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Abstract

The voice is an extraordinary human instrument. Every time we speak, our voice reveals

our gender, age, culture background, level of education, native birth, emotional state,

and our relationship with the person spoken to. All these clues are contained in even

small speech segment, and other people can read our voices with remarkable accuracy.

When we speak, we “encode” important information about ourselves; when we listen to

others, we can “decode” important information about them. One of the goals of human-

computer interaction (HCI) is the improvement of the user experience, trying to make

this interaction closer to human-human communication. Inclusion of speech emotion

recognition was one of the key points to include “perception” to multi-media devices.

This improved their user interfaces. However, the analysis of emotional states by the

study of the implicit channel of communication (i.e. the recognition of not only what is

said but also how it is said) may improve HCI making these applications more usable and

friendly.

We can communicate using speech from which various information can be perceived.

Emotion is an especial element that does not depend on the content of the utterance and is

useful in communications that reflects the speaker’s intention. Most previous techniques

for automatic speech emotion recognition focus only on the classification of emotional

states as discrete categories such as happy, sad, angry, fearful, surprised, and disgusted.

However, emotions are usually gradually change from weak to high degree. Therefore, an

automatic speech emotion recognition system should be able to detect the degree or the

level of the emotional state form the voice. Hence, in this study we adopt the dimensional

descriptions of human emotion, where emotional states are estimated as a point in a three-

dimensional space. These dimensions are suitable for representing the gradient nature of

emotional state.
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This research is concerned with the automatic speech emotion recognition system

based on the dimensional model. In this model, human emotional state is represented as a

point in a space consists of three dimensions: valence, activation, and dominance. Valence

is used to describe emotion in terms of positive and negative assessments (e.g. happy and

encouraging have positive-valence whereas angry and sad have negative-valence). Activa-

tion is used to define emotion in terms of arousal or excitation (e.g. happy and angry have

positive-activation while sad and bored have negative-activation). The dominance dimen-

sion indicating the degree of weakness or strength of an expression, this dimension used

to distinguish between the close neighborhood of anger and fear in the valence-activation

space. The input for the automatic system are acoustic features extracted from speech

signal and the output are the estimated values of valence, activation, and dominance.

These estimated values for the three dimensions not only identify the emotional state but

also the degree of the emotional state such as “low happy”, “happy”, “very happy”.

Conventional speech emotion recognition methods using the dimensional approach are

mainly focused on investigating the relationship between acoustic features and emotion

dimensions as a two-layer model, i.e. acoustic feature layer and emotion dimension layer.

However, using this model has the following problems: (i) we do not know what acoustic

features are related to each emotion dimension (ii) the acoustic features that correlate

to the valence dimension are less numerous, less strong, and more inconsistent, and (iii)

the values of emotion dimensions are difficult to estimate precisely only on the basis of

acoustic information. Due to these limitations, values of the valence dimension have been

particularly difficult to predict by using the acoustic features directly.

The ultimate goal of our work is to improve the conventional dimensional method in

order to precisely predict values of the valence dimension as well as improve prediction of

those of the activation and dominance. To achieve this goal, we construct an automatic

speech emotion recognition system by adopting a three-layer model for human perception

described by Scherer (Scherer, 1978) and developed by Huang and Akagi (Huang and

Akagi, 2008). It was assumed that, a listener perceives the acoustic features and internally

represented them as a smaller perception e.g. adjectives describing emotional voice such
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as Bright, Dark, Fast, and Slow. These smaller percepts or adjectives are finally used to

judge the emotional state of the speaker.

In this thesis, the proposed idea to improve automatic speech emotion recognition

system can be done by imitating the process of human perception for emotional state

from the speech signal. The conventional two-layer model has limited ability to find

the most relevant acoustic features for each emotion dimension, especially valence, or to

improve the prediction of emotion dimensions from acoustic features. To overcome these

limitations, this study proposes a three-layer model to improve the estimating values

of emotion dimensions from acoustic features. Our proposed model consists of three

layers: emotion dimensions (valence, activation, and dominance) constitute the top layer,

semantic primitives the middle layer, and acoustic features the bottom layer. A semantic

primitive layer is added between the two conventional layers acoustic features and emotion

dimensions.

We first, assume that the acoustic features that are highly correlated with semantic

primitives will have a large impact for predicting values of emotion dimensions, especially

for valence. This assumption can guide the selection of new acoustic features with better

discrimination in the most difficult dimension. The second assumption is that human can

judge the expressive content of a voice even without the understanding of one language,

such as emotional state of the speaker from different language. Using the second assump-

tion, we investigate the universality of the proposed speech emotion recognition system

to detect the emotional state cross-lingually.

To sum up, the aims of this work is to investigate the following assumptions: (1)

Selecting acoustic features based on the proposed three-layer model of human perception

will help us to find the most related acoustic features for each emotion dimensions. (2)

Using these selected acoustic features, as inputs to an automatic emotion recognition

system will improve the accuracy of all emotion dimensions especially valence. (3) In

addition, we investigate whether there are acoustic features that allow us to estimate the

emotional state from the voice of a person no matter what language he/she speaks. We

are interesting to build a global automatic emotion recognition system, which have the
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ability to detect the emotional state regardless of language.

Therefore, the method we adopt to construct our speech emotion recognition system

includes the following steps: first, we proposed a new acoustic feature selection algorithm

to select the most relevant acoustic features for each emotion dimension by using a top-

down method. Then, we build a perceptual three-layer model for each emotion dimension

using a top-down method, one emotion dimension in the top layer, the highly correlated

semantic primitive to this dimension in the middle layer, in the bottom layer the highly

correlated acoustic feature to the highly correlated semantic primitives in the middle

layer. Finally, a button-up method was used to estimate values of emotion dimensions

from acoustic features by firstly, using fuzzy inference system (FIS) to estimate the degree

of each semantic primitive from acoustic features, and then using another FIS to estimate

values of emotion dimension from the estimated degrees of semantic primitives.

The proposed emotion recognition system was validated using two different languages

(Japanese and German) in two different cases (speaker-dependent and multi-speaker).

Firstly, the system was implemented for each language individually to investigate whether

the system can be applied for any language. Secondly, the common acoustic features

between the two languages are used to validate the second assumption.

The experimental results reveal that by using the proposed features selection algo-

rithm for the two databases, we found many related acoustic features for each emotion

dimension. The estimation accuracy for emotion dimensions is improved using the select-

ed features comparing with all features. Moreover, the three-layer model can be applied

for the two-different language databases with similar performance. The most important

result is that the proposed three-layered model outperforms the conventional two-layered

model. The speaker-dependent vs. multi-speaker emotion estimation was tested; it was

found that the performance of speaker-dependent is better that multi-speaker. Finally, the

estimated values of emotion dimensions are mapped into the given emotion categories us-

ing a Gaussian Mixture Model classifier for the Japanese and German databases. For the

Japanese database, an overall recognition rate was up to 94% using emotion dimensions.

For the German database, the recognition rate was up to 95.5% for speaker-dependent
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tasks.

In order to investigate whether the automatic system can detect the emotion dimen-

sions for one language by training the system using different language. The proposed

speech emotion recognition system was trained using Japanese language and tested using

German language and vice versa. It was found that the cross-language emotion recogni-

tion system could estimate emotion dimensions with small error comparing the estimation

results from a system trained using the native language.

The results indicated that the three-layer system shows an internal structure of hu-

man perception clearly and has the recognition accuracy better than that of the two-layer

system. In a sense of imitating the perception mechanism of humans, the constructed sys-

tem provides a more effective emotion recognition system compared with the conventional

methods.

v



Acknowledgments

First of all, I thank God for his countless bounties bestowed upon me and ask Him to

guide and grant me mercy and forgiveness in the afterlife.

During my graduate studies at Japan Advanced Institute of Science and Technology

(JAIST), I have received generous help from each and every one of JAIST, without which

this thesis would have never been finished. I would like to express my most sincere

gratitude to my advisor, Prof. Masato Akagi, for his constant support and guidance

and encouragement throughout my stay. I consider myself fortunate to be a student of

Prof. Akagi, who inspired me with his enthusiasm in exploring new scientific frontiers

and unique insight in automatic emotion speech recognition. His patience, instructions

and kind encouragement that sustained me through failures, which lead me to learn a

lot about how to construct system for speech emotion recognition. Also, I want to thank

Associate Prof. Masashi Unoki for his guidance, advice, and his helpful comments on lab

meeting during my study. I am also want to thank Assist. Prof. Ryota Miyauchi for his

guide and help especially during traveling for outside meetings.

I would like to pay sincere thanks to Prof. Jianwu Dang, and Associate Prof. Isao

Tokuda for his guidance for my sub-theme and their precious advices and suggestions. I

would like to extend my thanks to all the past and present group members of Prof. Akagi

and Unoki lab, especial thanks for Hamada-san for his touter ship in the first days in

Japan and until now, I will never forgot your help Hamada-san.

Last but not least I’d like to express my gratitude to my wife Dalia, my daughters

Rawan and Ranim who were born in Egypt, My sons, Zeyad and Muaz who were born

here in Japan during my study, and my extended family whose love, support, and belief

in me has never seized. They waited for me through day and night and stood by me

especially my mother. I once again thank you all for everything you did for me. Finally I

vi



gratefully acknowledge financial support of my Ph.D research scholarship by Ministry of

Higher Education of Arab Republic of Egypt.

vii



Contents

Abstract i

Acknowledgments vi

Acronyms xvi

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objective of the present research work . . . . . . . . . . . . . . . . . . . . 5
1.4 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Human perception for emotional state . . . . . . . . . . . . . . . . . . . . 8
1.6 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Research Background 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Types of emotion representation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Categorical representation . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Dimensional representation . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Merits of the dimensional representation . . . . . . . . . . . . . . . 22
2.2.4 Mappings between emotion representations . . . . . . . . . . . . . . 24

2.3 The expression of emotions in human speech . . . . . . . . . . . . . . . . . 25
2.4 Automatic speech emotion recognition system . . . . . . . . . . . . . . . . 26

2.4.1 Overview of speech emotion recognition system . . . . . . . . . . . 27
2.4.2 Acoustic features related to emotion speech . . . . . . . . . . . . . 29
2.4.3 Acoustic feature selection . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3.1 Feature normalization . . . . . . . . . . . . . . . . . . . . 32
2.4.3.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Emotion dimension estimation . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 The advantage of using fuzzy logic . . . . . . . . . . . . . . . . . . 34
2.5.2 Fuzzy inference system . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.3 Adaptive Neuro Fuzzy Inference Systems ANFIS . . . . . . . . . . . 36
2.5.4 Development of ANFIS Model For Emotion Dimensions Estimation 42

2.6 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.1 Leave-one-out cross validation . . . . . . . . . . . . . . . . . . . . . 44
2.6.2 5-fold cross validation . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

viii



3 Databases and elements of the proposed speech emotion recognition
system 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Japanese Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Berlin Database of Emotional Speech . . . . . . . . . . . . . . . . . 51
3.2.3 The selected dataset from Berlin Database of Emotional Speech . . 52

3.3 Acoustic feature analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Segmentation and vowels information . . . . . . . . . . . . . . . . . 55
3.3.2 F0 related features . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 Power envelope related features . . . . . . . . . . . . . . . . . . . . 57
3.3.4 Power spectrum related features . . . . . . . . . . . . . . . . . . . . 58
3.3.5 Duration related features . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.6 Voice quality related features . . . . . . . . . . . . . . . . . . . . . 60

3.4 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Experimental evaluation for emotion dimensions and semantic primitives . 63

3.5.1 Human subject evaluation . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 Emotion Dimensions Evaluation . . . . . . . . . . . . . . . . . . . . 66

3.5.2.1 Agreement Between Subjects . . . . . . . . . . . . . . . . 66
3.5.3 Evaluations of Semantic Primitives . . . . . . . . . . . . . . . . . . 69

3.5.3.1 Inter-rater agreement . . . . . . . . . . . . . . . . . . . . . 70
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 The proposed speech emotion recognition system 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 The traditional method for acoustic features selection . . . . . . . . . . . . 76
4.3 Selection of Acoustic Features and Semantic Primitives . . . . . . . . . . . 80

4.3.1 Selection Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Correlation between elements of the three-layer model . . . . . . . . 81

4.3.2.1 The correlation between emotion dimensions and semantic
primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2.2 The correlation between semantic primitives and acoustic
features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.3 Selection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.4 The selected acoustic features . . . . . . . . . . . . . . . . . . . . . 91
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 The proposed speech emotion Recognition System . . . . . . . . . . . . . . 93
4.4.1 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Emotion Dimensions Estimation using the three-layer model . . . . 94

4.5 Semantic primitives estimations using ANFIS . . . . . . . . . . . . . . . . 98
4.5.1 Dimension estimations using ANFIS . . . . . . . . . . . . . . . . . 102

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Evaluation of the proposed system 108
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Evaluation measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Effectiveness of the selected acoustic features . . . . . . . . . . . . . . . . . 111

ix



5.4 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.1 Evaluation Results for Speaker-dependent Task . . . . . . . . . . . 113

5.4.1.1 System evaluation for Japanese database . . . . . . . . . . 113
5.4.1.2 System evaluation for German database . . . . . . . . . . 117

5.4.2 Evaluation Results for Multi-Speaker Task . . . . . . . . . . . . . . 121
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Cross-lingual Speech Emotion Recognition System 127
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 Cross-language emotion recognition system . . . . . . . . . . . . . . . . . . 128

6.2.1 Feature selection for the cross-language emotion recognition system 129
6.2.1.1 Acoustic feature and semantic primitives selection . . . . . 129

6.2.2 The proposed cross-language speech emotion recognition system . . 131
6.3 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.1 Japanese emotion dimensions estimation from German database . . 134
6.3.2 German emotion dimensions estimation from Japanese database . . 136

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 Mapping the estimated emotion dimensions into emotion categories 141
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 Classification into emotion categories . . . . . . . . . . . . . . . . . . . . . 143

7.2.1 Classification for Japanese Database . . . . . . . . . . . . . . . . . 145
7.2.2 Classification for German Database . . . . . . . . . . . . . . . . . . 147

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Summary and Future Work 151
8.1 The elements of the proposed system . . . . . . . . . . . . . . . . . . . . . 154
8.2 Selecting the most relevant features for each emotion dimension . . . . . . 155
8.3 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.4 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.5 Cross-language emotion recognition System . . . . . . . . . . . . . . . . . . 158
8.6 Mapping estimated emotion dimensions into emotion categories . . . . . . 159
8.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.8 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

References 162

Publications 173

x



List of Figures

1.1 The Brunswikian lens model, adapted from Scherer (1978) [79]. . . . . . . 6
1.2 Schematic graph of human perception of emotional voices from [35]. . . . . 7
1.3 The proposed three-layer model. . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 The improved Brunswik’s lens model for human perception. . . . . . . . . 9
1.5 The Outline of the dissertation. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 A two-dimensional emotion space with a valence and an arousal axis. Basic
Emotions are marked as areas within the space. . . . . . . . . . . . . . . . 21

2.2 Emotional categories mapped into Arousal-Valence-Stance space, Fourteen
emotions located in Arousal-Valence-Stance space [4]. . . . . . . . . . . . . 21

2.3 Three-dimensional emotion space, spanned by the primitives valence, acti-
vation, and dominance, with a sample emotion vector added for illustration
of the component concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Labeling of facial image sequences in the emotional space [96]. . . . . . . . 23
2.5 The process of speech emotion recognition. . . . . . . . . . . . . . . . . . . 27
2.6 Block diagram of emotion recognition analysis using the two-layer model. . 28
2.7 Classical vowel triangle form for different speakers emotional states. S-

peakers: male (top), female (bottom). . . . . . . . . . . . . . . . . . . . . . 32
2.8 The structure of the fuzzy inference system. . . . . . . . . . . . . . . . . . 36
2.9 The Basic Architecture of ANFIS. . . . . . . . . . . . . . . . . . . . . . . . 38
2.10 A two-input first-order Sugeno fuzzy model with two rules. . . . . . . . . . 38
2.11 ANFIS model of fuzzy inference eight inputs every one have four member-

ship functions, the number of rules are four. . . . . . . . . . . . . . . . . . 41
2.12 Emotion recognition system based on a two-layer model. . . . . . . . . . . 42
2.13 Valence dimension estimation using a two-layer model. . . . . . . . . . . . 43

3.1 Block diagram of the three-layered model for emotion perception. . . . . . 48
3.2 Speech spectrum in dB, showing harmonics H1, H2. . . . . . . . . . . . . . 60
3.3 The trajectories of H1, H2 for vowels segment. Emotion relevant to H1, H2

acoustic features shown for a neutral, a joy, hot anger and a sad utterance
taken from the Fujitsu database of emotional speech. The text spoken in
each of the utterances was “Arigato wa iimasen.” (“I wont say thank you.”). 62

3.4 MATLAB GUI for evaluating emotion dimensions. . . . . . . . . . . . . . . 67
3.5 MATLAB GUI used for Semantic Primitives evaluation experiment. . . . . 70

4.1 The three layer model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Process for acoustic feature selection. . . . . . . . . . . . . . . . . . . . . . 81
4.3 Valence perceptual model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Activation perceptual model. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xi



4.5 Dominance perceptual model. . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Block diagram of the proposed emotion recognition system based on the

three-layered model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 The perceptual model for valence dimension from Japanese database. . . . 96
4.8 Valence dimension estimation using a three layer model. . . . . . . . . . . 97
4.9 Bright semantic primitive estimation form acoustic features using FIS. . . . 98
4.10 ANFIS training RMSE for (Bright, Dark, High, Low, Heavy, Clear). . . . . 99
4.11 If-Then rules derived by ANFIS used for estimating Bright. . . . . . . . . . 100
4.12 Sample of rule set of an ANFIS model Bright=+4.84, very large . . . . . . 101
4.13 Valence dimension estimation from semantic primitives. . . . . . . . . . . . 102
4.14 ANFIS training RMSE for (Valence, Activation, Dominance). . . . . . . . 103
4.15 If-Then rules derived by ANFIS used for estimating Valence. . . . . . . . . 103
4.16 Sample of rule set of an ANFIS model for Valence=-2. . . . . . . . . . . . 104
4.17 Sample of rule set of an ANFIS model for Valence=+2. . . . . . . . . . . . 105

5.1 Mean Absolute Error (MAE) between human evaluation and estimated
values of emotion dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 The distribution of Japanese database in the Valence-Activation space. . . 114
5.3 The distribution of Japanese database in the Valence-Dominance space. . . 114
5.4 The distribution of Japanese database in the Activation-Dominance space. 114
5.5 MAE for the most related semantic primitives for valence estimated from

the most related acoustic features for valence for Japanese database (Single-
speaker). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 MAE between human evaluation and two systems outputs (two-layer and
three-layer system) for Japanese database (Single-speaker). . . . . . . . . . 116

5.7 The distribution of all German speakers’ utterances in the Activation-
Dominance space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.8 The distribution of all German speakers’ utterances in the Activation-
Dominance space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.9 The distribution of all German speakers’ utterances in the Activation-
Dominance space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 The average of MAEs for the most related semantic primitives for the va-
lence dimension, from the estimation using ten German speakers. (Speaker-
dependent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.11 Mean Absolute error between human evaluation and the automatic systems
estimation for 10 German Speakers individually. . . . . . . . . . . . . . . . 120

5.12 MAE between human evaluation and two systems outputs (two-layer and
three-layer system) for German database (speaker-dependent). . . . . . . . 121

5.13 The distribution of German database in the Valence-Activation space. . . . 122
5.14 The distribution of German database in the Valence-Dominance space. . . 122
5.15 The distribution of German database in the Activation-Dominance space. . 122
5.16 MAE for the most related semantic primitives for valence estimated using

the most related acoustic features for valence for German database (multi-
speaker). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.17 German Database (multi-speaker): MAE between human evaluation and
two systems’ output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xii



5.18 Comparison between MAE between human evaluation and two systems’
output for multi-speaker task and Speaker-dependent task. . . . . . . . . 125

