JAIST Repository

https://dspace.jaist.ac.jp/

prithm in

Title ggmg]nalysis of Voting Alg
Author(s) Sato, Yuichiro

Citation

Issue Date 2013-03

Type Thesis or Dissertation

Text version

aut hor

19/ 11345

URL http://hdl . handle.net/ 101
Rights
Description Supervisor:lida Hiroyuki,

gobooono,

AIST

JAPAN
ADVANCED

INSTITUTE OF

® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

(

[

An Analysis of Voting Algorithm in Games

By Yuichiro Sato

A project paper submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Professor Hiroyuki lida

March, 2013

An Analysis of Voting Algorithm in Games

By Yuichiro Sato (1110030)

A project paper submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Weritten under the direction of
Professor Hiroyuki lida

and approved by
Professor Hiroyuki lida
Associate Professor Kokoro lkeda
Associate Professor Shinobu Hasegawa

February, 2013 (Submitted)

Copyright (©) 2013 by Yuichiro Sato

Acknowledgments

The author would like to express their appreciation 0 to Prof. lida who provided carefully
considered feedbacks and helpful comments. The author would also like to thank Prof.
Cincotti whose comments made enormous contribution to my work. I would like to express
my gratitude to my family for their moral support and warm encouragements.

Contents

1 Introduction 3

2 Mathematical representation of the general consultation algorithm with

majority rule 5
2.1 Mathematical representation of game engine and its votes)
2.2 Mathematical representation of the consultation algorithm 10

3 Mathematical analysis of the consultation algorithm with random num-

bers 12
3.1 Introducing noise function Lo 12
3.2 Explicit solutions for the consultation algorithm with random numbers . . 13
4 Reasonable explanation for 3-Hirn 22
5 Discussion 24
6 Conclusions 25

Chapter 1

Introduction

In game engine research, improving performance by multiple choice systems has been
researched. In 1985 Althofer started 3-Hirn with a seminal experiment in the game of
chess [1]. 3-Hirn is a system such that “one or more programs compute a clear handful
of candidate solutions and a human chooses amongst these candidates” [2]. In chess, the
3-Hirn consists of two different strong chess engines and one human weak chess player.
When the human plays a game by choosing a move from moves which the engines suggest
as candidates, his/her performance is improved and overcome the each individual engine.
This result is surprising because if the weakest player chooses a move from moves which
are suggested by the other stronger human players, the outcome is expected to be the
opposite.

After Althofer’s delightful success, Obata et al. reported consultation algorithm where
many game engines choose one move by simple majority rule, which improves the per-
formance on Shogi game. This is “a method where a machine chooses a move auto-
matically without human intervention” [3]. They also reported optimistic consultation
algorithm [4]. The consultation algorithm adopts consultation between many individ-
ual engines. To make many engines, they apply noises on an evaluate function which
BONANZA, a strong engine has. Also, they reported consultation of three strong Shogi
programs: YSS, GPS, and BONANZA plays better games than any of the three individual
programs.

This algorithm works well in other games like chess and Go [5, 6]. In 2010, AKARA,
which is a game engine uses consultation algorithm defeated a top player in the Ladies
Professional Players Group [7].

Even though the advantage of multiple choice systems is clear in practice, the reason
why these systems work well is not clear. In 3-Hirn, both engines are stronger than
the human who decides which candidate to play. Also, in some consultation algorithm,
weak engines which are made from a strong original engine with random numbers suggest
candidate moves. In other words, contribution of weak engines improves total output.
This is a paradox. In this thesis, we report a reasonable explanation of this paradox.

In chapter 2, we introduce a mathematical representation of these systems, especially
for consultation with random numbers. In chapter 3, we introduce an analysis of these
systems. This is an extension of the discussion in [3] and a reasonable explanation of

the paradox. In chapter 4, we apply our representation to 3-Hirn and give a reasonable
explanation for it. In chapter 5, we discuss our result. In chapter 6, we conclude the

paper.

Chapter 2

Mathematical representation of the
general consultation algorithm with
majority rule

2.1 Mathematical representation of game engine and
its votes

In this section we introduce a mathematical representation of consultation algorithm.
Then, in the next chapter, we apply this representation to analyze experiments of consul-
tation which are reported in [3]. This representation is enough powerful, therefore we are
able to make a biggest framework for the analysis of consultation.

To analyze the consultation algorithm, the most important point of view is that an
engine is a program which chooses a move in a position in a deterministic way, except if
a random algorithm is adopted. In other words, if the same position appears many times
during the game, the engine suggests the same move every time. This suggestion is fixed
and never changes. Therefore, we can represent an engine as a mapping from positions
to moves.

To treat positions and moves as numbers, an order for positions and moves is needed.
This order indexes positions and moves. We do not need to specify this order. The only
restriction is that this order needs to be total, 7.e., all the positions and moves are needed
to be indexed in this order.

