 4.1. The

refinement range is described in Sub–subsection 4.3.2.2.
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c(t, T ) = a(max
x∈X

f(x + tn, T )) + t (4.1)

a(h) =

{
h+ rCrefine if h > 0

0 otherwise (no overlap)

Here X is the set of all vertices x of a component, and f(x, T ) is an implicit

function obtained by Eq. 4.2. The first term of the cost function calculates the

maximum value of the overlaps, and the penalty value, rCrefine, is added to avoid

overlaps.

The method quantifies the overlaps of the components by implicit modeling

[12]. Implicit modeling is an effective method for calculating the depth of a 3D

model. It represents the inside of a model by using the medial axis with sphere

functions [2]. The method computes the implicit functions using the obtained

medial axis. The implicit function f(x, T ) is given by Eq. 4.2. It returns a

positive value when x lies inside the model.

f(x, T ) = max
g∈G

g(x)− T (4.2)

g(x) = (rf − ||x− pf ||)s(x,pf , rf )

s(x,pf , rf ) =

{
1 if||x− pf || < rf

0 otherwise

Here T is an offset value, and G is a set of g(x) that indicates a function of a

sphere whose center and radius are pf and rf , respectively. Figure 4.8 shows color

mapping based on the function values. The colors blue, green, and red indicate

low, middle, and high values, respectively. In this case, a deeper position from

the surface has a higher value.

4.3.2.2 Minimization

The function c(t, T ) in Eq. 4.1 is minimized by a golden section search method

[95]. In this example, 15 iterations are required to obtain a certain tolerance for a

golden section search. The refinement range is specified by the coefficient, Crefine.

The range does not intersect the surfaces of an aggregate shape to maintain

the aggregate shape. The golden section search method calculates the distance
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Figure 4.8: Color mapping based on the function values.

travelled by implicit functions in returning the minimal value within the range

[0, rCrefine]. In this case, the minimum value is the local minimum value. In

general, the global minimum value might be smaller than the local minimum

value. However, it is too expensive to minimize the N -dimensional function

by the downhill simplex method [95]. In the proposed method, dimension N

represents the number of components, and it is not important to calculate the

global minimum value because it results in the smallest summation of all overlaps.

Therefore, local minimization is sufficient to meet the requirements.

4.3.2.3 Removal of Components

After the refinement process, a component may collide with other components on

a surface with a high curvature even though the value of the cost function given

by Eq. 4.1 is low. To avoid this, the method removes the component to maintain

space if the condition given by Eq. 4.3 is satisfied.

c(t, T ) < D (4.3)

Here D is a threshold parameter given by the user. When D is set to zero,

each component touches others on an isosurface, which is specified by an offset

value, T .

4.3.2.4 Multiple Types of Components

A refinement range is specified for each type of component by changing the value,

Crefine. Figure 4.9 shows a comparison of the results with and without specifying

the strict refinement ranges. Figure 4.9 (a) shows the result when the value of

Crefine for larger components is small. Large components are dominant among the
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(a) When a strict range is specified. (b) When a strict range is not specified.

Figure 4.9: Refinement of multiple types of components.

number of overlaps and are embedded in the generated aggregate by specifying

a strict range for Crefine. In contrast, large components stick out when a strict

range is not specified, as shown in Fig. 4.9 (b).

4.4 Results

This section discusses the results of the proposed method, which was implemented

on a personal computer running Windows 7, Intel Core i7 950(3.07 GHz) CPU,

NVIDIA GeForce GTX 570, and 12.0 GB RAM using C++ with CGAL and

OpenCL.

Figure 4.10 compares the proposed method with that in a previous study [71].

The proposed method generates an image only from one component model and

one aggregate shape. In contrast, the previous method needs an exemplar-type

structure. The proposed method can also control the orientation of components

by using rotation parameters. The calculation times are approximately 3 and 4

min for obtaining the results during the comparison of the generated aggregates,

as shown in Figs. 4.10 (a), (c), and (e).

The proposed method can handle multiple components of various sizes, as

shown in Fig. 4.11. These results are easily obtained because the proposed

method does not need to construct exemplars. If these results were generated

by texture synthesis approaches [71], exemplars composed of a large number of

components would be necessary.

Figure 4.12 shows the difference by changing the offset parameter, T . The

proposed method controls the collisions among objects by T . By setting any

positive value to T , components collide with other components, as shown in Fig.
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(a) The proposed method. (b) Previous method [71].

(c) The proposed method. (d) Previous method [71].

(e) The proposed method. (f) Previous method [71].

Figure 4.10: Comparison of generated aggregates.
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(a) Aggregate of three types of components:
tori, balls, and boxes.

(b) Dragon-shaped chestnut-rice ball.

