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The graph reconstruction conjecture is a long-standing open problem in graph theory.
The conjecture has been verified for all graphs with at most 11 vertices. Further, the
conjecture has been verified for regular graphs, trees, disconnected graphs, unit interval
graphs, separable graphs with no pendant vertex, outer-planar graphs, and unicyclic
graphs. We extend the list of graph classes for which the conjecture holds. We give a
proof that bipartite permutation graphs are reconstructible.
Keywords: the graph reconstruction conjecture, bipartite permutation graphs

1. Introduction

The graph reconstruction conjecture proposed by Ulam and Kellya has been studied

by many researchers intensively. In order to state the conjecture, we first introduce

some terms. A graph G′ is called a card of a graph G = (V, E), if G′ is isomorphic

to G−v for some v ∈ V , where G−v is a graph obtained from G by removing v and

incident edges. A multi-set of n graphs with n− 1 vertices for some positive integer

n is called a deck. Especially, the multi-set of the |V | cards of G, each of which is

isomorphic to G − v for each v ∈ V , is a deck of G. A graph G is a preimage of

a deck D, if D is a deck of G. We also say that a graph G is a preimage of the n

graphs if each card of G is isomorphic to each of them. The graph reconstruction

conjecture is that there is at most one preimage of given n graphs (n ≥ 3). No one

has found a proof nor a counter example of this conjecture, while it was verified for

small graphs by exhaustive checking [12].

aDetermining the first person who proposed the graph reconstruction conjecture is difficult, actu-
ally. See [7] for the detail.
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The graph reconstruction conjecture has been verified for some graph classes.

Kelly showed that the conjecture is true on regular graphs, trees, and disconnected

graphs [9]. Other classes proven to be reconstructibleb are unit interval graphs [13],

separable graphs with no pendant vertex [2], outer-planar graphs [5], unicyclic

graphs [11], etc. We extend the list of graph classes for which the conjecture holds;

We give a proof that bipartite permutation graphs are reconstructible.

Rimscha showed that unit interval graphs are reconstructible [13]. Unit interval

graphs have somewhat path-like structures, and so do bipartite permutation graphs.

Further, the representation of a unit interval graph is unique, similar to that of

a bipartite permutation graph. Thus, we first thought that we can easily prove

that bipartite permutation graphs are reconstructible. There are two differences

between the two classes, that make it difficult to prove that bipartite permutation

graphs are reconstructible. One is that, bipartite permutation graphs are bipartite.

Therefore, we have to determine from which partite a vertex was removed for cards

in a deck. The second difference is that, in the case of unit interval graphs, there is

no disconnected card obtained by removing a vertex laying at the end of the path

structure. In a deck of a bipartite permutation graph, there can be a disconnected

card that is obtained by removing a polar vertex which lays at the end of the path

structure (We will define a polar vertex later.) Therefore, we had to consider many

exceptional cases.

Kelly showed the following lemma.

Lemma 1.1 (Kelley’s Lemma [9]). Let G be any preimage of the given deck,

and let H be a graph whose number of vertices is smaller than that of G. Then we

can uniquely determine the number of subgraphs in G isomorphic to H from the

deck.

Greenwell and Hemminger extended this lemma to a more general form [6].

We can determine the degree sequence of a preimage of the given deck from these

lemmas. Moreover, given a deck of a graph, we can determine the degree of removed

vertex for each card in the deck. Note that
∑

v: vertex deg(v) = 2 × (# of edges).

Thus, we can easily show for example that cycles are reconstructible, since a graph

is a cycle if and only if it is connected, and all its vertices have degree exactly two.

