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Abstract This paper proposes a novel method for generating a dynamic gait
based on anterior-posterior asymmetric impact posture tilting the robot’s cen-
ter of mass forward. The primary purpose of this method is to asymmetrize the
impact posture by actuating the robot’s telescopic-legs to make overcoming
the potential barrier at mid-stance easy, and the mechanical energy is accord-
ingly restored. First, we introduce a planar rimless wheel model with telescopic
legs, and investigate the validity of the stance-leg extension control. The basic
properties and efficiency of the generated gait are also numerically analyzed.
Second, we extend the method to a planar telescopic-legged biped model, and
investigate the validity through numerical simulations. We also discuss the
role of asymmetric shape of human foot from the brake effect point of view
through efficiency analysis taking the ankle-joint actuation into account.

Keywords Limit cycle walking · Impact posture · Potential barrier

1 Introduction

Limit cycle walkers including McGeer’s passive-dynamic bipeds [1] can gen-
erate natural and energy-efficient dynamic gaits utilizing their own physical
dynamics and passivity. By applying a suitable actuation rule to the robot,
efficient level walking can be achieved [2][3][4][5], however, guaranteeing the
limit cycle stability is another problem and is not easy.

One of the most impeditive problems in stable limit cycle generation is
the potential barrier at mid-stance where the robot’s potential energy is max-
imized. The robot must start walking with a suitable and sufficient initial
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momentum to overcome the potential barrier and to reach the next impact. It
is not easy to guarantee overcoming the potential barrier only with intuitive
control laws in limit cycle walking. It is also difficult to start walking from a
standing posture smoothly and we must search the suitable initial conditions
through a trial and error process.

The potential barrier in dynamic gait originally comes from the fact that
most limit cycle walkers have anterior-posterior symmetric impact posture as
shown in Fig. 1 (a). A compass-like biped robot [2], for example, must maintain
symmetric posture involuntary, and this creates the potential barrier at mid-
stance. If the robot can create asymmetric impact posture tilting forward as
shown in Fig. 1 (b), this problem can be solved. The easiest way to asymmetrize
the impact posture is to lengthen the stance leg during stance phases using
the prismatic joint while shortening the swing leg. The importance of forward-
tilting impact posture has also been discussed in several related works [6][7][8].

On the other hand, the author has wondered about the meaning of anterior-
posterior asymmetry of human foot. As the authors have shown, such as in
virtual passive dynamic walking, fully-actuated limit cycle walkers must avoid
negative actuator work at every joint for achieving energy-efficient walking
[4]. This results in that the rotary actuator at the stance ankle must continue
forward driving of the stance leg without braking. We assumed that, however,
the stance leg is always rotating forward. The zero moment point (ZMP) is
then shifted posterior to the ankle joint. This implies that, in robot foot, the
heel-side must be longer than the toe-side. Human foot is, however, formed of
inverse shape and this implies that it can drive the stance leg backward only.
In other words, human foot is not suitable to drive the body or the stance
leg forward. It is thus believed that humans walk forward while putting on
the ankle brake. This understanding, however, conflicts efficient limit-cycle
walkers. Exploring this question is another subject of our study.

Potential barrier Potential barrier

(a) (b)

Fig. 1 Relations between impact posture and potential barrier
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Based on the observations, in this paper, we propose a novel method for
generating a level dynamic gait by asymmetrizing the impact posture using the
telescopic-leg’s action. The primary purpose of this method is to tilt or shift
the robot’s center of mass (CoM) forward for overcoming the potential barrier
at mid-stance easy, and the mechanical energy is accordingly restored. First,
we introduce a planar rimless wheel model that consists of eight telescopic legs,
and investigate the validity of the proposed method. Second, we extend the
method to a planar telescopic-legged biped robot with flat feet incorporating
a brake spring and numerically investigate the gait descriptors, especially the
behavior of ZMP. Through numerical simulations, we discuss the anterior-
posterior asymmetry of human foot from the ZMP point of view.

This paper is organized as follows. Section 2 investigates the validity of
the method using a simple rimless wheel model with telescopic legs. Section
3 extends the method to a planar telescopic-legged biped model with flat feet
and ankle brake. Finally, section 4 concludes this paper and describes the
future research directions.

2 Dynamic Gait Generation of Telescopic-legged Rimless Wheel

2.1 Modeling of telescopic-legged rimless wheel

2.1.1 Dynamic equation

Fig. 2 shows the model of a planar telescopic-legged rimless wheel (TRW). We
call the leg frame on the floor “stance leg”, and assume that only the stance
leg is actuated and other legs are kept l0 [m]. We also assume that this model
has a point mass, M [kg], concentrated on the central position and the inertia
moment about the CoM can be neglected. In this paper, we set α = π/4 [rad],
i.e. eight legged, and l0 = 1.0 [m].