An example of desirable indexing is as follows. For positions, one can fix the blank
position which has no marks nor pieces on the board as 0. Then, one changes the blank
position by minimum changes which is describable by the language of games and makes a
list of positions. Some positions are legal and the others might be illegal, we do not care
about it. If the position is illegal for the game, the position never appears in real games.
Therefore, it never affects to analysis of real games. One can index positions in the list
as he/she want. Then, one can change positions in the list by minimum changes, and
index again. In this way, one can index all the positions. This is the example of order for
positions. For moves, almost the same strategy is available.

After indexing, we can represent an engine as a function from indexes of positions to
indexes of moves. This is a function from natural numbers to natural numbers. Therefore,
it is possible to find a continuous function that equals to the function of engine at natural
numbers and has various values at the others. If a function is continuous, a derivative
exists. This property is desirable in some cases. In this way, we can treat an engine as a
function from natural numbers to natural numbers or from real numbers to real numbers.

Let us denote the set of all positions of a game as P and the set of all moves as M.
These sets are indexed by natural numbers. An engine decides a move in each position,
and this choice is expressed as deciding an index of move for each index of position,
i.e., a function. This representation of an engine makes our discussion clear and nothing
important is missed for analysis. We represent an engine as a function from a set of
natural numbers of 1 to |P| to a set of natural numbers of 1 to |M| in this thesis. We
do not distinguish a set of positions and moves to a set of index of them in following
discussion. There exist bijections, it is not necessary to distinguish them.

Also, an engine must have an evaluation function f. An evaluation function is a function
which evaluates the advantage of a move in a position. If an engine does not have any
evaluation function, it is impossible to decide which move is better. As a result, it has no
choice and must return a random move. Random engines are not suitable for our purpose.
Therefore, we omit systems which do not have any evaluation function.

The evaluation function in this thesis has a different meaning from usual using in
artificial game engine research. Usually, an evaluation function decides an evaluate value
of a position. Then, an engine calculates evaluate values of legal moves using a search
technique. However, in this thesis, an evaluation function can evaluate moves in a position
directly. This means it includes search process. If the search algorithm is deterministic,
it choses the same move for the same position. Therefore, an evaluation of each move is
static, we are able to describe this situation by a function.

An evaluation function is a mapping from Cartesian products of positions and moves
to real numbers.

f:PxM—=R (2.1)

This mapping also becomes a function if positions and moves are indexed. Therefore,
an evaluation function is a function which is defined on 2-dimensional lattice points.
To evaluate each move chosen by engine, suppose there exists a perfect player, and let
us denote its evaluation function as f*. This perfect player perfectly evaluates all the
moves in a position. Not only winning or losing moves, but also how easy to win or lose.
The perfect player of course plays perfectly. Therefore, all positions are classified with 2
class, win or lose. However, real player is not perfect. It makes a mistake in some case.
Therefore, if a move derives win for perfect player, real player could not follow the path
to win as like as the perfect player. These effects are needed to be included.
When p is a position, m is a move and x is a real number.

fH(pym) =« (2.2)

This f* is used to calculate the exact advantage of the consultation algorithm. M includes
the all moves that the game has, therefore m could be an illegal move in p. If it is, define

the evaluation value as the minimum. The discussion becomes clear if evaluations of
illegal moves are 0 and evaluations of legal moves have positive value. However, one could
need to use minus evaluation for some moves. In any case, the minimum evaluation is
enough for illegal moves.

Now, we can start making the mathematical representation of the consultation algo-
rithm. Let us denote p € P = {1,2,---,|P|} as the position in which the engine needs to
play and m € M = {1,2,---,|M|} as the move which the engine chooses in that position,
then the engine is defined as follows.

Al(p) =m (2.3)

If you want an analytical function, use a polynomial function as like AI(p) = zii'l \ipt =
m. It is possible to choose \; to mimic the target engine’s decision, because this engine is
deterministic. The important point is that this mathematical function returns completely
the same move as a real engine which is written as a program. If there are n engines, let
us denote them as Aly, Al,, ---, AlL,.

To analyze the consultation algorithm, we need to make a matrix as

M;j(p) = Al;(p) — AL;(p) (2.4)

M;;(p) = 0 if and only if Al;(p) — Al;(p) = 0, i.e., the matrix element is 0 if and only
if corresponding engines choose the same move. To convert this matrix to an easy to use
one, let us use the function é(x) which returns 1 if x = 0 and 0 if © # 0. Then,

Vii(p) = 0(Mi;(p))

_f1 (AL(p) = AL()
= {o (AL(p) # AL (p)) (2:5)

hence if AI;(p) = Al;(p) then M;;(p) = 0 and if Al;(p) # Al;(p) then M,;(p) # 0. Let
us call this the voting matrix. Then,>=7_, Vj;(p) is the number of engines who agree with
AlI;. This is greater than or equals to 1, because AI; always chooses the same candidate
as Al;.

Let us introduce an example of voting matrix. Suppose there exist 3 engines. Also,
suppose P = {1,2,3,4,5} and M = {1,2,3} and Al,; are as follows.