Tutte proved that the dichromatic rank and Tutte polynomials are recon-

structible (i.e. looking at the deck, they are uniquely determined) [15]. Bollobás

showed that almost all graphs are reconstructible from three well-chosen graphs in

its deck [1]. About permutation graphs, Rimscha showed that permutation graphs

are recognizable in the sense that looking at the deck of G one can determine

whether or not G belongs to permutation graphs [13]. To be precise Rimscha showed

in the paper that comparability graphs are recognizable. Even’s result [4] directly

gives a proof in the case of permutation graphs. Rimscha also showed in the same

paper that many subclasses of perfect graphs including perfect graphs themselves

bA graph is reconstructible, if its deck has only one preimage.
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are recognizable, and moreover, some of subclasses, such as unit interval graphs,

are reconstructible. There are a lot of papers about the conjecture, and many good

surveys about this conjecture. See for example [3,7].

We explain about bipartite permutation graphs in the next section. Then, we

prove the statement in Section 3. The proof has two subsections. In the first subsec-

tion, we give the main idea of the proof. In the second subsection, we consider some

exceptional cases. The proof uses some lemmas on bipartite permutation graphs.

Since we think that checking these lemmas one by one may make readers lose the

way, we write the proofs of some of them in Section 4.

2. Bipartite Permutation Graphs

All the graphs in this paper are simple and undirected unless stated otherwise.

Given a graph G = (V, E) and a vertex v ∈ V , we denote by degG(v) the degree of

v in G.

2.1. Permutation diagram

Let π = (π1, π2, . . . , πn) be a permutation of 1, . . . , n. We denote (πn, πn−1, . . . , π1)

by π.

We call a set L of line segments connecting two horizontal parallel lines on

Euclidean plane a permutation diagram. A permutation diagram represents a per-

mutation. Let l1, l2, . . . , l|L| be the line segments in L. We assume that the end-

points of them appear in this order from left to right on the upper horizontal line.

Then, the permutation represented by L is (π1, π2, . . . , π|L|), where the end-points

of l1, l2, . . . , l|L| appear in the order of π1, . . . , πn on the lower horizontal line. Equiv-

alently, the ith left-most end-point among those of the segments in L is that of lπi
−1 ,

on the lower horizontal line, for each i ∈ {1, 2, . . . , |L|}. See Fig. 1(a) for example.

The permutation diagram represents (2, 7, 3, 5, 1, 6, 4) = (5, 1, 3, 7, 4, 6, 2)−1.

Let P be a permutation diagram. We denote by PH a permutation diagram

obtained by reversing P horizontally. See Fig. 1(b) for example. The permutation

diagram is obtained by reversing (a) horizontally. Similarly, we denote by PV and

PR permutation diagrams obtained by reversing P vertically, and by rotating P

180◦, respectively.c

2.2. Bipartite permutation graphs

Let π be a permutation of the numbers 1, 2, . . . , n. Gπ = (Vπ , Eπ) is a graph satis-

fying that

• Vπ = {1, . . . , n}, and

cLet P be a permutation diagram representing a permutation π. For those who want concrete

expressions, it is not difficult to check that PV represents πV = π−1, PH represents πH = π−1
−1

,
and PR represents πR = π−1.
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(a)

(c) (d)

(b)

Fig. 1. (a) is an example of a permutation diagram. (b), (c), and (d) are permutation diagrams
obtained from (a) by reversing horizontally, reversing vertically, and rotating 180◦, respectively.
They represent permutations (2,7,3,5,1,6,4), (4,2,7,3,5,1,6), (5,1,3,7,4,6,2), and (6,2,4,1,5,7,3), re-
spectively.

Fig. 2. Forbidden graphs of bipartite permutation graphs are these graphs, K3, and cycles of length
more than four.

• {i, j} ∈ Eπ ⇔ (i − j)(π−1

i − π−1

j ) < 0.

A graph G is called a permutation graph if there exists a permutation π such that G

is isomorphic to Gπ. Equivalently, a graph G is a permutation graph if there exists

a permutation π such that G is an intersection model of the permutation diagram

of π. We say that π (or, sometimes, the permutation diagram of π) represents G. If

a permutation graph G is bipartite, we call G a bipartite permutation graph.

