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Abstract This paper proposes a simplified method of underactuated virtual
passive dynamic walking without having any singularities in the control input,
which is termed as the pseudo virtual passive dynamic walking (PVPDW),
and analyzes the gait properties considering quasi-constraint on the impact
posture. First, we introduce a planar underactuated biped model that added
an upper body by means of a bisecting hip mechanism and formulate the
method of PVPDW based on the concept of pseudo center of mass. Second,
we introduce a control law for inhibiting swing-leg retraction and analyze the
effect on the gait stability. The simulation results show that falling down as
a 1-DOF rigid body dramatically increases the stable domain even though
the hip angle at impact is not precisely kept constant. Finally, we discuss the
mechanism from the energy-loss coefficient point of view.

Keywords Limit cycle walking · Swing-leg retraction · Bisecting hip
mechanism

1 Introduction

Achieving robust dynamic walking is one of the basic subjects in the field
of robotic bipedal locomotion, especially development of limit-cycle walkers.
The definitions of the gait stability or robustness differ in accordance with the
desired tasks. In limit-cycle walkers, however, the generated gait is said to be
robust in the sense that the motion rapidly converges to the steady limit cycle
or the stable domain of the initial condition is wide. In general, many bipedal
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humanoids are controlled based on the specified control strategies, mainly
zero moment point (ZMP) based approaches, and their robust motions are
successfully accomplished. In contrast, limit cycle walkers are good examples
for achieving energy-efficient walking but their gait stability is fragile. They
usually generate dynamic gaits without using any desired trajectories, and
the stable domain is not so wide. It is common understanding that there is a
trade-off between the gait robustness and energy-efficiency, and it is not easy
to achieve both properties simultaneously.

Virtual passive dynamic walking (VPDW) is one of the approaches to effi-
cient bipedal locomotion [1]. By reproducing the driving mechanism of gravity
effect in passive dynamic walking, simple walkers with small actuators can
generate efficient gaits on level ground. In this method, however, the walkers
must be fully-actuated and the problem of ZMP constraint then arises with
ankle-joint actuation. Utilizing effects of semicircular feet is one of the so-
lutions for avoiding the ZMP constraint; the rolling effect during the stance
phases functions as a virtual ankle actuation and overcoming the potential
barrier at mid-stance then becomes possible [2]. Semicircular feet also have
the effect of shock-absorbing at impact and this helps reduction of energy
consumption. In this case, VPDW is achieved only by hip-joint actuation and
another problem arises with it. VPDW is specified as a redundant equation of
the control torques and can be achieved by solving it in realtime. In underac-
tuated VPDW, a singularity appears in the control input; this is the condition
that the relative angular velocity of the hip becomes zero. Although the system
automatically avoids the condition, the control torque significantly increases
when approaching it. This paper then proposes a novel VPDW-like approach
to efficient level gait generation of an underactuated biped without having any
singularities in the control torque. Although the control input according to the
pseudo VPDW is differently given and is simpler than the original VPDW, the
restored mechanical energy discretely behaves in the same manner as VPDW.
We numerically investigate the validity and propose a robust control law uti-
lizing the reference trajectory of mechanical energy.

On the other hand, it has been suggested that the impact conditions play
important roles in generation of stable limit cycles. There are several results
focusing on the effect of swing-leg retraction (SLR); this is a phenomenon
that the swing leg moves backward just prior to impact in walking or running
[3]. In [4][5], it is described that the effect of SLR helps limit cycle stability
and some mathematical evidences are produced. In contrast, Ikemata et al.
experimentally confirmed that constraining the impact posture is effective for
enhancing the limit cycle stability [6]. By applying a mechanical stopper to a
kneed passive-dynamic walker, they successfully achieved long-time walking on
a treadmill. Although the results are controversial, the effect of impact must
be an important factor in stabilization of limit cycles. Another subject in this
paper is to discuss the effect of SLR on the stability of limit cycle walking. We
propose a simple control law of SLR and numerically investigate the effect on
the stability and gait properties based on some criteria.
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This paper is organized as follows. Firstly, the model of an underactuated
biped with an upper body incorporating a bisecting hip mechanism is de-
scribed in Section 2. In Section 3, the method of pseudo VPDW is introduced
and its simplification is considered. In Section 4, a simple control of SLR is
proposed and the validity is numerically verified. In Section 5, the gait prop-
erties are numerically analyzed and the advantageous of the control of SLR is
investigated from the energy-loss coefficient point of view. Section 6 concludes
this paper and describes future research directions.