6.1 The perceptual three-layer model for valence. . . . . . . . . . . . . . . . . 130
6.2 Block diagram of the proposed cross-language emotion recognition system

for estimating valence dimension. . . . . . . . . . . . . . . . . . . . . . . . 132
6.3 Mean absolute error (MAE) for estimating Japanese emotion dimension-

s (valence, activation, and dominance) using (1) a mono-language emo-
tion recognition system trained using Japanese database and (2) a cross-
language emotion recognition system trained using 10 German speakers
individually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Mean absolute error (MAE) for (1) the estimated values of emotion di-
mensions using mono-language emotion recognition system trained using
Japanese database and (2) the average of estimated values of emotion di-
mensions using cross-language emotion recognition system. . . . . . . . . . 136

6.5 Mean absolute error (MAE) for estimating German emotion dimensions
(valence, activation, and dominance) for 10 German speakers individual-
ly using: (1) a mono-language emotion recognition system trained using
each German speaker dataset individually and (2) a cross-language emo-
tion recognition system trained using Japanese database. . . . . . . . . . . 137

6.6 Mean absolute error (MAE) for estimating emotion dimensions using: (1) a
mono-language emotion recognition system trained using each all German
speakers and (2) a cross-language emotion recognition system trained using
Japanese database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1 Basic emotions are marked as areas within the Valence-Arousal space. . . . 142
7.2 Emotion classification using Gaussian Mixture Model (GMM) as classifier

and the input are as follows: (a) acoustic features (b) estimated emotion
dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Emotion classification using acoustic features directly and estimated emo-
tion dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4 Recognition rate for emotion categories (Neutral, Joy, Cold Anger, Sad-
ness, Hot Anger) for Japanese database using GMM classifier by mapping
(1) acoustic features and (2) the estimated emotion dimensions from the
speaker-dependent task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5 Recognition rate for emotion categories (Neutral, Happy, Angry, Sad) for
German database using GMM classifier by mapping (1) acoustic features,
(2) the estimated emotion dimensions from the multi-speaker task, and (3)
the estimated emotion dimensions from the speaker-dependent task. . . . . 149

xiii



List of Tables

2.1 Emotion and Speech Parameter (From Murray and Arnott, 1993) . . . . . 25
2.2 5-Folds Cross Validation of Data . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 The English translation for all 20 Japanese sentences used in Fujitsu database.
The first column shows the id numbers of the sentences, the second column
shows the pronunciation of the Japanese sentences in English, the third
column shows the English translation for all sentences in the database. . . 50

3.2 The used categories in Japanese database. The first column shows the
utterances id (UID). Their are two patterns for each emotion category:
Joy, Cold Anger, Hot Anger, and Sadness. And only one pattern for Neutral. 51

3.3 Specification of speech data for Japanese database. . . . . . . . . . . . . . 51
3.4 The 10 utterances recorded in the Berlin database of emotional speech . . 52
3.5 The number of utterances for each category in the German database . . . 52
3.6 Information about the speakers who spoke utterances of Berlin database. . 53
3.7 The number of utterances for the selected categories (Anger Happiness

Neutral Sadness) from the Berlin database . . . . . . . . . . . . . . . . . . 53
3.8 Selected utterances from the Berlin database . . . . . . . . . . . . . . . . . 54
3.9 Selected utterances for male from Berlin database . . . . . . . . . . . . . . 54
3.10 Selected utterances for female from Berlin database . . . . . . . . . . . . . 55
3.11 Selected utterances for each sentence from Berlin database . . . . . . . . . 55
3.12 The used acoustic features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.13 Number of vowels for each category for Fujitsu Database. . . . . . . . . . . 57
3.14 Number of vowels for each category for Berlin Database. . . . . . . . . . . 57
3.15 The number of subjects who labeled the two databases. . . . . . . . . . . . 64
3.16 The Stimuli used for experimental evaluation. . . . . . . . . . . . . . . . . 64
3.17 Pairwise correlations of rated valence dimension of each utterance, demon-

strating the degree of inter-rater agreement between subjects for the lis-
tening test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.18 Minimum (Min), Maximum (Max) and Average (Ave) for the correlation
coefficients between subjects ratings for evaluating emotion dimensions. . . 69

3.19 Minimum (Min), Maximum (Max) and Average (Ave) for the correlation
coefficients between subjects ratings for evaluating semantic primitives. . . 71

4.1 Japanese Database: Correlation coefficients between acoustic features (AF)
and emotion dimensions (ED). . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 The correlation coefficients between the acoustic features and the emotion
dimensions for German Database. . . . . . . . . . . . . . . . . . . . . . . . 79

xiv



4.3 Japanese Database: The correlation coefficients between the semantic prim-
itives and the emotion dimensions. . . . . . . . . . . . . . . . . . . . . . . 84

4.4 German Database: The correlation coefficients between the semantic prim-
itives and the emotion dimensions. . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Japanese Database: The correlation coefficients between the acoustic fea-
tures and semantic primitives. . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 German Database: The correlation coefficients between the acoustic fea-
tures and semantic primitives. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Selected acoustic features for each emotion dimension for Japanese database. 91
4.8 Selected acoustic features for each emotion dimension for German database. 91
4.9 The elements in the perceptual model for Japanese-valence . . . . . . . . . 96

5.1 Number of utterances used for each speaker from Berlin database In the
first column is the speaker ID M03 means male, 03 is the speaker code used
in the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 The elements in the perceptual three-layer model for Valence dimensions
for cross-language emotion recognition system, using Japanese and German
language, the first indicate the position of the layer in the model, the second
column is the elements in each layer, the third is the number of elements
in each layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1 Classification results for Japanese database. . . . . . . . . . . . . . . . . . 145
7.2 Classification results for German database. . . . . . . . . . . . . . . . . . . 147

xv



Acronyms

HCI Human-Computer Interaction

FIS Fuzzy Inference System

AF Acoustic Features

MAE Mean Absolute Error

GMM Gaussian Mixture Model

kNN K-Nearest Neighbor

ANFIS Adaptive Neuro Fuzzy Inference Systems

GUI Graphical User Interface

RMSE Root Mean Square Error

ED Emotion Dimensions

SVR Support Vector Regression

NN Neural Network

ASR Automatic Speech Recognition

AP Accentual Phrase

ANOVA ANalysis Of VAriance

LOOCV Leave-One-Out-Cross-Validation

xvi



Chapter 1

Introduction

1



1.1 Introduction

Speech can be seen as a two-channel mechanism, involving not only actual meaning of the

communication but also several prosodic distinctions. The linguistic channel deals with

the actual information inferred by words (“What is said”) whereas the paralinguistic

channel gives additional information about the speaker (“How it is said”), namely his/her

emotional state. The linguistic channel was the main focus for research in the past, but

scientists have recently become more and more interested in this second implicit channel

[74]. One of the goals of human-computer interaction (HCI) is the improvement of the

user experience, trying to make this interaction closer to human-human communication.

Inclusion of speech emotion recognition was one of the key points to include “perception”

to multimedia devices. This improved their user interfaces. However, the analysis of

affective states by the study of the implicit channel of communication (i.e. the recognition

of not only what is said but also how it is said) may improve HCI making these applications

more usable and friendly. This is because, in general, inclusion of skills of emotional

intelligence to machine intelligence makes HCI more similar to human-human interaction

[59, 65]. In other words, it is an attempt to make a computer capable of observing,

interpreting and generating emotional states [57].

The research of automatic speech emotion recognition, not only can promote the

further development of computer technology, but also greatly enhance the efficiency of

peoples work and study, and help people to solve their problems more efficiently, as well

as further enrich our lives and improve the quality of life. Automatic emotion recognition

from speech has in the last decade shifted from a side issue to a major topic in human

computer interaction and speech processing [89]. However, emotion detection from speech

is a relatively new field of research, it has many potential applications. Therefore, accu-

rate detection of emotion from speech has clear benefits for the design of more natural

human-machine speech interfaces or for the extraction of useful information from large

quantities of speech data. In human-computer or human-human interaction systems, e-

motion recognition systems could provide users with improved services by being adaptive
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to their emotions. It is also becoming more and more important in computer application

fields such as health care, children education, etc [100].

1.2 Problem statement

Most previous techniques for automatic speech emotion recognition focus only on the

classification of emotional states as discrete categories such as happy, sad, angry, fearful,

surprised, and disgusted [64, 48]. However, a single label or any small number of discrete

categories may not accurately reflect the complexity of the emotional states conveyed

in everyday interaction [2]. In the real-life, an emotional state have different degree of

intensity, and may change over time depending on the situation from low to high degree.

Therefore, an automatic speech emotion recognition system should be able to detect the

degree or the level of the emotional state form the voice [2]. Hence, a number of researchers

advocate the use of dimensional descriptions of human emotion, where emotional states

are estimated as a point in a multi-dimensional space (e.g., [93, 76]).

In this study, a three-dimensional continuous model is adopted in order to represent the

emotional states using emotion dimensions i.e. valence, activation and dominance. This

approach is chosen because it exhibits great potential to model the occurrence of emotions

in real world as in a realistic scenario, emotions are not generated in a prototypical or pure

modality, but rather than in complex emotional states, which are a mixture of emotions

with varying degrees of intensity or expressiveness. Therefore, this approach allows a

more flexible interpretation of emotional states [101].

However, although the conventional dimensional model for estimating emotions from

speech signals allows the representation of the degree of emotional state, this model has

the following problems: (i) we do not know what acoustic features are related to each

emotion dimension (ii) the acoustic features that correlate to the valence dimension are

less numerous, less strong, and more inconsistent [76], and (iii) the values of emotion

dimensions are difficult to estimate precisely only on the basis of acoustic information

[25]. Due to these limitations, values of the valence dimension have been particularly
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difficult to predict by using the acoustic features directly.

Conventional speech emotion recognition methods are mainly based on investigating

the relationship between acoustic features and emotion dimensions as a two-layer model,

i.e. acoustic feature layer and emotion dimension layer. For instance, Grimm et al. at-

tempted to estimate the emotion dimensions (valence, activation, and dominance) from

the acoustic features by using a fuzzy inference system (FIS) [31]. However, they found

that activation and dominance were more accurately estimated than valence. Further-

more, many researchers also tried to investigate the most related acoustic features for

each emotion dimension by using the correlation between a set of acoustic features and

emotion dimensions [25, 93, 76, 80]. In all these studies, the valence dimension was found

to be the most difficult dimension. Thus, some other studies focused only on exploring

acoustic features related to valence dimension [77, 6]. Some emotions were found to share

similar acoustic features such as happiness and anger, which were characterized by in-

creased levels of fundamental frequency (F0) and intensity. This is one reason acoustic

discrimination on valence dimension is still problematic: no strong discriminative acous-

tic features are available to discriminate between positive speech (e.g. happiness) and

negative speech (e.g. anger), however, these emotions are usually not hard to distinguish

for humans [80]. Therefore, a number of researchers tried to discriminate between the

positive and negative emotions by combining acoustic and linguistic features to improve

the valence estimation [42, 80]. However, valence was found to still be poorly estimated.

All these studies suggest that finding relevant acoustic features to discriminate in the

valence domain is one of the main challenges in speech emotion recognition.

On the other hand, an interesting question to ask is whether emotional states can

be recognized universally or not. Culture and society have a considerable weight on the

expression of emotions. This, together with the inherent subjectivity among individuals,

can make us wonder about the existence of universal emotions. If we consider Darwins

theory of evolution, emotions find their root in biology and therefore can be to some

extent considered as universals [3]. Several studies have indeed shown evidence for certain

universal attributes for both speech [7, 46] and music [83, 60], not only among individuals
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of the same culture, but also across cultures. Dang et al. 2009, for instance, performed

an experiment in which humans had to distinguish between 3 and 6 emotions respectively

[15]. Their conclusion was that listeners are able to perceive emotion from speech sound

without linguistic information with about 60% accuracy in a three-emotion evaluation

and about 50% in a six-emotion evaluation.

Several studies have worked on the analysis of the most important acoustic features

from the point of view of categorical model, working on mono-lingual [97, 8] and multi-

lingual [66] data. However, they have not yet studied with the same depth the importance

of acoustic features from the dimensional model point of view.

1.3 Objective of the present research work

In this study; our focus is on improving the dimensional method in order to precisely

estimate values of emotion dimensions especially valence dimension. The first question

that we try to answer is which acoustic features are mostly relevant for describing the

valence dimension? In other words, we investigate the speech acoustic features that have

a large impact for the prediction of emotion dimensions, and propose and construct an

automatic speech emotion recognition system that has the ability to accurately predict

the emotional state of the speaker based on the dimensional model. The second question

is: whether there are acoustic features that allow us to estimate the emotional state

from the voice of a person no matter what language he/she speaks? Even without the

understanding of one language, human can still judge the expressive content of a voice,

such as emotions. Therefore, we also investigate the universality of automatic speech

emotion recognition, by investigate whether an automatic emotion recognition system

trained using one language has the ability to detect the emotion dimension from different

languages.
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1.4 Proposed approach

Most of the previous studies used the two-layer model to investigate the relationship

between acoustic features and emotion dimensions, however this model does not imitate

human perception. Human perception, as described by Scherer [79] who adopted a version

of Brunswik’s lens model originally proposed in 1956 [10], is a three-layer model as shown

in Figure 1.1.

Figure 1.1: The Brunswikian lens model, adapted from Scherer (1978) [79].

The steps of human perception according to Scherer model are as follow:

• a speaker emotional state is expressed through a number of objectively measurable

parameters, the so-called “distal indicator cues”, in case of speech and emotion,

these parameters are acoustic features.

• in the first step of the perceptual inference process, the acoustic features (distal

cues) are perceived by a listener and internally represented as “proximal percepts”.

• these percepts are used for “attribution” by the listener for inferring the speakers’s

sate. In speech and emotion examples of proximal percepts are subjectively per-

ceived pitch or voice quality, while the attribution is the perceived speaker emotion.

Huang and Akagi adopted a three-layer model for human perception as shown in Fig-

ure 1.2. They tried to imitate human perception by using three-layer model instead of
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two-layer model. Therefore, they assumed that human perception for emotional speech

does not come directly from a change in acoustic features but rather a composite of dif-

ferent types of smaller perceptions that are expressed by semantic primitives or adjectives

describing an emotional voice [35]. Akagi’s model could be seen as a special case of

Lens model, where the “distal indicator cues”, ‘proximal percepts”, and “attribution” in

Len’s model correspond to the “acoustic features , “semantic primitives”, and “emotional

category”, respectively in Akagi’s model.

Figure 1.2: Schematic graph of human perception of emotional voices from [35].

In this thesis, the proposed idea to improve automatic speech emotion recognition

system can be done by imitating the process of human perception for understanding the

emotional state from the speech signal. The conventional two-layer model has limited

ability to find the most relevant acoustic features for each emotion dimension, especially

valence, or to improve the prediction of emotion dimensions from acoustic features. To

overcome these limitations, this study proposes a three-layer model to improve the esti-

mating values of emotion dimensions from acoustic features. Our proposed model consists

of three layers: emotion dimensions (valence, activation, and dominance) constitute the

top layer, semantic primitives the middle layer, and acoustic features the bottom layer.

A semantic primitive layer is added between the two conventional layers acoustic features

and emotion dimensions as shown in Figure 1.3.
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Figure 1.3: The proposed three-layer model.

We first, assume that the acoustic features that are highly correlated with semantic

primitives will have a large impact for predicting values of emotion dimensions, especially

for valence. This assumption can guide the selection of new acoustic features with better

discrimination in the most difficult dimension.

The second assumption is that human can judge the expressive content of a voice even

without the understanding of one language, such as emotional state of the speaker from

different language. Using the second assumption, we investigate the universality of the

proposed speech emotion recognition system to detect the emotional state cross-lingually.

To accomplish this task, the most relevant acoustic features for each emotion dimension

for the two different languages were investigated. Finally, the common acoustic features

between the two languages can be used as the input of the cross-language speech emotion

recognition system. The features found in one language were used to estimate emotion

dimensions for the other language, and vice-versa.

1.5 Human perception for emotional state

In this study , we adopt the improved Brunswik’s lens model for human perception by

Huang and Akagi [35]. The human perception model is consists of three-layer: acoustic

features, semantic primitives, and emotion dimensions layer, respectively. Figure 1.4
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shows the process of human perception to judge the emotional state expressed by speakers.

The human perception process is composed of two small process: the first process is

semantic primitive perception in which the listener judge the degree of all adjectives

describing the emotional voice, such as very Bright, very Slow, an so on, the final process

is emotion perception process by judging the degree of emotional state from the adjectives

describing this voice.

Figure 1.4: The improved Brunswik’s lens model for human perception.

1.6 Research methodology

The feasibility of our three-layer model to improve emotion dimensions estimation; for

valence, activation, and dominance was investigated. Our model consists of three lay-

ers: emotion dimensions (valence, activation, and dominance) constitute the top layer,

semantic primitives the middle layer, and acoustic features the bottom layer. A semantic

primitive layer is added between the two conventional layers acoustic features and emotion

dimensions as shown in Figure 1.3.

Therefore, the approach we adopt includes the following steps:

• Feature selection: The most relevant acoustic features were selected by using a top-
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down method. First, the most correlated semantic primitives were selected for each

emotion dimension. Then, the most correlated acoustic features with the selected

semantic primitives found in the first step were selected.

• Building a three-layer model for each emotion dimension: For example, in the case

of valence dimension, the three layers are: valence dimension in the top layer, the

highly correlated semantic primitives with valence dimension in the middle layer, all

the highly correlated acoustic features with all semantic primitives in the bottom

layer.

• Emotion dimensions estimation: By using the constructed three-layer model, a

button-up method was used to estimate values of emotion dimensions from acoustic

features as follows. First, fuzzy inference system (FIS) was used to estimate the

degree of each semantic primitive from acoustic features, and then another FIS was

used to estimate values of emotion dimension from the estimated degrees of semantic

primitives in the first step.

Implementing an automatic emotion recognition system which estimate emotion di-

mensions based on a three-layer model of human perception should provide concrete sup-

port for our concept. To achieve our aims from this study: we construct mono-language

emotion recognition system which can estimate emotion dimensions, across training and

testing the system using the same language. Moreover, we construct a cross-language

emotion recognition system which can estimate emotion dimension form the speech re-

gardless of language, i.e. training the system using one language and testing using different

language.

Therefore, the three-layer model was used to investigate whether there are acoustic

features that allow us to estimate the emotional state from the voice of a person no matter

what language he/she speaks.

To accomplish this, we work with two databases of emotional speech, one in Japanese

and the other in German. We extract a variety of acoustic features and build the three-

layer model for each dimension for the two languages individually. The top-down acous-
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tic feature selection method was used to find the best acoustic feature subsets for each

language. Finally, we construct two mono-language emotion recognition systems which

predict the emotion for each language individually; Japanese-from-Japanese, and German-

from-German and two cross-language emotion recognition systems which can estimate the

emotion using cross-language mode Japanese-from-German, and German-from-Japanese.

Using the following steps:

• We look for acoustic features that allow us to estimate emotional states from speech

regard less the spoken language(Japanese/German)

• The constructed three layer model was used to predict the emotion dimensions for

each language from the acoustic features of the other language

1.7 Outline of the thesis

The Thesis is organized as follows:

• Chapter 1 describes the general aims and the specific issues of this study. Firstly,

we introduce the objective of the present study and define the adopted problems

and proposed solutions for these problems.

• Chapter 2 introduces a general literature review on the state-of-the-art emotion-

al research: concepts, theoretical frame work, and automatic emotion recognition

system aspects. Thus, first the two emotion representation (categorical and dimen-

sional) are presented. Then, merits of the dimensional representation are discussed.