There is a good characterization for bipartite permutation graphs.

Theorem 2.1 (P. Hell and J. Huang [8]). A graph G is a bipartite permutation

graph if and only if G has neither the graphs in Fig. 2, nor K3, nor cycles of length

more than four as an induced subgraph.

It is known that a connected bipartite permutation graph has at most four rep-

resenting permutation diagrams. If a permutation diagram P is representing a con-

nected bipartite permutation graph G, the other representing permutation diagram

of G must be one of PH, PV, and PR [14]. Thus a permutation diagram repre-

senting a connected bipartite graph is essentially unique. Note that a disconnected

bipartite permutation graph may have more than four representing permutation

diagrams. Together with the fact that cards in a deck of a connected graph can be

disconnected, this is the reason why our proof is not very simple.
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s1

s2

a

b

Fig. 3. An bipartite permutation graph and its representation. The polar vertices are circled.
Vertices a and b are isomorphic, and can correspond to both the segments s1 and s2. Thus, both
a and b are polar vertices.

Let P be a permutation diagram representing a connected bipartite permutation

graph G. There are two left-most segments in P , and there are two right-most

segments in P . Here, we say that a segment is the left-most (right-most) if it is

the left-most (right-most) among the segments not intersecting with it. We call the

vertices that can correspond to the left-most or right-most segments polar vertices.

the number of polar vertices can be less than four, since the left-most segment in P

can also be the right-most segment when the segment intersecting all the segments

belonging to the other partite. The number of polar vertices may be more than four,

since there may exist some isomorphic polar vertices.d See Fig. 3 for an example.

By repeatedly removing degree one polar vertices from a connected bipartite

permutation graph G, we obtain a connected bipartite permutation graph G′. We

call the graph G′ trunk of G, and we denote the trunk by Tr(G). The vertex in

Tr(G) nearest from a degree one polar vertex v of G is called the root of v. The

path in G whose ends are v and v’s root is called a limb.

It is clear that every card G′ of a bipartite permutation graph G is a bipartite

permutation graph, since we can obtain a representing permutation diagram of G′

by removing a line segment from a representing permutation diagram of G.

3. Main Proof

The main idea of our proof is simple. However, if there is a degree one polar vertex,

there are many exceptional cases, and the proof gets complex. Therefore, we first

show the simple case, and then prove the exceptional cases.

3.1. No degree one polar vertex case

We show an algorithm which reconstructs G from its deck. The algorithm directly

shows the uniqueness of the preimage. However, the proof of the uniqueness uses a

bunch of bipartite permutation graph specific properties. We are afraid that check-

ing the properties one by one makes the readers lose the way in the main-line of

the proof. Therefore, we leave some of the proofs in Section 4.

dVertices v and u are isomorphic, if the neighbors of them are identical.
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We need the two lemmas below to keep the main proof simple.

Lemma 3.1. All the preimages of the deck of a bipartite graph G are bipartite.

Proof. Immediate from the fact that the chromatic number of G is recon-

structible [16].

Lemma 3.2. All the preimages of a deck of a bipartite permutation graph are

bipartite permutation graphs.

Proof. Immediate from Lemma 3.1 and the fact that permutation graphs are rec-

ognizable [13].

We can easily check the following lemma.

Lemma 3.3. A card obtained from a connected bipartite graph G by removing its

polar vertex is connected, if every polar vertex of G has degree more than one.

Proof. Let L be a set of segments representing G. Let l1 be the left-most segment

in L, and l2 be the second left-most one. Note that there must exist l2, since the

right-most polar vertex has degree more than one. Since G is connected, NL(l1) ⊂

NL(l2) holds, where NL(l) is the set of segments in L intersecting l. Therefore, for

a polar vertex v corresponding to l1, there exist a vertex whose neighbors contain

the neighbors of v. Thus the graph obtained from G by removing v is connected.