Figure 4.11: Aggregates from multiple types of components.

4.12 (b).

The proposed method determines the orientation of a component. Figure

4.13 shows the results generated by changing the ranging parameters ur, vr, and

wr. Figure 4.13 (a) shows an input component. The proposed method orients a

component such that the v-axis lies along the surface normal. Without rotation,

all components are oriented toward the normal of the aggregate shape, as shown

in Fig. 4.13 (b).

The orientations of components can be controlled in the global coordinate sys-

tem. In general, an aggregate composed of nonadhesive components is piled up

so that the number of gaps in an aggregate is small. Ordinary, anisotropic gaps

tend to be yielded in an aggregate of anisotropic-shaped components. Therefore,

nonadhesive anisotropic-shaped components tend to be piled so that their orien-

tations are toward similar directions in the piled aggregate. Figure 4.14 shows

that components are oriented toward similar directions by specifying small ranges

of rotations in the global coordinate system. The appearance of the figure looks

like components that have been piled up.

An aggregate is generated when the components are placed on the surface of

an aggregate shape. Using conical meshes of an aggregate shape, the proposed

method generates a solid texture that is composed of discrete components, as

shown in Fig. 4.15. The conical meshes are manually created using an offset

curve function in a 3D modeling tool.

Figure 4.16 shows variations in the results. The proposed method can specify

properties, including size and shape, of components and the shape of the aggre-
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(a) Without collision (T = 0.0). (b) With collision (T = 1.0).

Figure 4.12: Changing the range for collision.

gate. The components do not disperse and fall because the proposed method

generates aggregates without a physical simulation.

Table 4.1 shows the parameters and calculation times for the results. In the

experiments, offset parameter T is set to 0.2 for dense aggregates, except for Fig.

4.12. By setting T to 0, collision is avoided; however, the aggregates are sparse,

and the number of gaps among components is remarkable.

Figure 4.17 shows objects fabricated by a 3D printer (ZPrinter 650). Because

the fabricated objects do not have adhesive properties, discrete components might

be disconnected. Overlapping of each component is maintained by adjusting the

range of Crefine or collision T . In this experiment, T is set to 0.3 or more for

fabrication.

Figure 4.18 shows two fabricated objects generated from banana components.

In Fig. 4.18 (a), bananas are rotated along the surface normals of the bunny

model. In Fig. 4.18 (b), bananas are randomly rotated. By setting an appropriate

range for Crefine and collision T , both models were fabricated. Otherwise, the

fabricated objects would be broken as shown in Fig. 4.19.

4.5 Evaluation

I interviewed two professional groups of creators. They appreciated the appear-

ances of all the piled up aggregates. The arrangements of the components were

evaluated as having natural placements. However, they mentioned that there is
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e
(a) component. (b) ur = 0, vr = 0, wr = 0 (c) ur = 2π, vr = 0, wr = 0

(d) ur = 0, vr = 2π, wr = 0 (e) ur = 0, vr = 0, wr = 2π (f) ur = 0, vr = 2π, wr = 2π

(g) ur = 2π, vr = 0, wr = 2π (h) ur = 2π, vr = 2π, wr = 0 (i) ur = 2π, vr = 2π, wr = 2π

Figure 4.13: Controlling component orientation.

(a) Gauss. (b) Bunny.

Figure 4.14: Orientation in the global coordinate system.
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Table 4.1: Parameters, calculation time, and number of components
Cradius ur, vr, wr Crefine Time [s] Number

Fig. 4.10 (a) 1.0 0, 2π, 0 2.0 324.2 4524
Fig. 4.10 (c) 1.0 0, 2π, 0 2.0 246.5 1234
Fig. 4.10 (e) 1.0 0, 2π, 0 2.0 182.2 2089
Fig. 4.11 (a) Torus:4.0

