JAIST Repository

https://dspace.jaist.ac.jp/

Title	Hydrogelation of Dextran-Based Polyampholytes with Cryoprotective Properties Via Click Chemistry
Author(s)	Jain, Minkle
Citation	
Issue Date	2013-06
Туре	Thesis or Dissertation
Text version	none
URL	http://hdl.handle.net/10119/11403
Rights	
Description	Supervisor:Associate Professor Kazuaki Matsumura, マテリアルサイエンス研究科,修士

Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry

Minkle Jain, Matsumura Laboratory

Hydrogels are promising substrates for tissue engineering applications because of their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics. Cryopreservation of cell-containing constructs using such hydrogel scaffolds is in high demand in tissue-engineering applications for the production of "off-the-shelf"tissue-engineered products. Here, I report a dextran-based polyampholyte hydrogel that itself shows cryoprotective properties, which could be useful for cell encapsulation and tissue engineering applications involving hydrogel formation. Amination was performed by introducing poly-L-lysine onto azide groups conjugated with dextran, and a portion of the amino groups was converted into carboxyl groups as shown in Scheme 1.

Scheme 1 Succinylation of azide-amino-dextran. SA reacted with the azide-amino-Dex, yielding the carboxylatedazide-amino-Dex (azide-Dex-PA).

These dextran-based polyampholytes showed good cryoprotective properties for mammalian cells, and addition of dextran substituted with dibenzylcyclooctyne acid induced *in situ* hydrogel formation via Cu-free click chemistry with high biocompatibility. Cells encapsulated with such *in situ* hydrogels can be cryopreserved well without addition of any cryoprotectants.

Keywords: Hydrogel, Cryopreservation, Dextran, Tissue engineering, Click chemistry