Our main proof assumes that a bipartite permutation graph G = (X, Y, E) does

not have a polar vertex in X whose degree is |Y |. Therefore, we need the following

lemma.

Lemma 3.4. Let G = (X, Y, E) be a connected bipartite permutation graph such

that a polar vertex in X has degree equal to |Y |. Then G is reconstructible.

We leave the proof in Section 4. In the rest of this subsection, we consider a con-

nected bipartite permutation graph G = (X, Y, E) satisfying the condition below.

Condition 1. There is no polar vertex of degree |Y | in X, and there is no polar

vertex of degree |X | in Y .

Note that, under this condition, a polar vertex on the left-end cannot be adjacent

to any polar vertex on the right-end. And, |X |, |Y | ≥ 2 holds, since if |X | = 1, then

x ∈ X must be a polar vertex and adjacent to every vertex in Y .

Now, we explain the main idea. Let G = (X, Y, E) be a connected bipartite

permutation graph satisfying Condition 1.

We can prove that |X | and |Y | are reconstructible. Since the proof of this fact

becomes a bit long, we leave it in Section 4.
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We first consider the case that |X | 6= |Y |. We assume without loss of generality

that |X | > |Y |. There are the left- and the right-polar vertices xl and xr in X , such

that xl corresponds to the left-most line segment, and xr corresponds to the right-

most line segment in a permutation diagram representing G. In a similar fashion,

we define vertices yl and yr as the left- and the right-polar vertices in Y . We assume

without loss of generality that degG(xl) ≤ degG(xr) holds.

Let Gl = (Xl, Yl, Rl) and Gr = (Xr, Yr, Rr) be cards of G obtained by removing

yl and yr from G, respectively. By Lemma 3.3, Gl and Gr are connected. We denote

by DY the set of G’s connected cards that are obtained by removing a vertex

belonging to Y . Clearly, Gl and Gr are in DY .

Consider a connected bipartite permutation graph G′ = (X ′, Y ′, E′) in DY .

We assume without loss of generality that |X ′| ≥ |Y ′| holds. Then, since |X | > |Y |

holds, |X ′| = |X | and |Y ′| = |Y |−1 hold. On the other hand, with a connected graph

G′′ = (X ′′, Y ′′, E′′) obtained by removing a vertex in X from G, |X ′′| = |X | − 1,

|Y ′′| = |Y | hold. Therefore, we can choose all the cards that belong to DY from the

deck of G, and we can determine which partite of each card corresponds to X .

Now, consider the degrees of the polar vertices in X ′. If G′ is Gl, the degrees

of the polar vertices in X ′ are {degG(xl) − 1, degG(xr)}. If G′ is Gr, the degrees of

the polar vertices in X ′ are {degG(xl), degG(xr)− 1}. Otherwise, the degrees of the

polar vertices in X ′ are either {degG(xl) − 1, degG(xr)}, {degG(xl), degG(xr) − 1},

{degG(xl), degG(xr)}, or {degG(xl)−1, degG(xr)−1}. We call G′ good, if the degrees

of the polar vertices in X ′ are {degG(xl) − 1, degG(xr)}. Note that we can chose

good cards from DY , since degG(xl)−1 is the minimum degree of the polar vertices,

and degG(xr) is the maximum degree of the polar vertices. And, the key point is

that, in a good card, the degrees of the left- and the right-polar vertices in X differ.

Let {G′
1, . . . , G

′
k} be the set of good graphs in DY . Let vi be a vertex such that

G′
i is obtained by removing vi from G. We can determine degG(vi), since the degree

sequence is reconstructible. We can prove that degG(yl) = mini=1,...,k degG(vi) by

Lemma 4.2 which we will state in Section 4. Thus, we can uniquely reconstruct the

preimage from the deck. (We only have to add a degree degG(yl) polar vertex in

Y ′ adjacent to the polar vertex of degree degG(xl) − 1 in X ′. This can be done

deterministically on the permutation diagram by Lemma 4.3 which we will prove

in Section 4.)