Ball:2.0
Box:1.0

2π, 2π, 2π Torus:1.0
Ball:2.0
Box:3.0

51.1 2523

Fig. 4.11 (b) Nut:3.0
Rice:1.0

2π, 2π, 2π Nut:0.1
Rice:1.5

161.99 7400

Fig. 4.12 (a) 1.0 2π, 2π, 2π 3.0 145.1 2123
Fig. 4.12 (b) 1.0 2π, 2π, 2π 3.0 150.1 4770
Fig. 4.13 (b) 1.0 0, 0, 0 1.0 58.0 882
Fig. 4.13 (c) 1.0 2π, 0, 0 1.0 59.9 882
Fig. 4.13 (d) 1.0 0, 2π, 0 1.0 57.5 882
Fig. 4.13 (e) 1.0 0, 0, 2π 1.0 61.5 882
Fig. 4.13 (f) 1.0 0, 2π, 2π 1.0 60.1 882
Fig. 4.13 (g) 1.0 2π, 0, 2π 1.0 55.2 882
Fig. 4.13 (h) 1.0 2π, 2π, 0 1.0 54.7 882
Fig. 4.13 (i) 1.0 2π, 2π, 2π 1.0 56.5 882
Fig. 4.14 (a) 2.0 0.1π, 0.1π, 0.1π 3.0 339.0 2856
Fig. 4.14 (b) 2.0 0.1π, 0.1π, 0.1π 3.0 270.6 2557
Fig. 4.15 (a) 1.0 2π, 2π, 2π 2.0 203.9 2986
Fig. 4.15 (b) 1.0 2π, 2π, 2π 2.0 244.0 3686
Fig. 4.16 (a) 7.5 0, 2π, 0 6.0 19.5 490
Fig. 4.16 (b) Nut:7.0

bolt:2.0
2π, 2π, 2π Nut:3.0

Bolt:3.0
45.4 1148

Fig. 4.16 (c) 1.0 0, 2π, 0 1.0 101.7 897
Fig. 4.16 (d) Nut:4.0

bolt:2.0
2π, 2π, 2π Nut:6.0

Bolt:6.0
679.0 5939

Fig. 4.16 (e) 7.5 0, 2π, 0 6.0 30.5 676
Fig. 4.16 (f) Nut:7.0

bolt:1.5
2π, 2π, 2π Nut:5.5

Bolt:5.0
62.4 2342
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(a) Single mesh. (b) Conical mesh.

Figure 4.15: Inside of the solid texture.

no variation of the organic components in a generated aggregate, although real

organic components have fluctuations. This method does not consider deforma-

tion of the components. To express natural appearances, it is important in future

to consider the deformation for representing organic components.

The creators expressed interest in using the proposed method in their work.

They appreciated the qualities of the generated aggregates and the controllability

of the aggregates by using the parameters in this method.

4.6 Limitation and Future Work

The proposed method can generate variations in aggregates by changing the num-

ber of components, aggregate shapes, and parameters. It is easy to implement

this method that embodies the dart-throwing method, implicit surface, and a

golden section search.

The method considers that an aggregate consists of components that have

adhesion. The method supposes that the aggregate is not fragile. The shape of

the generated aggregate is directly specified with an aggregate shape. Physical

stability of the aggregate strongly depends on the aggregate shape. The method

does not consider the physical stability of the aggregate because the method

entrusts the creators with the aggregate shape.

The implementation uses parallel processing in a GPU. One calculation step

searches all neighbors by parallel processing. The position of each component is

determined by the relative distance among its neighbors. Therefore, the calcula-

tion cost is O(N) for N placed components. However, the implementation is not

real time because the data transfer time between the CPU and the GPU is long.
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(a) Component: gear, Shape: bunny. (b) Component: bolt and nut, Shape:
bunny.

(c) Component: gear, Shape: dragon. (d) Component: bolt and nut, Shape:
dragon.

(e) Component: gear, Shape: wave. (f) Component: bolt and nut, Shape: wave.

Figure 4.16: Variations in results of proposed method.
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(a) Rendered aggregate data.

(b) Fabricated object.

Figure 4.17: Fabrication example.
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(a) Fabricated banana bunny 1. (b) Fabricated banana bunny 2.

Figure 4.18: Fabrication example # 2.

Figure 4.19: Broken printed aggregate.
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The approach is designed for uniform and random distribution, but the above-

mentioned method is not suitable for comprehensive aggregates, for example, ag-

gregates with roughness and fineness as well as those containing flows such as

curls or divergences. It is necessary to use a distribution method that includes

white-noise spectral properties if a creator wants to represent holes and gaps in

an aggregate, such as an aggregate that contain floating objects such as bubbles

in water. In addition, by generating vector fields on the aggregate shape [129],

the flow of component orientations can be intuitively controlled.

Many components are placed in the placement step if the placed components

have many holes or strong anisotropy because their largest inner spheres tend to

be small. The calculation time of the refinement step is in approximate propor-

tion to the number of components because the method moves each component.

Therefore, an aggregate composes of many components results in high calculation

costs. It is necessary to optimize the distribution of the dart-throwing method so

that the generated aggregate includes fewer components for maintaining a natural

appearance.

The method applied the single component procedure to each type of com-

ponent and resolved the collisions later to generate an aggregate composed of

multiple types of components. This is not efficient when considering many types

of components; however, it is difficult to find a solution for the distribution of

multiple types of components. Although Wei proposed multiclass sampling [118],

this sampling is used only for points and not for components having volumes. To

effectively distribute multiple types of components, a new technique for sampling

or distribution needs to be developed.