Fig. 3 shows the essential part of the TRW which determines the stance-
phase motion. This is just a variable length pendulum and its dynamic equa-

tion becomes very simple. Let q =
[
θ l

]T
be the generalized coordinate vector,

the dynamic equation of the TRW then becomes

M(q)q̈ + h(q, q̇) = Su, (1)

where

M(q) =

[
Ml2 0
0 M

]
,

h(q, q̇) =

[
2Mll̇θ̇ −Mlg sin θ

−Mlθ̇
2
+Mg cos θ

]
,

S =

[
0
1

]
u,

and u [N] is the control force of the linear actuator to extend/retract the
telescopic-leg frame.



4 Fumihiko Asano

+

u
l

l0

gM

θ

α

Z

X

Fig. 2 Model of planar telescopic-legged rimless wheel
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Fig. 3 Essential part of telescopic-legged rimless wheel

2.1.2 Transition equations and energy-loss coefficient

Fig. 4 shows the configuration of impact phase. From this figure, the relations
of the angular position and the stance-leg length can be found to be

θ+ = θ− − α, (2)

l+ = l0. (3)
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Fig. 4 Asymmetric impact posture

The point H in this figure is the ground projection of the CoM, Xg, and ∆Xg

is the step length which is identical to the distance Xg moved during one step.
The following derives the transition equations of the velocities. We intro-

duce an extended coordinate vector q̄ =
[
x z θ

]T
where (x, z) is the stance-

leg’s tip position. The inelastic collision is then modeled as

M̄(θ) ˙̄q+ = M̄(θ) ˙̄q− − JI(θ)
TλI , (4)

JI(θ) ˙̄q
+ = 02×1, (5)

where M̄(θ) ∈ R3×3 is detailed as

M̄(θ) =

 M 0 Ml1 cos θ
0 M −Ml1 sin θ

Ml1 cos θ −Ml1 sin θ Ml21

 . (6)

Note that θ in this case is not that in q but that in q̄, and is equal to θ− in Fig.
4. The extended coordinate does not take stance-leg exchange into account,
that is, q̄− = q̄+ and θ− = θ+ hold in this system. We must reset θ+ for q
following Eq. (2) after impact.

JI(θ) ∈ R2×3 is the Jacobian matrix for inelastic collision. We assume
that there is a high friction at the contact point and the leg’s end-point does
not slide immediately after impact. The conditions for velocity constraint are
given by

d

dt
(x+ l1 sin θ + l0 sin (α− θ))

+
= 0, (7)

d

dt
(z + l1 cos θ − l0 cos (α− θ))

+
= 0. (8)
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These lead to

ẋ+ + l1θ̇
+
cos θ − l0θ̇

+
cos (α− θ) = 0, (9)

ż+ − l1θ̇
+
sin θ − l0θ̇

+
sin (α− θ) = 0. (10)

By summarizing these equations, we can formulate JI(θ) as[
0
0

]
=

[
1 0 l1 cos θ − l0 cos (α− θ)
0 1 −l1 sin θ − l0 sin (α− θ)

]
˙̄q+ =: JI(θ) ˙̄q

+. (11)

Following Eqs. (4) and (5), the velocity vector immediately after impact is
derived as

˙̄q+ =
(
I3 − M̄(θ)−1JI(θ)

TXI(θ)
−1JI(θ)

)
˙̄q−, (12)

XI(θ) := JI(θ)M̄(θ)−1JI(θ)
T, (13)

however, the inverse of matrix M̄(θ) cannot be determined because of det(M̄(θ)) =
0. To solve this problem, we then derive ˙̄q+ by adding an inertia moment, I
[kg·m2], to the model temporarily. The inertia matrix, M̄(θ), is then adjusted
as

M̄(θ) =

 M 0 Ml1 cos θ
0 M −Ml1 sin θ

Ml1 cos θ −Ml1 sin θ I +Ml21

 . (14)

The determinant then becomes det(M̄(θ)) = M2I and ˙̄q+ is derived as

˙̄q+ =

−l1 cos θ + l0 cos(θ − α)
l1 sin θ − l0 sin(θ − α)

1

 (I +Ml0l1 cosα) θ̇
−

I +Ml20
. (15)

By extracting the third element of ˙̄q+, we get

θ̇
+
=

I +Ml0l1 cosα

I +Ml20
θ̇
−
. (16)

We then obtain

lim
I→0

θ̇
+
=

l1 cosα

l0
θ̇
−
. (17)

Further, by setting l0 = l1, we obtain

θ̇
+
= θ̇

−
cosα. (18)

This equation is the same as that of the rimless wheel [9] and the simplest
walking model [10]. On the other hand, from the geometric relation at impact,
the relation l1 cos θ = l0 cos(α − θ) holds and the first element of ˙̄q+ is found
to be zero, that is, ẋ+ = 0. In addition, l1 sin θ − l0 sin(θ − α) is identical to
the step length, ∆Xg, in Fig. 4, and the second element of ˙̄q+ is thus always
positive.