2 Modeling of Underactuated Biped with Upper Body

This section describes the bisecting hip mechanism (BHM) and discusses its
feasibility through development of a prototype.

2.1 Bisecting Hip Mechanism

Fig. 1 shows an overview of our prototype BHM. Although there are many ap-
proaches to realize a BHM, we did so with sprockets and chains. A sprocket is
attached to the inner leg, and its rotational motion is inversely transmitted to
another sprocket in the body through chains wound in the shape of the letter
“S”. One S chain loosens when the other stretches, so there exists a dead-band
and backlash around the standing posture. This is a crucial problem from a
practical point of view but would be considerably resolved by installing ten-
sion pulleys or by using timing belts instead of metallic chains. The rotational
motion of the sprocket is then transmitted forward to another one attached to
the outer leg through another chain. The outer and inner legs then symmetri-
cally move in opposite to each other with respect to the torso. Fig. 2 shows the
symmetric motion of the legs. We can smoothly move two legs and maintain
the posture at any angle. Back-drivability is almost completely achieved.

In passive stabilization of the upper body, the use of springs is also an
effective way [7]. For reduction of the DOF, however, the rigid mechanical
constraint provided by a BHM is more suitable.

2.2 Dynamic Equation

We deal with a planar underactuated biped model with semicircular feet and
a torso as shown in Fig. 3. We add a 1-link torso as the upper body to the
biped incorporating a BHM. Its mass and inertia moment are mT [kg] and IT
[kg·m2]. The joint torques between the torso and stance-leg, u1, and swing-
leg, u2, are known. The central point of the foot circle is positioned on the

leg link, and the foot radius is R [m]. Let θ =
[
θ1 θ2 θ3

]T
be the generalized

coordinate vector; the dynamic equation of the biped model then becomes

M (θ)θ̈ + h(θ, θ̇) = Su+ JT
HλH , (1)
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Fig. 1 Overview of prototype bisecting hip mechanism

where JT
HλH ∈ R

3 denotes the constraint force vector caused by the BHM.
The details of M(θ) and h(θ, θ̇) are as follows.

M (θ) =

⎡
⎣ M11 M12 M13

M22 0
Sym. M33

⎤
⎦ , h(θ, θ̇) =

⎡
⎣h1

h2

h3

⎤
⎦

M11 = I +MR2 +mT (l −R)(l −R+ 2R cos θ1)

+m
(
(a−R)2 + (l −R)2 + 2R (a+ l − 2R) cos θ1

)
M12 = −mb (R cos θ2 + (l −R) cos(θ1 − θ2))

M13 = mT (RlT cos θ3 + lT (l −R) cos(θ1 − θ3))

M22 = I +mb2

M33 = IT +mT l
2
T
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Fig. 2 Symmetric motion of legs

h1 = −Rθ̇
2

1 sin θ1 (m(a+ l −R) +mT (l −R))

+mbθ̇
2

2 (R sin θ2 − (l −R) sin(θ1 − θ2))

−mT lT θ̇
2

3 (R sin θ3 − (l −R) sin(θ1 − θ3))

− (m(a+ l) +mT l −MR) g sin θ1

h2 = mb(l −R)θ̇
2

1 sin(θ1 − θ2) +mbg sin θ2

h3 = −mT lT (l −R)θ̇
2

1 sin(θ1 − θ3)−mT lT g sin θ3

The control input vector Su ∈ R
3 is also defined as

Su =

⎡
⎣ 1 0

0 1
−1 −1

⎤
⎦[

u1

u2

]
. (2)