The method did not consider aggregate compounds of open meshes such as

thin objects like sheets and papers. To handle thin objects, it is necessary to

quantify the overlaps among open meshes.



Chapter 5

Generation Method for

Aggregate of Staple Fibers

Chapters 3 and 4 presented two methods for generating arbitrary components.

This chapter focuses on fibers that are long and deformable, such as cotton and

wool, as one of various components.

Dust balls composed of staple fibers frequently appear in our daily lives. Sev-

eral methods have been proposed to render a collection of long fibers such as

hair; however, they cannot generate sparse aggregates composed of staple fibers.

Because the shape of each fiber is noticeable in a sparse aggregate, it is necessary

to represent various staple fiber shapes in order to express a visually plausible

aggregate. This chapter presents a procedural modeling method for generating

staple fibers because such a method can generate a wide range of objects. The

fiber model is defined by a polygonal chain to represent various fibers having

crimps in the procedural modeling method. The crimping of fibers is controlled

by changing the angles between neighboring line segments in a polygonal chain.

The method generates an aggregate from a target shape and the parameters for

the crimping of fibers. The parameters are inputs, and the method outputs ver-

tices of the polygonal chains in the aggregate. Collisions among staple fibers are

not considered. This chapter presents examples of generated aggregates to verify

the effectiveness of the proposed method.

In addition, this chapter shows that the method can be applied to other long

components, for example a nest.
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5.1 Introduction

Numerous methods have been proposed to represent objects composed of large

number of fibers, such as cloth, hair, and fur. However, it is difficult to generate

sparsely aggregated staple fibers. Cloth animation and material representation

methods for fabrics have been previously investigated [15, 47, 51, 87, 99]. These

methods do not generate individual fibers; therefore, the noticeable fibers in a

sparse aggregate are not represented. There is a method for generating wo-

ven cloth consisting of individual staple fibers [100]; however, it does not form

arbitrary-shaped aggregates. In addition, the representation of aggregates gen-

erally requires many tedious, time-consuming manual operations, as do other

aggregates.

Many research papers that deal with the representation of a set of long fibers

such as hair and fur have been published [9, 10, 40, 50, 89, 105, 116, 128]. These

methods contribute to improve the reality of computer-generated images; how-

ever, most of them focus on the representation of the macroscopic characteristics

of fibers. The objective of the proposed method is to represent a meso-structure

of aggregated fibers.

To do so, this chapter attempts to generate the aggregates without collision

detection because it is impossible to calculate the collision detection of fibers

without their volumes. In addition, it is very expensive to calculate collision

detections for numerous deformable fibers. The fibers in a dust ball are not

regular; thus, it is difficult to anticipate when and where collisions will occur.

Thus, a physical simulation that includes collision and response is not used for

generating the aggregate, and only geometric operations are used to constrain

aggregate formations.

5.2 Process Overview

The proposed method consists of two procedures: (1) procedural modeling of

staple fibers and (2) aggregate formations comprised of generated fibers. It is

necessary to fill staple fibers on the inside because the inside of the aggregate

can be seen. Thus, the method presented in Chapter 4 cannot be applied to an

aggregate. Staple fibers are placed in the input target shape in the procedure

(2) to fill the inside. However, parts of the staple fibers are outside the target

shape. The fibers are moved into the target shape to fit the aggregate to the

target shape.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.1: Generated staple fiber.

Table 5.1: Staple fiber parameters
a b c d e f g h i j

θmin(◦) 0.0 3.6 7.2 3.6 3.6 3.6 -3.6 -7.2 -3.6 -3.6
θmax(

◦) 0.0 3.6 7.2 3.6 3.6 3.6 3.6 7.2 7.2 18.0
φmin(◦) 0.0 0.0 0.0 3.6 7.2 10.8 0.0 0.0 0.0 21.0
φmax(

◦) 0.0 0.0 0.0 3.6 7.2 10.8 0.0 0.0 0.0 39.6

5.2.1 Procedural Modeling of Staple Fiber

The proposed method represents a staple fiber as a polygonal chain model, as

illustrated in Fig. 5.1. The shape is generated by twisting each segment sequen-

tially, as shown in Fig. 5.2. Here, the y-axis is oriented in the direction of the i-th

segment vi − vi+1; then, the (i+ 1)-th segment vi+1 − vi+2 is twisted by θ on the

z-axis and φ on the y-axis in a local coordinate. θ and φ are selected randomly

within the range [θmin, θmax] and [φmin, φmax], respectively. In this implementa-

tion, the number of segments for each fiber is fixed at 32. Table 5.1 shows the

parameters for the results in Fig. 5.1.