As seen from Fig. 4, the velocity immediately before impact is V − = l1θ̇
−

[m/s] and that immediately after impact is V + = l0θ̇
+

= l1θ̇
−
cosα [m].
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The kinetic energies immediately before and immediately after impact then
becomes

K− =
1

2
M

(
V −)2 =

1

2
M

(
l1θ̇

−)2

, (19)

K+ =
1

2
M

(
V +

)2
=

1

2
M

(
l1θ̇

−
cosα

)2

. (20)

The energy-loss coefficient then becomes

ε =
K+

K− = cos2 α (21)

regardless of the ratio of leg length.
In a passive RW, the impact posture is always identical, and both the

energy-loss coefficient and the restored mechanical energy are kept constant
automatically. It then satisfies the following recurrence formula of kinetic en-
ergy immediately before impact:

K−[i+ 1] = εK−[i] +∆E, (22)

where i is the number of steps [9]. Asymptotic stability of the generated gait is
thus guaranteed under the assumption that the next heel-strike always occurs.
In a TRW with asymmetric impact posture, ε becomes always the same, and
the convergence speed to the steady motion then becomes constant regardless
of the extended leg-length if ∆E can also be kept constant simultaneously.
Although ∆E is not constant, the limit cycle stability is very high in terms of
convergence speed. This is described later.

2.2 Output following control for stance-leg extension

Let the stance-leg length, l = STq, be the control output. Its second order
time derivative then becomes

l̈ = STq̈ = STM(q)−1 (Su− h(q, q̇)) , (23)

and we can achieve the input-output linearization by the following control
input

u =
(
STM(q)−1S

)−1 (
ū+ STM(q)−1h(q, q̇)

)
, (24)

which leads to l̈ = ū. We introduce a 5-order time dependent function for the
desired trajectory of l, which is specified as follows.

ld(t) =

{∑5
k=0 akt

k (0 ≤ t < Tset)
l1 (t ≥ Tset)

(25)

The boundary conditions are chosen as follows.

ld(0
+) = l0, ld(Tset) = l1, l̇d(0

+) = l̇d(Tset) = 0, l̈d(0
+) = l̈d(Tset) = 0
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The coefficients are then determined as

a5 =
6(l1 − l0)

T 5
set

, a4 =
15(l0 − l1)

T 4
set

, a3 =
10(l1 − l0)

T 3
set

, a2 = a1 = 0, a0 = l0.

By setting ū = l̈d in Eq. (24), we can achieve l(t) ≡ ld(t).

2.3 Dynamic gait generation from standing posture

We first choose the extended leg length, l1, as

l1 =
l0

cosα
(26)

to make the impact posture rectangular triangle. This is the sufficient condition
for overcoming the potential barrier, and is conservative. In this case, following
Eqs. (17) and (26), the angular velocity immediately after impact becomes

θ̇
+
=

l0
cosα

· cosα
l0

θ̇
−
= θ̇

−
. (27)

Fig. 5 shows the simulation results where M = 1.0 [kg] and Tset = 0.40
[s]. The TRW started from the initial conditions of θ = 0 [rad], l = l0 [m],
θ̇ = 0.001 [rad/s], and l̇ = 0 [m/s]. The control of the stance-leg extension in
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Fig. 5 Simulation results of dynamic walking based on asymmetric impact posture where
Tset = 0.40 [s] and l1 =

√
2l0 [m]
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the first step begins at t = 0.0 [s] and is completed at t = Tset = 0.40 [s]. The
mechanical energy is accordingly restored. The angular velocity is, however,
still small and the TRW gently falls down as a 1-DOF rigid body keeping the
total mechanical energy constant. The first impact occurs at about t = 3.3
[s] and the kinetic energy correspondingly dissipates. After several steps, the
step period converged to 0.4247 [s]. The walking speed also converged to 2.354
[m/s], and this is remarkable high-speed considering the leg length and the
mechanism without having springs nor semicircular feet [11].

From Fig. 5 (b), however, we can see that the vertical ground reaction
force (GRF) becomes negative during the stance phases. This implies that the
Froude number exceeds 1.0 and the unilateral constraint cannot be guaranteed.
The TRWmotion therefore gets into running or skipping [12], but such motions
cannot be achieved because the mathematical model previously described is
assumed to be fixed to the floor. From Fig. 5 (a), we can see that the mechanical
energy does not increase monotonically or negative input power emerges. This
is because the prismatic joint generates negative force to pull back the point
mass. This is also caused by the bilateral constraint which comes from the
mathematical model.

The condition of Eq. (26) is for θ+ = 0 to guarantee overcoming the poten-
tial barrier. This condition is, however, sufficient and conservative. We then
ease it by introducing the ratio of leg length, s := l1/l0 [-], and analyze the
gait efficiency with respect to s.

In the subsequent numerical simulations, the following statements are con-
sidered as judgment conditions for successful walking.

– s > 1 is necessary to shift the CoM forward at impact. This also implies
that the mechanical energy is restored by extending the stance leg.

– The ground reaction force is always kept positive and unilateral constraint
condition always holds.