The relationship between the categorical approach and the dimensions approach is

introduced. Moreover, this chapter gives an overview of the literature related to

speech emotion recognition system. The literature will be reviewed under different

aspects, among them emotion units, features, and classifiers. Finally, the process of

emotion dimension estimation using fuzzy inference system estimator is introduced

in details.
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• Chapter 3 introduces the elements of the proposed system; the used databases

(German and Japanese) databases, acoustic features and experimental evaluation

for semantic primitives and emotion dimensions using human evaluation. Firstly

we extracted 21 acoustic features from the two databases. Two experiments were

conducted for both Japanese and German database: the first experiment is to eval-

uate the 17 semantic primitives for each utterance, while the second experiment was

conducted to evaluate emotion dimensions valence, activation, and dominance for

each utterance. Inter-rater agreement was measured by means of pairwise correla-

tions between subjects’ mean ratings of each utterance, separately for each semantic

primitives and emotion dimensions.

• Chapter 4, the first half of this chapter introduce the feature selection method, a

top-down feature selection method was proposed to select the most related acoustic

features based on the three-layer model. By firstly, selecting the highly correlated

semantic primitives for emotion dimension, then selecting the set of all acoustic

features which are highly correlated with the selected semantic. The set of select-

ed acoustic features are considered the most related to the emotion dimension in

the top layer. For each emotion dimension, a perceptual three-layer model was

constructed as follows: the desired emotion dimension in the top layer, the most

relevant semantic primitives in the middle layer, the most relevant acoustic features

in the bottom layer.

The second half this chapter, pretenses the implementation of the proposed system,

the constructed perceptual three-layer model for each emotion dimension was used

to estimate emotion dimensions using a bottom-up method. This method was used

to construct our emotion recognition system as follows: the input of the proposed

system are the acoustic features in the bottom layer, the output of are the emotion

dimensions valence, activation, and dominance. Fuzzy inference system (FIS) was

used to connect the elements of the proposed system. Firstly, one FIS was used

to estimate each semantic primitive in the middle layer form the acoustic features
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in the bottom layer. Then one FIS was used to estimate each emotion dimensions

from the estimated semantic primitives.

• Chapter 5 investigates the following questions: whether the selected acoustic fea-

tures are effective for predicting emotion dimensions? second, whether the proposed

emotion recognition system improve the estimation accuracy of emotion dimension-

s (valence, activation, and dominance) or not? The mean absolute error (MAE)

is used to measure performance of the proposed system, by the distance between

the estimated dimensions using the proposed system and the evaluated emotion

dimensions using human listeners.

Firstly, to investigate the first question, the most relevant acoustic features for each

emotion dimension were used as inputs of the proposed emotion recognition system,

to estimate values of emotion dimensions. Then, the estimation results of emotion

dimensions are compared with those of estimation using the non-relevant acoustic

features and all acoustic features.

Furthermore, to investigate the second question which mean is how effectively our

proposed system improve emotion dimensions estimation. Therefore, the perfor-

mance of the proposed system was compared with that of the conventional two-layer

system, using two different languages Japanese and German, with two different tasks

(speaker-dependent task and multi-speaker task).

Therefore, two emotion recognition system were constructed the first system was

constructed based on the proposed approach and the other based on the conventional

approach. The selected acoustic features group was used as input for both the

proposed system and the conventional system.

The most important results is that the proposed automatic speech emotion recog-

nition system based on the three-layer model for human perception was superior to

the conventional two-layer system.

• Chapter 6 introduces a cross-lingual emotion recognition system that has the abil-
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ity to estimate emotion dimensions for one language by training the system using

another language. To accomplish this task, first, we investigate whether their are

common acoustic features between the two languages. Second, we construct a cross-

language emotion recognition system based on human perception three-layer model

to accurately estimate emotion dimensions.

For both languages, our proposed feature selection method was used to select the

most relevant acoustic features for each emotion dimension. Then, the common

acoustic features between the two language were selected as inputs to the cross-

language emotion recognition system, and the outputs of this system are the esti-

mated emotion dimensions: valence, activation, and dominance.

For estimating emotion dimensions, the proposed cross-language emotion recogni-

tion system was trained using one language and testing using the second language.

For instance, Japanese emotion dimensions were estimated form German database

by training the system using acoustic features, semantic primitives, and emotion

dimensions for each German speaker dataset individually, then the trained system

was used to estimate Japanese emotion dimensions using Japanese acoustic features

as inputs, in a similar way the German emotion dimensions were estimated from

Japanese database.

The results of proposed cross-language emotion recognition system are presented

and compared with the prediction from mono-language emotion recognition system.

• Chapter 7, the estimated emotion dimensions were mapped using Gaussian Mix-

ture Model (GMM) classifier into emotion categories for both database. The results

of the classification using the proposed method was compared with the classification

of emotion categories from acoustic features directly using GMM.

For the Japanese database, the overall recognition rate was 53.9% using direct clas-

sification using acoustic features and up to 94% using emotion dimensions. For

the German database, the rate of classification directly from acoustic features was

60%, which was increased by up to 75% and 95.5% using emotion dimensions for
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multi-speaker and speaker-dependent tasks, respectively. The result reveals that the

recognition rate using the estimated emotion dimensions is higher than the direct

classification using acoustic features directly.

• Chapter 8, finally concludes this thesis with respect to the research questions and

give an outlook on future work.
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Figure 1.5: The Outline of the dissertation.
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Chapter 2

Research Background
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2.1 Introduction

This chapter introduces a general literature review on the emotional research from the

speech signal: concepts, theoretical frame work and practical considerations necessary for

constructing automatic emotion recognition system to detect the emotional state from

speech. To recognize emotions, one first needs a precise idea of how to represent them.

Emotion theories have a long tradition in psychology, having produced many models that

can be used as basis for automatic speech emotion recognition. The most relevant ones

in view of speech are presented in Section 2.2. They are also discussed regarding to what

extent they are feasible to realize in practical applications.

The next question to deal with is that, where emotions can be observed? They are

expressed in language, through acoustic, syntactic or semantic information, but also on

other levels of human behavior as facial or body gestures. Machines, however, can also

exploit information obtained by measuring body signals like heart rate or perspiration to

predict the emotional state of a person. In this study, our focus on detecting the emotional

state expressed in speech signal as introduced in Section 2.3.

Automatic emotion recognition is actually a pattern recognition problem depending

strongly on: (1) the features extracted; (2) the classifier used; (3) the speech corpus used

for training the classifier; (4) the emotion representation that the systems architecture is

implemented for classifying. Having introduced these notions, a closer look on automatic

emotion recognition from speech is presented in Section 2.4. After presenting a general

system design, ranging from feature extraction over acoustic feature selection to the actual

classification, possible features as acoustic correlates of emotions in speech are discussed

and the traditional feature selection methods are described in details, since the finding of

the most relevant acoustic features is a major part of this thesis.

Finally, the details of constructing and evaluating a speech emotion recognition system

based on the dimensional approach using fuzzy inference system were introduced.

18



2.2 Types of emotion representation

In the area of automatic emotion recognition, mainly two classifying approaches have

been used to capture and describe the emotional content in speech: categorical and di-

mensional approaches. Categorical approach is based on the concept of basic emotions

such as anger, joy, and sadness, which are the most intense form of emotions from which

all other emotions are generated by variations or combinations of them. They assume

the existence of universal emotions that can be clearly distinguished from one another

by most people. On the other hand, dimensional approach represents emotional states

using a continuous multi-dimensional space. Both approaches, categorical and dimen-

sional, provide complementary information about the emotional expressions observed in

individuals. In the rest of this section the two representation will be introduced in more

details. Finally, the advantages of the dimensional representation as will as the relation

between the categorical and dimensional representation are also presented.

2.2.1 Categorical representation

The categorical theory proposes the presence of six basic, distinct, and universal emotions:

happiness, anger, sadness, surprise, disgust, and fear [21, 19, 20, 18, 41, 84]. The simplest

description of emotions is the use of emotion category labels. Most of the previous re-

searchers treat the emotion recognition problem as a multiple classification task of several

emotional categories such as angry, happy, and sad; or simply, negative and non-negative.

Discrete categorization allows a more particularized representation of emotions in ap-

plications where it is needed to recognize a predefined set of emotions. However, this

approach ignores most of the spectrum of human emotional expressions. Some studies

concentrate on only one or two selected categories.

One of the difficulties in comparing studies into emotions in research is that the choice

of categories for a study varies and usually depend on an application that the researcher

has in mind. There are a lot of problem facing the researcher who using the category

approach such as: How many category they should use to describe the real-life emotion?
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The short list of options shows that even if one decides to model emotions in terms of

categories, it is not immediately clear what categories to use. The most frequently used

categories may not be the most suitable ones for a given research question or application.

In contrast, it is also important to detect the variability within a certain emotion (e.g., “a

little happy” or “very happy”) in addition to the emotion categories. This is supported by

the fact that human soften or emphasize their emotional expressions flexibly depending

on the situation in actual human speech communication.

Therefore, a single label or any small number of discrete categories may not accurately

reflect the complexity of the emotional states conveyed in everyday interaction [2].

2.2.2 Dimensional representation

Many different approaches reported in the psychological literature have led to the pro-

posal of dimensions underlying emotional concepts, through representing the emotional

state as a point in a multi-dimensional space [70, 71, 75]. The used dimensions in this

representation are gradual in nature and represent the essential aspects of emotion con-

cepts (how negative or positive, how aroused or relaxed, how powerful or weak) rather

than the fine specifications of individual emotion categories. It is important to know that

the names used for these dimensions were actually selected by the individual researchers

interpreting their data, and did not arise from the data itself. In this study, the following

names for emotion dimensions are used: the terms valence (synonymous to evaluation

or pleasure), activation (used as synonymous to arousal and activity) and dominance

(potency or power).

In general, there are several ways to represent emotions in a multi-dimensional emotion

space. Two-dimensional representations include one dimension that describes the valence

taking values (from positive to negative). The other emotion dimension describes the

activation or arousal from high to low) as shown in Figure 2.1, basic emotions are marked

as areas within the two-dimensional space in this figure.

Three-dimensional representations additionally include a third dimension defining the
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Figure 2.1: A two-dimensional emotion space with a valence and an arousal axis. Basic
Emotions are marked as areas within the space.

Figure 2.2: Emotional categories mapped into Arousal-Valence-Stance space, Fourteen
emotions located in Arousal-Valence-Stance space [4].

apparent strength of the person, which is referred to as dominance (or power). According

to both the work of Schlosberg (1954) and Scherer et al. (2006) this dimension is even

more important than the activation dimension [75, 67]. Especially in the case of high

activation, Gehm & Scherer (1988) found that taking the level of control and social power

of an individual into account is useful in distinguishing certain emotion [28]. This finding
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is supported by Russell & Mehrabian (1977) [67], who could show that anger and fear both

consist of similarly very negative and high activation values and can only be distinguished

due to their different values on the dominance scale as shown in Figure 2.2. This third

dimension is necessary to distinguish anger from fear, since the dominance (or the ability

to handle a situation) is the only discriminating element in this case.

One powerful representation is in terms of the three emotional attributes introduced

by Grimm et al., they proposed a generalized framework using a continuous-valued, three-

dimensional emotion space method [32, 31]. This method defines emotions as points in a

three-dimensional emotion space spanned by the three basic dimensions valence (negative-

positive), activation (calm-excited), and dominance (weak-strong). Figure 2.3 shows a

schematic sketch of this emotional space.

Figure 2.3: Three-dimensional emotion space, spanned by the primitives valence, activa-
tion, and dominance, with a sample emotion vector added for illustration of the component
concept.

2.2.3 Merits of the dimensional representation

It is important to think carefully about the type of representation most suitable for a given

task. Emotions have different degree of intensity, and may change over time depending

on the situation from low to high degree, for example, human listener may detect or
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describe the emotional state as little happy or very happy. Consequently, an automatic

speech emotion recognition system should be able to detect the level or the intensity of

the emotional state form the voice.

In addition, it seems reasonable to assume that most human-machine interaction will

require the machine to recognize only mild, non-extreme emotional states. Therefore,

the need to express full-blown emotions is a marginal rather than a central requirement,

while the main focus should be on the systems capability to express a large variety of

emotional states of low to medium intensity. Emotion dimensions are a representation of

emotional states which fulfills these requirements: They are naturally gradual, and are

capable of representing low-intensity as well as high-intensity states as shown in Figure

2.4, each emotion category have different level or degree for example, happy in the first

quarter is represented by three faces which represent little happy, happy, and very happy,

respectively.

Figure 2.4: Labeling of facial image sequences in the emotional space [96].

In the categorical approach, where each emotional state is classified into a single

category, a complex mental or affective state or blended emotions perhaps too difficult to
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handle [99]. Contrarily, in the dimensional approach, emotional transitions can be easily

captured, the numerical representations are more appropriate to reflect the gradient nature

of emotion expressions, in which observers can indicate their impression of moderate (less

intense) and authentic emotional expressions on several continuous scales [56, 94] .

In this work, the three-dimensional continuous model is adopted in order to represent

the emotional states using emotion dimensions i.e. valence, activation and dominance.

This approach is chosen because it exhibits great potential to model the occurrence of

emotions in real-world as in a realistic scenario, emotions are not generated in a prototyp-

ical or pure modality, but rather than in complex emotional states, which are a mixture of

emotions with varying degrees of intensity or expressiveness [24]. Therefore, this approach

allows a more flexible interpretation of emotional states [101].

2.2.4 Mappings between emotion representations

The categorical and the dimensional approach are closely related, i.e. by detecting the

emotional content using one of these two schemes, it will be essay to infer its equivalents

in the other scheme. For example, if an utterance is estimated with positive valence and

high activation, then, it could inferred that the emotional category for this utterance is

Happy, and vice versa. Therefore, any improvement in dimensional approach will leading

to an improvement in the categorical approach.

The estimated values of emotion dimensions (valence, activation, and dominance) are

found to be transferable to emotion categories, if desired [30], for example in [30] the

estimated emotion dimensions were mapped to the emotion categories using k-nearest

neighbor (kNN) classifier. The results reveal that, the achieving recognition rate signifi-

cantly higher than the traditional categorical classification from acoustic features directly.

In [82] the experimental results indicate that an alternative way of classifying emotions

can be seen as finding a place in the emotional space, and infer from such location and

from additional information, i.e. context, application, if available, the intended emotion.

The advent of describing emotion as a point in multi-dimension space has led to
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Table 2.1: Emotion and Speech Parameter (From Murray and Arnott, 1993)
Anger Happiness Sadness Fear Disgust

Speech rate Slightly faster Faster or slower Slightly slower Much faster Very much
faster

Pitch Average Very much Much higher Slightly lower Very much Very much
higher higher lower

Pitch Range Much wider Much wider Slightly narrower Much wider Slightly wider
Intensity Higher Higher Lower Normal Lower
Voice Quality Breathy, chest Breathy, blaring Resonant Irregular voicing Grumble chest

tone tone
Pitch Changes Abrupt Smooth, upward Downward inflections Normal Wide, downward

on stressed inflections terminal inflects
Articulation Tense Normal Slurring Precise Normal

identify the exact emotion for the speaker. Also, the three-dimensional emotion attribute

estimates could be classified into the emotion categories. This procedure allows for a

comparison of the calculated estimation errors to classical recognition rates. Therefore,

mapping emotion dimensions into emotion categories will strengthen our findings in this

study by demonstrating that, the dimensional approach can actually help us to improve

the automatic emotion classification.

2.3 The expression of emotions in human speech

After having reviewed how emotions can be described, the next question is where emotions

can be observed. In this study, our focus on detecting the emotional state expressed in

speech signal. Information on emotion is encoded in all aspects of language, in what

we say and in how we say or pronounce it, and the “how” is even more important than

the “what”. Looking at all levels of language, the following thing can be considered: a

speakers intention is highly correlated with his emotional state.

To improve the speech emotion recognition accuracy we can achieve this goal only

if there are some reliable acoustic correlates of emotion in the acoustic characteristics

of the signal. A number of researchers have already investigated this question. Murray

and Arnott have conducted a literature review on human vocal emotion (Table 2.1) and

concluded that in general, the correlation of the acoustic characteristics, both prosody and

voice quality, and the speakers emotional state are consistent among different studies, with

only minor differences being apparent [53].
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They concluded that the pitch envelope (i.e., the level, range, shape, and timing of

the pitch contour) is the most important parameter in differentiating the basic emotions,

and the voice quality is important in differentiating the secondary emotions. It has also

been noted that the acoustic correlates of basic emotions are cross-cultural, but those of

the secondary emotions are culturally dependent.

In the previous studies, researchers have often found it useful to define emotions in

some multi-dimensional space. Past research has been relatively successful at discovering

acoustic correlates distinguishing emotions on the grounds of activation, but less successful

for valence. These studies have found that positive-activation emotions have high mean

F0 and energy as well as a faster speaking rate than negative-activation emotions. In this

study we are interested in looking at the correlations between acoustic features and the

three emotion dimensions: valence, activation, and dominance.

2.4 Automatic speech emotion recognition system

Automated recognition of emotions conveyed in the speech is an important research topic

that has emerged in recent years with a number of possible applications. The most

important one is probably the improvement of the man-machine interface, knowing that

human communication contains a large amount of emotional messages which should be

recognized by machines such as robot assistants in the household, computer tutors, or

Automatic Speech Recognition (ASR) units in call-centers [32].

One of the first practical works on automatic speech emotion recognition based on

the dimensional approach was conducted by by Grimm et al. [31] in 2007. In this con-

tribution they proposed a generalized framework using a real-valued, three-dimensional

representation. This representation defines emotions as points in a three-dimensional e-

motion space spanned by the three basic dimensions: valence (positive-negative axis),

activation (calm-excited axis), and dominance (weak-strong axis). However, they found

that activation and dominance were more accurately estimated than valence. For in-

stance, Grimm et al. attempted to estimate the emotion dimensions (valence, activation,
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and dominance) from the acoustic features by using a fuzzy inference system (FIS) [31].

However, they found that activation and dominance were more accurately estimated than

valence. Therefore, our aim in this study is to improve the dimensional approach in order

to estimate accurately all emotion dimensions.

In this section, first a general overview of a system for emotion recognition from speech

is given. Subsequently, an overview of the most important acoustic feature for classifying

emotions, and in the end of this section the traditional features selection is introduced in

more details.

2.4.1 Overview of speech emotion recognition system

A speech emotion recognition system consists of three principal parts as shown in Figure

2.5, feature extraction, feature selection and emotion recognition. The purpose of the

feature extraction is to find those properties of the acoustic signal that are characteristic

of emotions and to represent them in an n-dimensional feature vector.

Figure 2.5: The process of speech emotion recognition.

So far, there is not yet a general agreement on which features are the most important
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ones and good features seem to be highly data dependent, As a consequence, most ap-

proaches compute a high number of features and apply then a feature selection algorithm,

in order to reduce the dimensionality of the input data. The feature selection algorithm

chooses the most significant features with respect to the data for the given task. In this

study, correlation analysis method have been applied as feature selection method, to find

a subset of features for improving prediction accuracy.

After the feature selection method, each emotion unit is represented by one or more

feature vectors, and the problem of emotion recognition can now be considered a general

pattern classification problem as shown in Figure 2.6. The output of emotion classifi-

cation techniques is a prediction value for the three dimensions valence, activation, and

dominance.

Figure 2.6: Block diagram of emotion recognition analysis using the two-layer model.

Static as well as dynamic classification approaches are considered. In static modeling

one feature vector represents one emotion unit, while in dynamic modeling, one emotion

unit is represented by a sequence of feature vectors. The latter therefore consider also the

temporal behavior of the features. As timing is very important for emotions, temporal

information has to be encoded in the feature vector for static modeling, which usually

leads to high-dimensional vectors, while the feature vectors used in dynamic modeling

are generally smaller. So, in principle, any classifier can be used, though Support Vector

Machines, Neural Networks and Bayesian classifiers for static modeling and HMMs for
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dynamic modeling are most commonly found in the literature on emotional speech recog-

nition. Currently, static modeling approaches prevail. In this study we adopt the static

modeling, the parameters of the classifier are learnt from training data.

As a first step towards exploiting the dimensional approach is extraction of the most

important acoustic features for automatically estimate emotion dimensions. Then, this

estimation can be used to locate the individual’s emotional state in the multi-dimensional

space, and if necessary, to map it to a basic emotion as described in Section 2.2.4. In

order to improve the emotion speech recognition, we have to search for the golden set of

vector features. Chapter 4 in this study describe a novel feature selection method based

on a three-layer model of human perception to select the best correlated acoustic features

for each dimension.