The geometric relation between the torso and legs according to the BHM
is given by

θ3 =
θ1 + θ2

2
. (3)

The time derivative of Eq. (3) becomes

θ̇3 =
θ̇1 + θ̇2

2
. (4)
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θ1 −θ2

θ3

u1 u2

m, I
m, I

Ra

b

l

g

mT, IT

lT
X

Z

+

Fig. 3 Model of planar underactuated biped robot with semicircular feet and torso

This can be simply rearranged as

JH θ̇ = 0, JH =
[
1 1 −2

]
. (5)

This leads to JH θ̈ = 0, and by substituting this into Eq. (1), we obtain λH as

λH = −XH(θ)−1JHM (θ)−1
(
Su− h(θ, θ̇)

)
, (6)

XH(θ) = JHM(θ)−1JT
H . (7)

By substituting this into Eq. (1), we further simplify the robot’s dynamic
equation to be

M (θ)θ̈ = Y H(θ)
(
Su− h(θ, θ̇)

)
, (8)

where

Y H(θ) = I3 −XH(θ)−1JT
HJHM(θ)−1. (9)
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2.3 Transition Equation

The heel-strike is modeled as an inelastic collision. We introduce the extended
coordinate vector, qi ∈ R

3, for the two legs (i = 1 or 2) and torso (i = 3):

qi =
[
xi zi θi

]T
. Fig. 4 shows the configuration at the instant of the heel-

strike. (xi, zi) is the central position of Leg i’s semicircular foot as shown in
the figure. Let α [rad] be the half inter-leg angle at impact, that is,

α :=
θ−1 − θ−2

2
=

θ+2 − θ+1
2

> 0. (10)

Then θ∓1 = θ±2 = α holds. In this extended coordinate, however, the stance
and swing legs are not exchanged. We then express θ+i and θ−i simply as θi.

The augmented coordinate vector is defined as q =
[
qT
1 qT

2 qT
3

]T
, and the

inelastic collision model is

M̄(α)q̇+ = M̄(α)q̇− − JI(α)
TλI , (11)

JI(α)q̇
+ = 07×1, (12)

where M̄ (α) ∈ R
9×9 and JI(α) ∈ R

7×9 are matrix functions only of α. λI ∈
R

7 denotes the impact force on the robot. Eq. (12) implies the constraint
condition of the post-impact velocities, and we describe the details in the
following.

Leg 1’s and Leg 2’s hips are positioned the same as the Torso’s, and their
relations can be expressed as

x1 + (l −R) sin θ1 = x3, z1 + (l −R) cos θ1 = z3,

x2 + (l −R) sin θ2 = x3, z2 + (l −R) cos θ2 = z3.

Their time derivatives are

ẋ+
1 + (l −R)θ̇

+

1 cos θ1 = ẋ+
3 , (13)

ż+1 − (l −R)θ̇
+

1 sin θ1 = ż+3 , (14)

ẋ+
2 + (l −R)θ̇

+

2 cos θ2 = ẋ+
3 , (15)

ż+2 − (l −R)θ̇
+

2 sin θ2 = ż+3 . (16)

On the other hand, the conditions of rolling contact of Leg 2 with the ground
are given by

ẋ+
2 = Rθ̇

+

2 , (17)

ż+2 = 0. (18)

Furthermore, the constraint on the post-impact angular velocities due to the
BHM is given by

θ̇
+

1 + θ̇
+

2 = 2θ̇
+

3 . (19)
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(x1, z1) (x2, z2)

(x3, z3)

X

Z

O

θ1 −θ2

θ3=0

Torso

Leg 1 Leg 2

Fig. 4 Configuration at instant of heel-strike

The above seven conditions can be formulated as a matrix JI(α):