5.2.2 Forming Aggregate

An aggregate of fibers is formed by gathering fiber elements loosely and gently;

thus, the elements are not overly deformed to fit the target shape of an aggregate.

As shown in Fig. 5.3, the proposed method consists of two procedures to form an

aggregate comprised of staple fibers: (1) initially placing fibers inside the target
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Figure 5.2: Polygonal chain model.

(a) Target shape. (b) Initial aggregate. (c) After adjustment.

Figure 5.3: Process overview.

shape (Fig. 5.3 (a)) as shown in Fig. 5.3 (b), and (2) adjusting the fibers to fit

the target shape, as shown in Fig. 5.3 (c). The aggregate shape is specified using

a 3D polygon mesh whose vertices have normal vectors.

5.2.2.1 Initial Placement

When placing a generated staple fiber to form a target shape, it is necessary to

determine if the fiber is located within the target shape. The proposed method

uses the signed geometric distance [43] for this determination.

The signed distance d from an arbitrary point x to point v on the surface of
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(a) Signed geometric distance. (b) Initial placement.

Figure 5.4: Initial placement of fiber.

a target shape is defined by Eq. 5.1:

d(x) = (x− v) · n, (5.1)

where v is the nearest point from x and n is a normal vector at v. For each

point, n are precalculated.

Figure 5.4 (a) shows color mapping based on distance values at a randomly

distributed point in a 3D space; blue, green, and red indicate high, middle, and

low values, respectively, and the black point is a vertex.

A staple fiber is placed such that its center is located inside the target shape

of an aggregate by referring to the calculated distance values. Figure 5.4 (b)

shows the result of placing 2048 fibers. As shown in this example, several fiber

segments stick out from the target shape. The next process adjusts these fibers

to fit the target.

5.2.2.2 Adjustment

The adjustment process relocates the fibers iteratively to fit the target shape by

optimizing the cost function. The proposed method does not apply this process

to a segment that is entirely involved within the target shape. The cost function
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(a) 5 iterations (b) 10 iterations.

(c) 15 iterations. (d) 20 iterations.

Figure 5.5: Adjustment.
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C(X) is given by Eq. 5.2:

C(X) =
∑
xi∈X

d(xi), (5.2)

where X is a set of vertices of all segments in a fiber. The more a fiber is

within the target shape, the higher the value returned from the cost function.

Optimization is resolved by searching the maximum value of C(X) while shifting

and rotating a fiber object within a specified range. This process does not consider

collisions among elements.

Figure 5.5 shows the sequence of the adjustment process in five-iteration in-

crements. As shown in these examples, the fibers are gradually fitted into the

target shape. This adjustment is repeated until it becomes a steady state.

5.3 Result

The proposed method is implemented on Windows 7 with an Intel Core i7, 3.07

GHz CPU, 12.0 GB RAM, and NVIDIA GeFORCE GTX 570 using C++ with

CGAL and OpenCL.

Each fiber is converted into a set of fine cylinders prior to the rendering pro-

cess. Figure 5.6 shows the results that are generated by changing the parameters

of the fibers. Table 5.2 shows the parameters, calculation cost, and the number

of iterations in the adjustment process for Fig. 5.6. Here, t1 is the cost for the

initial placement of fibers, t2 is the average cost for one adjustment process, and

I is the number of iterations for the adjustment process. The fiber length and the

number of fibers in Figs. 5.6 and 5.7 are 10.0 and 2048, respectively. The param-

eters are set to generate straight fibers (a), curved fibers (b), varied fibers (c),

and spiral fibers (d). Figure 5.6 (b) shows that the curved fibers are well aligned

along the gentle curved surfaces, while not many straight fibers are placed there,

as shown in Fig. 5.6 (a). Regarding the computation cost, there is no obvious

difference among the costs for the initial placement of fibers.

Figure 5.7 shows the results for a dragon model used as the target shape. The

parameters of the fibers are set as for Fig. 5.6. Table 5.3 show the parameters,

calculation costs, and number of iterations in the adjustment process shown in

Fig. 5.7. Comparing Tables 5.2 and 5.3, the cost for the adjustment process

depends on the number of vertices in a model for the following reason: The

adjustment process is parallelized on a GPU in this experiment; however, the
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(a) (b)

(c) (d)

Figure 5.6: Variations in bunny shape.
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(a) (b)

(c) (d)

Figure 5.7: Variations in dragon shape.
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Table 5.2: Parameters for Fig. 5.6
θmin(◦) θmax(

◦) φmin(◦) φmax(
◦) t1 t2 I

(a) 0.0 0.0 0.0 0.0 0.015 0.860 35
(b) 0.0 10.8 0.0 0.0 0.016 0.860 54
(c) -10.8 10.8 0.0 0.0 0.016 0.860 37
(d) 0.0 10.8 0.0 36.0 0.016 0.835 31