2.4.2 Acoustic features related to emotion speech

For automatic speech emotion recognition system the acoustic features are the most im-

portant cues that can be used to detect the emotional content from the speech signal.

The acoustic features can be divided into prosodic features, spectral features, and voice

quality features. The first question that we try to investigate is which acoustic features are

mostly relevant for describing the emotion dimensions? So far, as numerous studies have

investigated this type of effect, there are various acoustic features that can be extracted

from the speech signal, some are found to be significant to the perception of expressive

but some are not. For example, the acoustic effects of anger, joy and fear are very similar,

although these emotions are usually not hard to distinguish for humans. Therefore, there

is no easy mapping from acoustics to emotions.

In the following those acoustic measures that are the basis of most features used

for automatic emotion recognition will be described. The importance of these acoustic

features For human perception is quite well studied and explored, however, the extent

of their respective significance for automatic emotion recognition is not yet ultimately

resolved.
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In this chapter, before extracting of acoustic features in the next chapter, it is neces-

sary to consider what acoustic features should be extracted. According to much previous

studies, the most important features for emotion recognition are conveyed by the pa-

rameters of fundamental frequency (vocal pitch), duration, intensity, formant, and voice

quality. These features are considered to be very important factors correlated to the

perception of expressive speech.

These features are described below.

• Fundamental frequency (F0) Fundamental frequency is one of the three features

that is most consistently used in the literature because it represents the intonation

and the pitch contour of a speech utterance. Therefore, when analyzing acoustic

correlates to emotional speech, fundamental frequency is crucially important.

• Duration The speed of the speech utterance or the length varies greatly when a

speaker utter the same word in different emotional states. For example, when some

one in anger state he/she speak very fast, while when someone in sad emotional

state the speed of speaking is very slow. In a speech utterance, the durations of

phonemes, words, phrases, and pauses compose the prosodic rhythm. Consequently,

duration is also important to investigate.

• Intensity Intensity of a speech utterance is perceived primarily as loudness. It is

determined by the volume of the air flow of breath sent out by the lungs and is

represented by the power contour of the speech signal. A voice with different levels

of loudness can be perceived differently. When people are in a good mood, such

as happy or cheerful, the voice is usually at a higher level of loudness. Conversely,

when people are in a sad mood such as depressed or upset, the voice is usually at a

lower level of loudness. Therefore, for studying the perception of expressive speech,

intensity is another feature that needs to be investigated.

• Formants Formants are those regions in the spectrogram where the amplitude of

the acoustic energy is high. They reflect the natural resonance frequencies of the
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vocal tract. These natural resonances are not fixed, but can be changed by altering

the shape of the vocal tract. The resonances of the vocal tract can be changed,

for example, by changing the position of the tongue or the jaw [4]. Formants are

numbered from the lowest frequency upward (F1, F2, F3, etc.). A spectrogram

can contain as many as ten identifiable formants, but most analyses do not go

beyond the first five. Here we report on the most important formants for vowel

identification, the first and second formant (F1 and F2). These two formants can

be used to uniquely determine vowel identity. In [27] they investigated the effect of

emotion dimension on the placement of F1 and F2. The results show that emotion

has a sizable influence on formant positioning. For higher activation, the mean of

F1 of all three vowels /a/. /i/, and /u/ is higher, while for lower activation is

lower. In addition, for higher activation emotions have a significantly lower F2 for

/a/. These effects confirm the important role of arousal in the vocal expression of

emotion. Therefore, formants are one of the meaningful acoustic cues that should

be investigated.

However, one problem that arises when measuring formants is that vocal tracts are differ-

ent among different people. The analysis is more reasonable when the voices analyze are

produced by the same people. Therefore, for justification all acoustic feature measured

including formant were normalized to the neutral category for all speakers as described in

Section 2.4.3.1. This normalization process was adopted to avoid the speaker-dependency

of acoustic features such as formant acoustic feature.

2.4.3 Acoustic feature selection

Feature selection presents several advantages. To begin with, small feature subsets require

less memory and computations, whereas they also allow for a more accurate statistical

modeling, thus improving performance. On the contrary, large feature sets may yield

a prohibitive computational time for classifier training. For example, neural networks

face difficulties, when they are fed with extraordinary many features. Employing large
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feature sets increases the risk of including features with reduced discriminating power.

Additionally, feature selection eliminates irrelevant features, leading to a reduction in the

cost of acquisition of the data. Furthermore, if all the features are employed, there is

the risk for over-fitting. In addition, feature selection can increase performance when the

number of training utterances is not sufficient or when a real-time problem needs to be

handled.

However, before applying feature selection it is important to pre-process our features

carefully in order to guarantee the quality of data. For that reason feature normalization

are carried out.

2.4.3.1 Feature normalization

As a prerequisite to feature selection, normalization takes place. Feature normalization

improves the features generalization ability and guarantees that all the features obtain

the same scale in order to ensure an equal contribution of each feature to the feature

selection algorithm.

Figure 2.7: Classical vowel triangle form for different speakers emotional states. Speakers:
male (top), female (bottom).

32



The values of acoustic features greatly changed for emotionally colored and neutral

speech samples, for example, it was found a significant difference for the vowel triangles

form and their position in F1-/F2-dimensional space for emotionally colored and neutral

speech samples [88] as shown in Figure 2.7. This difference illustrates why automatic

speech recognition models trained on neutral speech are not able to provide a reliable

performance for emotion speech recognition. Another problem that arises when measuring

formants is that vocal tracts are different among different people, i.e. formant frequency

is speaker-dependent and emotion-dependent acoustic feature.

To justify the acoustic features to avoid both speaker-dependency and emotion-dependency,

all acoustic feature measured in this study were normalized to the neutral one; we adopt

an acoustic feature normalization method. Our normalization performed by dividing the

values of acoustic features by the mean value of neutral utterances.

2.4.3.2 Feature selection

Feature selection. In most cases of affective speech analysis, conventional acoustic features

are used without paying much attention to their selection. Whereas in our approach we

take it of great importance because finding the acoustic correlates of valence emotion

dimension in speech itself is a challenging task, and is crucial for the later stages as well.

The traditional methods for selecting the acoustic features for each emotion dimen-

sion were based on the two-layer model. These methods were based on correlations R
(j)
i

between acoustic features (i) and emotion dimensions (j) (valence, activation, dominance)

as a two-layer model as follows:

Let fi = {fi,n}(n = 1, 2, . . . , N) be the sequence of values of the ith acoustic feature.

Moreover, let x(j) = {x(j)
n }(n = 1, 2, . . . , N) be the sequence of values of the jth emotion

dimension, j ∈ {V alence, Activation,Dominance}. Where M,N is the number of used

acoustic features and the number of utterances in our databases, respectively.

The correlation coefficient R
(j)
i between the acoustic features fi and the emotion di-

mension x(i) can be determined by the following equation:
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R
(j)
i =

∑N
n=1(fi,n − fi)(x

(j)
n − x(j))√∑N

n=1(fi,n − fi)2
√∑N

n=1(x
(j)
n − x(j))2

(2.1)

where fi, and x(j) are the arithmetic mean for the acoustic feature and emotion dimension,

respectively.

Many researchers tried to investigate the most related acoustic features for each emo-

tion dimension by using the correlation between a set of acoustic features and emotion

dimensions [25, 93, 76, 80]. In all these studies, the valence dimension was found to be the

most difficult dimension. Chapter 4 introduces in details the proposed acoustic feature

selection method in this study.

2.5 Emotion dimension estimation

The aim of speech emotion recognition system based on the dimensional approach can

be viewed as using an estimator to map the acoustic features to real-valued emotion

dimensions (valence, activation, and dominance). The selected acoustic features form the

previous section can be used as an input to the automatic speech emotion recognition

system to predict emotion dimensions.

Emotion dimension values can be estimated using many estimator such as K-nearest

neighborhood (KNN), Support Vector Regression (SVR), or Fuzzy Inference System FIS.

In this study, for selecting the best estimator among KNN, SVR, and FIS, pre-experiments

in our previous work [16] indicated that our best results were achieved using FIS estimator.

The reason for using fuzzy logic is explained, before describing how to use it for emotion

dimension estimation from the selected acoustic features.

2.5.1 The advantage of using fuzzy logic

Most of the statistical methodology mainly based on a linear and precise relationships

between the input and the output, while the relationship between acoustic features and
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emotion dimensions are non-linear. Therefore, fuzzy logic is a more appropriate mathe-

matical tool for describing this non-linear relationship. The reasons are as follows:

• Fuzzy logic is a tool for embedding existing structured of human knowledge into

mathematical models [45] using If-Then rules, and this is exactly what the model

proposes to do in dealing with the perception of expressive speech.

• Fuzzy logic models non-linear functions of arbitrary complexity [92], and the rela-

tionship between emotion dimensions and acoustic features are certainly complex

and non-linear. Therefore, fuzzy logic is appropriate to model these relationships.

• Fuzzy logic is based on natural language [40], and the natural language used in our

model is in the form of semantic primitives (the middle layer of our model).

2.5.2 Fuzzy inference system

A FIS implements a nonlinear mapping from an input space to an output space by a

number of fuzzy if-then rules constructed from human knowledge. The success of a FIS

depends on the identification of the fuzzy rules and membership functions tuned to a

particular application. It is usually difficult in terms of time and cost, and sometimes

impossible, however, to transform human knowledge into a rule base [54]. Even if a rule

base is provided, there remains a need to tune the membership functions to enhance the

performance of the mapping. Neuro-fuzzy systems overcome these limitations by using

artificial neural networks to identify fuzzy rules and tune the parameters of membership

functions in FIS automatically. In this way, the need for the expert knowledge usually

required to design a standard FIS is eliminated. A specific approach in neuro-fuzzy

systems is ANFIS, which is a Sugeno type FIS implemented in the framework of adaptive

neural networks [38].

To understand the fuzzy relationship between linguistic description of acoustic per-

ception and expressive speech, a fuzzy inference system (FIS) will be built.
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2.5.3 Adaptive Neuro Fuzzy Inference Systems ANFIS

Fuzzy inference system (FIS) is usually used as mathematical tool for approximating

non-linear functions. This model can import qualitative aspects of human knowledge

and reasoning process by data sets without employing precise quantitative analysis. The

structure of the fuzzy inference system is shown in Figure 2.8 it is composed of the

following five functional components:

• A rule base containing a number of fuzzy if-then rules.

• A database defining the membership functions of the fuzzy sets.

• A decision-making unit as the inference engine.

• A fuzzification interface which transforms crisp inputs to linguistic variables.

• A defuzzification interface converting fuzzy outputs to crisp output.

Figure 2.8: The structure of the fuzzy inference system.

ANFIS is a very common artificial intelligence technique in literature, which was pro-

posed by Jang (1993) [38]. Although Fuzzy structure has strong inference system, it has

no learning ability. In the contrary, Neural Network (NN) has powerful learning ability.

ANFIS merges these two desired features in its own structure. As stated in the literature,

the ANFIS can effectively predict highly non-linear models with much smaller root mean
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square error values at the same number of iterations as compared to the conventional

neural network-based models. Therefor, ANFIS is a neural-fuzzy system which contains

both neural networks and fuzzy systems.

A fuzzy-logic system can be described as a non-linear mapping from the input space

(acoustic features) to the output space (emotion dimensions). This mapping is done by

converting the inputs from numerical domain to fuzzy domain. To convert the inputs,

firstly, fuzzy sets and fuzzifiers are used. After that process, fuzzy rules and fuzzy inference

engine is applied to fuzzy domain [37, 38]. The obtained result is then transformed back

to arithmetical domain by using defuzzifiers. Gaussian functions are used for fuzzy sets

and linear functions are used for rule outputs on ANFIS method. The standard deviation,

mean of the membership functions and the coefficients of the output linear functions are

used as network parameters of the system. The summation of outputs is calculated at

the last node of the system. The last node is the rightmost node of a network. In Sugeno

fuzzy model, fuzzy if-then rules are used (Sugeno and Kang 1988) (Takagi and Sugeno

1985) [78, 81]. The following is a typical fuzzy rule for a Sugeno type fuzzy system:

if x is A and y is B then z = f(x, y) (2.2)

In this rule, A and B are fuzzy sets in anterior. The crisp function in the resulting

is z = f(x, y). This function mostly represents a polynomial. But exceptionally, it can

be another kind of function which can properly fit the output of the system inside of the

fuzzy region that is characterized by the anterior of the fuzzy rule. In this study first-order

Sugeno fuzzy model is used for cases which are having f(x, y) as a first-order polynomial.

This model was originally proposed in (Sugeno and Kang 1988) (Takagi and Sugeno 1985)

[78, 81]. Zero-order Sugeno fuzzy model is used for cases where f is constant. This can

be called as a special case for Mamdani fuzzy inference system [51]. In this case, a fuzzy

singleton is defined for each rules resultant. Or, this can be also called as a special case

for Tsukamotos fuzzy model [85]. In this case, a membership function of a step function
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is defined where it is centered at the constant for each rules consequent. Additionally, a

radial basis function network under certain minor constraints is functionally correlative

to a zero order Sugeno fuzzy model (Jang 1993). Lets investigate a first-order Sugeno

fuzzy inference system having two rules:

Figure 2.9: The Basic Architecture of ANFIS.

Rule 1 : ifx is A1 and y isB1, then f1 = p1x+ q1y + r1 (2.3)

Rule 2 : ifx is A2 and y isB2, then f2 = p2x+ q2y + r2 (2.4)

Figure 2.10: A two-input first-order Sugeno fuzzy model with two rules.
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In the Figure 2.9, and 2.10, the fuzzy reasoning system is illustrated in a shortened

form (Jang 1996) [39]. In order to avoid excessive computational complexity in the process

of defuzzification, only weighted averages are used. On the previous figure, we see a fuzzy

reasoning system. This system generates an output which is shown as f . To generate this

output, system accepts an input vector [x, y]. The output is calculated by computing each

rules weighted average. Those weights are achieved from the product of the membership

grades in the assumption part. Using adaptive networks which are bound with the fuzzy

model can compute gradient vectors. This computation is very helpful for learning of the

Sugeno fuzzy model.

The learning algorithm that ANFIS uses contains both gradient descent and the least-

squares estimate. This algorithm runs over and over till an acceptable error is reached.

Running process of each iteration has two phases: forward step and backward step. In

forward step, linear least-squares estimate method is used for obtaining consequent pa-

rameters and precedent parameters are corrected. In backward step, fixing of consequent

parameters is done. Gradient descent method is used for updating precedent parameters.

And also, the output error is back-propagated through network.

It is very important that the number of training epochs, the number of membership

functions and the number of fuzzy rules hold a critical position in the designing of ANFIS.

Adjusting of those parameters is very crucial for the system because it may lead system

to over-fit the data or will not be able to fit the data. This adjusting is made by a

hybrid algorithm combining the least squares method and the gradient descent method

with a mean square error method. The lesser difference between ANFIS output and the

actual objective means a better (more accurate) ANFIS system. So we tend to reduce

the training error in training process.

A brief summary of 5 stages illustrated in Figure 2.9 of the ANFIS algorithm will be

explained, each stage is described and necessary formulas are stated as follows:

• Stage 1: fuzzification stage: the parameters used in this stage is called premise

parameters and rearranged according to output error in every loop. For this stage;
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every node is an adaptive node with a node function and output calculated by

Equation ( 2.5).

O1,i = µAi
(x), i = 1, 2, and (2.5)

= µBi
(y), i = 3, 4,

These parameters are membership grades of a fuzzy set and input parameters.

• Stage 2: A fixed node labeled Π, whose output is the product of all the incoming

signals can be computed via Equation ( 2.6).

O2,i = µAi
(x)µBi

(y), i = 1, 2, (2.6)

Every output of the stage 2 affects the triggering level of the rule in the next stage.

Trigger level is called firing strength and N norm operator is called AND operator

in fuzzy system.

• Stage 3: This layer can be called as normalization layer. In this stage, all firing

strengths are re-arranged again by their own weights as shown in Equation ( 2.7).

O3,i = ωi =
ωi

ω1 + ω2

, i = 1, 2, (2.7)

• Stage 4: (Defuzzication): This stage is a preliminary calculation of the output for

real world. This stage has adaptive nodes and it is expressed as functions and if

ANFIS model is Sugeno type then Equation ( 2.8) is valid to calculate output of

this layer. This type is called first order Sugeno type (Takagi and Sugeno, 1985).

fi = pixi + qiyi + ri (2.8)

40



Here, p and q are consequent parameters and the consequent parameters are ad-

justed while the antecedent parameters remain fixed. Output of this stage four can

be calculated using Equation ( 2.9).

O4,i = ωifi (2.9)

• Stage 5: Summation neuron; this stage is a fixed node, which computes the overall

output as the summation of all incoming signals by using Equation ( 2.10).

O =
n∑

n=1

ωifi (2.10)

Figure 2.11 presents the resultant network in case of eight inputs, every input have

four membership functions, and one output also have four membership functions, in this

system there are four rules. This network architecture is called as ANFIS (Adaptive

Neuro-Fuzzy Inference System).

Figure 2.11: ANFIS model of fuzzy inference eight inputs every one have four membership
functions, the number of rules are four.
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2.5.4 Development of ANFIS Model For Emotion Dimensions

Estimation

Having identified the best acoustic features set we constructed individual classifiers to

estimate each emotion dimension. The speech emotion recognition system consists of two

main stages (training and testing) as shown in Figure 2.12.

Figure 2.12: Emotion recognition system based on a two-layer model.

In order to train FIS, first, the values of emotion dimensions must be evaluated by

human subjects using a listening test. Then, the parameter of the estimator FIS are learn

from training it using the input acoustic features and the output emotion dimensions to

build If-Then rules between them.

To estimate emotion dimensions: valence, activation ,and dominance three FISs were

used. Since FIS is multi-input and one output as described in the previous section, it

is required three FIS, one for each emotion dimension individually. Figure 2.13 shows

the used FIS to estimate valence dimension from the most correlated acoustic features to

valence. ANFIS was used to construct the used FIS.

The input for each FIS are the selected acoustic features and the output is the esti-

mated emotion dimension.
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Figure 2.13: Valence dimension estimation using a two-layer model.

2.6 System Evaluation

In order to assess the performance of emotion recognition system, the mean absolute error

and correlation between (the estimated values of emotion dimensions and the evaluated

values by listeners). The smaller mean absolute error the closer estimated value to the

human evaluation. While, the correlation between the output of the systems and the

human evaluation is used to investigate the similarity between the estimated output and

experimental data obtained by listening to each utterance using human subjects.

For each emotion dimension, we calculated the mean absolute error between the esti-

mated output using the system, and the evaluated values by listeners as follows:

Let y = {y(j)i }(i = 1, 2, . . . , N) is the output sequence for the automatic system,

where j ∈ {V alence, Activation,Dominance}, and let x = {x(j)
i }(i = 1, 2, . . . , N) is the

evaluated values by human subjects in the experimental evaluation as described in chapter

2. The mean absolute error E(j) (j ∈ {V alence, Activation,Dominance}) is calculated

according to the following equation.

E(j) =

∑N
i=1|x

(j)
i − y

(j)
i |

N
(2.11)
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The correlation coefficient R(j) between system output y and the human evaluation x,

will be determined by the following equation.

R(j) =

∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)2
√∑N

i=1(yi − y)2
(2.12)

Where x , and y are the average values for x = {x(j)
i }, y = {y(j)i } respectively.

In order to evaluate the performance of a trained classifier on new unseen data, it has

to be tested with data that was not used in training stage. So far, the cross-validation

method is used for evaluating the performance of emotion recognition systems, where the

database is split into n parts and by iterating over all parts, always n− 1 parts are used

for training and the remaining part is used for testing. The overall recognition accuracy

then results from the combination of the accuracies on all test splits. A most frequently

found value for n is 10; in this thesis mostly n = 1 or n = 5 is assumed. Usually, all splits

are made of equal size and it is also considered that the class distribution remains equal.

