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Abstract—Since a spatial distribution of communication
requests is inhomogeneous and related to a population, in
constructing a network, it is crucial for delivering packets on
short paths through the links between proximity nodes and
for distributing the load of nodes how to locate the nodes as
base-stations on a realistic wireless environment. In this paper,
from viewpoints of complex network science and biological
foraging, we propose a scalably self-organized geographical
network, in which the proper positions of nodes and the
network topology are simultaneously determined according to
the population, by iterative divisions of rectangles for load
balancing of nodes in the adaptive change of their territories.
In particular, we consider a decentralized routing by using only
local information, and show that, for searching targets around
high population areas, the routing on the naturally embedded
fractal-like structure by population has higher efficiency than
the conventionally optimal strategy on a square lattice.

Keywords-self-organised design; wide-area wireless commu-
nication; routing in ad hoc networks; random walk; Levy flight.

I. INTRODUCTION

Many network infrastructures: power grids, airline net-
works, and the Internet, are embedded in a metric space,
and long-range links are relatively restricted [1], [2] for
economical reasons. The spatial distribution of nodes is
neither uniformly at random nor on a regular lattice, which
is often assumed in the conventional network models. In
real data, a population density is mapped to the number
of router nodes on Earth [1]. Similar spatially inhomoge-
neous distributions of nodes are found in air transportation
networks [3] and in mobile communication networks [4].
Thus, it is not trivial how to locate nodes on a space in
a pattern formation of points. Point processes in spatial
statistics [5] provide models for irregular patterns of points
in urban planing, astronomy, forestry, or ecology, such as
spatial distributions of rainfall, germinations, plants, and
animals. The processes assume homogeneous Poisson and
Gibbs distributions to generate a pattern of random packing
or independent clustering, and to estimate parameters of
competitive potential functions in a territory model for a
given statistical data, respectively. However, rather than
random pattern and statistical estimation, we focus on a

self-organized network infrastructure by taking into account
realistic spatial distributions of nodes and communication
requests. In particular, we aim to develop adaptive and
scalable ad hoc networks by adding the links between prox-
imity nodes according to the increasing of communication
requests. Because a spatial distribution of communication
requests affect the proper positions of nodes, which control
both the load of requests assigned to each node (e.g.,
assigned at the nearest access point of node as a base-station
from a user) and the communication efficiency depending on
the selection of routing paths.

For a routing in ad hoc networks, global information, e.g.,
a routing table in the Internet, cannot be applied, because
many nodes and connections between them are likely to
change over time. In early works on computer science, some
decentralized routing methods were developed to reduce
energy consumption in sensor or mobile networks. However
they lead to the failure of guaranteed delivery [6]; in the
flooding algorithm, multiple redundant copies of a message
are sent and cause congestion, while greedy and compass
routings may occasionally fall into infinite loops or into
a dead end. In complex network science, other efficient
decentralized routing methods have been also proposed.
The stochastic methods by using local information of the
node degrees and other measures are called preferential [7]
and congestion-aware [8], [9] routings as extensions of a
uniformly random walk.

Decentralized routing has a potential performance to
search a target whose position is unknown in advance. Since
this situation looks like foraging, the biological strategy may
be useful for the efficient search. We are interested in a
relation of the search and the routing on a spatially inhomo-
geneous network structure according to a population. Many
experimental observations for biological foraging found the
evidence in favor of anomalous diffusion in the movement
of insects, fishes, birds, mammals and human being [10].
As the consistent result, it has been theoretically analyzed
for a continuous space model that an inverse square root
distribution of flight lengths is an optimal strategy to search
sparsely and randomly located targets on a homegeneous
space [11]. The discrete space models on a regular lattice
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[12] and the defective one [13] are also discussed. Such
behavior is called Levy flight characterized by a distribution
function P (lij) ∼ l−µ

ij with 1 < µ ≤ 3, where lij is
a flight length between nodes i and j in the stochastic
movement for any direction. The values of µ ≥ 3 lead
to Brownian motions, while µ → 1 to ballistic motions.
The optimal case is µ ≈ 2 for maximizing the efficiency
of search. Here, we assume that the mobility of a node
is ignored due to a sufficiently slow speed in comparison
with the communication process. In the current or future
technologies, wide-area wireless connections by directional
beams will be possible, the modeling of unit disk graph
with a constant transmission range is not necessary. Thus,
we propose a scalably self-organized geographical network
and show that the naturally embedded fractal-like structure
is suitable for searching inhomogeneously distributed targets
more efficiently than the square lattice tracked by the Levy
flights.