AL(1) =1 (2.6)
AL(2) =2 (2.7)
AL(3) =3 (2.8)
AL(4) =1 (2.9)
AL (5) =2 (2.10)
AL(1) =1 (2.11)
AL(2) =1 (2.12)
ALB3) =1 (2.13)

\]

Al (4) =2 (2.14)

Al (5) =2 (2.15)

Al3(1) =3 (2.16)

Al3(2) =2 (2.17)

Al (3) =1 (2.18)

Alz(4) =3 (2.19)

Al3(5) =2 (2.20)

(2.21)

Then, the voting matrix becomes as follows.

Vir(1) V(1) Vis(1) 110

Vor(1) V(1) Vag(l) | = 1 1 0 (2.22)
V(1) Vse(1) Vas(1) 0 01
Vi1(2) Via(2) Vis(2) 1 01

Vor(2) Vae(2) Vas(2) | =[0 1 0 (2.23)
Va1(2) Vsa(2) Vas(2) 101
Vii(3) Via(3) Vis(3) 1 00

Vor(3) Vaa(3) Vas(3) [= 0 1 1 (2.24)
Vai1(3) Vaa(3) Vass(3) 011
Vii(4) Vig(4) Vis(4) 1 00

Vor(4) Vap(4) Vas(4) | =] 0 1 0 (2.25)
Vai(4) Vaa(4) Vas(4) 001
Vi1(5) Via(5) Vis(5) 111

(%1(5) Vao(5) Vas(5)) = (11 1) (2.26)
Va1(5) Vsa(5) Vis(5) 1 11

In the consultation algorithm, a weight vector w is used. This vector represents a
priority of each engine. Heavily weighted engines have more priority than lightly weighted
ones. For example, in the simple majority consultation algorithm, all the elements of
weight vector are 1. In the consultation algorithm with a leader, the leader is weighted
as 1.5 and the others are 1. In this way, voting vector ¥(p) is calculated as follows.

Vn(p) ‘/12(]9) o Vi (p) w1y U1
Vai(p) Vaa(p) .. Van(p) wy | | v (2.27)
Vi) Viol®) - Viul®)) \

The index of the max coordinate in ¢(p) represents the accepted engine in the consultation
algorithm.
On the example above, suppose @ = (1.5,1,1). Then, voting vector is as follows.

8

1) =| 25 (2.28)
1
2.5

72) = 1 (2.29)
2.5
1.5

73)=1{ 2 (2.30)
2
1.5

i) = 1 (2.31)
1
3.5

7(5) = | 3.5 (2.32)
3.5

You can see how consultations work in this example. In position 3, leader’s suggestion
is rejected by the others. Also, in position 4, leader’s suggestion is accepted to resolve a
conflict.

Of course, there is the case where two or more different candidates get the same number
of votes. For example, in a 5 engines consultation, the leader is alone, 2 engines choose
some candidate and the other 2 engines choose another candidate. In this case, we need
to decide which candidate to play. Therefore, a conflict resolution is needed. To do
so, resolution function r is used. Then, a consultation algorithm with majority rule is
represented as follows

C(p) = Al (p) (2.33)

where
>y wid(AL(p) — Al;(p))
Tia w20 AL (p) — AL (p) 250

S w,8(AL(p) — AL(p))

One example of r is random choose from candidates which have a conflict. This r is
used in [3]. Another is to use the evaluation function f* of the strongest engine. In this
case, the index of engine which is used in a consultation algorithm is written as follows

Maz[f*(p, ALy(p))] (2.35)

where k is an index of vy, as vy, € {v;|Vj.v; < v;} and v; = 30, w;Vi;(p).

2.2 DMathematical representation of the consultation
algorithm

In the previous section, we finished the mathematical representation of the consultation
algorithm with majority rule. Now, We analyze the conditions in which the consultation
algorithm works well. Therefore, we need a reasonable and quantitative definition of
working well. Otherwise, nobody can say the consultation algorithm works well compare
to another algorithm. The following definition is one of the suitable definition.

Definition 1. The consultation algorithm absolutely works well if and only if

Vip. far, (p) < fé(p)

where fi; (p) = f*(p, ALi(p)) and f&(p) = f*(p, C(p)) and f* is the evaluation function
of the perfect player.

This definition is too strict in practice. What we expect is an average improvement. In
other words, what we expect from the consultation algorithm is choosing a better move
for most of the positions, but not necessarily for all of the positions. Then, the practical
definition is as follows.

Definition 2. The consultation algorithm works well under a distribution of positions D
if and only if

|P| |P|

Vi. ZPT) far,(p ZPT p) < Vi.Avep f4;. (p) < Avep f&(p)

where Pr(p) is the probability of occurrence of position p under distribution D and
Awvep is an average.
If the engine is stochastic, we need an extended definition as follows.