In this study two type of cross-validation are used: n = 1 (Leave-one-out cross vali-

dation) and n = 5 (5-fold cross validation). The Leave-one-out cross validation is used

when the number of the used data is very small while, the 5-fold cross validation is used

when we have large number of used data for training and testing.

2.6.1 Leave-one-out cross validation

Leave-one-out cross validation is used in the field of machine learning to determine how

accurately a learning algorithm will be able to predict data that it was not trained on.

When using the leave-one-out method, the learning algorithm is trained multiple times,

using all but one of the training set data points. The form of the algorithm is as follows:

• For k = 1 to R (where R is the number of training set points). Temporarily remove

the kth data point from the training set.

• Train the learning algorithm on the remaining R - 1 points.
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Table 2.2: 5-Folds Cross Validation of Data
Group NO. Training Data Testing Data

1 f2+f3+f4+f5 f1
2 f1+f3+f4+f5 f2
3 f1+f2+f4+f5 f3
4 f1+f2+f3+f5 f4
5 f1+f2+f3+f4 f5

• Test the removed data point and note your error.

• Calculate the mean error over all R data points.

Leave-one-out cross validation is useful because it does not waste data. When training,

all but one of the points are used, so the resulting classification rules are essentially the

same as if they had been trained on all the data points.

2.6.2 5-fold cross validation

The 5-fold cross-validation is applied for training and testing the ANFIS classifier. The

training data set is divided into 5 disjoint sets namely fold1 (f1), fold2 (f2), fold3 (f3),

fold4 (f4), fold5 (f5). Furthermore, these folds are formed with the following groups for

training and testing data preparation for emotion dimension estimation. Table 3.5 shows

the 5-fold cross-validation of data.

2.7 Summary

This chapter introduced to basic concepts related to emotions and speech. First, differ-

ent representations to describe emotions were presented. The merits of the dimensional

representation are discussed therefore this representation is adopted in this study. The re-

lationship between the two representations are discussed. Furthermore, potential sources

for information on emotions were identified, which included in the speech signal. Af-

terwards, a general speech emotion recognition system with the three major steps of

acoustic feature extraction, acoustic feature selection and classification was described. In

particular, possible acoustic features that are or could be important for emotions were
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discussed. The process of the traditional feature selection was presented and drawback

for this approach is listed. The next chapter will introduce the database and elements

of the proposed automatic emotion recognition system. Finally, the details of estimating

emotion dimensions using FIS were introduced.

46



Chapter 3

Databases and elements of the

proposed speech emotion recognition

system
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3.1 Introduction

This study attempt to build an automatic speech emotion recognition system that has the

ability to accurately estimate emotion dimensions (valence, activation, and dominance)

from a speech signal. As mentioned in the previous chapters most of the previous study

estimate emotion dimensions by mapping the acoustic features into emotion dimensions

directly as considered two-layer model. The conventional two-layer model has limited

ability to find the most relevant acoustic features for each emotion dimension, especially

valence, or to improve the prediction of emotion dimensions from acoustic features. Sev-

eral studies assumed that human perception for emotional speech is a three-layer model

[79, 10, 35]. Therefore, the key point to improve automatic speech emotion recognition

for estimating emotion dimensions can be done by imitating humans perception process.

Thus, we adopt the three-layer model for human perception as described in Figure 3.1

Figure 3.1: Block diagram of the three-layered model for emotion perception.

The proposed model consists of three-layer: emotion dimensions valence, activation,

and dominance in the top layer, semantic primitives (adjectives describing speech) in the

middle layer, while the acoustic features is in the bottom layer.

This chapter introduces the elements of the proposed emotion recognition system,

ranging from the used databases, over acoustic feature extraction, to the experimental

evaluation for emotion dimensions and semantic primitives using two listening tests by

human subjects. The elements of this system were collected in this chapter, however, the
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proposed system will be implemented in chapter 4 in details. To validate the proposed

system in chapter 5, two databases were selected Japanese and German database as

described in the next section. The input of the automatic system are the acoustic features,

therefore the used acoustic features will be extracted in Section 3.3. The three emotion

dimensions (valence, activation, and dominance) are the final output for the proposed

system, a subjective evaluation was used to evaluate these dimensions using listening

test experiment by human subjects for the two databases as described in section 3.5.2.

Semantic primitives are adjectives describing emotional voice, this is the new layer we

added between the two traditional layers: acoustic features and emotion dimensions. In

this study, 17 semantic primitives are used to represent the new layer as follow: (Bright,

Dark, High, Low, Strong, Weak, Calm, Unstable, Well-modulated, Monotonous, Heavy,

Clear, Noisy, Quiet, Sharp, Fast, and Slow). The 17 semantic primitives are evaluated

in 5-point scale by using another listening experiment as presented in Section 3.5.3.

Inter-rater agreement must be done in order to exclude the subjects who have very low

correlation coefficient among all subjects.

3.2 Databases

In this study, our aim is to prove a new concept proposed to improve the conventional

method for automatic speech emotion recognition , not to construct a real-life application.

Consequently, acted emotions are quite adequate as a testing data [68]. Therefore, in order

to validate, evaluate the performance, and investigate the effectiveness of the proposed

system, we used two acted databases of emotional speech: one in Japanese (single-speaker)

and the other in German (multi-speaker). The first one is Fujitsu database, a multi-

emotion single speaker produced and recorded by Fujitsu Laboratory. The second is Berlin

database of emotional speech. The Berlin database is widely used in emotional speech

recognition [11]. It is easily accessible and well annotated. Thus, by evaluating these

two databases, that are described in detail in the following, a wide variety of emotions is

covered and results can be expected to be general.
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Table 3.1: The English translation for all 20 Japanese sentences used in Fujitsu database.
The first column shows the id numbers of the sentences, the second column shows the
pronunciation of the Japanese sentences in English, the third column shows the English
translation for all sentences in the database.

Japanese Sentences English Translation
1 Atarashi meru ga todoite imasu You’ve got a new mail.
2 Atama ni kuru koto nante arimasen Theres nothing frustrating.
3 Machiawase wa Aoyamarashi ndesu I heard that we would meet

in Aoyama.
4 Atarashi kuruma o kaimashita I bought a new car.
5 Iranai meru ga attara sutete kudasai Please delete any unwanted e-mails.
6 Son’na no furui meishindesu yo That’s an old superstition.
7 Min’na kara eru ga okura reta ndesu Many people sent cheers.
8 Tegami ga todoita hazudesu You should have received a letter.
9 Zutto mite imasu I will think about you.
10 Watashi no tokoro ni wa todoite imasu I have received it.
11 Arigatogozaimashita Thank you.
12 Moshiwakegozaimasen I am sorry.
13 Arigato wa iimasen I wont say thank you.
14 Ryoko suru ni wa futari ga i nodesu I’d like to travel just the two of us.
15 Ki ga toku nari-sodeshita I felt like fainting.
16 Kochira no techigai mogozaimashita There were our mistakes.
17 Hanabi o miru no ni goza ga irimasu ka Do we need a straw mat to watch

fireworks.
18 Mo shinai to itta janaidesu ka You said you would not do it again.
19 Jikandorini konai wake o oshietekudasai Tell me the reason why you dont

come on time, please.
20 Sabisueria de goryu shimashou Meet me at the service area.

3.2.1 Japanese Database

The Japanese database is the multi-emotion single-speaker Fujitsu database produced and

recorded by Fujitsu Laboratory. A professional actress was asked to produce utterances

using five emotional speech categories, i.e., neutral, joy, cold anger, sadness, and hot

anger. In the database, there are 20 different Japanese sentences as shown in Table 3.1.

The actress speaker was asked to spoke each sentence nine times: one utterance in

neutral and two utterances in each of the other four categories (joy, cold anger, sadness,

and hot anger) as shown in Table 3.2. Thus, there are nine utterances for each sentence

and 180 utterances for all 20 sentences. However, one cold anger utterance is missing so,

the total number of utterance for Japanese database is 179.
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Table 3.2: The used categories in Japanese database. The first column shows the utter-
ances id (UID). Their are two patterns for each emotion category: Joy, Cold Anger, Hot
Anger, and Sadness. And only one pattern for Neutral.

UID Expressive speech category
a001∼a020 Neutral
b001∼b020 Joy (1)
c001∼c020 Joy (2)
d001∼d020 Cold-Anger (1)
e001∼e020 Cold-Anger (2)
f001∼f020 Sadness (1)
g001∼g020 Sadness (2)
h001∼h020 Hot-Anger (1)
i001∼i020 Hot-Anger (2)

Table 3.3: Specification of speech data for Japanese database.
Item Value
Sampling frequency 22050Hz
Quantization 16bit
Number of sentences 20 sentence
Number of emotion categories 5 category
Number of speakers 1 female speaker
Number of utterances 179 utterance

The detailed information of the Japanese database is shown in Table 3.3.

3.2.2 Berlin Database of Emotional Speech

The Berlin database of emotional speech was recorded at the Technical University of Berlin

[11]. This database comprises of seven emotional states: anger, boredom, disgust, anxiety,

happiness, sadness, and neutral speech. Ten professional German actors (five female and

five male) spoke ten sentences with emotionally neutral content in the seven different

emotions. Five of the ten sentences consisted of one phrase, the other five consisted

of two phrases. As the recordings were intended for phonetic analysis of emotions and

emotional speech synthesis they were conducted under very controlled conditions and

so are marked by a very high audio quality. After the recordings a listening test was

performed with 20 human subjects who should recognize the emotion of every utterance

and rate it for its naturalness. The utterances in German and their translation to English
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Table 3.4: The 10 utterances recorded in the Berlin database of emotional speech
German Sentences English Translation

a01 Der Lappen liegt auf dem Eisschrank. The tablecloth is lying on the frigde.
a02 Das will sie am Mittwoch abgeben. She will hand it in on Wednesday.
a04 Heute abend knnte ich es ihm sagen. Tonight I could tell him.
a05 Das schwarze Stck Papier befindet The black sheet of paper is located

sich da oben neben dem Holzstck. up there besides the piece of timber.
a07 In sieben Stunden wird es soweit sein. In seven hours it will be.
b01 Was sind denn das fr Tten, die da What about the bags standing

unter dem Tisch stehen? there under the table?
b02 Sie haben es gerade hochgetragen und They just carried it upstairs and

jetzt gehen sie wieder runter. now they are going down again.
b03 An den Wochenenden bin ich Currently at the weekends I

jetzt immer nach Hause gefahren und always went home and saw Agnes.
habe Agnes besucht.

b09 Ich will das eben wegbringen und I will just discard this and then go
dann mit Karl was trinken gehen. for a drink with Karl.

b10 Die wird auf dem Platz sein, wo wir It will be in the place where we
sie immer hinlegen. always store it.

Table 3.5: The number of utterances for each category in the German database
Category Anger Boredom Disgust Fear Happiness Neutral Sadness All
Number 127 81 46 68 71 79 62 534

can be found in Table 3.4.

The number of utterances for each category in the German database are shown in Table

3.5. Table 3.6 shows the details information about speakers who spoke all utterances in

Berlin database.

3.2.3 The selected dataset from Berlin Database of Emotional

Speech

The Japanese database is inadequate for validating our emotion recognition system, be-

cause it is a single speaker database which is only suitable for speaker-specific task. To

investigate the effectiveness of the proposed system for multi-speaker and different lan-

guages, a Berlin database [11] was selected. This database was selected because: (1) it is

an acted-speech database the same as the Fujitsu database, (2) it contains four categories

similar to those in the Fujitsu database (happy, angry, sad, and neutral), and (3) it is
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Table 3.6: Information about the speakers who spoke utterances of Berlin database.
SID Gender and age
M03 male, 31 years old
F08 female, 34 years
F09 female, 21 years
M10 male, 32 years
M11 male, 26 years
M12 male, 30 years
F13 female, 32 years
F14 female, 35 years
M15 male, 25 years
F16 female, 31 years

Table 3.7: The number of utterances for the selected categories (Anger Happiness Neutral
Sadness) from the Berlin database

Category Anger Happiness Neutral Sadness Total
Male 60 27 39 25 151
Female 67 44 40 37 188
Total 127 71 79 62 339

a multi-speaker and multi-gender database which enable us to investigate the effect of

speaker and gender variation in speech emotion recognition. To compare the results of

the two databases, we used only the four similar categories from Berlin database as shown

in Table 3.7.

The used utterances in Berlin database were not equally distributed between the var-

ious emotional states: 69 frightened; 46 disgusted; 71 happy; 81 bored; 79 neutral; 62

sad; 127 angry, as shown in Table 3.5. Therefore, for training propose we used equally

distributed between the four emotional states, and gender distribution i.e. equal number

of emotional state for each gender male and female. It is found that the male sadness

utterances are only 25 utterances, therefore in order to have same number of utterances

for each category for male and female, we selected 25 utterances from each emotional

state for male, as well as 25 utterances from each emotional state for female as shown in

Table 3.8.

Finally, 50 happy, 50 angry, 50 sad, and 50 neutral; in total 200 utterances were

selected form Berlin database: 100 utterances were uttered by 5 males and the other

100 by 5 females divided equally between the four emotional states. Tables 3.9 and
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Table 3.8: Selected utterances from the Berlin database
Category Anger Happiness Neutral Sadness Total
Male 25 25 25 25 100
Female 25 25 25 25 100
Total 50 50 50 50 200

Table 3.9: Selected utterances for male from Berlin database
Speaker ID Neutral Happy Anger Sad Total
M03 6 7 4 7 24
M10 4 3 4 3 14
M11 5 7 6 7 25
M12 3 2 6 4 15
M15 7 6 5 4 22

25 25 25 25 100

3.10 show the number of utterances which selected form the male and female utterances,

respectively.

Table 3.11 show the distribution of the 200 utterances for the 10 sentences for both

male and female utterances.

3.3 Acoustic feature analysis

To construct a speech emotion recognition system, acoustic features are needed to be

investigated. In this research, the most relevant acoustic features that have been successful

in related works and features used for other similar tasks were selected. Therefore, 16

acoustic features that originate from F0, power envelope, power spectrum, and duration

were selected from the work by Huang and Akagi [35]. In addition to these 16 acoustic

features, five new parameters related to voice quality are added, because voice quality is

one of the most important cues for the perception of expressive speech. Acoustic features

related to duration are extracted by segmentation, and the rest are extracted by the high

quality speech analysis-synthesis system STRAIGHT [44], leading to extraction of a set

of 21 acoustic features, which can be grouped into five subgroups as shown in Table 3.12.
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Table 3.10: Selected utterances for female from Berlin database
Speaker ID Neutral Happy Anger Sad Total
F08 6 9 4 8 27
F09 4 1 6 4 15
F13 8 7 3 2 20
F14 2 6 5 4 17
F16 5 2 7 7 21

25 25 25 25 100

Table 3.11: Selected utterances for each sentence from Berlin database
Utterance Male Female Total
a01 13 11 24
a02 15 7 22
a04 13 9 22
a05 8 13 21
a07 12 15 27
b01 5 10 15
b02 14 7 21
b03 5 9 14
b09 6 8 14
b10 9 11 20

100 100 200

3.3.1 Segmentation and vowels information

Segmentation is needed for most of the selected acoustic features therefore, firstly we

explain the segmentation process then rest of acoustic features will be explained in details

in next subsections. In this study, we use two level of segmentation, the first level is

phoneme level, the second is the accentual phrasal level. The smaller phrasal units is

considered as an Accentual Phrases (AP). The term “accentual phrase” refer to a smaller

unit from the utterance which usually terminated with a drop in F0, and sometimes with

a pause. An accentual phrase is often composed of two words or more. One utterance can

be uttered by different number of accentual phrases depend on the speaker and his/her

emotional state.

On the first stage of our evaluation we estimated the phoneme boundaries, which were

manually determined. In order to execute a vowel level analysis a phoneme level transcrip-

tion is needed, which requires a corresponding lexicon containing phonetic transcription

of words presented in a corpus. Unfortunately, the Fujitsu and Berlin databases does
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Table 3.12: The used acoustic features.
Group Acoustic Features

F0

F0 mean value of Rising Slope (F0 RS),
F0 Highest Pitch (F0 HP),
F0 Average Pitch (F0 AP)
F0 Rising Slope of the 1st accentual phrase (F0 RS1)

Power envelope

mean value of Power Range in Accentual Phrase
(PW RAP), Power Range (PW R),
Rising Slope of the 1st accentual phrase (PW RS1),
the Ratio between the average power in High frequency
portion (over 3 kHz) and the Total average power (PW RHT)

Spectrum

1st Formant frequency (SP F1),
2nd Formant frequency (SP F2),
3rd Formant frequency (SP F3),
Spectral Tilt (SP Ti),
Spectral Balance (SP SB)

Duration
Total Length (DU TL),
consonant length (DU CL),
Ratio between Consonant length and Vowel length
(DU RCV).

Voice Quality

the mean value of the difference between
the first harmonic and the second harmonic H1-H2
for vowel /a/,/e/,/i/,/o/, and /u/ per utterance,
MH A, MH E, MH I, MH O, and MH U, respectively.

not provide such a lexicon, so we created it by ourselves. Therefore, All utterances were

manually segmented at the phoneme level. The Japanese and German language sharing

5 common vowels; /a/, /e/ /i/, /o/, and /u/. The total amounts of vowel instances pre-

sented in selected speech databases are presented in Table 3.13 and 3.14 for Japanese

and German language, respectively.

For each utterance in the used databases, firstly the number of accentual phrases is

counted by a listening test, then the bounders of each accentual phrases is determined.

3.3.2 F0 related features

F0 contour and power envelope varied greatly with different expressive speech categories,

both for the accentual phrases as well as for the overall utterance. To measure these

acoustic features, it is necessary first to separate one utterance into several accentual

phrases depended on the content as explained in Section 3.3.1. Then, F0 contours were
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Table 3.13: Number of vowels for each category for Fujitsu Database.
a e i o u

Neutral 92 30 61 43 26
Joy 184 60 122 86 52
Cold Anger 181 59 118 83 49
Sad 184 60 122 86 52
Hot Anger 184 60 122 86 52

825 269 545 384 231

Table 3.14: Number of vowels for each category for Berlin Database.
a e i o u

Neutral 161 79 219 44 30
Joy 168 82 223 46 33
Anger 164 71 218 38 29
Sad 189 122 248 51 45

682 354 908 179 137

measured for accentual phrases within the utterance as well as for the entire utterance

using STRAIGHT [44]. For each utterance we extract four acoustic features related to

F0. The definition of these acoustic features are as follows:

• F0 HP: Highest F0 is the maximum of F0 for each utterance.

• F0 AP: Average F0 is the mean value of F0 for each utterance.

• F0 RS1: Rising slope of the first accentual phrase is the slope of a regression line

that fits the raising part of first accentual phrase which is from the start point of

first accentual phrase to the highest point of the first high accent part.

• F0 RS: Rising slope of the entire utterance is mean value of all rising slopes for the

accentual phrases within the utterance.

3.3.3 Power envelope related features

Power envelope was measured in a similar way to that for the F0 contour. All these

acoustic features were measured using STRAIGHT analysis. For each utterance, the

measurements were as follows:
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• PW R: The power range which is the difference between the maximum and the

minimum power in each utterance.

• PW RHT: The ratio between the average power in the high frequency portion

(over 3 kHz) and the average power.

• PW RS1: Rising slope of the first accentual phrase is the slope were measured

based on the same concept of that for measuring F0 acoustic features.

• PW RAP: The mean value of the power range for the accentual phrases within

each utterance.

3.3.4 Power spectrum related features

Formants measures were the mean value of (first formant frequency (SP F1), second

formant frequency (SP F2), third formant frequency (SP F3) taken approximately at the

midpoint of the vowels /a/,/e/,/i/,/o/, and /u/. All utterances were manually segmented

at the phoneme level. After segmentation, formants were extracted for the vowels /a/,

/i/, /e/,/o/ and /u/ using PRAAT speech analysis software with standard settings [9].