II. GEOGRAPHICAL NETWORKS

We introduce geographical network models proposed in
complex network science.

A. Conventional Models

Geographical constructions of complex networks have
been proposed so far. As a typical generation mechanism
of scale-free (SF) networks that follow a power law degree
distribution found in many real systems [14], [15], a spatially
preferential attachment is applied in some extensions [16],
[17], [18], [19], [20] from the topological degree based
model [21] to a combination of degree and distance based
model. On the other hand, geometric construction methods
have also been proposed. They have both small-world [22]
and SF structures generated by a recursive growing rule
for the division of a chosen triangle [23], [24], [25], [26]
or for the attachment aiming at a chosen edge [27], [28],
[29] in random or hierarchical selections. These models
are proper for the analysis of degree distribution due to
the regularly recursive generation process. Although the
position of a newly added node is basically free as far
as the geometric operations are possible, it has no relation
to population. Considering the effects of population on a
geographical network is necessary to self-organize a spatial
distribution of nodes that is suitable for socioeconomic
communication and transportation requests. Moreover, in
these geometric methods, narrow triangles with long links
tend to be constructed, and adding only one node per step
may lead to exclude other topologies from the SF structure.
Unfortunately, SF networks are extremely vulnerable against
the intentional hub attacks [30]. We should develop other
self-organizations of network apart from the conventional
models; e.g., a better network without long links can be
constructed by subdivisions of equilateral triangle, which is a
well balanced (neither fat nor thin) shape for any directions.

B. Generalized Multi-Scale Quartered Network

Thus, we have considered the multi-scale quartered
(MSQ) network model [31], [32]. It is based on a stochastic
construction by a self-similar tiling of primitive shape, such
as an equilateral triangle or square. The MSQ networks have
several advantages of the strong robustness of connectivity
against node removals by random failures and intentional
attacks, the bounded short path as t = 2-spanner [33], and
the efficient face routing by using only local information.
Furthermore, the MSQ networks are more efficient (eco-
nomic) with shorter link lengths and more suitable (tolerant)
with lower load for avoiding traffic congestion [32] than the
state-of-the-art geometric growing networks [23], [24], [25],
[26], [27], [28], [29] and the spatially preferential attachment
models [16], [17], [18], [19], [20] with various topologies
ranging from river to SF geographical networks. However, in
the MSQ networks, the position of a new node is restricted
on the half-point of an edge of the chosen face, and the link
length is proportional to ( 1

2
)H where H is the depth number

of iterative divisions. Thus, from square to rectangle, we
generalize the division procedures as follows.

Step0: Set an initial square whose inside are the candi-
dates of division axes as the segments of a L×L
lattice.

Step1: At each time step, a face is chosen with a proba-
bility proportional to the population counted in the
face covered by mesh blocks of a census data.

Step2: Four smaller rectangles are created from the di-
vision of the chosen rectangle face by horizontal
and vertical axes. For the division, two axes are
chosen by that their cross point is the nearest to
the population barycenter of the face.

Step3: Return to Step 1, while the network size (the total
number of nodes) N does not exceed a given size.

Note that the maximum size Nmax depends on the value
of L; the iteration of division is finitely stopped, since the
extreme rectangle can not be divided any longer when one
of the edge lengths of rectangle is the initial lattice’s unit
length. We use the population data on a map in 80km2 of
160 × 160 mesh blocks (L = 160) provided by the Japan
Statistical Association. Of course, other data is possible.

It is worth noting that the positions of nodes and the
network topology are simultaneously determined by the
divisions of faces within the fractal-like structure. There
exists a mixture of sparse and dense parts of nodes with
small and large faces. Moreover, with the growing network,
the divisions of faces perform a load balancing of nodes in
their adaptively changed territories for the population. We
emphasize that such a network is constructed according to a
spatially inhomogeneous distribution of population, which is
proportional to communication requests in a realistic envi-
ronment. In the following, we show the naturally embedded
fractal-like structure are suitable for searching targets.
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III. SEARCH PERFORMANCE