– T ≥ Tset holds. (Settling time condition)

Fig. 6 plots the phase portrait of the generated dynamic gait where s = 1.20
[-] and Tset = 0.50 [s]. The TRW started walking from the standing posture
with small angular velocity (θ(0) = 0 [rad] and θ̇(0) = 0.001 [rad/s]). The step
period and the walking speed converged to 0.5011 [s] and 1.720 [m/s]. Fig. 7
plots the stick diagram of the stance leg and the point mass (hip position)
of the TRW, which clearly illustrates the asymmetric impact posture. Fig. 8
shows the time evolutions of the walking motion. Here, (a) is the stance-leg
length, (b) the total mechanical energy, (c) the vertical ground reaction force,
and (d) the control input. We omitted to plot ld(t) in Fig. 8 (a) because the
trajectories of l and ld(t) are identical. From Fig. 8 (c), we can see that the
unilateral constraint is maintained during the stance phases. From Fig. 8 (d),
we can see that the control input is always kept positive. The mechanical
energy is then restored monotonically because of l̇(t) ≡ l̇d(t) ≥ 0; the sign of
the input power becomes nonnegative. This is also supported by Fig. 8 (b).

In this approach, mechanical energy restoration is achieved as a conse-
quence of the stance-leg extension. The primary purpose is not mechanical
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energy restoration but creating the asymmetric impact posture. This is the
essential difference with our previous methods.
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Fig. 8 Simulation results of dynamic walking based on asymmetric impact posture where
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2.4 Efficiency analysis

2.4.1 Preliminaries

Let us introduce criterion functions before performing numerical analysis. Let
T [s] be the steady step period. For simplicity, every time immediately after
impact has been denoted in the following as 0+ and every time immediately
before impact as T− by resetting the absolute time at every transition instant.
Thus T+ means the same as 0+. The average walking speed is then defined as

v :=
1

T

∫ T−

0+
Ẋg dt =

∆Xg

T
, (28)

where Xg [m] is the X-position at the CoM and ∆Xg := Xg(T
−) − Xg(0

+)
[m] is equal to the step length shown in Fig. 4. The average input power is
also defined as

p :=
1

T

∫ T−

0+

∣∣∣l̇u∣∣∣ dt (29)

Energy efficiency is then evaluated by specific resistance (SR):

SR :=
p

Mgv
, (30)

which means the expenditure of energy per unit mass and per unit length, and
this is a dimension-less quantity [3][4]. The main question of how to attain
energy-efficient locomotion rests on how to increase walking speed v while
keeping p small.

Let ∆E [J] be the restored mechanical energy per step, then the following
magnitude relation holds.

p ≥ 1

T

∫ T−

0+
l̇u dt =

∆E

T
. (31)

The minimum value of SR then becomes

SR ≥ ∆E

Mg∆Xg
. (32)

We have proposed several methods for highly energy-efficient dynamic bipedal
walking. For example, SR ≥ tanϕ [-] in virtual passive dynamic walking
(VPDW) where ϕ [rad] is the virtual slope [4], SR > 0.01 [-] in underactuated
VPDW with semicircular feet [11], and SR > 0.03 [-] in parametrically-excited
dynamic bipedal walking [5]. These values help the evaluation of the following
analysis results.
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2.4.2 Effects of s and Tset

Fig. 9 shows the analysis results of the gait descriptors with respect to s for
three values of Tset. Here, (a) is the step period, (b) the walking speed, (c)
the SR, and (d) the restored mechanical energy. The SR plotted is not the
minimum value in Eq. (32) but the actual value.

The maximum s was 1.20 where Tset = 0.50 [s]. The feasible region for
stable gait generation becomes larger with longer Tset. This is because the
unilateral constraint cannot be guaranteed when the extending speed is high.

In all cases, the minimum value of s was 1.06. If s becomes smaller than
this value, the TRW cannot overcome the potential barrier. As seen from Fig.
9 (a), the step period rapidly lengthens as s approaches 1.06. This is because
the CoM is strongly stalled around the potential barrier.
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From Figs. 9 (b) and (d), we can see that the walking speed and the
restored mechanical energy monotonically increase as s increases for all Tset.
These imply that the forward motion is accelerated monotonically with respect
to the extended leg length. From Fig. 9 (c), however, we can see that the energy
efficiency grows worse in return for it. ∆E monotonically increases with the
increase of s without generating the negative input power, whereas the step
length in Fig. 4 satisfies ∆X2

g = l20 + l21 − 2l0l1 cosα and its derivative with
respect to l1 becomes

∂∆X2
g

∂l1
= 2l0(s− cosα) > 0 (33)

because of s > 1. Therefore, ∆Xg also monotonically increases with the in-
crease of s. We then conclude that the increasing rate of ∆E is much larger
than that of ∆Xg.

3 Extension to Planar Telescopic-legged Biped Robot

This section extends our method to a planar telescopic-legged biped robot and
discusses the role of asymmetric shape of human foot from the ankle-brake
effect point of view.