These include the maximum number of formants tracked (five), the maximum frequency

of the highest formant (set to 5000 for male and 5500 for female speakers), the time

step between two consecutive analysis frames (0.01 seconds), the effective duration of the

analysis window (0.025 seconds) and the amount of pre-emphasis (50 Hz). These settings

generally resulted in acceptable results. Formant measures were taken approximately at

the vowel midpoint of the vowels /a/, /e/, /i/, /o/, and /u/. Finally, for spectrum, we

used formants, spectral tilt, and spectral balance.

• SP F1: The mean value of first formant frequency taken approximately at the

midpoint of all vowels for each utterance.

• SP F2 and SP F3: Are the mean value of second and the third formant frequency,

respectively. They were calculated in a similar way as the first formant frequency
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• SP TL: Spectral tilt is used to measure voice quality and it was calculated from

(A1 − A3), where A1 is the level in dB of the first formant and A3 is the level of

the harmonic whose frequency is closest to the third formant.

• SP SB: Spectral balance, this parameter serves for the description of acoustic con-

sonant reduction, and was calculated according to the following equation:

SP SB =
Σi|S(fi)|.fi
Σi|S(fi)|

(3.1)

where |S(fi)| is the amplitude of the spectrum and fi is the frequency in Hz.

3.3.5 Duration related features

The speed of the speech utterance or the length varies greatly when a speaker utter

the same word in different emotional states, especially for vowels. For example, when

some one in anger or happy state he/she speak very fast, while when someone in sad

emotional state the speed of speaking is very slow. For each sentence, the duration of

all phonemes, both consonants and vowels, were measured as described in 3.3.1. The

duration measurements were as follows:

• DU TL: The total length, is the duration of the entire utterance, calculated from

the segmentation data.

• DU CL: Consonant length, is the summation of the durations of all consonant

within the utterance,

• DU RCV: the ration of consonant duration to vowel duration is calculated as

follow we first calculate Consonant length DU CL as done in previous step, then we

calculate the summation of the durations of all vowel within the utterance DU VL.

Finally, the DU RCV is DU CL divided by DU VL.
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3.3.6 Voice quality related features

Voice quality is one of the most important cues for the perception of emotional speech.

Voice quality conveys both linguistic and paralinguistic information, and can be distin-

guished by acoustic source characteristics. The emotional state of the speaker is reflected

in his or her vocal utterances. Listeners know this and are able to recognize emotional

states based on vocal cues alone [27].

Voice quality is primarily associated with the spectral properties of the speech signal.

Spectral shape can provide cues to relevant aspects of voice quality, such as H1−H2 and

H1− A3 where H1, H2, A3 are the amplitudes in (dB) of the first harmonic, the second

harmonic, and the level of the harmonic whose frequency is closest to the third formant,

respectively as shown in Figure 3.2.

Figure 3.2: Speech spectrum in dB, showing harmonics H1, H2.

H1−A3 reflects glottal cycle characteristics, i.e., speed of closing of vocal folds while

H1 −H2 is concerned with glottal opening [50, 34]. H1 and H2 are related to the open

quotient (OQ) using Equation ( 3.2) as reported by Fant in [26].

H1−H2 = −6 + 0.27exp(5.5×OQ) (3.2)

In this study, we focus on harmonics amplitude H1 and H2 as a spectral property

of the speech signal that reflects voice quality. Finally, H1 − H2 has been used as an

indication for voice quality. In order to investigate the effect of voice quality for each
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vowel individually, the mean value of H1 − H2 for vowel /a/,/e/,/i/,/o/, and /u/ per

utterance are used as an indication for voice quality and calculated as follows:

For evaluation we use an average H1 − H2 value extracted from vowel segments.

Harmonic amplitudes were computed pitch-synchronously, using standard optimization

techniques to find the maximum of the spectrum around the peak locations as estimated

by F0. Therefore, F0 was extracted by using STRAIGHT [44], Harmonic structure is

determined through spectral analysis using FFT then H1 and H2 are calculated through

integer multiplication of the F0 value obtained from the STRAIGHT.

Figure 3.3 shows the trajectories of H1, H2 for vowels segment, for four emotional

states: neutral, joy, hot anger and sad utterances taken from the Fujitsu database. The

four Figures contains words (lexical content) bout with different four emotional speech

categories, however, the shape varied greatly in the trajectories of H1, H2, therefore,

H1−H2 is very important factor for classification of the emotional state.

Finally, the mean value of H1−H2 for vowel /a/,/e/,/i/,/o/, and /u/ per utterance

MH A, MH E, MH I, MH O, and MH U, respectively are used as an indication for voice

quality, where MH j can be calculated using:

MH j =
1

t
(j)
k

t
(j)
k∑
i=1

(H1
(j)
i −H2

(j)
i ) (3.3)

where j ∈ {A,E, I, O, U}, and tk is a number of discrete estimations of first harmonics

values within a vowel segment, H1i , H2i are an estimation of first and second harmonic

value respectively at discrete time i. we estimated the average of H1−H2 values for each

vowel individually.

3.4 Normalization

The values of acoustic features greatly changed for emotionally colored and neutral speech

samples, for example, it was found a significant difference for the vowel triangles form and
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(c) Hot Anger
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Figure 3.3: The trajectories of H1, H2 for vowels segment. Emotion relevant to H1, H2
acoustic features shown for a neutral, a joy, hot anger and a sad utterance taken from
the Fujitsu database of emotional speech. The text spoken in each of the utterances was
“Arigato wa iimasen.” (“I wont say thank you.”).

their position in F1-/F2-dimensional space for emotionally colored and neutral speech

samples [88]. Another problem that arises when measuring formants is that vocal tracts

are different among different people, i.e. formant frequency is speaker-dependent and

emotion-dependent acoustic feature.

All the 21 acoustic features were extracted for both Fujitsu and Berlin databases. In or-

der to justify the acoustic features to avoid speaker-dependency and emotion-dependency

on the acoustic features. We adopt a novel a acoustic feature normalization method, in

which all acoustic feature values are normalized by those of the neutral speech. This

was performed by dividing the values of acoustic features by the mean value of neutral

utterances for all acoustic features for all speakers.
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Let f = {fi}(i = 1, 2, . . . , K, . . . , N) be a sequence of values of one acoustic feature,

where N is the number of utterances in the used databases, and let the first K values

of this sequence are calculated for neutral utterances, and the rest values calculated for

the other emotional states. Then every element f̂i in the the normalized acoustic feature

f̂ = {f̂i}(i = 1, 2, . . . , K, . . . , N) can be calculated by the following equation:

f̂i =
fi

(
∑K

i=1 fi/K)
(3.4)

3.5 Experimental evaluation for emotion dimensions

and semantic primitives

Having extracted the acoustic features for each utterance which are the inputs to the

automatic emotion recognition system, it is also required to subjectively evaluate semantic

primitives and emotion dimensions for each utterance using human subjects. Therefore,

all utterances must be labeled in term of emotion dimensions and semantic primitives.

Emotion dimensions are the elements of the top layer of the proposed model and they

are the outputs of the proposed automatic emotion recognition system. Most exciting

emotional speech databases have been annotated using the categorical approach, while,

few databases have been annotated using the dimensional approach [89]. The Fujitsu

and Berlin databases are categorical databases. Therefore, listening tests are required to

annotate each utterance in the used databases using the dimensional approach. Thus,

the two databases were evaluated by the listening tests along three dimensions: valence,

activation, and dominance, as described in Section 3.5.2

The semantic primitives were used as the the middle layer between acoustic features

and emotion dimension therefore, values of each semantic primitive for all utterances must

be evaluated. Section 3.5.3 shows the listening experiment which was conducted for each

database using human subjects to label each utterance along the 17 semantic primitives.
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Table 3.15: The number of subjects who labeled the two databases.
Used database Subjects Gender
Japanese database 11 9M 2F
German Database 9 8M 1F

Table 3.16: The Stimuli used for experimental evaluation.
Used database Stimuli Emotion Categories
Japanese database 179 5 Categories:Neutral, Joy, Cold Anger, Sad, Hot Anger
German Database 200 4 Categories:Neutral, Joy, Sad, Anger

3.5.1 Human subject evaluation

Two listening tests were used to evaluate semantic primitives and emotion dimensions.

From the previous studies, no agreement about how many subjects must be used for

conducting a listening test for evaluating database in term of emotion dimensions. For

example, some researcher conducted a listening test by only 2 subjects such as Vidrascu

and Devillers [14] or, at most, 4 to 5 subjects such preformed by Lee and Narayanan

in [47]. Moreover, Grimm in [31] preformed a three listening tests using 18, 17, and 6

subjects for three different databases in his research corpora, respectively.

The number of subjects used to evaluate the two databases are listed in Table 3.15,

moreover, stimuli are presented in Table 3.16. The Fujitsu database was evaluated by

11 graduate students, all native Japanese speakers (nine male and two female). While

Berlin database was evaluated using nine graduate students, all native Japanese speakers

(eight male and one female). No subjects have hearing impairments. In comparison with

other studies on emotion recognition which included 2 to 5 independent subjects, we used

a much higher number of evaluators to gain statistical confidence.

Subjects for listening tests were 11 graduate students, native Japanese speakers with-

out any hearing troubles evaluate the Japanese database. Due to of graduation of 5 sub-

jects, therefore, we asked a anther three subjects to participate in evaluation for German.

In total nine subjects evaluate the German database six who participate in the evalua-

tion of Japanese database and three new subjects who did not participate in Japanese

database. Japanese subjects were selected for both experiment because these excrements
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measure how speaker express emotion by voice not what the speaker said i.e. without

understating the content of the speech utterance.

It is very important to conduct statistical analysis for the subjects ratings to obtain

a much more reliable and rich annotation. In this study, an inter-rater agreement was

conducted between subjects ratings, then, ratings evaluations from subjects’ who agree

with high degree were selected. Finally, the average of all agreed subjects is used as final

label for each utterance.
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3.5.2 Emotion Dimensions Evaluation

The purpose of this experiment is to evaluate the used databases in term of the degree

of each emotion dimensions valence, activation, and dominance. For each utterance,

the three values of emotion dimensions: (valence, activation, dominance) represent the

emotional state as one point in emotional space. These values not only represent the

emotional state but also the degree of emotional state. Emotion dimensions evaluation by

human subjects will be used as a reference to evaluate the performance of the automatic

emotion recognition systems later.

For emotion dimensions evaluation, a 5-point scale {-2, -1, 0, 1, 2} was used: valence

(from -2 very negative to +2 very positive), activation (from -2 very calm to +2 very

exited), and dominance (from -2 very weak to +2 very strong). The subjects used a

MATLAB Graphical User Interface (GUI) in this experiment to evaluate the stimuli, as

shown in Figure 3.4.

They were asked to evaluate one emotion dimension for the whole database in one

session. There were three sessions, one for each emotion dimension. As done in the

work of Mori et al. [49] for emotion dimension evaluation, the basic theory of emotion

dimension was explained to the subjects before the experiment started. Then they took

a training session to listen to an example set composed of 15 utterances, which covered

the used five-point scale, three utterances for each point in the used scale. In this test,

the stimuli were presented randomly, for each utterance. Subjects were asked to evaluate

their perceived impression from the way of speaking, not from the content itself, and then

choose score on the five-point scale for each dimension individually, repetition was allowed.

Finally, the average of the subjects rating for each emotion dimension was calculated per

utterance.

3.5.2.1 Agreement Between Subjects

Inter-rater agreement must be done in order to exclude the subjects who have very low

correlation coefficient among all subjects. The inter-rater agreement was measured by
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(a) MATLAB GUI for valence evaluation.

(b) MATLAB GUI for activation evaluation.

(c) MATLAB GUI for dominance evaluation.

Figure 3.4: MATLAB GUI for evaluating emotion dimensions.
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Table 3.17: Pairwise correlations of rated valence dimension of each utterance, demon-
strating the degree of inter-rater agreement between subjects for the listening test.

(a) Japanese Database using 11 subjects

Valence S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11
S01 1 0.91 0.91 0.88 0.92 0.92 0.86 0.92 0.91 0.93 0.90
S02 1 0.92 0.89 0.94 0.92 0.87 0.90 0.92 0.94 0.89
S03 1 0.87 0.94 0.92 0.87 0.91 0.91 0.94 0.90
S04 1 0.89 0.88 0.84 0.86 0.86 0.88 0.84
S05 1 0.92 0.88 0.92 0.94 0.95 0.92
S06 1 0.86 0.90 0.92 0.95 0.92
S07 1 0.86 0.87 0.87 0.85
S08 1 0.89 0.91 0.88
S09 1 0.94 0.90
S10 1 0.91
S11 1

(b) German Database using 9 subjects

Valence S01 S02 S03 S04 S05 S06 S07 S08 S09
S01 1 0.83 0.83 0.82 0.82 0.82 0.78 0.74 0.85
S02 1 0.86 0.86 0.86 0.86 0.78 0.82 0.85
S03 1 0.85 0.86 0.84 0.82 0.82 0.86
S04 1 0.87 0.85 0.82 0.82 0.89
S05 1 0.87 0.84 0.84 0.86
S06 1 0.80 0.82 0.84
S07 1 0.79 0.84
S08 1 0.81
S09 1

means of pairwise Pearson’s correlations between two subjects’ ratings, for each emotion

dimension, separately. For example Table 3.17 listed the correlations between every pair

of subjects for the ratings evaluations of valence dimension for both Japanese and German

database.

Tables 3.18(a) and 3.18(b) summarize the minimum, maximum, and average of Pear-

son’s correlations between every two subjects’ ratings for all emotion dimensions, for

the two database. It was found that all subjects agreed to high degree for all emotion

dimension evaluation, for the two databases, as shown in Tables 3.18(a) and 3.18(b)

for Japanese and German database, respectively. For Japanese database, the average of

Pearson’s correlation coefficient among every pairs of two subjects were as follows: 0.90,

0.85, and 0.89 for valence, activation, and dominance, respectively, moreover, for German
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Table 3.18: Minimum (Min), Maximum (Max) and Average (Ave) for the correlation
coefficients between subjects ratings for evaluating emotion dimensions.

(a) Japanese database

Min Max Ave
Valence 0.84 0.95 0.90
Activation 0.75 0.94 0.85
Dominance 0.79 0.98 0.89

(b) German database

Min Max Ave
Valence 0.74 0.89 0.83
Activation 0.73 0.93 0.87
Dominance 0.79 0.92 0.86

database 0.83, 0.87, and 0.86 for valence, activation, and dominance, respectively. This

indicate that all subjects agreed to a high degree for all emotion dimension evaluation,

for the two databases.

3.5.3 Evaluations of Semantic Primitives

The propose of this experiment is to evaluate the used databases in term of semantic

primitives (adjectives) which is the middle layer of the proposed model. Semantic primi-

tives are required as the bridge between the acoustic features and the emotion dimensions

in the proposed model. These evaluation values for semantic primitives will be used to

find which acoustic features are related to each emotion dimension.

In this study, the human perception model as described by Scherer [79] is adopted.

This model assumes that human perception is a three-layer process. It was assumed that

the acoustic features are perceived by a listener and internally represented by a smaller

perception e.g. adjectives describing emotional voice as reported by Huang and Akagi [35].

In this study ‘smaller perception’ means an earlier process of perception. These smaller

percepts or adjectives are finally used to detect the emotional state of the speaker. These

adjectives can be subjectively evaluated by human subjects. Therefore, the following set

of adjectives describing the emotional speech were selected as candidates for semantic

primitives: Bright, Dark, High, Low, Strong, Weak, Calm, Unstable, Well-modulated,

Monotonous, Heavy, Clear, Noisy, Quiet, Sharp, Fast, and Slow. These adjectives were

selected because they reflect a balanced selection of widely used adjectives that describe

emotional speech. They are originally from the work of Huang and Akagi [35].

For the evaluation, we used listening tests. In these tests, the stimuli were presented
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Figure 3.5: MATLAB GUI used for Semantic Primitives evaluation experiment.

randomly to each subject through binaural headphones at a comfortable sound pressure

level in a soundproof room. Subjects were asked to rate each of the 17 semantic primitives

on a five-point scale: “1-Does not feel at all”, “2-Seldom feels”, “3-Feels a little”, “4-feels”,

“5-Feels very much” as shown in the MATLAB GUI used for this experiment in Figure

3.5. The 17 semantic primitives were evaluated for the two databases, and then ratings

of the individual subject were averaged for each semantic primitive per utterance.

3.5.3.1 Inter-rater agreement

The inter-rater agreement was measured by means of pairwise Pearson’s correlations be-

tween two subjects’ ratings, separately for each semantic primitive. Tables 3.19(a) and

3.19(b) summarize the minimum, maximum, and average of Pearson’s correlations be-

tween every two subjects’ ratings for all semantic primitives, for the two database. The

results for the two database is as follows: for Japanese database, the average of Pearson’s

correlation among every pairs of two subjects for all semantic primitives evaluation were

ranged between 0.68 and 0.85, moreover, for German database, the average of correlations

were ranged between 0.66 and 0.86. This result suggests that all subjects agreed from a
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Table 3.19: Minimum (Min), Maximum (Max) and Average (Ave) for the correlation
coefficients between subjects ratings for evaluating semantic primitives.

(a) Japanese database

Min Max Ave
Bright 0.64 0.99 0.83
Dark 0.58 0.95 0.79
High 0.51 0.95 0.77
Low 0.62 0.94 0.81
Strong 0.63 0.96 0.84
Weak 0.66 0.91 0.80
Calm 0.61 0.97 0.77
Unstable 0.57 0.94 0.80
Well-modulated 0.67 0.93 0.81
Monotonous 0.60 0.95 0.76
Heavy 0.58 0.92 0.76
Clear 0.57 0.93 0.76
Noisy 0.64 0.93 0.79
Quiet 0.69 0.99 0.85
Sharp 0.54 0.92 0.76
Fast 0.54 0.84 0.70
Slow 0.53 0.83 0.68

(b) German database

Min Max Ave
Bright 0.57 0.83 0.71
Dark 0.52 0.89 0.73
High 0.52 0.93 0.80
Low 0.55 0.88 0.77
Strong 0.73 0.92 0.85
Weak 0.72 0.93 0.86
Calm 0.57 0.92 0.77
Unstable 0.25 0.89 0.69
Well-modulated 0.63 0.89 0.78
Monotonous 0.36 0.95 0.74
Heavy 0.45 0.95 0.71
Clear 0.51 0.94 0.78
Noisy 0.17 0.89 0.72
Quiet 0.59 0.88 0.80
Sharp 0.49 0.84 0.72
Fast 0.53 0.78 0.66
Slow 0.53 0.83 0.71

moderate to a very high degree.

3.6 Summary

In this chapter, the elements of the proposed automatic emotion recognition system were

collected. The two acted emotional speech databases were selected to validate the pro-

posed system and prove our concept in this study, these database are databases Fujitsu

and Berlin database as described in details in Section 3.2.1 and Section 3.2.2, respective-

ly. The proposed three-layer model consists of emotion dimensions, semantic primitives,

acoustic features. In order to construct the three-layer model, all of these elements must

be evaluated objectively or subjectively. Firstly, 21 acoustic features were selected from

the literature of emotional speech as an initial set of acoustic features. These acoustic

features were extracted as described in Section 3.3. Emotion dimension in this study are

valence, activation, and dominance which subjectively evaluated using a listening exper-

iment as described in Section 3.5.2. The used semantic primitives are also subjectively
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evaluated using a listening experiment as described in Section 3.5.3. Chapter 4 investi-

gates which acoustic features of the selected set will be mostly related to each emotion

dimension.
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Chapter 4

The proposed speech emotion

recognition system
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4.1 Introduction

The ultimate goals of this chapter, are (1) attempt to answer the most challenging ques-

tion for speech emotion recognition, what are the most related acoustic features for each

emotion dimensions?, (2) to improve the predict of emotion dimensions values by con-

structing a speech emotion recognition system based on the process of human perception.