Table 5.3: Parameters for Fig. 5.7
θmin(◦) θmax(

◦) φmin(◦) φmax(
◦) t1 t2 I

(a) 0.0 0.0 0.0 0.0 0.016 1.210 28
(b) 0.0 10.8 0.0 0.0 0.016 1.202 37
(c) -10.8 10.8 0.0 0.0 0.016 1.217 27
(d) 0.0 10.8 0.0 36.0 0.016 1.201 30

Table 5.4: Parameter for Fig. 5.8
t1 t2 I

a 0.016 0.863 71
b 0.016 0.859 17

Table 5.5: Parameter for Fig. 5.9
t1 t2 I

a 0.016 0.444 31
b 0.016 0.209 32

time for data transfer between the CPU and the GPU significantly depends on

the volume of data to be transferred.

Figure 5.8 shows a comparison of changing fiber lengths. The other parameters

of the fibers are the same as those in Fig. 5.6 (d). Figure 5.8 (a) shows that the

long fibers are not placed around the curved surfaces. Table 5.4 shows that the

computation costs of these examples are almost the same, while the number of

iterations for the adjustment process depends on the linear fiber length: the

longer the fiber, the more iterations executed by the process.

Figure 5.9 shows a comparison in which the number of fibers is changed. The

other parameters of the fibers are the same as those in Fig. 5.6 (d). Table 5.5

shows that the average cost for one adjustment process simply depends on the

number of fibers.

Figures 5.10 – 5.13 show variations and Table 5.6 shows the parameters. Fig-

ures 5.12 and 5.13 use the same parameters. Figure 5.10 shows a rendering image
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(a) Fiber length:20.0. (b) Fiber length:5.0.

Figure 5.8: Changing fiber length.

(a) No. of fibers: 1024. (b) No. of fibers: 512.

Figure 5.9: Changing the number of fibers.
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Figure 5.10: Scattered staple fibers.

of scattered staple fibers on a table. Figure 5.11 shows generated nests. Fig-

ures 5.12 and 5.13 shows examples of changing target shapes, a sphere, and a

Gaussian-shaped aggregate. These figures show that the method can be used for

representing many fiber types.

5.4 Evaluation

I interviewed two professional groups of creators. They appreciated staple fibers

and found their aggregates to be interesting expressions and convenient for ex-

pressing dust on clothes and animals. The expression of dust is difficult by manual

operation. The proposed method lets creators produce the details of clothes and

rooms.

The method generates variations in components, and a creator said, “Vari-

ations make natural appearances.” The answers given in my interview indicate

that parametric control of the shapes of components is effective in expressing

natural aggregates.

One creator pointed out the proposed method does not consider the flow of

fibers such as hair. The creator has an interest in arbitrary-shaped hair, and he
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(a) Target shape.

(b) Generated aggregate 1. (c) Generated aggregate 2.

(d) Generated aggregate 3. (e) Generated aggregate 4.

Figure 5.11: Bird nest.
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(a) Target shape.

(b) Generated aggregate 1. (c) Generated aggregate 2.

(d) Generated aggregate 3. (e) Generated aggregate 4.

Figure 5.12: Sphere-shaped aggregate.
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(a) Target shape.

(b) Generated aggregate 1. (c) Generated aggregate 2.

(d) Generated aggregate 3. (e) Generated aggregate 4.

Figure 5.13: Gaussian-shaped aggregate.
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Table 5.6: Parameters for Figs. 5.10 – 5.12
5.10 5.11 (b) 5.11 (c) 5.11 (d) 5.11 (e)

θmin(◦) -25.2 0 -21.6 21.6 0
θmax(

◦) 25.2 0 21.6 21.6 21.6
φmin(◦) -25.2 0 0 0 0
φmax(

◦) 25.2 0 0 0 0
No. of
Segments

32 6 6 6 6

No. of
fibers

2048 2048 2048 2048 2048

5.12 (b) 5.12 (c) 5.12 (d) 5.12 (e)
θmin(◦) 7.2 7.2 7.2 28.8
θmax(

◦) 14.4 14.4 14.4 36.0
φmin(◦) 7.2 7.2 28.8 7.2
φmax(

◦) 14.4 14.4 43.2 14.4
No. of
Segments

32 32 32 32

No. of
fibers

2048 512 512 512

asked whether the method could generate it. The question implies that modeling

methods for expressing fibers are demanded.

Another creator wanted to express novel characters consisting of fibers in an

animation by using this method. This proposal indicates that the method can be

used for not only dust but also many new expressions.

5.5 Conclusion

The proposed method generates various aggregates by changing the fiber pa-

rameters. This method supports only the fibers and does not include collision

detection.