3.1 Modeling of telescopic-legged biped robot

3.1.1 Dynamic equation

Fig. 10 shows the planar telescopic-legged biped model. Let the stance leg and

swing leg be Leg 1 and Leg 2, and qj =
[
xj zj θj bj

]T
be the generalized

coordinate vector for Leg j. The corresponding dynamic equation for Leg j
becomes

M j(qj)q̈j + hj(qj , q̇j) = 04×1, (34)

where

M j(qj) =


m+ mH

2 0
(
ma+ mH

2 (a+ bj)
)
cos θj

mH

2 sin θj
m+ mH

2 −
(
ma+ mH

2 (a+ bj)
)
sin θj

mH

2 cos θj
ma2 + mH

2 (a+ bj)
2 0

Sym. mH

2

 ,

hj(qj , q̇j) =


θ̇j

(
mH ḃj cos θj −

(
ma+ mH

2 (a+ bj)
)
θ̇j sin θj

)
−θ̇j

(
mH ḃj sin θj +

(
ma+ mH

2 (a+ bj)
)
θ̇j cos θj

)
mH θ̇j ḃj(a+ bj)

−mH

2 θ̇
2

j (a+ bj)



+


0(

m+ mH

2

)
g

−
(
ma+ mH

2 (a+ bj)
)
g sin θj

mH

2 g cos θj

 .
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Fig. 10 Model of planar telescopic-legged biped robot with flat feet

We then augment them by adding the holonomic constraint forces and control
inputs. We assume that the two legs are connected at the hip joint without
incorporating joint friction. For simplifying the gait analysis, we also assume
that the foot mass and thin are ignorable and the dynamics of feet does not
affect the walking motion at all. Point contact of the stance leg with the ground

is then always maintained. Let q =
[
qT
1 qT

2

]T
be the generalized coordinate

vector of the augmented system, the dynamic equation then becomes

M(q)q̈ + h(q, q̇) = Su+ J(q)Tλ, J(q)q̇ = 04×1, (35)

where Su ∈ R8 is the control input vector, J(q)Tλ ∈ R8 is the holonomic
constraint force vector for connecting the two legs. The terms in Eq. (35) are
detailed as

M(q) =

[
M1(q1) 04×4

04×4 M2(q2)

]
, h(q, q̇) =

[
h1(q1, q̇1)
h2(q2, q̇2)

]
.

By eliminating λ from Eq. (35), the dynamic equation is arranged as

M(q)q̈ = Y (q) (Su− h(q, q̇))− J(q)TX(q)−1J̇(q, q̇)q̇, (36)

Y (q) := I8 − J(q)TX(q)−1J(q)M(q)−1, (37)

X(q) := J(q)M(q)−1J(q)T. (38)
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The control input vector is also detailed as

Su =



0 0 0
0 0 0
0 0 1
1 0 0
0 0 0
0 0 0
0 0 −1
0 1 0



 u1

u2

uH

 . (39)

The ankle-joint torque, uA, is added later.

3.1.2 Transition equations

The positions are exchanged in accordance with the geometrical conditions as
follows:

x+
1 = 0, z+1 = 0, θ+1 = θ−2 , θ+2 = θ−1 ,

x+
2 = x+

1 + l1 sin θ
+
1 − l2 sin θ

+
2 = −x−

2 ,

z+2 = z+1 + l1 cos θ
+
1 − l2 cos θ

+
2 = −z−2 = 0.

Where lj := a+ bj is the length of Leg j.
Next, the transition equations for the velocities are described. We first

calculate the velocities immediately after impact without switching the legs.
After that, we exchange the velocities of Leg 1 for those of Leg 2. Assuming
that Leg 1 leaves the floor immediately after impact, the inelastic collision is
modeled as

M(q)q̇+ = M(q)q̇− − JI(q)
TλI , (40)

JI(q)q̇
+ = 07×1. (41)

The Jacobian matrix JI(q) ∈ R7×8 is derived as follows. Also in this case,
we assume that there is a high friction at the contact point of the legs’ ends
with the ground. The conditions that the end-point of Leg 2 does not slide
immediately after impact are given by

ẋ+
2 = 0, ż+2 = 0. (42)

We also assume that the prismatic joints of the legs are mechanically locked
at impact, and the conditions are given by

ḃ+1 = 0, ḃ+2 = 0. (43)

In addition, the conditions that the hip positions of both legs are identical are
given by

d

dt
(x1 + l1 sin θ1)

+
=

d

dt
(x2 + l2 sin θ2)

+
, (44)

d

dt
(z1 + l1 cos θ1)

+
=

d

dt
(z2 + l2 cos θ2)

+
, (45)
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and these lead to

ẋ+
1 + l1θ̇

+

1 cos θ1 + ḃ+1 sin θ1 = ẋ+
2 + l2θ̇

+

2 cos θ2 + ḃ+2 sin θ2, (46)

ż+1 − l1θ̇
+

1 sin θ1 + ḃ+1 cos θ1 = ż+2 − l2θ̇
+

2 sin θ2 + ḃ+2 cos θ2. (47)

To cancel out the tracking error, we further consider another condition that
the relative hip-joint, θH := θ1 − θ2 is mechanically locked at impact:

θ̇
+

H = 0. (48)

Following the above conditions, we can precisely achieve y ≡ yd(t) without
PD feedback because all velocities of the output immediately after impact,
ẏ+, become zero. The control input can be specified only by feed-forward of
the desired acceleration, and we can examine the gait efficiency reflecting the
desired trajectories accurately.