Chapter 3 introduces the first step towards building emotion recognition system by ex-

tracting the initial set of acoustic features. In this chapter, we introduce the second and

the third step, which are: selecting the most related acoustic features for each emotion

dimensions, and estimating emotion dimensions based on the proposed method.

As motioned in Chapter 1 that most of the previous studies for emotion dimensions

estimation were based on a two-layer model i.e. acoustic feature layer and emotion di-

mension layer. Using the two-layer model, the acoustic feature selection was based on

the correlation between acoustic features and emotion dimension. The acoustic features

correlated to valence dimension were very few, very weak, and inconsistent. Due to these

limitation, the prediction of valence dimension very difficult to be estimated from acoustic

features only. Thus, the conventional two-layer model has limited ability to find the most

relevant acoustic features for each emotion dimension, especially valence, or to improve

the prediction of emotion dimensions from acoustic features. This model does not imitate

human perception, this is reason behind the poor estimation of valence dimension.

In this thesis, the proposed idea to improve the prediction of emotion dimensions can

be done by imitating the process of human perception for recognizing the emotional state

from a speech signal. Therefore, to overcome these limitations, this study proposes a

three-layer model to improve the estimating values of emotion dimensions from acoustic

features based on human perception described by [10, 79, 35]. Our proposed model consists

of three layers: emotion dimensions (valence, activation, and dominance) constitute the

top layer, semantic primitives the middle layer, and acoustic features the bottom layer as

described in Figure 4.1. A semantic primitive layer is added between the two conventional

layers acoustic features and emotion dimensions.
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Figure 4.1: The three layer model.

To answer the first question, first, we assume that the acoustic features that are

highly correlated with semantic primitives will have a large impact for predicting values

of emotion dimensions, especially for valence. This assumption can guide the selection of

new acoustic features with better discrimination in the most difficult dimension. Thus, a

novel top-down feature selection method is proposed to select the most related acoustic

features based on the three-layer model.

The selection procedures of the traditional two-layer method was compared with that

of the proposed method. To accomplish this task, the most related acoustic features are

investigated using; the traditional method as described in Section 4.2, and using the

proposed method as introduced in Section 4.3.

The second issue to be solved in this chapter, is to improve the exciting emotion recog-

nition system in order to accurately estimate emotion dimensions from acoustic features.

Having select the most related acoustic features for each emotion dimension, we build an

emotion recognition system using a bottom-up method to estimate emotion dimensions

form acoustic features by imitating the human perception process. Firstly, estimating

semantic primitives from acoustic features, then estimating emotion dimensions from the

estimated semantic primitives as presented in Section 4.4.
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4.2 The traditional method for acoustic features se-

lection

This section, introduce the traditional method for selecting the acoustic features for each

emotion dimension based on the two-layer model. The traditional method for acous-

tic features selection were based on correlations between acoustic features and emotion

dimension as a two-layer model. For example in [23] they used the subset evaluation

method to find the subsets of acoustic features that have high correlation with emotion

dimensions.

In order to investigate the relationship between acoustic features and emotion dimen-

sions by using the traditional two-layered model, the correlations coefficients between

extracted parameter values for each acoustic feature and evaluated scores of each dimen-

sion are calculated as follows: Let fm = {fm,n}(n = 1, 2, . . . , N) be the sequence of values

of the mth acoustic feature, m = 1, 2, . . . ,M , where M is the number of extracted acoustic

features in this study (M = 21 acoustic features as described in Chapter 3). Moreover,

let x(i) = {x(i)
n }(n = 1, 2, . . . , N) be the sequence of values of the ith emotion dimen-

sion, i ∈ {V alence, Activation,Dominince}, where N is the number of utterances in our

databases (N = 179 for Japanese, N = 200 for German). Then the correlation coefficient

R
(i)
m between the acoustic parameter fm and the emotion dimension x(i) can be determined

by the following equation:

R(i)
m =

∑N
n=1(fm,n − fm)(x

(i)
n − x(i))√∑N

n=1(fm,n − fm)2
√∑N

n=1(x
(i)
n − x(i))2

(4.1)

where fm, and x(i) are the arithmetic mean for the acoustic feature and emotion dimension

respectively.

Tables 4.1 and Table 4.2 show the correlation coefficients for all acoustic features and

all emotion dimensions for Japanese and German database, respectively. For Japanese

language from Table 4.1, it is evident that eight acoustic features have high correlation

with the activation and dominance dimensions as demonstrated by the absolute value of
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the correlation, which was greater than 0.45 as shown in bold in this table. Furthermore,

the emotion dimension valence shows a smaller absolute values of correlations than the

activation and dominance. For German language from Table 4.2, it is evident that eight

acoustic features have high correlation with the activation and dominance dimensions. For

both Japanese and German language, For both Japanese and German language, valence

shows a smaller absolute values of correlations than the activation and dominance. These

results are consistent with many previous studies [29, 76]. The poor correlation between

the acoustic features and valence is the reason behind the very low performance for valence

estimation using the traditional approach.

The correlations between acoustic features and emotion dimensions for Japanese and

German database have similar trend with the valence dimension, only one acoustic feature

was found to be correlated with valence. The reason for weak correlations between acoustic

features and valence dimensions is that the acoustic effects of anger and joy are very similar

as reported in many studies, though these emotions are usually not hard to distinguish

for human. Therefore, the acoustic feature selection using the two-layer model was failed

to select a discriminate acoustic feature for valence dimension. Thus, the traditional

method can not answer this question yet: which acoustic features can be used to estimate

the valence dimension?. Therefore, this study suggest to adopt the three-layer model

which imitate human perception for acoustic feature selection as described in the next

section.
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Table 4.1: Japanese Database: Correlation coefficients between acoustic features (AF)
and emotion dimensions (ED).

m
HHHHHHAF

ED
V
al
en
ce

A
ct
iv
at
io
n

D
om

in
an

ce

#

1 MH A -0.23 -0.85 -0.83 2
2 MH E -0.10 -0.56 -0.57 2
3 MH I 0.27 -0.03 -0.17 0
4 MH O 0.13 0.76 0.75 2
5 MH U 0.08 -0.17 -0.23 0
6 F0 RS 0.34 0.78 0.65 2
7 F0 HP 0.29 0.77 0.64 2
8 F0 AP -0.08 -0.11 -0.12 0
9 F0 RS1 -0.09 -0.16 -0.17 0
10 PW R 0.24 0.53 0.50 2
11 PW RHT -0.47 0.33 0.37 1
12 PW RS1 -0.02 -0.22 -0.23 0
13 PW RAP 0.17 0.39 0.36 0
14 SP F1 -0.10 0.30 0.28 0
15 SP F2 -0.10 0.09 0.11 0
16 SP F3 0.01 0.33 0.36 0
17 SP TL 0.40 0.29 0.27 0
18 SP SB 0.05 0.40 0.36 0
19 DU TL -0.12 -0.30 -0.31 0
20 DU CL -0.27 -0.61 -0.58 2
21 DU RCV -0.30 -0.61 -0.57 2

# 1 8 8 17
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Table 4.2: The correlation coefficients between the acoustic features and the emotion
dimensions for German Database.

m
HHHHHHAF

ED
V
al
en
ce

A
ct
iv
at
io
n

D
om

in
an

ce

#

1 MH A -0.33 -0.82 -0.81 2
2 MH E -0.18 -0.70 -0.71 2
3 MH I -0.03 -0.19 -0.24 0
4 MH O -0.28 -0.67 -0.68 2
5 MH U -0.25 -0.47 -0.47 2
6 F0 RS 0.21 0.69 0.65 2
7 F0 HP 0.19 0.59 0.54 2
8 F0 AP -0.05 -0.14 -0.13 0
9 F0 RS1 -0.05 -0.10 -0.09 0
10 PW R 0.23 0.75 0.74 2
11 PW RHT -0.25 0.44 0.49 1
12 PW RS1 0.08 0.14 0.14 0
13 PW RAP 0.08 0.36 0.35 0
14 SP F1 -0.55 -0.49 -0.43 2
15 SP F2 -0.03 -0.29 -0.29 0
16 SP F3 -0.04 -0.04 0.01 0
17 SP TL 0.28 0.26 0.26 0
18 SP SB -0.02 -0.05 -0.02 0
19 DU TL -0.28 -0.38 -0.39 0
20 DU CL -0.24 -0.36 -0.36 0
21 DU RCV -0.14 -0.39 -0.37 0

# 1 8 8 17
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4.3 Selection of Acoustic Features and Semantic Prim-

itives

This section describes the proposed acoustic features selection method to identify the most

relevant acoustic features for emotion dimensions valence, activation, and dominance.

For this purpose, we proposed a thee-layer model that imitates the human perception to

understand the relationship between acoustic features and emotion dimensions.

4.3.1 Selection Procedures

Our selection method is based on the following assumptions: 1) semantic primitives which

are highly correlated with the emotion dimension are given large impact in the estimation

of that dimension, and 2) acoustic features which are highly correlated with the semantic

primitive are given large impact in the estimation of that semantic primitive. In this

study, we consider the correlation highly correlated if its absolute value is grater than or

equal to 0.45. To accomplish this task, the top-down method shown in Fig 4.2 was used

as follows:

• Step (1): Calculating the correlation coefficients between each emotion dimension

(top-layer) and each semantic primitives (middle layer).

• Step (2): Selecting the highly correlated semantic primitives for each emotion

dimension.

• Step (3): Calculating the correlation coefficients between each selected semantic

primitive (middle layer) in step 2 and each acoustic feature (bottom layer).

• Step (4): Selecting the highly correlated acoustic features for each semantic prim-

itive.

For each emotion dimension, the selected acoustic features in the final step are con-

sidered as the most relevant features to the dimension in the top-layer.
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Figure 4.2: Process for acoustic feature selection.

4.3.2 Correlation between elements of the three-layer model

To select the most related acoustic features for each emotion dimensions, first the corre-

lation between elements of the proposed model were calculated as preformed in the next

two subsections.

4.3.2.1 The correlation between emotion dimensions and semantic primitives

First, the correlations between the elements of the top layer and the middle layer were

calculated as follows: let x(i) = {x(i)
n }(n = 1, 2, . . . , N) be the sequence of the rated values

of the ith emotion dimension by the listening test, i ∈ {V alence, Activation,Dominance}.

Moreover, let s(j) = {s(j)n }(n = 1, 2, . . . , N) be the sequence of the rated values of the jth
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semantic primitive from another listening test, j ∈ {Bright,Dark, . . . , Slow}. Where N

is the number of utterances in used database (N = 179 for Japanese) and (N = 200 for

German). Then the correlation coefficient R
(i)
j between the semantic primitive s(j) and

the emotion dimension x(i) can be determined by the following equation:

R
(i)
j =

∑N
n=1(sj,n − sj)(x

(i)
n − x(i))√∑N

n=1(sj,n − sj)2
√∑N

n=1(x
(i)
n − x(i))2

(4.2)

where sj and x(i) are the arithmetic mean for the semantic primitive and emotion dimen-

sion, respectively.

Tables 4.3 and 4.4 show the correlation coefficients between all semantic primitives

and all emotion dimensions for Japanese and German database, respectively. Where, the

numbers in bold represent the higher correlations demonstrated by the absolute value of

the correlation, which is ≥0.45. In addition, ‘#’ in the last row and last column repre-

sents the number of higher correlations, for emotion dimensions and semantic primitives,

respectively. The correlations between emotion dimension and semantic primitives reval-

ues that there are many semantic primitives found to be highly correlated with valence

dimension, six and seven semantic primitives in case of Japanese and German database,

respectively. These semantic primitives can be used to to accurately estimate the valence

dimension in the recognition process as will be described in Section 4.4. From Tables

4.3 and 4.4 we can easily note that the activation and dominance dimensions have similar

correlations with all semantic primitives for both database, the reasons behind this is that,

the acoustic characteristics of the dominance dimension may overlap with the activation,

rendering this dimension redundant [76], and usually the third dimension dominance is

added to emotional representation for distinguish between fear and anger as explained in

chapter 2, however, the used emotion categories in both databases does not include the

fear emotion category, therefore, the results of dominance and activation are very similar.
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4.3.2.2 The correlation between semantic primitives and acoustic features

Second, the correlations coefficients between elements of the middle layer (semantic prim-

itive), and the bottom layer (acoustic feature) are calculated as follows: Let am =

{am,n}(n = 1, 2, . . . , N) be the sequence of values of the mth acoustic feature, m =

1, 2, . . . ,M , where M be the number of extracted acoustic features in this study M = 21.

Then the correlation coefficient R
(j)
m between the acoustic feature am and the semantic

primitive s(j) can be determined by the following equation:

R(j)
m =

∑N
n=1(am,n − am)(s

(j)
n − s(j))√∑N

n=1(am,n − am)2
√∑N

n=1(s
(j)
n − s(j))2

(4.3)

where am, and s(j) are the arithmetic mean for the acoustic feature and semantic primitive

respectively.

Tables 4.5 and 4.6 lists the correlations coefficients between all semantic primi-

tives and all acoustic features, for the Japanese and German database, respectively. The

correlations analysis between semantic primitives and acoustic features show a stronger

correlations, many acoustic features highly correlated with each semantic primitives. This

strong correlations indicate that the prediction of semantic primitives from acoustic fea-

tures will be more accurate and precise.
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4.3.3 Selection Results

For each emotion dimension, a perceptual three-layer model was constructed using the

top-down procedure described in the proposed feature selection method, for example, to

construct the perceptual three-layer model for valence dimension for the Japanese, the

following steps is preformed:

• valence dimension will be in the top layer then;

• using step 2 in the proposed method, the highly correlated semantic primitives for

valence dimension are selected, from Table 4.3 it was found 6 semantic primitive

highly correlated with valence dimension the are (Bright, Dark, High, Low, Heavy,

Clear). These semantic primitives composes the middle layer;

• using step 4 in the proposed method, for each selected semantic, we select the highly

correlated acoustic features and the combination of all selected acoustic features will

be the most related acoustic feature to the valence dimension and these acoustic

features composes the the bottom layer.

For example, Figs. 4.3(a) and 4.3(b) illustrate the valence perceptual model for

Japanese and German database, respectively. Where the solid and dashed lines in these

figures represent positive and negative correlations, respectively. Also, the thickness of

each line indicates the strength of the correlation: the thicker the line, the higher the

correlation.

In case of valence dimension for the Japanese database as shown in Fig. 4.3(a), it

is evident that six semantic primitives were found that highly correlated with valence as

shown in the middle layer. These six semantic primitives are highly correlated with eight

acoustic features as shown in the bottom layer of this figure.

The valence perceptual model for Japanese and German language are compared as

follows: For both languages, the valence dimension is found to be positively correlated

with Bright, High and Clear semantic primitives, while it is negatively correlated with

Dark, Low, and Heavy semantic primitives. Therefore, the two languages not only share

87



(a) Japanese database.

(b) German database.

Figure 4.3: Valence perceptual model.

six semantic primitives but also similar correlations between the emotion dimensions and

the corresponding semantic primitives.

In addition, comparing the relationship between semantic primitives and acoustic fea-

tures, it is found that the six semantic primitives that were shared by both German and

Japanese have a similar correlations with six common acoustic features (MH A, MH E,

MH O, F0 RS, F0 HP, and PW R). This finding suggests the possibility of some type of

universality of acoustic cues associated with semantic primitives.
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(a) Japanese database.

(b) German database.

Figure 4.4: Activation perceptual model.
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(a) Japanese database.

(b) German database.

Figure 4.5: Dominance perceptual model.
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Table 4.7: Selected acoustic features for each emotion dimension for Japanese database.
Valence Activation Dominance

Voice quality MH A MH A MH A
MH E MH E MH E
MH O MH O MH O

Pitch RS RS RS
HP HP HP

Power envelope PW R PW R PW R
- PW RHT PW RHT

Duration - DU TL DU TL
CL CL CL
RCV RCV RCV

Number 8 10 10

Table 4.8: Selected acoustic features for each emotion dimension for German database.
Valence Activation Dominance

Voice quality MH A MH A MH A
MH E MH E MH E
MH O MH O MH O
MH U MH U MH U

Pitch RS RS RS
HP HP HP

Power envelope PW R PW R PW R
- PW RHT PW RHT

- PW RAP
Power spectrum F1 F1 F1
Duration TL - -
Number 9 9 10

Therefore, the proposed method can be used effectively to select the most relevant

acoustic features for each emotion dimension regardless the used language. In a similar

way the perceptual three-layer model were constructed for activation and dominance

dimensions for both Japanese and German as shown in Figures 4.4 and 4.5.

4.3.4 The selected acoustic features

Finlay after applying these steps for Japanese and German database, the results are

summarized in Table 4.7 and Table 4.8, respectively.

From the above Tables, it is clearly that, there are eight and nine acoustic features

related to valence dimension in case of Japanese and German language, respectively.
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Therefor, the new feature selection method outperform the traditional feature selection

method which was not consider the human perception into account.

4.3.5 Discussion

Our model mimics the human perception process for understanding emotions on the

basis of Brunswick’s lens model [10], where the speaker expresses his/her emotional state

through some acoustic features. These acoustic features are interpreted by the listener

into some adjectives describing the speech signal, and from these adjectives, the listener

can judge the emotional state. For example, if the adjectives describing the voice are

Dark, Slow, Low, and Heavy, these make the human listener feel that the emotional state

is negative valence and very weak activation, resulting in it being detected as a very Sad

emotional state in the categorical approach.

On the other hand, the conventional acoustic features selection method was based on

the correlations between acoustic features and emotion dimension as a two-layer model.

To investigate the effectiveness of the proposed feature selection method, the results were

compared with the conventional method. For example, Table 4.2, shows the correlations

coefficients between acoustic features and emotion dimensions directly in case of German

language. From this table, evidently only one acoustic feature highly correlated with the

valence dimension (|correlation(SP F1, V alence)| = 0.55 > 0.45), while eight acoustic

features highly correlated with the activation and dominance dimensions. Therefore,

valence shows a smaller number of highly correlated acoustic features than the activation

and dominance. These results are similar to those of many previous studies [29, 76].

Due to this drawback, most previous studies achieved a very low performance for valence

estimation using the conventional approach [31, 95].

The most important result is that, using the proposed three-layer model for feature

selection, the number of relevant acoustic features to emotion dimensions increases. For

example, the number of relevant features for the most difficult dimension valence increases

from one to nine using the proposed method. Moreover, the number of features increased
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from eight to nine for activation and from eight to ten for dominance. The selected

acoustic features can be used to improve emotion dimensions estimation as described in

detail in the next section.

4.4 The proposed speech emotion Recognition Sys-

tem

This section introduces the implementation of the proposed model into a speech emo-

tion recognition system. The task of speech emotion recognition system based on the

dimensional approach can be viewed as using an estimator to map the acoustic features

to real-valued emotion dimensions (valence, activation, and dominance). The perceptual

three-layer models were built for all emotion dimensions as described in Section 4.3.3.

These models are used to construct our proposed automatic speech emotion recognition

system in order to estimate emotion dimensions from acoustic features.

The bottom-up method was used to construct our system, the selected acoustic fea-

tures (bottom layer) form the previous section are used as an input for the proposed

system to predict emotion dimensions (top layer).

4.4.1 System Implementation

Emotion dimension values can be estimated using many estimator such as K-nearest

neighborhood (KNN), Support Vector Regression (SVR), or Fuzzy Inference System FIS.

In this study, for selecting the best estimator among KNN, SVR, and FIS, pre-experiments

not included here indicated that our best results were achieved using an FIS estimator.

Therefore, FIS was used to connect the elements of the three-layer model. Most statistical

methodology is mainly based on a linear and precise relationship between the input and the

output, while the relationships among acoustic features, semantic primitives, and emotion

dimensions are non-linear. Therefore, fuzzy logic is a more appropriate mathematical tool

for describing this non-linear relationship [31, 35, 38]. In Chapter 2 the FIS estimators
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are described in more details.

A FIS implements a nonlinear mapping from an input space to an output space by

a number of fuzzy if-then rules constructed from human knowledge [38]. Using artificial

neural networks to identify fuzzy rules and tune the parameters of membership functions

in FIS automatically is called Adaptive-Network-based Fuzzy Inference System (ANFIS).