As a preliminary, we consider the preferential routing [7]
which is also called α-random walk [34]; The forwarding
node j is chosen proportionally to Kα

j by a walker in the
connected one hop neighbors Ni of its resident node i of a
walker (packet), where Kj denotes the degree of node j and
α is a real parameter. We assume that the start position of
walker is set to the nearest node to the population barycenter
of the initial square. Figure 1 shows the length distribution
of visited links. The dashed lines in log-log plot suggest a
power law, for which the exponents estimated as the slopes
by a mean-square-error method are 2.336, 2.315, and 2.296
for α = 1, 0,−1, respectively. These values are close to
the optimal exponent µ ≈ 2 [11], [12] in the Levy flight
on a square lattice. The exponents for the α-random walks
slightly increase as the network size N becomes larger.
Here, the case of α = 0 shows the length distribution of
existing links on a network. Since the stationary probability
of incoming at node j is P∞

j ∝ K1+α
j [35], especially at

α = 0, each of the connected links to j is chosen at random
by the probability 1/Kj for the leaving from j, therefore a
walker visit each link at the same number. Figure 2 shows
that the frequency of visited links by the α-random walks
at α = ±1 is different even for the degrees 3 and 4 in a
generalized MSQ network. On the thick lines, a walker tends
to visit high population (diagonal) areas colored by orange
and red in the case of α = 1, while it tends to visit low
population peripheral (corner) areas in the case of α = −1.
Thus, the case of α = 1 is expected to selectively cover
high population areas, which has a lot of communication
requests in cities. Note that the absolute value of α should
be not too large, since a walker is trapped between high/low
degree nodes in a long time as the ping-pong phenomena
that does not contribute to the search of targets.

We investigate the search efficiency for the α-random
walk on a generalized MSQ network, and compare the
efficiency with that for Levy flights on a L × L square
lattice with periodic boundary conditions [12]. As shown
in Fig. 3, a walker constantly looks for targets (destination
nodes of packets) scanning on a link between two nodes
in the generalized MSQ network. If a target exists in the
vision area of rv hops for the up/down/left/right directions
from the center position, a walker gets it and return to the
position on the link for continuing the search on the same
direction. When more than one targets exit in the area, a
walker gets all of them successively in each direction, and
return to the position. Only at a node of rectangle, the search
direction is changeable along one of the connected links.
Thus, the search is restricted on the edges of rectangle in
the generalized MSQ network. While the search direction
of a Levy flight on the square lattice [12] is selectable from
four directions of horizontal and vertical at all times after
getting a target in the scanning with the vision area of rv
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Figure 1. Length distribution of visited links on generalized MSQ networks
by an α-random walker in 10

6 time steps. The marks of blue diamond,
black circle, and red triangle correspond to the cases of α = 1, 0,−1,
respectively. These results are obtained by the average of 100 networks for
N = 2000.

hops, moreover, the length of scan follows P (lij) ∼ l−µ
ij ,

lij > rv . We set a target at the position chosen proportionally
to the population around a cross point in (L + 1)2, for
which the population is defined by the average of four values
in its contact mesh regions. In particular, we discuss the
destructive case [12]: once a target is detected by a walker,
then it is removed and a new target is created at a different
position chosen with the above probability.

The search efficiency [11], [12], [13] is defined by

η
def
=

1

M

M∑

m=1

Ns

Lm

, (1)

λ
def
=

(L + 1)2

Nt2rv

, (2)

where Lm denotes the traversed distance counted by the
lattice’s unit length until detecting Ns = 50 targets from the
total Nt targets in the mth run. We consider a variety of
Nt = 60, 100, 200, 300, 400, and 500 for investigating the
dependency of the search efficiency on the number Nt of
targets. The quantity λ represents the mean interval between
two targets for the scaling of efficiency by target density. We
set M = 103 and rv = 1 for the convenience of simulation.
Intuitively, the sparse and dense structures according to the
network size N have the advantage and disadvantage in
order to raise the search efficiency in the generalized MSQ
network. Although the scanned areas are limited by some
large rectangle holes as N is small, a walker preferably visits
the high population areas that include many targets. While
the scanned areas are densely covered as N is large, the
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Figure 2. Visualization examples of the visited links by α-random walks
at α = 1 (Top) and α = −1 (Bottom) on a generalized MSQ network
for N = 500. The thickness of link indicates the frequency of visiting
in 10

6 time steps. From light to dark: white, yellow, and orange to red,
the color gradation on a mesh block is proportionally assigned to the
population. Many nodes represented as cross points of links concentrate
on high population (dark: orange and red) areas on the diagonal direction.
In the upper left and lower right of square, corner triangle areas lighted by
almost white are the sea of Japan and the Hakusan mountain range.

x
target

rv

Figure 3. Searching in a generalized MSQ network. Each blue square
represents a vision area, and is scanned (from left to right, from top to
bottom in this example) by the walker on an edge between two nodes
(denoted by circles) of a rectangle. For a target in the area, the walker
moves to get it and returns on the link.

search direction is constrained on long links of a collapse
rectangle, therefore it is rather hard for a walker to escape
from a local area in which targets are a few.