Summarizing the above seven velocity constraint conditions of (42), (43),
(46), (47) and (48), matrix JI(q) ∈ R7×8 is specified as follows:

JI(q) =



1 0 J13 J14 −1 0 J17 J18
0 1 J23 J24 0 −1 J27 J28
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 −1 0


, (49)

where

J13 = l1 cos θ1, J14 = sin θ1, J17 = −l2 cos θ2, J18 = − sin θ2,

J23 = −l1 sin θ1, J24 = cos θ1, J27 = l2 sin θ2, J28 = − cos θ2.

We can finally accomplish the transition by replacing q̇+
1 with q̇+

2 in q̇+ =[
q̇+
1 q̇+

2

]T
.

Matrix J(q) in Eq. (35) is also derived as

J(q) =


1 0 J13 J14 −1 0 J17 J18
0 1 J23 J24 0 −1 J27 J28
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

 =:


J1(q)
J2(q)
J3

J4

 . (50)

The holonomic constraint force vector in Eq. (35) can be divided into

J(q)Tλ = J1(q)
Tλ1 + J2(q)

Tλ2 + JT
3 λ3 + JT

4 λ4, (51)

and each undetermined multiplier λi corresponds to the forces in Fig. 11. λ4

is identical to the vertical ground reaction force, and X-position of the ZMP
is then calculated by

Xzmp = −uA

λ4
. (52)
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−λ1

Z

X

λ4

λ3

−λ2

λ2

λ1

Fig. 11 Four holonomic constraint forces

3.2 Output following control

We choose the two telescopic-leg lengths and the relative hip angle as the
control output. The output vector, y ∈ R3, is then defined as

y =

 b1
b2
θH

 = STq, (53)

and its second-order derivative with respect to time becomes

ÿ = STq̈ = A(q)u−B(q, q̇), (54)

where

A(q) := STM(q)−1Y (q)S, (55)

B(q, q̇) := STM(q)−1
(
Y (q)h(q, q̇) + J(q)TX(q)−1J̇(q, q̇)q̇

)
. (56)

Then we can consider the following control input for achieving y → yd.

u = A(q)−1 (v +B(q, q̇)) (57)

v = ÿd +KD (ẏd − ẏ) +KP (yd − y) (58)

By adding the condition of Eq. (48), all elements of ẏ+ become zero and the
trajectory tracking control without any tracking errors, y ≡ yd(t), is achieved
only by the feed-forward control of the desired accelerations.

The time-dependent desired trajectories are specified as 5-order functions
for smoothly interpolating between the boundary conditions, and all the out-
puts are smoothly controlled from the initial conditions to the final ones in
each step.
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3.3 Efficiency analysis

3.3.1 Starting from standing posture

We first consider a starting control and stable gait generation from a static
standing posture. The robot starts walking from a standing posture (b1 = b2 =
b, θ1 = θ2 = 0) and static condition (θ̇1 = θ̇2 = 0, ḃ1 = ḃ2 = 0), and generate
the dynamic gait while updating the desired trajectories in accordance with
the following strategy.

The telescopic-leg length of the stance leg, b1, is controlled to follow its
desired time-dependent trajectory, b1d(t), from the length immediately after
impact, b+1 , to the terminal value, b + ∆b. We consider a time-dependent 5-
order function to smoothly interpolate the values, and update the coefficients
at every impact. The telescopic-leg length of the swing leg, b2, and the relative
hip angle, θH , are also controlled to follow their desired trajectories, b2d(t)
and θHd(t), in the same manner as b1. This will result in that, after the first
impact, b1 is controlled from b−∆b to b+∆b, b2 is controlled from b+∆b to
b−∆b, and θH is controlled from −α to α by following their smooth desired
trajectories. The telescopic-legged rimless wheel must start with a small initial
velocity to fall down, whereas a biped robot can start the walking from a static
standing posture only by creating the first impact posture because this results
in shifting the CoM forward.

Fig. 12 shows the simulation results of dynamic walking from a static stand-
ing posture where ∆b = 0.05 [m]. We can see that a stable 1-period gait is
generated. Fig. 13 shows the stick diagram for one cycle. The system parame-
ters were chosen as listed in Table 1. The desired settling time for shortening

the swing-leg length, T
(2)
set , were chosen as a shorter value than others to guar-

antee the foot clearance.

The most remarkable result is the high walking speed. In this case, the
walking speed converged to 1.31 [m/s]. It is reported that the average walking
speed of adult humans is 82 [m/min] (= 1.367 [m/s]) in [13]. We can find
that the walking speed of the generated gait approaches to that of humans.
Compared to the results of VPDW [4] and energy tracking control [2], the
obtained walking speed is found to be remarkably fast. Although we cannot
avoid the deterioration of energy-efficiency, the proposed approach enables
the robot to generate a remarkably high-speed gait that the previous methods

Table 1 Physical and control parameters of biped walking system

mH 10.0 kg
m 5.0 kg
a 0.50 m
b 0.50 m

α 0.60 rad

T
(1)
set 0.40 s

T
(2)
set 0.30 s

T
(H)
set 0.40 s
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could not achieve. Note also that the gait generation does not depend on the
effect of semicircular feet [11].

From Fig. 12(d), we can see that sufficiently large vertical GRF is generated
during stance phases compared to the case of the TRW. This is because the
lower part of the leg is heavy.