Now we consider the case that |X | = |Y |. In this case, every connected card is

in the form Gi = (Xi, Yi, E) such that |Xi| = |Yi| − 1. Thus we cannot determine

which partite of G′ corresponds to which partite of G. However, we know that Gi is

obtained by removing a vertex in Yi’s partite. Therefore, polar vertices of Gi in Xi

are also polar vertices of a preimage. Thus, the minimum degree of polar vertices

in Xi among all the connected cards is equal to p′ − 1, where p′ is the minimum

degree of polar vertices of a preimage. Moreover, a card that has a polar vertex of

degree p′ − 1 in Xi is obtained by removing a vertex adjacent to a polar vertex of

degree p′ from a preimage. Hence, we can uniquely reconstruct a preimage in the
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same fashion above (using Lemmas 4.2, 4.3).

Therefore, we have the theorem below.

Theorem 3.5. A connected bipartite permutation graph G = (X, Y, E) satisfying

Condition 1 is reconstructible, if every polar vertex of G has degree more than one.

3.2. Polar vertices with degree one

We can determine if a preimage G has a polar vertex of degree one, by Lemma 4.4

in Section 4. In this subsection, we consider the case that G has a polar vertex of

degree one.

First, we show the fundamental lemmas.

Lemma 3.6. Let P be a permutation diagram of a connected bipartite permutation

graph G having at least one cycle. Any two limbs of the same side (the left-side or

the right-side) of P have the same root.

Proof. If not, G cannot be connected.

Lemma 3.7. If a connected bipartite permutation graph G has a polar vertex of

degree one, Tr(G) is reconstructible.

Proof. Let G′ be a card obtained by removing a polar vertex of degree one from

G. Then, Tr(G′) and Tr(G) are clearly isomorphic. Let G′′ be a connected card

obtained by removing a vertex that is not a polar vertex of degree one. Then,

|V (Tr(G′′))| < |V (Tr(G))| holds. Thus, we can reconstruct Tr(G) by choosing the

Tr(G′) whose number of vertices is the maximum.

Now we prove the reconstructivity, one by one.

Lemma 3.8. A connected bipartite permutation graph G = (X, Y, E) with a limb

whose length is more than one is reconstructible.

Proof. Let L be a permutation diagram of G. Let {G′
1, . . . , G

′
k} be the multi-set of

connected cards of G that satisfy Tr(G′
i) = Tr(G). If there are more than one limbs

having the same root, and both of them have the lengths more than one, G contains

the left forbidden graph in Fig 2. Thus, only one limb can have the length more

than one among limbs of the same root. We concentrate the limbs of the maximum

length, on the both sides.

First we consider the case that there are two limbs, one is on the left-side of L

having the maximum length among limbs on the left-side, and the other is on the

right-side having the maximum length among limbs on the right-side. If both the

two limbs have the lengths more than one, we can easily reconstruct G, since we can

determine the lengths p, q of the two limbs from {G′
1, . . . , G

′
k}. Note that each G′

i

has limbs of lengths p−1, q, or p, q, or p, q−1. Hence, we consider the case that the
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left-side limb has the length exactly one. The right-side limb has the length q more

than one. Even in this case, we can determine that the maximum lengths of limbs

on the both sides of any preimage are one and q. The remaining problem is how to

reconstruct G from {G′
1, . . . , G

′
k}. If q is more than two, the reconstruction is easy.

Only find the limb of length q − 1, and add a degree one vertex to it. Thus, we

consider the case that q is equal to two. In this case, there is a card in {G′
1, . . . , G

′
k}

that has length one limbs on the both side. Thus, we can determine if the roots of

the two limbs of a preimage belongs to the same partite. And, there is a card G′

in {G′
1, . . . , G

′
k} that has a limb l of the length of two. Thus, we can reconstruct G

uniquely by adding a degree one vertex to the opposite side to l.