We compare the search efficiency of α-random walks in
the generalized MSQ networks with that of the Levy flights

Figure 4. Trajectories of a random walk (Top) at α = 0 on a generalized
MSQ network for N = 500 and of a Levy flight (Bottom) for µ = 1.8 on
the square lattice with periodic boundary conditions until detecting Ns =

50 targets in Nt = 200. Black circle, red circles, and gray rectangle marks
denote the start point at the population barycenter, the existing targets, and
the removed targets after the detections, respectively. Note that a walker
can travel back and forth on a link in the connected path.

in the square lattice. Figure 4 shows typical trajectories until
detecting Ns = 50 targets. On the generalized MSQ network
and the square lattice, a walker tends to cover a local area
with high population and a wider area, respectively. Without
wandering peripheral wasteful areas, the generalized MSQ
network has a more efficient structure than the square lattice
for detecting many targets concentrated on the diagonal
areas. Here the exponent µ = 1.8 of Levy flight corresponds
to the slope of P (lij) in the generalized MSQ network at the
optimal size N = 500 for the search efficiency. As shown
in Fig. 5(a)(b), the generalized MSQ networks of N = 500
(the diamond, circle, and triangle marks are sticking out
at the left) have higher efficiency than the square lattice
(the rectangle mark). For the cases with many nodes of
N ≥ 1000, the efficiency is decreased more rapidly than
that of the Levy flight, however this phenomenon means
that many nodes are wasteful and unnecessary to get a high
search performance in generalized MSQ networks. When the
number Nt of targets increases in cases from Fig. 5(a) to
(b), the curves are shift up, especially for the generalized
MSQ networks. The peak value for Nt = 200 is larger than
the optimal case of the Levy flight at µ = 2.0. Therefore
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denser targets to that extent around Nt = 200 is suitable,
although a case of larger Nt > 300 brings down the search
efficiency even for inhomogeneously distributed targets.
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Figure 5. The scaled efficiency λη vs. the exponent µ. The marks of blue
diamond, black circle, and red triangle correspond to the cases of α =

1, 0,−1, respectively, in which the increasing values of µ are estimated for
generalized MSQ networks at N = 500, 1000, 2000, 3000, 4000, 5000,
and 5649: Nmax from left to right. The magenta rectangle corresponds to
the case of Levy flights on the square lattice. These results are obtained by
the average of 100 networks.

In more details, Fig. 6 shows the effect of the number Nt

of targets on the search efficiency λη. The efficiency firstly
increases, then reaches at a peak, and finally decreases for
setting more targets. This up-down phenomenon is caused
from a trade-off between Lm and Nt in Eqs. (1) and (2).
Note that the case of size N < 500 is omitted for the
generalized MSQ networks. Because sometimes the process
for detecting targets until Ns is not completed, moreover, the
variety of link lengths is too little to estimate the exponent
as a slope of P (lij) in the log-log scale. In other words, the
estimation is inaccurate because of the short linear part.
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Figure 6. The number Nt of targets vs. the scaled efficiency λη of α-
random walks on the generalized MSQ networks for N = 500 and of the
corresponding Levy flights for µ = 1.8 (see Fig. 5) on the square lattice.
The maximum (optimal) efficiency appears in Nt = 200 ∼ 300. These
results are obtained by the average of 100 networks.

IV. CONCLUSION

We have considered a scalably self-organized geograph-
ical network by iterative divisions of rectangles for load
balancing of nodes in the adaptive change of their territories
according to the increasing of communication requests.
In particular, the spatially inhomogeneous distributions of
population and the corresponding positions of nodes are
important. For the proposed networks, we have investigates
the search efficiency in the destructive case [12] with new
creations of target after the detections, and shown that the
α-random walks as decentralized routing on the networks
have higher search efficiency than the Levy flights known
as the optimal strategy [11], [12] on the square lattice with
periodic boundary conditions. One reason for the better
performance is the anisotropic covering of high population
areas. Thus, the naturally embedded fractal-like structure is
suitable for searching targets in such a realistic situation. In
more rigorous discussions about the performance, statistical
tests [36] may be useful to clarify the applicability of the
proposed method.
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