From Fig. 12(e), we can see that negative input power occurs during poste-
rior half of cycle. This is caused by the tracking control to the time-dependent
desired trajectories. As mentioned later, the gait generation becomes impossi-
ble as ∆b further decreases. In this case, the robot must utilize the ankle-joint
actuation, or it cannot obtain sufficient driving force to overcome the potential
barrier.
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Fig. 12 Simulation results of dynamic walking from standing posture where ∆b = 0.05 [m]
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Fig. 13 Stick diagram for steady gait where ∆b = 0.05 [m]

3.3.2 Efficiency analysis considering ankle-joint torque

In the case of the TRW, remarkably high-speed level gaits near-running were
generated. In return for it, however, the motion was too rapid to satisfy the
desired settling-time condition for the telescopic-leg actuation. As a candidate
of the solution to this problem, a brake effect by the ankle-joint actuation can
be considered. By driving the stance leg backward, we can extend the time
margin, i.e., the step period.

In this section, we consider the foot mechanism with an elastic element as
shown in Fig. 14, and apply its effect as the ankle-joint torque to the robot.
We assume that the elastic element becomes natural length when θ1 = 0, and
the ankle-joint torque, uA, is then given by

uA = −kθ1, (59)

where k [N·m] is a positive constant which stands for the elastic coefficient.
Xzmp calculated by Eq. (52) accordingly becomes kθ1/λ4 [m]. The ankle-joint
torque vector also becomes

SAuA =
[
0 0 1 0 0 0 0 0

]T
uA, (60)

and we add this to the right-hand side of Eq. (35) to calculate λ. Also note
that h(q, q̇) in Eq. (56) must be replaced with h(q, q̇) − SAuA to calculate
B(q, q̇).

Fig. 15 shows the gait descriptors with respect to ∆b changing it by 0.005
[m]. We plotted the results, however, only in the case the generated gait was
1-period stable. The elastic coefficient, k, was chosen as 0.0, 5.0, 10.0, 15.0 and
20.0 [N·m].
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Fig. 14 Foot mechanism with elastic element

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

∆b [m]

(a) Step period [s]
k = 0.0 [Nm]

k = 5.0 [Nm]

k = 10.0 [Nm]

k = 15.0 [Nm]

k = 20.0 [Nm]

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

∆b [m]

(b) Walking speed [m/s]

k = 0.0 [Nm]

k = 5.0 [Nm]

k = 10.0 [Nm]

k = 15.0 [Nm]

k = 20.0 [Nm]
 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

∆b [m]

(c) Specific resistance [-]
k = 0.0 [Nm]

k = 5.0 [Nm]

k = 10.0 [Nm]

k = 15.0 [Nm]

k = 20.0 [Nm]

 4

 6

 8

 10

 12

 14

 16

 18

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

∆b [m]

(d) Restored mechanical energy [J]
k = 0.0 [Nm]

k = 5.0 [Nm]

k = 10.0 [Nm]

k = 15.0 [Nm]

k = 20.0 [Nm]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

∆b [m]

(e) θ1
+ [rad] and Xg

+ [m]
θ1

+ [rad]

Xg
+ [m]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

∆b [m]

(f) Maximum value of Xzmp [m]
k = 5.0 [Nm]

k = 10.0 [Nm]

k = 15.0 [Nm]

k = 20.0 [Nm]

Fig. 15 Gait descriptors with respect to ∆b for five values of k

From Fig. 15(a), we can see that the step period monotonically decreases
with the increase of ∆b in all cases. In addition, enough settling-time margin
is created when k is large. The maximum desired settling time is chosen as

T
(1)
set = T

(H)
set = 0.40 [s], and the step period must be longer than it. In all

cases, this condition becomes impossible to be met as the impact posture is
more asymmetrized. When ∆b is large, the larger k becomes, the longer the
settling-time margin becomes by the brake effect of uA. When ∆b is small
(∆b ≤ 0.02 [m]), however, this tendency reverses. In addition, stable gaits are
generated even if ∆b = 0.01 [m] where k = 10.0, 15.0, and 20.0. This is because
uA becomes positive during the first phase of cycle or when θ1 is negative, and
it helps to overcome the potential barrier.
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From Fig. 15(b), we can see that the walking speed monotonically increases
with the increase of∆b in all cases. The step length is identical to the horizontal
distance the CoM travels, ∆Xg [m], and it satisfies

∆X2
g = (a+ b+∆b)2 + (a+ b−∆b)2

−2(a+ b+∆b)(a+ b−∆b) cosα, (61)

∂∆X2
g

∂∆b
= 4 (1 + cosα)∆b. (62)

Then we can find that it monotonically increases with respect to ∆b. Since
the walking speed is calculated by Eq. (28), we can conclude that the walking
speed increases by the synergistic effect of the increment of ∆Xg and the
decrement of step period. The increasing tendency of ∆Xg is less than that of
∆b, however, the walking speed fundamentally changes inversely proportional
to the step period.