Definition 3. The consultation algorithm is expected to work well under distribution of
positions D and distribution of moves D' if and only if

|P| |M| |P| |M]
VZZPT Z_: m) far,(p ZPT)Z_:H
| M|
& Vi Avep Z m) far.(p) < Avep z_: I(p,m) fé&:(p)

& Vi.AvepEx[f}; (p)] < AvepEx[f¢(p)]

where w(p,m) and II(p,m) are the probabilities that Al; and C' choose move m in
position p under distribution D', and Ez[-] is an expectation value. The sum of m is
taken on all moves, therefore it could contain illegal moves. If a move m is illegal in
p, 7(p,m) and II(p, m) are 0. Every evaluation value has a specific value, therefore, if
probability is 0, it does not affect the expectation value.

10

Proposition 1. Suppose the consultation algorithm is expected to work well and engines
contribute to the consultation are deterministic, then the consultation algorithm works
well.

Proof. If the consultation algorithm is expected to work well,
Vi.Avep Ex(f}; (p)] < AvepEx[f5(p)]. (2.36)

Also, if engine is deterministic, 7(p, m) and II(p,m) is 1 for a move and 0 for the others
in a position p. Therefore,

Vi.Avep Ex(f}; (p)] < AvepEx[fi(p)] = Vi.Avep fi;,(p) < Avep f&(p). (2.37)

This is the definition of the consultation works well. O

Therefore, the definition of the consultation is expected to work well is a generalization
of the definition of the consultation works well. Under these definitions, we continue to
analyze the consultation algorithm in this thesis.

11

Chapter 3

Mathematical analysis of the
consultation algorithm with random
numbers

3.1 Introducing noise function

In the previous chapter we formed a mathematical representation of the consultation
algorithm and defined when the consultation algorithm works well. They are explicit
and formal, therefore they make discussions clear. Now, it is time to analyze reported
experimental results and give a reasonable explanation of the consultation algorithm. We
analyze consultation with random numbers as reported in [3]. This consultation is the
most simple one and good target for the early study.

Obata et al. reported experiments of consultation algorithm with random numbers. In
these experiments, they prepared many engines which are generated with random numbers
in the evaluation function of the original strong Shogi engine, BONANZA. Let us denote
the original engine as Alp and derived noisy engine as AI’. Then, the difference of these
engines defines a noise function Ny. Even though the explicit analytical expression is
unknown, Np(p) is a function which represents the difference of the original engine and
noisy one. In other words, a prepared engine is represented as follows.

AI'(p) = Alo(p) + No(p) (3.1)

No(p) is a function which is generated by a fixed list of random numbers, once Np(p)
is generated, it is fixed. Therefore, AI’ is still deterministic. No(p) depends on p and
the original engine, because some positions or engines could be sensitive for noises, some
could be not. If noises did not affect a move of engine in a position p, No(p) is 0, else it
is not 0 and changes the index of move to play.

If one makes n of engines which contribute to the consultation, let us denote them as
AI(p) = Alo(p) + Nj(p). Each Nj(p) is made from different random numbers, therefore

12

they are different each other. Then, a voting matrix becomes as follows

Né;(p) —N(i;(p) Né;(p) —N(z;(p) N(;)(p) —Né(p)
V(p) 5 No(p) — No(p) No(p) — No(p) NO(P) — No(p) (3.2)
N§(p) = N5(p) N&(p) — N3(p) .. Ng(p) — No(p)

because for each Al;(p), Alp(p) is common. As you see, the voting matrix depends only
on noise functions. The original engine is common for all engines, therefore a difference
N (p) and N§(p) is only caused from random numbers which are used to create them.
The probability of the same value a is shared in N}, and N}, are calculated as a product of
the probability of N}, = a and N}, = a. This is a constant ¢(v). Therefore, the sum of all
c(v) is the probability of Al;(p) and Al;(p) choosing the same move. This is a constant
C'. Therefore, the expectation value of voting matrix is as follows.

o ¢ ... C
c o0 ... C

BVl =of| . . (33)
c ¢ ... 0

No depends on positions and the original engine. This dependency is important for
an improvement of performance. If Ny depends on the original engine, adopting several
engines in consultations could affect the consultation result due to the difference of sen-
sitivity of noises. Also, Np depends on the position, and if it is easily affected when the
original engine chooses a bad move, and not easily affected when it chooses a good move,
noises could improve the consultation result.

3.2 Explicit solutions for the consultation algorithm
with random numbers

In the experiments reported in [3], all engines which join in the consultation are weaker
than the original engine.

Vi.Avep fa;.(p) < Avep far, (p) (3.4)

This equation means random noise makes the decision worse. This is reasonable, be-
cause random choice is not expected to be better than careful choice. Even though no
engine is stronger than the original engine, the majority of them choose better candidates
compared to the original one. This seems a paradox. However, there exists a reasonable
explanation.

As definition, if consultation algorithm works well, the average of the evaluation values
by the perfect player becomes better. In these experiments, consultation worked well.
Therefore, the following condition must be satisfied.

Vi.Avep fi;. (p) < Avep f&(p) (3.5)

13

Additionally, they reported that the consultation algorithm is stronger than the original
engine. Therefore,

Vi.Avep f4;,(p) < Avep fiy, (p) < Avep fe(p) (3.6)

must be satisfied. This equation could be satisfied for some noise function N,. However,
N}, are generated randomly. Therefore, whether consultation algorithm works well or not
is stochastic in this case. Therefore, we need to treat probability explicitly.

