
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 振舞仕様の検証方法に関する研究

Author(s) 松本, 充広

Citation

Issue Date 1998-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1144

Rights

Description Supervisor:二木 厚吉, 情報科学研究科, 修士

Veri�cation Methods for Behavioural

Speci�cations

MICHIHIRO MATSUMOTO

School of Information Science,

Japan Advanced Institute of Science and Technology

February 13, 1998

Keywords: concurrent system, algebraic speci�cation, veri�cation, re�nement, term
rewriting system.

The purposes of our research are to clear problems of previous veri�cation methods
for behavioural speci�cations and to propose improved veri�cation methods. We want to
decrease costs of developments of concurrent systems. As a candidate of solutions, we
selected veri�cation methods for behavioural speci�cations.

Concurrent systems are constructed from many objects that communicate with other
objects. Because possible states and transitions are huge, numbers of the necessary tests
to ensure reliability are also huge. Therefore, costs of these tests is high. On the other
hand, logical veri�cations can �nd bugs of the logical level and costs of logical veri�cations
is lower than those of the tests. Consequently, we can expect the costs of developments
to decrease by exchanging the tests for a combination of tests and logical veri�cations.

From this expectation, logical veri�cation methods have been studied in process alge-
bras. We think abstract data types (abbreviate ADT) have key roles when we verify data
ows over concurrent systems. But, most of process algebras can not deal with ADT. In
behavioural semantics (hidden algebras), concurrent systems are treated as black boxes.
So, behavioural semantics (hidden algebras) can be seen as a generalization of process
algebras which can deal with ADT. So, we can adapt the techniques provided in pro-
cess algebras for behavioural semantics (hidden algebras) and we can deal with ADT

in behavioural semantics (hidden algebras). Therefore, we selected behavioural seman-
tics (hidden algebras) as the foundations of our research. Behavioural speci�cations are
speci�cations whose semantics are behavioural semantics.

In behavioural speci�cation, we specify interactions between a concurrent system and a
user. Operations which observe the states (of the concurrent system) are called attributes
and operations which change the states are called methods. Attributes and methods

Copyright c 1998 by MICHIHIRO MATSUMOTO

1

are called behavioural operators. We can only recognize the current state by observing
states changed by methods through attributes. So, we can regard method sequences
with an attribute as observation tools. these observation tools are called visible contexts.
Behavioural equivalence � between states s; s0 are de�ned as follows:
(s � s0) = ^ct2VisCt(ct[s] == ct[s0])

where VisCt is the set of all visible contexts. In behavioural speci�cations, we verify
behavioural properties that are behavioural equivalence relations between states of con-
current systems.

As to veri�cation methods for behavioural speci�cations, there are coinduction and
induction over length of contexts. The main application of these veri�cation methods is
stepwise re�nement of behavioural speci�cations as restriction of possible implementa-
tions.

Coinduction is a veri�cation method based on the following fact:
behavioural equivalence is the largest hidden congruence,

where a hidden congruence is a congruence such that: identity relation on data values.
Consider to verify a behavioural property s � s0. The algorithm of coinduction is as
follows:

1. �nd a candidate R of hidden congruences,

2. check whether R is a hidden congruence, and

3. verify whether s � s0 holds, by proving s R s0.

So, to use coinduction, users must �nd a hidden congruence. Until now, this hidden
congruence should be given by hand.

Note that relations which can be de�ned on veri�cation systems are relations de�ned by
syntax | we call these relations syntactically de�nable hidden congruences. Firstly,
we show that the only useful syntactically de�nable hidden congruence for veri�cations
is behavioural equivalence. Therefore, R should be behavioural equivalence. Behavioural
equivalence is the conjunction over all visible contexts. Consequently, a selection of hid-
den congruences corresponds to a selection of the set of visible contexts which construct
behavioural equivalence. We let R denote the form of behavioural equivalence de�ned
by syntax | conjunction over visible contexts | and we let #(R) denote the numbers
of these visible contexts. We regard a veri�cation method which use R as an e�cient

method if #(R) is small. We regard R as a simple form if #(R) is small. So, to verify
behavioural properties e�ciently, we need a simple form of behavioural equivalence. By
eliminating redundant visible contexts, we get this simple form. We provide the algorithm
which generates this simple form. That is GSB-algorithm (test set coinduction).

Consider to verify a behavioural property s � s0. The algorithm of test set coinduction
is as follows:

1. generate a simple form R of behavioural equivalence (by GSB-algorithm), and

2. verify whether s � s0 holds, by proving s R s0.

2

By analysing the structure of the set of all visible contexts, we show the su�cient
condition that GSB-algorithm can eliminate all redundant visible contexts.

Until now, coinduction was regarded more e�cient than induction over length of con-
texts. By analysing the structure of the set of all visible contexts, we show the case that
coinduction (test set coinduction) coincides with induction over length of contexts.

As to research of stepwise re�nements of behavioural speci�cations as restriction of
possible implementations, there are researches by Dr.Goguen and Dr.Malcolm. But, these
are not satisfactory. Firstly, they give the original speci�cation (for example, a stack).
Then, they construct it from primitive modules (for example, an array and a pointer) in
the re�ned speci�cation. Finally, they prove that the composed module (for example, a
stack constructed from the array and the pointer) satisfy the original speci�cation. In the
last process, they treat the composed module as data. But, in behavioural speci�cation,
speci�cations of concurrent systems must be treated as black boxes. Concretely, the
problem is that there are states of the composed module which do not correspond to
states of primitive modules.

We provide projection operators which specify correspondences between states of
composed module and states of primitive modules. We provide the method which con-
struct a composed module from primitive modules using these projection operators. We
call the speci�cations which are written under the above method object-oriented spec-

i�cations. Specifying concurrent systems by using object-oriented speci�cations, we
solved the above problem. Moreover, we provide the method to verify stepwise re�ne-
ment of object-oriented speci�cations.

As to the previous version of projection operators | we call these operators pseudo-
projection operators in this paper |, there is a co-operative research with Mr.Iida,
Dr.Diaconescu, and Dr.Lucanu. We only wrote our contribution in this paper. In this
co-operative research, we specify dynamic systems using pseudo-projection operators. By
changing contents of ObjId dynamically, we can specify dynamic systems.

The di�erence between projection operators and pseudo-projection operators is that
projection operators are ordinary operators but pseudo-projection operators are behaviou-
ral operators. Consider to construct a stack from an array and a pointer. If we use pseudo-
projection operators, we get just an array with a pointer. We can observe all contents of
the array through visible contexts. On the other hand, if we use projection operator, we
get a stack. We can only observe contents under a pointer. By using projection operator,
we can restrict the set of visible contexts. To compose modules, this kind of restriction is
necessary.

3