From Fig. 15(c), we can see that the SR monotonically increases with the
increase of ∆b in all cases. It is natural that the consumed energy increases
with respect to the leg extension and its control speed, and this result implies
that the increasing tendency of the consumed energy (average input power) is
more than that of the walking speed. As a candidate of solution to improve the
energy-efficiency, extending the desired settling-time in accordance with the
step period extended by the brake effect of uA can be considered. We would
like to leave the detailed analysis for another opportunity.

Note that we did not take uA into account to calculate the SR because it
is not an input torque but an elastic force. The average input power is thus
defined as

p =
1

T

∫ T−

0+

(∣∣∣ḃ1u1

∣∣∣+ ∣∣∣ḃ2u2

∣∣∣+ ∣∣∣θ̇HuH

∣∣∣) dt. (63)

Fig. 15(e) plots θ1 and Xg immediately after impact. We plotted the analysis
results where k = 20.0 only because the impact posture is uniquely determined
according to∆b regardless of k. In all cases, the values ofX+

g are negative, that
is, the generated impact postures cannot guarantee to overcome the potential
barrier. Also the values of θ+1 are always negative. This implies that the hip
position does not shift anterior to the forefoot point at impact. Let’s consider
these results from the angular momentum point of view. Let L [kg·m2/s] be the
angular momentum around the stance-foot point, its time-derivative satisfies

L̇ = uA +MgXg, (64)

where M [kg] is the robot’s total mass. The angular momentum draws a curve
convex downward with respect to time in the presence of potential barrier. If
the robot achieves the sufficient condition for overcoming the potential bar-
rier, X+

g ≥ 0, however, L̇ becomes always positive and L then monotonically
increases. The analysis results imply that a dynamic gait achieving X+

g ≥ 0

or L̇ ≥ 0 is extremely high-speed and is hard to be realized. In other words,
achieving X+

g < 0 or creating the phase with L̇ < 0 prevents the excessive
forward acceleration for achieving a stable walking.



Title Suppressed Due to Excessive Length 25

Fig. 15(f) plots the maximum values of Xzmp calculated by Eq. (52). We
omitted the result where k = 0.0 [N·m] because the value is always kept zero.
We can see that the values monotonically increase with respect to ∆b and
there is a significant change in the increasing tendency of the maximum ZMP
around ∆b = 0.055 [m] in all cases. Fig. 16 shows the steady ZMP pattern
with respect to time for two values of ∆b where k = 20.0. In the case of
∆b = 0.040 [m], there is a change or indifferentiable point in the ZMP motion
immediately prior to impact. This is because the telescopic-leg actuation is

completed at this instant (the desired settling time, t = T
(1)
set ), and the robot

begins to fall down as a 1-dof rigid body. As a result, the peak immediately
prior to the settling time yields the maximum value of ZMP. Whereas in the
case of ∆b = 0.070 [m], there is little time-margin and the heel-strike occurs
immediately after the settling time, and the peak during the control phases
yields the maximum ZMP. There are two common features in both cases; one
is that the ZMP moves from heel to toe, and another is that the ZMP remains
within the area anterior to the ankle joint during most part of cycle. These
are similar to human walking.

Note that the forefoot must be longer than 30 [cm] where k = 20.0 [N·m]
and ∆b > 0.07 [m] as shown in Fig. 15 (f). In humans, as shown in Fig. 17,
the heel would rise up or the motion of forefoot weight-bearing [13] would
start in this case. Also in robot walking, this situation would occur because
the robot’s foot length is limited. The ZMP-based approach can be regarded
as the method for treating a legged robot as a robotic arm fixed on the floor.
Foot flat weight-bearing is a condition that must be maintained for performing
ZMP-based control. The simulation results in this section imply, however,
that forefoot weight-bearing is a natural motion as a sequence of achieving
efficient dynamic walking. In the future, we should analyze dynamic walking
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Fig. 16 Time evolutions of Xzmp for two values of ∆b
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(a) (b)

Fig. 17 Foot flat weight-bearing (a) and forefoot weight-bearing (b)

incorporating foot action for systematizing the methods for achieving more
natural and efficient legged locomotion.

4 Conclusion and Future Work

In this paper, we have proposed a novel gait generation method based on
forward-tilting impact posture for planar limit cycle walkers with telescopic
legs, and have confirmed the validity of the method through numerical in-
vestigations. The simulation results showed that remarkably high-speed level
dynamic gaits can be generated only by tilting the impact posture slightly
forward. We also discussed the role of asymmetric shape of human foot from
the viewpoint of the ankle brake effect. The simulation results showed that
the ankle-joint torque as a brake is effective to generate a stable gait in terms
of extending the time margin, and that the toe-side must be longer than the
heel-side for covering the ZMP motion.

The greatest contribution of our study is to provide a novel insight that
bipedal movement is generated not by forward propulsion but by braking
of falling forward. We believe that this understanding would help to achieve
efficient, high-speed, and human-like dynamic bipedal walking.

As shown in Fig. 18, we can consider other approaches to creating forward
tilting impact posture; utilizing knee-bending, forefeet rigidly attached to the
legs, and upper body (counterweight). Now we are examining these effects and
the results will be reported in our future paper.
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