JI(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 J13 0 0 0 −1 0 0
0 1 J23 0 0 0 0 −1 0
0 0 0 1 0 J36 −1 0 0
0 0 0 0 1 J46 −1 0 0
0 0 0 1 0 −R 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

where

J13 = (l −R) cos θ1, J23 = −(l −R) sin θ1,

J36 = (l −R) cos θ2, J46 = −(l −R) sin θ2.
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Following Eqs. (11) and (12), we get

q̇+ = Y (α)q̇−, (21)

Y (α) := I9 − M̄ (α)−1JI(α)
TXI(α)

−1JI(α), (22)

XI(α) := JI(α)M̄ (α)−1JI(α)
T. (23)

The following relationship for the velocities immediately before impact holds.

q̇− = H(α)θ̇
−
= H(α)

⎡
⎣ 1 0

0 1
1/2 1/2

⎤
⎦
[
θ̇
−
1

θ̇
−
2

]
=: H(α)T ˙̄θ− (24)

Where matrix H(α) ∈ R
9×3 is defined as

H(α) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R 0 0
0 0 0
1 0 0

R+ (l −R) cosα −(l −R) cosα 0
−(l−R) sinα −(l −R) sinα 0

0 1 0
R+ (l −R) cosα 0 0
−(l−R) sinα 0 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Following Eqs. (21), (24), and the relation between q̇+ and θ̇
+
, the angular

velocity vector immediately after impact can then be simply expressed using

θ̇
−
1 and θ̇

−
2 as follows:

θ̇
+
=

⎡
⎣ 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

⎤
⎦Y (α)H(α)T ˙̄θ− =: Ξ(α) ˙̄θ−, (25)

where Ξ(α) ∈ R
3×2 is also a function matrix of α.

2.4 Mechanical Energy

The robot’s total mechanical energy is defined as the sum of kinetic and po-
tential energies:

E(θ, θ̇) =
1

2
θ̇
T
M (θ)θ̇ + P (θ), (26)

and its time derivative satisfies the following relation:

Ė = θ̇
T
Su =

(
θ̇1 − θ̇3

)
u1 +

(
θ̇2 − θ̇3

)
u2. (27)

By using Eq. (4), this can be rearranged as

Ė =
θ̇Hu1

2
− θ̇Hu2

2
, (28)
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where θH := θ1 − θ2 is the relative hip-joint angle. Eq. (28) implies that the
two control torques, u1 and u2, drive the same joint inversely. The walking
system shown in Fig. 3 virtually has 2-DOF and one control torque due to the
mechanical constraint of the BHM. The complexity of the driving mechanism
is simplified; this idea can be found in the study of Grishin et al. [8] In the
subsequent sections, we assume u2 = 0 for simplicity.

2.5 Energy Efficiency

The energy efficiency of a walking robot can be evaluated in terms of specific
resistance := p/Mgv [-], which implies an expenditure of energy per unit mass
and per unit length traveled. M := mT + 2m [kg] is the robot’s total mass,
and g = 9.81 [m/s2] is the gravity acceleration. p [J/s] is the average input
power defined as

p :=
1

T

∫ T−

0+

∣∣∣θ̇Hu1

∣∣∣+ ∣∣∣θ̇Hu2

∣∣∣
2

dt, (29)

and v [m/s] is the average walking speed defined as

v :=
1

T

∫ T−

0+
Ẋg dt =

ΔXg

T
, (30)

where T [s] is the steady step period, Xg [m] is the X-position of the center of
mass (CoM), and ΔXg := Xg(T

−)−Xg(0
+) [m] is the horizontal displacement

of the CoM and is equal to the step. In the following, we simply call Xg CoM.