Before discuss about it, we need a partition of M which is made according to a classi-
fication as follows.

bp) = {m|[f(p,m)> fi;,(p)} (3.7)
e(p) = {m|f*(p,m)= fi, ()} (3.8)
w(p) = {m|f*(p,m) < far,(p)} (3.9)

In b(p), the moves have a better evaluation value than the original value, in e(p) and
w(p), they do not. This partition depends on p because better or worse is the only
relative property. Illegal moves have the minimum as its evaluate value, therefore they
are classified in w(p). What we expect for the consultation algorithm is that the majority
of noisy engines choose a candidate from b(p).

At position p, engines which join in the consultation have three behaviors. One is to
choose an equivalent candidate of the original engine. The other is to choose a better or
worse candidate compared to the original one. Therefore, any stochastic change on Al
by noise are classified as three types, i.e., going on b(p) or w(p), and staying on e(p).

Suppose there exists exact probabilities of Aly changing its move from Aly(p) to m.
Let us denote this probability as 7(p,m). We assume this probability is common for all
AlI;. Then, from experiment which is reported in [3],

AvepEx(fir.(p)] < AvepEx[fir, (p)] (3.10)
|M|

& Avep Y w(p,m)f*(p,m) < Avep fi;, (p) (3.11)
m=1

M is divided into a partition by evaluation as b(p), e(p) and w(p). Therefore, a sum-
mation on M is divided into a summation on b(p), e(p) and w(p). Let us denote such a
summation as Zb(p), e and @), Then,

| M| b(p)
> wlp,m)f (p,m) = > w(p,m)f*(p,m)
m=1
e(p) w(p)
+ Y wlp.m)f*(p,m)+ > w(p,m)f*(p,m)
b(p) e(p) w(p)

because in e(p), f*(p,m) = fi, (p)-
Therefore, equation (3.11) is fixed as follows.

| M|
Avep Y m(p,m)f*(p,m) < Avepfi;,(p)
m=1
| M] b(p)
(:)AUBDZ m)f*(p,m) < AUGD(Z m(p,m)far, ()
m=1

e(p) w(p)

+ > wpm) () + Y 7 pm) far, (p) (3.13)
b(p)
& Avep Y w(p,m){f*(p,m) — fi;,(p)}

m=1

w(p)

< Avep Y w(p,m){fis,(p,m) — f*(p,m)} (3.14)

m=1
because Y0P 7 (m, p)+>¢P) 7 (m, p)+ %P 7w (m, p) = 1 and Avep is linear. This equation
means an average of an expected improvement on b(p) is less than an average of an
expected reduction in quality and is a reasonable condition of this experiment. Let us

denote the expected improvement of Al’, i.e., expected improvement by changing Al to
Al as Ex"(p). Then,

b(p)

Ex"(p) = > w(p,m){f*(p,m) — fi;, ()} (3.15)

Also, let us denote the expected reduction of Al i.e., expected reduction by changing
Alo to AI' as Ex" (p). Then,

w(p)
Bzt (p) = 3 w(pm){ far, (p) — f*(p,m)} (3.16)
The experimental condition becomes as follows
Vi.Avep Exii(p) < AvepExAli(p) (3.17)

Theorem 1.
Vi.Avep Ex[f4y,(p)] < AvepEx|[fi;, (p)] < Vi.Avep Bz} (p) < AvepEx" (p)
Proof. As above. O]

Let denote us the consultation algorithm with random numbers works well if and only
if
Vi.Avep Ex[f4;.(p)] < AvepEx[fir, (p)] < AvepEx[f&(p)] (3.18)
This means that the consultation algorithm with random numbers works well when the
consultation result is better than the original even though the all of engines are weaker
than the original. If there is an engine who is stronger than the original, the improvement
could be mainly came from the engine, no need to the consultation. If the consultation
result is weaker than the original, then the consultation algorithm with random numbers
just wasted resources. Therefore, this is the reasonable definition.

15

Theorem 2. The consultation algorithm with random numbers works well if and only if

‘v’i.AveDEfo" (p) < AvepEx2Ti(p)
AvepEx¢ (p) < AvepExf (p)

Proof.
AvepEx(fa,(p)] < AvepEx[fe(p)]
|M|
& Avepfa;,(p) < Avep Y T(p,m)f5(p) (3.19)
m=1

where II(p, m) is a probability of the consultation algorithm chooses a move m in position
p.