Designing a standard FIS need the expert knowledge, However using ANFIS this need

is eliminated. Therefore, in this study, ANFIS was used to construct FISs models that

connect the elements of our recognition system.

Figure 4.6 shows a block diagram of the proposed automatic emotion recognition

system based on the three-layered model, this system consists of two main stages: The

first stage is model creation which is employed for training the model, and the second

stage is applying emotion recognition to test the model. Our system was constructed by

using FIS to build the mathematical relationship between the elements of the three-layer

model as follows: (1) FIS1 is used to map the acoustic features onto semantic primitives,

(2) FIS2 is used to map the semantic primitives onto emotion dimensions. The desired

output is an estimation of a real-valued for emotion dimensions: valence, activation, and

dominance.

The conventional emotion dimensions estimators were usually used to map the acoustic

features to a real-valued emotion dimensions as a two-layer only. However, in this study,

these estimators were used to estimate emotion dimensions in the bases of three-layer

model; simply by mapping the acoustic features into a real-valued semantic primitives

(adjectives) followed by mapping the semantic primitives to a real-valued emotion dimen-

sions.

4.4.2 Emotion Dimensions Estimation using the three-layer mod-

el

In Section 4.3.3 a perceptual three-layer model were constructed for each emotion di-

mension using the top-down method and the feature selection algorithm, for Japanese
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Figure 4.6: Block diagram of the proposed emotion recognition system based on the
three-layered model.

and German database. The perceptual three-layer model for valence, and activation and

dominance for both Japanese database, are shown in Figures 4.3, 4.4, and 4.5, re-

spectively. In the recognition stage, these model were used by a bottom-up method to

estimate emotion dimension.

The bottom-up method was used to estimate emotion dimensions from the acoustic

features in two main steps:

• Step 1: Semantic primitive estimation: in this step each semantic primitive is

estimated from acoustic features. For each semantic primitives one FIS is needed

to estimate this semantic primitives from all acoustic features; the input here is the

acoustic features and the output are the estimated semantic primitives, as described

in Section 4.5.

• Step 2: Emotion dimension estimation: the estimated semantic primitives is used

to estimate emotion dimension. One FIS system is required for each emotion dimen-

sion. The input for each FIS are the estimated semantic primitives and the output
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Table 4.9: The elements in the perceptual model for Japanese-valence
Layer Elements Number
Top layer Valence 1
Middle Layer Bright, Dark, High, Low, Heavy, Clear 6
Bottom Layer MH A, MH E, MH O, F0 RS, 8

F0 HP, PW R, DU CL, DU RCV

is the estimated emotion dimension, as described in Section 4.5.1.

In the rest of this chapter we will explain these steps for valence dimension in Japanese

database, Similarly, the activation and dominance can be estimated using these steps.

In order to estimate valence dimension for Japanese language, the perceptual model for

valence dimension was used from bottom to the top as shown in Figure 4.7 which describe

the perceptual model for Japanese-valence.

The elements in each layer for this model are listed in Table 4.9 as follow: valence

dimension in the top layer, six semantic primitives in the middle layer, and eight acoustic

features in the bottom layer.

Figure 4.7: The perceptual model for valence dimension from Japanese database.

In order, to estimate the valence dimension using the perceptual model in Fig. 4.7,

a bottom-up method was used to estimate the values of the sex semantic primitives in

the middle layer from the eight acoustic features in the bottom layer. As mentioned in

the previous section that FIS is multi-input one output, therefore seven FISs systems are

required to estimate valence emotion dimension as follow: sex FISs were needed: one to
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estimate each semantic primitive from acoustic features. In addition, one FIS is needed

to estimate the value of valence dimension from the sex estimated semantic primitives.

Figure 4.8 illustrates the seven FISs used to estimate valence for Japanese language.

Figure 4.8: Valence dimension estimation using a three layer model.
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4.5 Semantic primitives estimations using ANFIS

In this study, ANFIS was used to construct FISs models that connect the elements of our

recognition system. The ANFIS model under consideration is a multi-input single-output

system with eight inputs and one output. Six ANFIS were used to build six FISs for

estimating each semantic primitives in the middle layer from the eight acoustic features

in the bottom layer. Figure 4.9 shows the input and the output for estimating Bright

semantic primitive, eight acoustic features (MH A, MH E, MH O, F0 RS, F0 HP, PW R,

DU CL, DU RCV) and one output Bright semantic primitive. Similarly other semantic

primitives can be estimated using these acoustic features.

Figure 4.9: Bright semantic primitive estimation form acoustic features using FIS.

The data were obtained from the Japanese database the data set consists of 179

utterances as introduced in chapter 3. The ANFIS structure generated in this study

utilizes fuzzy clustering of the input and output data sets as well as the Gaussian Bell

shape membership function. Thus the number of rules is equal to the number of output

clusters. In order to minimize the over fitting of the model developed, the complete data

set was split into a training (80%) and testing data set (20%). The ANFIS model was
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first trained using the training data set followed by validation process using the remaining

data. The errors associated with the training and checking processes are recorded. ANFIS

training was found to converge after training with 150 epochs for High, Clear, and Heavy,

moreover, it converge after 250 epochs for Low and Dark, while it converges after 300

epochs for Bright as shown in Figure 4.10.
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Figure 4.10: ANFIS training RMSE for (Bright, Dark, High, Low, Heavy, Clear).

Root mean square error (RMSE) for both the training and testing of ANFIS are very

small which reflects the ability of ANFIS to capture the essential components of under-

lying dynamics governing the relationships between the input and the output variables.

The computation of membership functions (MFs) parameters is facilitated by a gradient

descent vector.

Fuzzy reasoning which is made up of fuzzy if-then rules together with fuzzy member-

ship functions is the main feature of fuzzy inference systems. Fuzzy reasoning derives

conclusions from the set of rules which are either data driven or provided by experts.

Figure 4.11 shows the reasoning procedure for a first order Sugeno fuzzy model. Each

rule has a crisp output and the overall output is a weighted average. This figure shows

the IF-then rules derived by ANFIS for estimating Bright semantic primitives from eight
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acoustic features in case of Japanese database. There are three rules which defining the

relations between the input and output as a linguistic variables.

Figure 4.12 shows the a sample of the rules using crisp values for example when MA A

is very low and MH E is very low and MH O is very high, and F0 RS is very high, and

F0 HP is very high, and PW R is low, and DU CL is very high, and DU RCV is very low

Then Bright is very high (Bright range from 1 to 5) and this value is 4.84 is very high.

Using the same procedure the other five semantic primitive were estimated from the

eight acoustic features. This prediction for semantic primitives will be used to estimate

the valence dimension as described in the next section.

Figure 4.11: If-Then rules derived by ANFIS used for estimating Bright.
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Figure 4.12: Sample of rule set of an ANFIS model Bright=+4.84, very large
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4.5.1 Dimension estimations using ANFIS

The second step is to estimate emotion dimension from the estimated semantic primitives.

One ANFIS was built for estimating valence dimension from the six estimated semantic

primitives the input and the output for this system are shown in Figure 4.13.

Figure 4.13: Valence dimension estimation from semantic primitives.

The ANFIS model was first trained using the training data set followed by validation

process using the remaining data. The errors associated with the training and checking

processes are recorded. ANFIS training was found to converge after training with 150

epochs for valence, while it converges after 200 epochs for activation and dominance as

shown in Figure 4.14.

For training the system the input and the output were the human evaluation. The

same 80% which was used for training the ANFIS for estimating semantic primitives in the

previous section were used as a training set, while the testing set is the set of estimated

semantic primitives from the first step of recognition. In the previous studies usually

emotion dimension estimated from acoustic features directly, while in this study semantic

primitives are used as a bridge between the acoustic features and emotion dimensions.

Figure 4.15 shows the IF-then rules derived by ANFIS for estimating valence di-

mension from six semantic primitives for Japanese database. There are four rules which

defining the relations between the input and output as a linguistic variables.
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Figure 4.14: ANFIS training RMSE for (Valence, Activation, Dominance).

Figure 4.15: If-Then rules derived by ANFIS used for estimating Valence.
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The scale for all semantic primitives were { 1, 2, 3, 4, 5 }, and the scale for all emotion

dimension were {-2, -1, 0, +1, +2 }. Figure 4.16 shows a sample of the rules using

numerical values for example when Bright = 3.05 (moderate), and Dark = 3 (moderate),

and High = 2.86 (moderate), and Low = 5 (very large), and Heavy = 4.91 (very large),

and Clear = 1.27, (low), Then V alence = −2 (very negative), which mean Valence is

very negative i.e. the emotional state could be Anger or Sadness the final decision for the

emotional state will be determined from the value of the activation. For instance if the

Activation is positive then the utterance will be classified as Anger, On the other hand,

if the Activation is negative then the emotional state of that utterance will be Sad. The

advantages of the dimensional representation is the degree of each emotional state i.e. if

the valence is very negative and the activation is very negative then the emotional state

will be very Sad. On the other hand if the valence is very positive and the activation is

very positive then the emotional state will be very angry.

Figure 4.16: Sample of rule set of an ANFIS model for Valence=-2.
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Figure 4.17 shows another sample of the rules using numerical values in this fig-

ure, the position of the red lines for semantic primitives are changed in order to obtain

V alence = 2, this way can be used for emotion syntheses i.e in order to make the output

Sad what is the required modification for the semantic primitive and for the acoustic

features. Therefore, we tried to adjust the red lines for each membership function to

obtain V alence = 2. The final values for semantic primitives are Bright = 5 (very large),

and Dark = 1 (very small), and High = 2.86 (moderate), and Low = 1.18 (small), and

Heavy = 1 (very small), and Clear = 4.09, (very large), Then V alence = +2 (very

positive).

Figure 4.17: Sample of rule set of an ANFIS model for Valence=+2.
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4.6 Summary

The aims of this chapter are: attempt to answer the most the following question, what

are the most related acoustic features for each emotion dimensions?, try to improve the

prediction of emotion dimensions values by constructing a speech emotion recognition

system. The proposed idea to improve the prediction of emotion dimensions in this study

can be done by imitating the process of human perception for recognizing the emotional

state from a speech signal.

Therefore, this study proposes a three-layer model to improve the estimating values

of emotion dimensions from acoustic features. The proposed model consists of three

layers: emotion dimensions (valence, activation, and dominance) constitute the top layer,

semantic primitives the middle layer, and acoustic features the bottom layer.

To answer the first question, we proposed a top-down feature selection method to select

the most related acoustic features based on the three-layer model. By firstly, selecting

the highly correlated semantic primitives for emotion dimension, then selecting the set

of all acoustic features which are highly correlated with the selected semantic. The set

of selected acoustic features are considered the most related to the emotion dimension in

the top layer.

The most important result is that, using the proposed three-layer model for feature

selection, the number of relevant acoustic features to emotion dimensions increases. For

example, the number of relevant features for the most difficult dimension valence increases

from one to nine using the proposed method. Moreover, the number of features increased

from eight to nine for activation and from eight to ten for dominance. The three-layer

model outperform the traditional two-layer model for acoustic features selection.

In this chapter the implementation of the proposed model into an automatic speech

emotion recognition system is introduced. The bottom-up method was used to estimate

emotion dimensions. The input of the proposed system are the selected acoustic features.

Fuzzy inference system FIS was used to connect the elements of the proposed system.

Firstly one FIS was used to estimate each semantic primitive in the middle layer form
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the acoustic features in the bottom layer. Then another FIS was used to estimate each

emotion dimensions from the estimated semantic primitives. The detailed evaluation for

the proposed system will be introduced in the next chapter.
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Chapter 5

Evaluation of the proposed system
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5.1 Introduction

The previous chapter introduced a top-down method to find the most relevant acous-

tic features for each emotion dimension on the bases of a three-layer model for human

perception. Moreover, the previous chapter also presented the implementation of the pro-

posed emotion recognition system to estimate emotion dimensions (valence, activation,

and dominance) based on a three-layer model. The proposed method for acoustic feature

selection and the implementation of the proposed emotion recognition system was based

on our assumptions: imitating human perception can guide the selection of new acoustic

features with better discrimination for all emotion dimensions, and these selected acoustic

features will have a large impact for predicting values of emotion dimensions, especially

for valence the most difficult dimension.

In this chapter, we investigate whether our assumptions are satisfied or not. Therefore,

we try to answer the following two questions: first, whether the selected acoustic features

are effective for predicting emotion dimensions? second, whether the proposed emotion

recognition system improve the estimation accuracy of emotion dimensions (valence, ac-

tivation, and dominance) comparing with the conventional system?

To investigate the first question, first, the most relevant acoustic features for each

emotion dimension, which was selected using the feature selection method, were used

as inputs of the proposed emotion recognition system, to estimate values of emotion

dimensions. Then, the estimation results of emotion dimensions using the most correlated

acoustic features are compared with those of estimation using the lower correlated acoustic

features, and all-acoustic features.

Furthermore, to investigate the second question which is how effectively our proposed

system improve emotion dimensions estimation? Therefore, the performance of the pro-

posed system was compared with that of the conventional two-layer system, using two

different languages Japanese and German, with two different tasks (speaker-dependent

task and multi-speaker task).
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5.2 Evaluation measures

The outputs of the proposed emotion recognition system are the estimated values of

emotion dimension valence, activation, and dominance, not a classification into one of

a finite set of categories. Therefore, the performance of the proposed system can not

measured by recognition accuracy. The estimation of emotion dimensions is preformed

by training an automatic emotion recognition system using acoustic features as inputs

and annotated emotion dimensions by human subjects as an output. Then, the trained

system can be used to estimate emotion dimensions for a new utterance. Therefore, the

performance of that emotion recognition system is measured by how close the estimated

values using the proposed system with the annotated values by human subjects.

In most of the previous studies, the used metrics to measure the performance of the

emotion dimensions estimation was the mean absolute error (MAE) between the estimated

values of emotion dimensions and the evaluated values by human subjects. The MAE is

the most common parameter to measure the machine learning algorithms performance on

estimation tasks, as in our case.

However, to imitate human perception, the proposed emotion recognition system in-

cludes two estimation tasks for each emotion dimension, for example for valence dimen-

sions: the first task is to estimate the most related semantic primitives for valence from

most related acoustic features for valence; the second task is to estimate valence dimen-

sion from the estimated semantic primitives for valence. Therefore, to imitate the human

error, the MAEs are evaluated for the estimated semantic primitives and the estimated

emotion dimensions. The MAE is used to measure the distance between the estimated

values by the proposed system and the annotated value by human subjects. The smaller

the MAE the closer estimated value to the human evaluation.

The MAE is calculated for each semantic primitive and each emotion dimension as

follows: let x̂ = {x̂i}(i = 1, 2, . . . , N) is the sequence of the estimated values of one

semantic primitive or one emotion dimension using the proposed system, moreover, let

x = {xi}(i = 1, 2, . . . , N) is the sequence of evaluated values by human subjects for
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the corresponding semantic primitive or emotion dimension. Where N is the number of

utterances in our database. Then, the mean absolute error MAE is calculated according

to the following equation:

MAE =

∑N
i=1|x̂i − xi|

N
(5.1)

5.3 Effectiveness of the selected acoustic features

This section aims to investigate whether the selected acoustic features using the proposed

method in Chapter 4 will improve emotion dimensions estimation or not. To accomplish

this task, the proposed automatic emotion recognition system was tested using three

different groups of acoustic features, for each emotion dimension: (1) highly correlated

acoustic features (absolute values of their correlations with semantic primitives is ≥ 0.45),

(2) lower correlated acoustic features, and (3) the all-acoustic features. The proposed

acoustic features selection method presented in Section 4.3.1 is used to divide all acoustic

features into two groups highly correlated and low correlated acoustic features.

To measure the importance of acoustic feature groups, the mean absolute error (MAE)

between the predicted values of emotion dimensions using the proposed system and the

corresponding average value given by human subjects is used as a metric of the discrim-

ination associated with each group. The MAE is calculated for all emotion dimensions

(valence, activation, and dominance) in accordance with Eq. 5.1. The accuracy of the

proposed system in terms of five-fold cross validation was calculated for the two databases.

Figures 5.1(a) and 5.1(b) show the MAEs for estimating (valence, activation, and dom-

inance), for Japanese and German database, respectively, for the three groups of acoustic

features. The error bars in these figures represent the standard errors for the absolute

differences between human evaluation and system estimation for emotion dimensions.

Analysis of variance (ANOVA) was used to test whether the three groups are statistically

different with respect to the use of correlated acoustic features for emotion dimensions

111



      0.00
      0.05
      0.10
      0.15
      0.20
      0.25
      0.30
      0.35
      0.40
      0.45
      0.50
      0.55
      0.60
      0.65
      0.70
      0.75
      0.80
      0.85
      0.90
      0.95
      1.00

Valence Activation Dominance

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Emotion Dimenision

Low-Correlated
All-Features

Highly-Correlated

(a) Japanese Database (Single Speaker)

      0.00
      0.05
      0.10
      0.15
      0.20
      0.25
      0.30
      0.35
      0.40
      0.45
      0.50
      0.55
      0.60
      0.65
      0.70
      0.75
      0.80
      0.85
      0.90
      0.95
      1.00

Valence Activation Dominance

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Emotion Dimenision

Low-Correlated
All-Features

Highly-Correlated

(b) German Database (Multi Speaker)

Figure 5.1: Mean Absolute Error (MAE) between human evaluation and estimated values
of emotion dimensions.

estimation. For Japanese database, at level 0.001, a significant discrimination among the

three groups was observed, for valence (F[2, 534] = 29.30, p ≤ 0.001), for activation (F[2,

534] = 59.28, p ≤ 0.001), and for dominance (F[2, 534] = 51.14, p ≤ 0.001). For the Ger-

man database the results were significant for all emotion dimensions at level 0.001, the

information of the F-test were as follows: valence F[2, 597] = 6.95, p ≤ 0.001), activation

(F[2, 597] = 20.06, p ≤ 0.001) and dominance (F[2, 597] = 17.80, p ≤ 0.001).

For both databases, the results reveal that, the MAEs by using the selected acoustic

features group as an inputs for the proposed system are the smallest compared with the

other two of groups features, these results indicate that, the selected acoustic features

improve the prediction of all emotion dimensions. Therefore, the selected acoustic feature

is effective to improve emotion dimension estimation.

5.4 System Evaluation

In this study, a three-layer model was proposed to improve emotion dimension estimation.

In Chapter 4, based on the three-layer model an automatic speech emotion recognition

system was implemented. This section presents the evaluation results for the proposed e-

motion recognition system. In order to explicitly investigate whether the proposed system

effectively improve emotion dimensions estimation or not, the performance of the proposed

112



system was compared with that of the conventional two-layer system by using two dif-

ferent languages: Japanese and German, using two different tasks (1) speaker-dependent

task, and (2) multi-speaker task.

To accomplish these tasks, the proposed and the conventional emotion recognition

system were constructed. The selected acoustic features group was used as input for both

the proposed system and the conventional system. The proposed system was constructed

based on the three-layer model of human perception as follows: one FIS was used to esti-

mate each semantic primitive from the selected acoustic features, then one FIS was used

to estimate each emotion dimension from the estimated semantic primitives as described

in Chapter 4. For constructing the conventional system based on the two-layer model,

one FIS was used to estimate each emotion dimension from the selected acoustic features

directly as described in Chapter 2.

Section 5.4.1 introduces the evaluation using the speaker dependent task for both

Japanese and German language. Moreover, Section 5.4.2 presents the evaluation results

in the multi-speaker task for German language.

5.4.1 Evaluation Results for Speaker-dependent Task

In the speaker-dependent task, the automatic emotion recognition system was trained

and tested using utterances for one speaker.

5.4.1.1 System evaluation for Japanese database

Japanese database is a single speaker database therefore, both conventional and pro-

posed emotion recognition systems were validated using all 179 utterances included in

the Japanese database. The 5-fold cross validation was used to evaluate the automatic

systems.

The distribution of output of the automatic systems as well as the human evalua-

tion are shown in scatter-plot of Valence-Activation, