JAIST Repository

https://dspace.jaist.ac.jp/

Title

iUy UUg o

good
Author(s) oo, O
Citation
Issue Date 2013-09
Type Thesis or Dissertation

Text version

aut hor

.net/ 10109/ 11497

URL http:/7/hdl . hand|l
Rights
Description Supervisor oooo,

ooobooop, o

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

On Memory-constrained Algorithm for Contour
Representation of Binary Image

Satoshi Konno (0910752)

School of Information Science,
Japan Advanced Institute of Science and Technology

August 10, 2013

Keywords: algorithm, memory-constrained algorithm, image
recognition, edge detection.

Recently, demands for small memory algorithm are increasing in many
computer applications and services such as embedded and cloud computing
areas because any further improvement for performance and memory space
of computers are not expected. The memory of embedded computers are
small traditionally, and the memory of server computers is not enough to
handle big data such as cloud computing problems.

In smartphone application markets such as Google Play and AppStore?,
the applications using image recognition are very popular. The image
recognition libraries such as OpenCV? are developing strenuously. Image
recognition is very important field for the smartphone markets.

In this paper we improve a contour representation algorithm for image
recognition 4 to run more fast with more small memory. The algorithm
inputs a binary image, then it outputs boundaries of connected compo-
nents as edge polygons. We define the output edge polygons as ”contour
representation.”

First, we have implemented the algorithm simply using C++ programing
language on general personal computer. To apply the algorithm for actual

Copyright (©) 2013 by Satoshi Konno
2Google Play : https://play.google.com/, AppStore : http://www.apple.com/itunes/
30penCV : http://opencv.org/
4Tetsuo Asano, Sergey Bereg, Lilian Buzer, David Kirkpatrick : ”Binary Image Processing with
Limited Storage”, IEICE technical report, Theoretical foundations of Computing 110(37), pp31-38, 2010.

1

images such as photograph, we have to convert the image into the binary
image. To create the binary image, we convert the image of RGB color
space into Lab color space, then we convert a image pixel into a binary
value, true or false, using the L* value of Lab color space. We have imple-
mented the algorithm successfully, but we found that we have to select the
adequate L* value to get the good output result. To select the adequate
L* value, we suggest an algorithm to find the adequate value quickly. Ad-
ditionally we found some preprocessing effects are effective for the output
result. For example, mosaic effect which replaces some block pixel values
into an average value of the pixel values is very effective for the algorithm.
We found that the preprocessing effects are effective, but we didn’t vali-
date the effects in more detail because the effects aren’t essential problem
in this paper.

Next, we checked the simple implementation of the algorithm with C++
programming language in more detail. Then we found that implementing
the algorithm is a bit complex because it contains many branch conditions
such as ’if” or 'switch’ expressions to find edge polygons of binary image.
To implement the algorithm, we have to use many the branch conditions
with the nesting. The complex branch conditions affect the performance
because the branch conditions are implemented statically when the code
is compiled. For example, the implementation performance might be slow
when the input image has many horizontal edges and the implementation
branches the vertical edge condition at first. The branches are emanated
from the current search direction of movement and the surrounding pixel
patterns, and there are 32 kinds of the combination. We will implement
the algorithm into parallel computing platforms such as OpenCL?, we dis-
cussed to eliminate the branch conditions to execute the algorithm in more
parallel.

To improve the simple implementation, we suggest two new extended
data models for binary image to eliminate the complex branch conditions
in the search routine which decide a next search edge. First, we define a
new extended pixel index model which has extra pixels in the neighborhood
of the original pixel index model. And then, we define a new edge index
model based on the extended pixel model (Figurel). The edge index model

>OpenCL : http://www.khronos.org/opencl/

assigns a specific index for the major edges which are referred in the search
algorithm. In the simple implementation, we have to use three temporary
variables, a current x, y position and a current search direction, in the
main loop of the search algorithm. However we can reduce the temporary
variables into a three tuple of a variable and a current edge index, using
the edge index model. The edge index includes the information on three
variables, and we can compute the three variables from a edge index. We
define a search difference array to next edge indexes using the edge index
model to decide the next search edge index from the current edge index. To
decide the next search edge index, use the search difference array with the
current edge index and the surround pixel pattern index of the edge pixel.
Using the search difference array, we can eliminate the complex branch
conditions in the simple implementation.

0 x’ width’- I
>

0 1 3 5 7 9 11 e ~
0 2 4 8 10 12 7

15 |17 |19 |21 |23 |25 ’ L, AN
14 | 16 | 18 | 2 22 | 24 | 26 / 2k -2w \

/ \'///

height-1} | | | | | | | Te=m———-
\

Figure 1: Edge Index Model

The original algorithm needs 52 steps for deciding a next search edge.
Using the edge index model with the next search difference array, we could
reduce the steps into 5 steps, then we can implement the algorithm very
simply to eliminate the complex branch conditions. We checked the perfor-
mance on the same computer with C++ programming language too. We
prepared some square image models for the performance test to uniform
the search directions. As a result, it is 1.5 times faster than the simple
implementation. To eliminate the complex branch conditions, we can pro-
cess any input images which has random edges in a flat time. Additionally,
we think that we can implement the algorithm into the parallel comput-
ing platforms more easily because we reduced the temporary variables into

3

only a variable and eliminated the complex branch conditions.

Finally, We suggest a correction algorithm for the output result. The
output edge polygons using the edge detection algorithm are bumpy. We
suggest an algorithm which smooths the output edges. The algorithm is
based on a famous reduction algorithm®. Using the algorithm, we can
reduce the extra edges in the bumpy polygons, but we found that some
edge polygons are converted into a simple line which has only two vertices.
We consider that the simple lines are removable because the simple line
has no area. Accordingly, we can get more simple output edge polygons to
remove the simple lines from the reduction result.

5D. Douglas, T. Peucker : ” Algorithms for the reduction of the number of points required for represent
a digitised line or its caricature.”, Canadian Cartographer 10, pp112-122, 1973.

4