|M|
Avepfar, (p) < Avep > H(p,m)f&(p)

m=1
b(p)
& Avepfi,(p) < Avep(DT(p,m)f* (p,m)

e(p) (p)
+ > H(p,m)f*(p,m) + > T(p,m)f*(p,m)) (3.20)

because a summation on M is divided into Zb(p), S2e) and SSw@),

Avep fi,(p) < Avep (% I(p, m) f*(p,m)
- § (p, m)f*(p,m) + % H(p, m)f*(p,m))
& Avep %p;) U(p,m){far, () — [f"(p,m)}
< Avep If:) U(p, m){f*(p.m) — fa;,(p)} (3:21)
& AvepExC(p) < AvepEx(p) (3.22)

because f&:(p) = fi;,(p) in e(p).
Vi.Avep Ex[f4;.(p)] < AvepEx[fir, (p)] & Vi.Avep Exi(p) < AvepExti(p) (3.23)

is proven in theorem 1. Therefore

AUGDE;L‘[f*IO (p)] < AU@DEI[f* (p)]
{ W‘AUBDE;[J”ZQ (p)] < AveDExC[fjHO »)] (3.24)

{Vi.AveDExiAIi (p) < Avep ExAli(p)

.2
AvepEx%(p) < AvepEx%(p) (3.25)

16

This theorem suggests when the consultation algorithm works well.

Theorem 3. If n — 1 < |M|, the lower bound of the consultation algorithm chooses a
better move, 11, (p, m) and the upper bound of the consultation algorithm chooses a worse
move, I1,(p,m) is as follows

Mipm) =3 (?)Wa m) (1~ m(p,m))"" - g (’j)ﬂp, m) (1~ m(p,m))"

. Z (]) (Z 7T(p, k)J(l - 7T(p, k‘) — 7'('(p7 m))”"‘]
—7(p,m) (1 = 2x(p, m))" "

n n]) |_n/2J n)
) = 3 (% (0 =) - ()w (L= n(p,m)

v

'Z(| ><Z m(p kY (L= (p, k) = mlp, m))"~

—(p,m)! (1 = 27 (p,m))" ")

Proof. 1f consultation algorithm with random numbers chooses a move, the move needs
to be the majority of the candidates. If more than half of engines choose the same
candidate, the candidate is chosen as a move in any case. Moreover, if some move is
chosen by relatively many engines it is majority. Therefore, the sum of these two is the
probability of a move being chosen by consultation.

The probability of a better move m € b(p) being chosen by more than half of the engines
is as follows. .

R 3.0
i=|n/2|+1

The probability of relatively many engines choosing the better move is the sum of the
product of two probabilities. One is the probability of ¢ engines choosing a move m. The
other is the probability of j such that ¢ < j engines not choosing the same move. If n —1
< |M]|, there exists at least a situation such that n — i engines do not make any group
which has greater than i as its size. If | M| < n—1, this is not always true. The probability
of ¢ engines choosing a move m is as follows.

()t 2 = wtpmy (327

The probability of j such that ¢+ < j engines not choosing the same move equals to
1 minus the sum of probability of j engines choose the same move except for m. The

17

probability of j engines in n— engines choosing the same move except for m is as follows.

|M]

(nj— Z) {I; (p,]{)j(l - ’/T(p7 k) — 7T(p, m))n_i_j
= wlpmy (1= 2m(p,m)" (3.28)

Therefore, the probability of more than ¢ engines in n —¢ engines choose the same move
except for m is as follows.

n—i N | M|
n—i , ey
=S (" R =) = sty
j=i k=1
— wlp,m) (1 = 2m(p,m))" "} (3.29)
Therefore, the probability of relatively many engines choosing the better move m is

[n/2]

O

1=2

Q-5 (S rara = wtod) = wmy
= wlp.m) (1= 2n(p.m)")} (3.30)

—t | M|
{ z_: <) (Z (P, k)j(l — 7(p, k) —n(p, m))"—i—j
_ 7T(p, m)j(l _ 27T(p, m))n—i—j)}

" (n . A n/2l 7, ' |
— Z <i>7r(p, m)' (1 —x(p,m))" " — > (i)ﬂ(p’ m)i(1 — 7(p,m))""

=2

Z(J >(Zﬁ(p’k)](1 = w(p, k) —7(p,m))"
= mp,m)’ (1= 2m(p,m))"") (3.31)

is the lower bound of m € b(p) is chosen by consultation in p. We eliminated the case
such that the same number of engines choose a better move and another worse move.

18

In this case, conflict resolution needed. For example, in the experiments in [3], this is
done by randomly choosing a move from the candidates. Therefore, in such a case, the
better move is not necessarily chosen. This is the reason why we omit this case. Hence,
I1,(p, m) is the lower bound of the probability of the consultation algorithm choosing a
better move.

In the same context, the upper bound of m € w(p) is chosen by consultation at p can
be calculated. The probability of a worse move m € w(p) being chosen by more than half
of the engines is as follows.

)3 (T.‘)w(p, m)i(1— m(p,m))" (3.32)

i=|n/2)+1 *

The probability of relatively many engines choosing the better move is the sum of the
product of two probabilities. One is the probability of ¢ engines choosing a move m. The
other is the probability of 7 such that i < j engines not choosing the same move.

The probability of ¢ engines choosing a move m is as follows.

(4

(@)ﬂp, m)i(1 = 7(p, m))"" (3.33)

The probability of j engines in n — ¢ engines choosing the same move except for m is
as follows.