Next, we consider the case that G has limbs only on the left-side. It is easy to

reconstruct G in this case, since finding the connected card that has limbs most,

and adding a degree one vertex to the longest limb (the other limbs have length

one), we have G.

Lemma 3.9. A bipartite permutation graph G = (X, Y, E) with two limbs of dif-

ferent roots is reconstructible.

Proof. From Lemma 3.8, we only have to prove the case that every limb has length

exactly one. In this case, we can determine if the two roots belong to the same vertex

set, since we can reconstruct {|X |, |Y |}. Thus we can reconstruct G uniquely.

Lemma 3.10. A bipartite permutation graph G = (X, Y, E) whose limbs have the

same root is reconstructible.

Proof. If there are more than one limbs, it is easy to reconstruct G. Let G′ be

a connected card satisfying Tr(G′) = Tr(G). Find a limb in G′ and add a degree

one vertex to its root. Therefore, we consider the case that G has only one limb,

and the length is one. Assume that the limb is on the left-side of L, where L is a

permutation diagram of G. Then two polar vertices on the right-side have degrees

p, q larger than one. If both of p and q are larger than two, we can reconstruct G,

since connected cards of G with degree one polar vertex on the one side of their

permutation diagram have polar vertices of degree p, q, or p − 1, q, or p, q − 1, on

the opposite side.

Now we consider the case that p is exactly two, and q is also equal to two. There

is a connected card of G whose polar vertices on the same side have degrees one

and two. Since the limb of G has length exactly one, the polar vertices of the same

side having degree one and two cannot be the degree one vertex of G. Therefore we

can reconstruct G uniquely.

Lastly, we consider the case that p is exactly two, and q is larger than two.

Let {G′
1, . . . , G

′
k} be connected cards of G obtained by removing a vertex whose

degree is larger than one. Looking {G′
1, . . . , G

′
k}, we can determine the value p and

q. Hence we can reconstruct G uniquely.



April 5, 2012 19:44 WSPC/INSTRUCTION FILE bp

10 Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara

From above lemmas, we have the theorem below.

Theorem 3.11. A connected bipartite permutation graph with a polar vertex of

degree one is reconstructible.

Combining Lemma 3.4, Theorems 3.5 and 3.11, we have the main theorem. Note

that since disconnected graphs are reconstructible, disconnected bipartite permu-

tation graphs are of course reconstructible.

Theorem 3.12. Bipartite permutation graphs are reconstructible.

4. Miscellaneous Proofs

We prove Lemmas not proved yet, in this section.

Lemma 4.1. The numbers of vertices in X and Y are reconstructible for a con-

nected bipartite permutation graph G = (X, Y, E).

Proof. Let D be the deck of G. There are at least two connected cards in a

deck of a connected graph with more than two vertices (Consider removing a

vertices which are leaves of a spanning tree of G.) Let G1 = (X1, Y1, E1), G2 =

(X2, Y2, E2), . . . , Gk = (Xk, Yk, Ek) be connected bipartite permutation graphs in

D. The following cases can occur.

(1) {|Xi|, |Yi|} = {p1, q1} for some i ∈ {1, . . . , k}, and {|Xi|, |Yi|} = {p2, q2} for

other i ∈ {1, . . . , k}, where {p1, q1} 6= {p2, q2} holds.

(2) {|Xi|, |Yi|} is the identical set {p, q} for every i ∈ {1, . . . , k}.

First we consider the case 1. Clearly, max{p1, p2, q1, q2} is equal to

max{|X |, |Y |}, and min{p1, q1, p2, q2} is equal to min{|X |, |Y |} − 1. Therefore, we

can uniquely determine {|X |, |Y |}, in this case.

Now, we consider the case 2. There are two more detailed cases. One case is that

|X | = |Y | (case 2a), and the other case is that every connected card is obtained by

removing a vertex from one partite (case 2b).