In reality, fibers form an aggregate by colliding and supporting each other,

and it is necessary to consider such collisions and frictions among fibers to ade-

quately represent an aggregate of fibers. More varied aggregates, such as a bowl

of noodles, could be generated by considering the deformation of elements. In

future, I would like to accelerate the adjustment process by optimizing the data

transfer volume.



Chapter 6

Conclusion and Future Work

This chapter concludes this dissertation by giving a summary and discussing

future work.

6.1 Summary and Contribution

A goal of this study is to develop algorithms for easy modeling. To achieve this,

this dissertation focused on generating aggregates as an objective. An aggregate

is composed of components whose positions and orientations are nonperiodic.

For example, a grain of rice is a component and a rice ball or steamed rice in

a bowl is an aggregate. However, creating an aggregate model is an arduous

work because creators need to model many components using graphics software.

For automatic modeling, this dissertation presented three methods that generate

aggregates composed of 2D components, 3D components, and staple fibers.

The first and second methods generate aggregates from arbitrary-shaped com-

ponents as inputs. Although the creators need to make input models, this disser-

tation assumed that the workload involved in preparing the inputs is smaller than

that in a previous method [71]. The third method generates aggregates composed

of freeform 3D curves as staple fibers. The curves are controlled by parameters

and it is easy to generate variations in staple fibers.

I interviewed professional creators about the results and usability of all pro-

posed methods to evaluate the methods. They appreciated the breadth of the

applications of proposed methods, the reduction in creation costs, the variations

in the expressions, and the ease of preparing inputs for the methods.

The contribution of this dissertation to knowledge science is to suggest an

approach for solving problems faced by working creators. Through the experience
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that I gained while working with creators for 18 months, I understand their

problems and abilities. Creators usually make objects by manual operations. The

editing process is that they create a rough object, and then refine it meticulously.

Because this manual editing represents a heavy workload, it is necessary to reduce

the workload in order to reduce the production time. Usually, creators discuss

the quality of a product by comparing variations. Hence, it is helpful for creators

to provide a variety of objects automatically to improve the quality of products.

This dissertation proposed methods for reducing the workloads of creators and

generating variations to support creators. Owing to these methods, the creators

can spend more time on creative work.

Creators convey the objects they have created in a scene to other creators and

workers solely by words in a discussion. However, it is difficult to understand the

details of creators’ imaginations solely by words, and thus discrepancies in objects

resulting from the way others understand them often occur. Explicit knowledge

such as images and numeric values for expressing models effectively prevent such

discrepancies. The proposed methods generate aggregates from parameters, com-

ponents, and target shapes. In the interviews, I drew the conclusion that creators

understood what these inputs mean, and they had common imaginations for the

results because they discussed the results with few questions about what input

means. Thus, these methods prevent discrepancies in discussions. Preventing

such discrepancies is a contribution of this dissertation to knowledge science.

However, barriers remain in achieving the goal. The methods proposed in this

dissertation are insufficient to allow expressions for whole types of aggregate. To

achieve the goal, I will consider the five major issues listed below.

6.2 Limitation and Future Work

The proposed methods are based on two presuppositions: components have their

area and volume in 2D and 3D aggregates, respectively. For example, points as

exclusive regions cannot be distributed in 2D aggregates, and sheets, which are

open meshes, cannot be accumulated.

One of the issues concerns aperiodic patterns. Although this dissertation dis-

cussed how to generate nonperiodic aggregates, it did not discuss aperiodic pat-

terns, which are nonperiodic patterns that involve packing without gaps among

the components. According to a pattern book [39], aperiodic patterns are com-

posed of specific components. Thus, this dissertation has not considered that

arbitrary-shaped components are applied to aperiodic patterns. However, it is
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possible to consider deforming arbitrary shaped components to existing aperiodic

components. By this deformation, aperiodic patterns including little collision or

few gaps can be generated using arbitrary-shaped components.

The second issue is the representation of variations in component shapes.

In the real world, all the shapes of components are different. To express more

realistic CG, I will consider variations in component shapes in future. For this,

methods [52, 56, 111, 126, 127], which generate shape variations from a few input

shapes, will be used to generate component shapes in future work.

The third issue is classical mechanics in physics. The laws of physics constrain

the shapes of generated aggregate. However, these laws are frequently used to

improve realistic representation [20, 44, 71]. For realistic representation, I will

consider applying a physical simulation to a method to generate an arbitrary

aggregate in future.

The fourth issue is the control of arrangement. The proposed method con-

trols the appearances of aggregates by changing parameters and exclusive regions.

However, this dissertation has not discussed whether they are useful for creators.