(J >{kz_:17r(p,k)ﬂ(1 — w(p, k) — m(p,m)) "
= wlpm) (1= 2m(p,m))" (3.34)

Therefore, the probability of more than ¢ engines in n —¢ engines choose the same move
except for m is as follows.

n—i ; | M|
n—1 j n—i—j
1-> (;){Z w(p, kY (1 — w(p,k) —m(p,m))" "7
j=i k=1
— wlp,my (1 =2m(p,m))" "} (3.35)
Therefore, the probability of relatively many engines choosing the worse move m is

3 (1)t sty

i=1

n—i . | M|
n—1 , Iy
'{1—Z< ' >< m(p. k) (1 — =w(p, k) —m(p,m))" "
' k=1

— 7(p,m) (1 — 27 (p, m))”_i_j)} (3.36)
We counted all situations which has a conflict into this probability. In other words, in

the conflict resolution, we choose the worse move. Therefore, the obtained probability is
the upper bound. The total probability is as follows.

19

il 5\ M ' -
(=S (") Stk wlpb) =t

— w(p,m) (1 = 2x(p,m))" ")}

:-Z<@>”<p7m>"<l—w<p,m>>n—i S (?>W<p,m>i<1_w<p,m>>n—f

i=1

k=1
— wlp,m)’ (1 = 2m(p,m))" ") (3.37)
is the upper bound of m € w(p) is chosen by consultation in p. O

These probabilities are useful to calculate the lower bound of expected improvement
and the upper bound of expected reduction. AvepExS(p) < AvepEx{(p) is satisfiable
under Vi. Avep Exii(p) < AvepExzTi(p). There exists such situations and it is easy to
find them by numerical trial and error.

Theorem 4. If |M| < n — 1, the lower bound of the consultation algorithm chooses a
better move, I1,(p, m) and the upper bound of the consultation algorithm chooses a worse
move, 11,,(p,m) is as follows

R N () L R Lij (")t 0= ety

n—i fn _5\ M A o
LS (") S w1 = 100 0) =

J k=1

J=i

—m(p,m)’ (1 = 2m(p,m))" ")}

Wopom) = 3 (")atomy(— w.m))y + . my (1~ ()
! z%/QJ <Z> g g iZL%H-l <Z> g P
n=i (p 5\ M . o
-8 (") (S k(= 700 8) =ty

—m(p,m)’ (1 = 27(p,m))" ") }

20

Proof. 1t [M| < n—1, in some case, it is impossible for engines to make relatively majority
group. When 7 engines choose a move, the others can not make a group greater than
as its size. Therefore, n — ¢ engines are needed to be classified in a group less than ¢
as its size for II(p,m). A move m is chosen by i engines, therefore, |M| — 1 moves are
leave for the others. If too less moves are given for n — ¢ engines, it is impossible to
satisfy the condition. There are n — ¢ engines and the number of empty room for them is
(|IM] — 1)(z — 1), therefore limit of ¢ is as follows.
. . . on—1

n—z:(|M|—1)(z—1)+1®Z=W+1 (3.38)
Otherwise, there exists a group which size is greater than i. Therefore, if |M| < n — 1,
the sum of equation 3.30 is needed to be taken from LTV_\IJ + 2 for IIy(p, m) and LTV_IIJ +1

for 11, (p, m). O

These results have no contradiction with the result which is reported in [3]. Suppose
there exists only a better move and a worse move, then M = {1,2}. Let us denote a better
move as 1 and a worse move as 2. If more than 3 game engines are in the consultation,
it is impossible for relatively many engines to choose the better move. Therefore, the
probability of the better move is chosen in consultation algorithm is

i . (T.L>7T(p, (1 —a(p,1))"" (3.39)

i=|n/2] v

This is equivalent to the equation which is reported in [3] and a main improvement from
our previous work [8].

21

Chapter 4

Reasonable explanation for 3-Hirn

3-Hirn is a system which is made of two engines and a human [1, 2]. In this system,
the human chooses a better candidate from candidates which are suggested from engines.
The human is weaker than each engine in the game, but this system is stronger than each
engine. The weak player’s contribution improves the final outcome. It looks unreasonable
that this system becomes stronger than any individual engines. However, there is a
reasonable explanation of this puzzle in almost the same context as consultation algorithm,
as follows.

Let us denote two engines in this system as Al; and Al and the evaluation function
of the human as f". Then the 3-Hirn system is written as follows

_ JAL(p) (fh,(p) — fin,(p) >0)
H3<p>—{A12<p> (it () = fh (9) < 0) (4.1)

If 3-Hirn works well, the following condition is satisfied

Vi.Avep fi;. (p) < Avep ff,(p) (4.2)

where 7 is 1 or 2.

This condition is satisfiable. An engine has an evaluation function to improve its search
speed. This function tends to be rough compared to the one a human has. Even though
the engine has a rough evaluation function, the computer is really powerful, so it is able
to cover the weakness by making a vast search tree. For human, the situation is opposite.
A strong human player has a really good evaluation function and cuts the search tree
efficiently.