In the case 2a, max{p, q} = min{p, q} + 1 = |X | = |Y | holds. Thus, we can

determine {|X |, |Y |}, if we can realize that the case is 2a, not 2b. We explain how

to distinguish the case 2a from the case 2b later.

In the case 2b, let T be a spanning tree of G. Since a graph obtained from G

by removing a leaf of T is connected, all the leaves of T belong to the same partite.

We can assume without loss of generality that the partite is X . Then apparently

|X | > |Y | holds. Thus {|X |, |Y |} is {max{p, q} + 1, min{p, q}}.

The remaining problem is how to distinguish the case 2a from the case 2b. In

the case 2a, |p−q| = 1 always holds. Therefore, we consider the case that |p−q| = 1

holds in the case 2b. In this case, |X | = |Y | + 2 must hold.

Let L be a permutation diagram of G. Let xl and xr be polar vertices in X that

correspond to the left-most segment, and the right-most segment of L, respectively.
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Let P be the shortest path in G from xl to xr. Let yl be the vertex adjacent to xl

in P , and let yr be the vertex adjacent to xr in P . Since every vertex y ∈ Y is a

cut-vertex of G, every path from xl to xr passes y. Therefore, all the vertices in Y

are in P . Hence, there exist |Y | + 1 X-vertices in P . Note that the graph induced

from G by these |Y | + 1 X-vertices and all the vertices in Y is exactly P , since

otherwise some vertex in Y is not a cut-vertex of G. Since we here consider the case

that |X | = |Y |+ 2 holds, there is only one vertex v ∈ X remaining not in P . There

are four possibilities,

(i) The vertex v is adjacent to yl, and not adjacent to yr.

(ii) The vertex v is adjacent to yr, and not adjacent to yl.

(iii) The vertex v is adjacent to both yl and yr.

(iv) The vertex v is not adjacent to neither yl nor yr.

In the case i, iii, and iv, by removing a vertex yr, we obtain a isolated vertex xr and

a connected component of remaining vertices. In the case ii, by removing a vertex

yl, we obtain a isolated vertex xl and a connected component of remaining vertices.

In both the cases, the connected components are bipartite, and the difference of the

numbers of vertices in the two partite is exactly two. On the other hand, if there

is a card consists of an isolated vertex and a connected component in the case 2a,

the size of each partite of the connected component must be the same. Therefore,

we can distinguish the two cases.

Proof of Lemma 3.4. If min{|X |, |Y |} = 1, G is a tree, and is thus reconstructible.

Therefore we assume that min{|X |, |Y |} ≥ 2.

Let x be a polar vertex adjacent to every vertex in Y . Let L be a permutation

diagram representing G. Assume without loss of generality that x corresponds to

a line segment s in L whose lower-end is the left-most among all the lower-ends of

the segments in L. Then each vertex in X \ {x} corresponds to each segment that

lays on the right-side of s in L. On the other hand, a segment s′ corresponding to

a vertex in Y must intersect with s. Therefore, the upper-end of s′ must be on the

left-side of that of s. Consider the segment s′′ whose upper-end is the right-most

among segments corresponding to vertices in Y . Then lower-end of s′′ must be the

right-most, since otherwise G cannot be connected. Hence, the vertex corresponding

to s′′ is adjacent to all the vertices in X . This means that if a bipartite permutation

graph G = (X, Y, E) has a polar vertex x ∈ X satisfying deg(x) = |Y |, then G also

has a polar vertex y ∈ Y satisfying deg(y) = |X |. See Fig. 4 for an illustration.