According to a paper by Zhou et al. [130], distributions having pink- or red-noise

properties are common in nature, and those with green-noise properties have been

used for halftoning and producing clustered dot printing, and have represented

distribution of plumed seeds. If creators know what the components construct,

it is easier to use specific noise as an initial positioning for obtaining the desired

model. However, the proposed methods do not specify the orientation of a com-

ponent at a position. In studies on volume modeling, Takayama et al. specified

orientations by editing the vector or scalar field [109, 110]. To improve the con-

trollability of the proposed methods, I will consider including these methods. In

addition, I will consider multiple types of components. The distribution rates of

the number of components are determined by exclusive regions or components

shapes. A user study is important for specifying distribution rates.

The final issue is fabrication. Currently, some devices can output real objects

from geometric data in a computer. 3D printers directly output objects with little

manual work. However, they can only create objects consisting of a single ma-

terial. Thus, we cannot edit the material. In addition, printed objects using the

proposed methods may be fragile because the proposed methods do not consider

physical laws. The printing aggregates ought to be checked by a physically-based

simulation to keep a form or to fragment them before printing. Stava et al. pro-

posed a method for maintaining the shape of a continuous object [107]. However,

the method does not consider aggregates that potentially include gaps. Hence, it
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is necessary to fill the gaps without artifacts.



References
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Kačić-Alesić. Realistic hair simulation: animation and rendering. In

ACM SIGGRAPH 2008 classes, SIGGRAPH ’08, pages 89:1–89:154, New

York, NY, USA, 2008. ACM. 71

[11] Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Ma-

tusik, Miguel Otaduy, Hanspeter Pfister, and Markus Gross.

Multi-scale capture of facial geometry and motion. ACM Trans. Graph.,

26[3], jul 2007. 18

[12] Jules Bloomenthal and Brian Wyvill. Introduction to Implicit Sur-

faces. Morgan Kaufmann Publishers Inc., 1997. 57

[13] Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. A con-

nection between partial symmetry and inverse procedural modeling. ACM

Trans. Graph., 29:104:1–104:10, July 2010. 16

[14] John Bowers, Rui Wang, Li-Yi Wei, and David Maletz. Parallel

poisson disk sampling with spectrum analysis on surfaces. ACM Trans.

Graph., 29[6]:166:1–166:10, dec 2010. 10, 11, 34

[15] Eddy Boxerman and Uri Ascher. Decomposing cloth. In Proceedings

of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer an-

imation, SCA ’04, pages 153–161, Aire-la-Ville, Switzerland, Switzerland,

2004. Eurographics Association. 71

[16] David Breen, Ron Fedkiw, Ken Museth, Stanley Osher,

Guillermo Sapiro, and Ross Whitaker. Level set and pde meth-

ods for computer graphics. In ACM SIGGRAPH 2004 Course Notes, SIG-

GRAPH ’04, New York, NY, USA, 2004. ACM. 18

[17] Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. In

ACM SIGGRAPH 2007 sketches, SIGGRAPH ’07, New York, NY, USA,

2007. ACM. 10



92 REFERENCES

[18] E. Catmull and J. Clark. Recursively generated b-spline surfaces on

arbitrary topological meshes. Computer-Aided Design, 10:350–355, 1978.

55

[19] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Müller,

and Eugene Zhang. Interactive procedural street modeling. ACM Trans.

Graph., 27[3]:103:1–103:10, aug 2008. 16

[20] Han Cho. Dressing and modeling food. In ACM SIGGRAPH 2007 courses,

SIGGRAPH ’07, pages 7–21, New York, NY, USA, 2007. ACM. 3, 23, 88

[21] Ming Chuang and Michael Kazhdan. Interactive and anisotropic

geometry processing using the screened poisson equation. ACM Trans.

Graph., 30[4]:57:1–57:10, jul 2011. 18

[22] Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans-

actions on Graphics, 5[1]:51–72, jan 1986. 3, 5, 6, 7, 8, 11, 27, 53

[23] Ketan Dalal, Allison W. Klein, Yunjun Liu, and Kaleigh

Smith. A spectral approach to npr packing. In Proceedings of the 4th

international symposium on Non-photorealistic animation and rendering,

pages 71–78, 2006. 12, 21

[24] Agnès Desolneux, Lionel Moisan, and Jean-Michel Morel.

Meaningful alignments. Int. J. Comput. Vision, 40[1]:7–23, oct 2000. 19

[25] Gianpiero di Blasi and Giovanni Gallo. Artificial mosaics. The

Visual Computer, 21[6]:373–383, 2005. 21
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[59] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and

Aaron Bobick. Graphcut textures: image and video synthesis using

graph cuts. ACM Transactions on Graphics, 22[3]:277–286, jul 2003. 19



96 REFERENCES
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