Mathematically, this situation is represented as follows

AU€D|fh(pa m) - f*(pa m)| < AveD|fAIi(pa m) - f*(pa m)| (43)

for almost all of m € M.

This situation is satisfiable. An evaluation function is a function from Cartesian product
of positions and moves to real numbers. This means it only depends on the current
position, not on search depth. However the strength of a player depends on an evaluation

22

function and search depth. Therefore, if the human is good at evaluation but not for
search, and engines are oppositely good at search but not for evaluation, the situation
could arise.

If the above equations are satisfied, the human can choose the best candidate at a glance
from candidates which engines found by wide and deep search effort. In other word, this
system works well “By combining the gifts and strengths of humans and machines in
appropriate ways” as Althofer mentioned in [1]. This is the reason why 3-Hirn works well.

23

Chapter 5

Discussion

Now, we have an analysis and reasonable explanation for consultation algorithm with
random numbers and 3-Hirn. There exists many situations in which consultation works
well. However, it is difficult to derive a property which is common for all cases. Everything
depends on the game and the engine. Therefore, consultation algorithm with random
numbers is not a general solution. The domain which is available to consultation is
limited. A clear explanation of 3-Hirn is obtained in the same context.

The consultation algorithm with random numbers is formally explained by our ap-
proach, but we have another type of consultation, ¢.e., optimistic consultation. Unfor-
tunately, it is impossible to find the origin of an advantage of optimistic consultation in
this approach. To analyze optimistic consultation algorithm, we need to analyze detailed
structures of an evaluation function. This is difficult.

Also, consultation of different types of engines are reported [3]. This is a slightly
different situation from our analysis. It is possible to apply our analysis for this case.
This consultation makes a large improvement on the original engine. No longer using
a noisy weak engine but different type of engine. Therefore, it could be possible to
approximate this consultation using our analysis.

We conclude that the effectiveness of the consultation algorithm depends on the game.
In our representation, a game has positions and moves, i.e., current states and decisions
to make. Therefore, some human activity is included in our analysis. For example, the
case in which one human considers his idea from many points of view has an analogy
with our analysis. To get different point of view, one needs to come up with options
which is not the first choice. This means generating worse options under his evaluation.
If his evaluation is close enough to perfect, this is the same as adding random noise to his
thinking. Consultation with many humans could also be approximated by our approach.
Solomon describes a result of social epistemology as “If group deliberation does take place,
outcomes are better when members of the group are strangers, rather than colleagues or
friends.” [9]. By taking a group of friends, and adding randomness to the decision process,
a group of strangers is formed. This is a case of human activity to which our approach is
applicable.

24

Chapter 6

Conclusions

In this thesis, we clearly explained the origin of an advantage of consultation algorithm
with random numbers, and 3-Hirn. The consultation algorithm with random numbers
works well if and only if the expected improvement of consultation is greater than the
expected reduction of consultation and the expected improvement of each engine is less
than the expected reduction of each engine. In this thesis a new definition is derived
of the necessary and sufficient condition for consultation algorithm working well. This
new definition is an improvement of the existing one because it considers all choices. A
explanation of 3-Hirn is given, elaborating on the existing one. Formulas for bounds of
probability of consultation algorithm improving/reducing are given. Our analysis has a
possibility to be applicable to human activities not only engine.

25

Bibliography

1]

Althofer 1., and Snatzke, G.R.: Playing Games with Multiple Choice Systems. Lecture
Notes in Computer Science 2883, pp. 142-153 (2003)

Althofer I.: Improved game play by multiple computer hints. Theoretical Computer
Science 313, 315-324 (2004)

Obata, T., Sugiyama, T., Hoki, K., and Ito, T.: Consultation Algorithm for Computer
Shogi Move Decisions by Majority. Lecture Notes in Computer Science 6515, pp. 156-
165 (2011)

Sugiyama, T., Obata, T., Hoki, K., and Ito, T.: Optimistic Selection Rule Better
Than Majority Voting System. Lecture Notes in Computer Science 6515, pp. 166-175
(2011)

Omori, S., Hoki, K., and Ito, T.: Consultation Algorithm for Computer Chess. SIG
Technical Reports 2011-GI-26(5), 1-7 (2011)

Manabe, K., and Muramatsu, M.: Boosting Approach for Consultaton by Weighted
Majority Vote in Computer Go. IPSJ Symposium Series 2011 6, 128-134 (2011)

Jooooooovs. 00D 201000,
http://www.ipsj.or.jp/50anv /shogi/20101012.html (News:a top player in the Ladies
Professional Players Group vs. AKARA 2010)

Sato, Y., Cincotti, A., and Iida, H.: An Analysis of Voting Algorithm in Games.
Computer Games Workshop at ECAI 2012, 102-113 (2012)

Solomon, M.: Groupthink versus The Wisdom of Crowds: The Social Epistemology
of Deliberation and Dissent. The Southern Journal of Philosophy 44, 28-42 (2006)

26