Now, we know that there are two special polar vertices x and y in G. There must

be two other polar vertices. One corresponds to the segment in L whose upper-end

is the left-most, and the other corresponds to the segment whose upper-end is the

right-most. We denote the vertices by v and w, respectively. We assume without

loss of generality |X | ≥ |Y |. Removing v(∈ Y ) results in a connected bipartite

graph G′. The size of the vertex sets of G is |X | and |Y | − 1. Thus, there is at least

one connected card whose vertex sets have sizes |X | and |Y | − 1. Moreover, since
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Fig. 4. An example of permutation diagram of a connected bipartite graph G = (X, Y, E) with a
polar vertex x ∈ X whose degree is |Y |.

|X | > |Y | − 1, we can find such a card from the deck of G. Let G′′ be a card of

G whose vertex sets have sizes |X | and |Y | − 1. Since the degree sequence of G is

reconstructible, we can determine the degree of the vertex z, where G′′ is obtained

by removing z from G. Hence, we can determine the preimage uniquely.

Lemma 4.2. Given a connected bipartite permutation graph G = (X, Y, E) satis-

fying Condition 1, let x be a polar vertex in X, and let Y ′ be the set of vertices

adjacent to x. A vertex y ∈ Y ′ is a polar vertex of G if and only if y’s degree is the

minimum in Y ′.

Proof. Let L be a permutation diagram representing G. Since x is a polar vertex

of G, we can assume without loss of generality that the line segment s in L whose

upper-end is the left-most corresponds to x. Then, all the line segments correspond-

ing to the vertices in X \ {x} are at the right-side of s.

Let y∗ be a polar vertex in Y ′. Since G satisfies Condition 1, a line segment s′

in L corresponding to y∗ is the left-most in those corresponding to vertices in Y ′.

Therefore, the degree of y∗ is the minimum among the vertices in Y ′.

Lemma 4.3. Let G′ = (X ′, Y ′, E′) be a connected bipartite permutation graph. Let

x be a polar vertex in X ′. Then, graph G = (X, Y, E) that is obtained by adding a

degree k ∈ {1, . . . , |X ′|} vertex y to Y ′ is uniquely determined, under the conditions

that G is a bipartite permutation graph, y is a polar vertex of G, and y is adjacent

to x in G.

Proof. Let L′ be a permutation diagram representing G′, and let L be a permuta-

tion diagram representing G. It is clear that L can be obtained by adding to L′ a

line segment sy corresponding to y.

Since x is a polar vertex of G′, we can assume without loss of generality that

the line segment sx in L′ and L corresponding to x is the left-most among those

corresponding to vertices in X . We can assume without loss of generality that the

upper-end of sx is the left-most among the upper-ends of all the segments in L.

Since y is a polar vertex in G, sy in L corresponding to y is the left-most among

those corresponding to vertices in Y . That is, the lower-end of the sy is the left-most

among the lower-ends of all the segments in L. Then, we can determine the position
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of the upper-end of sy uniquely, since sy must intersect to exactly k segments in

X .

Lemma 4.4. The number of polar vertices whose degree is one is reconstructible

for a connected bipartite permutation graph G = (X, Y, E) satisfying Condition 1.

Proof. If a polar vertex v of G has degree one, the polar vertex adjacent to v has

degree more than one, since otherwise G is disconnected.

When we remove a polar vertex that is adjacent to another polar vertex of

degree one from G, we obtain a graph consisting of some isolated vertices and a

connected component. Conversely, if there is a graph consisting of some isolated

vertices and a connected component in the deck of G, this graph must be obtained

from some preimage by removing a polar vertex adjacent to an other polar vertex

of degree one. Otherwise, there must be at least two connected components. Thus,

the number of polar vertices whose degree is one is equal to the number of cards

consisting of some isolated vertices and a connected component.

5. Concluding Remarks

Proving that permutation graphs are reconstructible is a challenging problem. Since

a permutation diagram of a permutation graph is not unique, it seems not to be

easy. Recently, we developed an algorithm which enumerates all the preimages of a

deck that consists of permutation graphs in the polynomial time [10]. The algorithm

shows that the number of preimages for a deck of permutation graphs is at most

O(n3).
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