3 Pseudo Virtual Passive Dynamic Walking and Its Extensions

3.1 Formulation Using Pseudo CoM

In VPDW, the time rate of change of mechanical energy during stance phases
satisfies the following relation:

Ė =
θ̇Hu1

2
= Mg tanφẊg, (31)

where M := mH + 2m [kg] is the robot total mass and φ [rad] is the virtual
slope angle [1]. The control input is then specified from Eq. (31) as

u1 =
2Mg tanφẊg

θ̇H
. (32)

On the other hand, by integrating Eq. (31) with respect to time, we obtain
the following relation:

ΔE = Mg tanφΔXg , (33)
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where ΔE [J] is the restored mechanical energy and ΔXg [m], which is equiv-
alent to the step length, satisfies the following relation:

ΔXg := Xg(T
−)−Xg(0

+) = 2 (Rα+ (l −R) sinα) . (34)

t = 0+ and T− [s] stand for the time instants immediately after impact and
immediately before the next impact. The control input of Eq. (32) has a sin-
gularity of θ̇H = 0, and the biped system then behaves unnaturally around
the singular point. The maximum control input also becomes large with it. We
then reconsider this approach and introduce the following control input, u1:

u1 = Mg tanφ

(
R+ (l −R) cos

θH
2

)
. (35)

By substituting this and u2 = 0 into Eq. (31) and integrating it with respect
to time, we get

ΔE

Mg tanφ
=

∫ T−

0+

θ̇H
2

(
R+ (l −R) cos

θH
2

)
dt

=

[
RθH
2

+ (l −R) sin
θH
2

]θH=2α

θH=−2α

= 2 (Rα+ (l −R) sinα) = ΔXg. (36)

This satisfies the relation of Eq. (33). In this sense, the authors called the walk-
ing style driven by this control input pseudo virtual passive dynamic walking
(PVPDW).

In this paper, we further consider the mathematical formulation during
stance phases. Define the pseudo CoM as

X̂g :=
RθH
2

+ (l −R) sin
θH
2
, (37)

and its time-derivative satisfies

˙̂
Xg =

θ̇H
2

(
R+ (l −R) cos

θH
2

)
=

θ̇H
2

· u1

Mg tanφ
=

Ė

Mg tanφ
. (38)

This leads to

∂E

∂X̂g

= Mg tanφ, (39)

and we can find that Eq. (39) is in the same formula of VPDW. In addition,
following Eq. (33), the minimum value of specific resistance (SR) becomes
SR ≥ tanφ which is the same as that of VPDW [1].
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3.2 Linearization and Energy-efficiency

By linearizing the pseudo CoM given by Eqs. (37) and (38) and the control
input of Eq. (35) around θH = 0, we obtain

X̂g =
lθH
2

,
˙̂

Xg =
lθ̇H
2

, u1 = Mlg tanφ. (40)

Also in this case, the relation of Eq. (39) holds. The physical meaning of
PVPDW is more simplified; the robot is driven by a constant torque of Eq.
(40), and the mechanical energy is then restored proportional to the change
of hip angle.

The restored mechanical energy in this case becomes

ΔE =

∫ T−

0+

θ̇Hu1

2
dt =

Mlg tanφ

2

∫ 2α

−2α

dθH = 2lαMg tanφ = Mg tanφΔX̂g,

(41)
and following Eqs. (36) and (41), SR satisfies the following magnitude relation:

SR ≥ ΔE

MgΔXg
=

lα tanφ

Rα+ (l −R) sinα
. (42)

Further, considering that the denominator of Eq. (42) satisfies

Rα+ (l −R) sinα < Rα+ (l −R)α = lα (43)

if 0 < α < π/2, we can conclude SR > tanφ. Although the equality does not
hold as in the case of VPDW, the difference is quite small as described later.

4 Swing-leg Retraction and Its Control

4.1 Quasi-constraint on Impact Posture

Limit cycle walkers often exhibit swing-leg retraction (SLR), which is the mo-
tion of the swing leg; it moves backward immediately prior to heel strike [3].
It is mathematically explained as follows. The sign of angular velocity of the
relative hip joint, θ̇H , changes from positive to negative immediately prior to
impact. This phenomenon is often observed in passive or semi-passive dynamic
gaits. The author found that inhibiting SLR improves biped gait stability
through numerical analysis. We describe the details in the following.

We consider to constraint the hip joint mechanically at the instant of θ̇H =
0. This constraint condition is mathematically expressed as θ̇1 = θ̇2, that is,

JQθ̇ =
[
1 −1 0

]
θ̇ = 0.

This effect is added to the walking system together with the BHM constraint
as

M(θ)θ̈ + h(θ, θ̇) = JT
HλH + JT

QλQ, (44)
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where λQ ∈ R is an undetermined multiplier for the holonomic constraint
force. The control input, uH , then becomes zero during this phase.

We call this active hip-locking quasi-constraint on impact posture in the
sense that the target hip angle is not precisely given. In general, we must con-
trol the hip angle to follow the desired-time trajectory to achieve the constraint
on impact posture [9][10], whereas the quasi-constraint achieves only keeping
the angular velocity of hip-joint zero. By this constraint, we can avoid ineffi-
ciency due to the negative input-power because θ̇Hu1 ≥ 0 is always achieved.

4.2 Typical Steady Gait

Fig. 5 shows a typical steady gait of PVPDW with quasi-constraint on impact
posture where φ = 0.01 [rad]. Fig. 6 shows the snapshots of the steady walking
motion. Table 1 lists the physical parameters. In the simulation program, we
switched the robot dynamic equation from Eq. (1) to (44) at the instant of
θ̇H = 0. From Fig. 5 (b), we can confirm that quasi-constraint is achieved
because all the angular velocities are kept in the same orbit. Fig. 5 (c) shows
the time evolutions of the CoM and pseudo CoM, and they greatly differ from
each other. As expected from Eq. (40), the pseudo CoM behaves in the same
way as the relative hip angle does; it monotonically increases during swing
phases.

Table 1 Physical parameters of biped robot

mT 10.0 kg
m 5.0 kg
IT 0.001 kg·m2

I 0.001 kg·m2

lT 0.3 m
l (= a+ b) 1.0 m

a 0.5 m
b 0.5 m
R 0.3 m
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Fig. 5 Simulation results for pseudo virtual passive dynamic walking with quasi constraint
on impact posture where φ = 0.01 [rad]

Fig. 6 One cycle of motion for pseudo virtual passive dynamic walking with quasi-constraint
on impact posture
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4.3 Robust Energy Control

The authors proposed a robust control method termed as the robust energy
control based on the property of mechanical energy restoration in VPDW [1].
Let us apply this control to the PVPDW system. We consider the following
formula:

Ė =
θ̇Hu1

2
= Mg tanφ

˙̂
Xg − ζ

(
E − Ed(X̂g)

)
˙̂

Xg. (45)

This is formulated to satisfy the relation

∂E

∂X̂g

= Mg tanφ− ζ
(
E − Ed(X̂g)

)
, (46)

which is found to be a trajectory tracking system not with respect to time but
with respect to the pseudo CoM. From Eq. (45) and the second equation in
Eq. (40), u1 yields the following form without having any singularities.

u1 = Mlg tanφ− ζl
(
E − Ed(X̂g)

)
(47)

This control input is time-independent and does not have singularities. Here,
ζ > 0 is the feedback gain and Ed is the desired trajectory of mechanical
energy which is given as a linear function of the pseudo CoM, X̂g, as follows:

Ed(X̂g) = E0 +Mg tanφX̂g. (48)

Where E0 [J] is the desired value of mechanical energy when X̂g = 0 and is
uniquely determined in accordance with the steady generated gait. We must
conduct numerical simulation to obtain this value precisely, or the control
input does not converge to the constant value of Eq. (40). The effect of robust
stabilization is, however, expectable even if there is a small margin of error.

Fig. 7 shows the simulation results for robust energy control with the same
parameter settings. Fig. 7 (a) shows the mechanical energy with respect to the
pseudo CoM. The robot started from an initial condition close to the steady
value. In this case, E0 = 179.17 [J] and ζ = 10.0. Although we omit the
details on the simulation results, we confirmed that the convergence speed to
the steady gait increases and the stability of limit cycle improved. Fig. 7 (b)
shows the time evolution of u1. At the start of walking, the amount of the
energy feedback control is added to the constant torque of Mlg tanφ. It then
converges to the constant torque as the gait converges to the steady one.
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Fig. 7 Simulation results of robust energy control

5 Gait Analysis

5.1 Gait Properties

This subsection analyzes the gait efficiency and stable domain. Fig. 8 shows
the change of gait descriptors with respect to lT in the cases with quasi-
constraint and without it where φ = 0.01 [rad]. Here, (a) is the walking speed,
(b) the specific resistance, and (c) the step length. The physical parameters
except lT were chosen as listed in Table 1. From Fig. 8 (a), we can confirm
that the walking speeds monotonically decrease with the increase of lT due to
the effect of upper body as a counterweight. It is also observed that period-
doubling bifurcation occurs in the case without quasi-constraint. From Fig. 8
(b), we can see that the SR in the generated gait without quasi-constraint is
significantly worse than that with it. This is caused by negative input power
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Fig. 9 Steady 2-period gait and its constant step length

during SLR. From Fig. 8 (c), we can see that the step length does not bifurcate
even if the gait becomes 2-period. Fig. 9 strongly supports the geometrical
reason. It should be remarked that the step length changes to decrease after
exceeding the first bifurcation point. In other words, the pace slows after the
point on average. By controlling SLR, however, we can avoid the bifurcation
and slowing down of pace.

5.2 Convergence of Limit Cycle

In this paper, we analyze the limit cycle stability from the viewpoint of energy-
loss coefficient, which is defined as

ε =
K+

K− , (49)

where K+ and K− [J] are kinetic energies immediately after and immediately
before impact. They are respectively given by

K+ =
1

2

(
θ̇
+
)T

M (α)θ̇
+
, K− =

1

2

(
θ̇
−)T

M(α)θ̇
−
. (50)

According to the quasi-constraint on impact posture, the energy-loss coefficient
depends only on the half inter-leg angle, α, and does not depend on the angular
velocities as described later. In addition, 0 < ε < 1 holds due to the magnitude
relation of 0 < K+ < K−.
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Fig. 10 Convergence of energy-loss coefficients

Fig. 10 plots the convergence of energy-loss coefficients in the cases with
quasi-constraint and without it. In both cases, the robot started from the same
initial condition but their steady gaits converged to different limit cycles. We
can see that the convergence speed in the case with quasi-constraint is signifi-
cantly rapider than that without quasi-constraint. This implies that falling as
a 1-DOF rigid body dramatically improves the gait stability in the sense of
increasing the convergence speed even if the target hip angle at impact is not
precisely given.

We must achieve both constraint on impact posture and on restored me-
chanical energy simultaneously to guarantee the asymptotic stability as a rim-
less wheel [9]. Only by falling as a 1-DOF rigid body, however, the stable
domain and convergence speed are dramatically improved simultaneously.

5.3 Energy-loss Coefficient

Considering the relations of Eqs. (24) and (25), the kinetic energies immedi-
ately after and immediately before impact in Eq. (50) can be arranged as

K+ =
1

2

(
˙̄θ−

)T

Ξ(α)TM(α)Ξ(α) ˙̄θ−, (51)

K− =
1

2

(
˙̄θ−

)T

TTM(α)T ˙̄θ−. (52)

Let ‖ · ‖ be a vector norm and define M̂(α)± ∈ R
2×2 as follows.

M̂
+
(α) := Ξ(α)TM(α)Ξ(α), M̂

−
(α) := TTM (α)T

K± is then arranged as

K± =
1

2

∥∥∥M±(α)
1
2 ˙̄θ−

∥∥∥2 . (53)

Here, let us define

x := M̂
−
(α)

1
2 ˙̄θ−. (54)
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K+ is then able to be rearranged as

K+ =
1

2

∥∥∥M̂+
(α)

1
2M̂

−
(α)−

1
2x

∥∥∥2 , (55)

and energy-loss coefficient becomes

ε =
K+

K− =
‖Ωx‖2
‖x‖2 , (56)

where matrix Ω ∈ R
2×2 is defined as

Ω := M̂
+
(α)

1
2 M̂

−
(α)−

1
2 . (57)

As the generated gait converges to a 1-period limit cycle, ε also converges to a
constant. The range of the value can be calculated by calculating the singular
value of matrix Ω as mentioned later.

In the case with quasi-constraint on impact posture, the relation

θ̇
−
= T

[
1
1

]
θ̇
−
1 (58)

holds because of θ̇
−
1 = θ̇

−
2 . By substituting this into Eq. (50), we get

K+ =
1

2
M̄+

(
θ̇
−
1

)2

, K− =
1

2
M̄−

(
θ̇
−
1

)2

, (59)

where M̄+ ∈ R and M̄− ∈ R are positive scalar functions of α, and are
respectively defined as

M̄+ :=

[
1
1

]T
ΞTM(α)Ξ

[
1
1

]
, (60)

M̄− :=

[
1
1

]T
M(α)

[
1
1

]
. (61)

Eq. (59) then leads to

ε =
M̄+

M̄− =: ε0,

and this shows that ε0 does not depend on the angular velocities immediately
before impact. It depends only on α, i.e. ε0 = ε0(α). Whereas in the case

without quasi-constraint on impact posture, ε = ε(α, ˙̄θ−) and its range of
value is

0 < σ2(Ω)2 ≤ ε ≤ σ1(Ω)2 < 1, (62)

where σ1 and σ2 are the maximum and minimum singular values of Ω. ε = 0
gives the highest convergence speed in the sense of deadbeat control, but the
generated gait is inefficient because this implies that the energy-loss at impact
is maximum. In contrast, ε = 1 implies that the convergence speed is worst
but the energy-loss is minimum.
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Fig. 11 Plots of σ1, σ2 and ε0 with respect to lT and α

Fig. 11 plots σ2
1 , σ

2
2 and ε0. Here, (a) is those with respect to lT and (b)

those with respect to α. The physical parameters except lT in (a) were chosen
as listed in Table 1.

From the results, we can see that the inequality of Eq. (62) holds and
ε0 ≈ σ1(Ω). In other words, quasi-constraint almost maximizes the shock-
absorbing effect at impact. Whereas σ2

2 is considerably smaller than ε0 and

σ2
1 . This is outlined as follows. Let ν := θ̇

−
2 /θ̇

−
1 [-] be the ratio of angular

velocities immediately before impact. Then ε can be formed as a function only
of ν if the physical parameters are fixed. After ν = 1, i.e. quasi-constraint, ε
begins to decrease rapidly with the increase of ν. ε can take σ2

2 in the case

that θ̇
−
2 is substantially greater than θ̇

−
1 , that is, SLR strongly occurs. See our

previous paper [11] for further details.
As described in [12], the shock-absorbing effect increases as the vertical

position of CoM increases, which is supported by Fig. 11 (a). It was also
described in [12] that the shock-absorbing effect increases as α decreases. This
is supported by Fig. 11 (b). Since the rate of change with respect to α is large,
we should control the magnitude of hip angle as constant as possible although
it is not accurate.

6 Conclusion and Future Work

In this paper, we have specified PVPDW inhibiting SLR that can generate the
control input without concern for the singularity and have confirmed its ef-
fectiveness through numerical simulations. The simulation results showed that
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the stable domain and convergence speed are improved simultaneously. We
mathematically discussed the mechanism from the energy-loss coefficient point
of view. The singular value analysis showed that the energy-loss coefficient is
almost maximized by applying quasi-constraint. It was also remarkable that
the bifurcation (gait asymmetrization) in the case without quasi-constraint
decreases the gait efficiency.

In the future, we should try to theoretically clarify the relation between
bifurcation and efficiency deterioration. In the presence of SLR, however, we
must note that it is impossible to formulate a 2-period gait using an asymmet-
ric rimless wheel model [10]. Although complicated analysis is unavoidable,
investigations of SLR would help to deeply understand the stability principle
inherent in limit cycle walking.
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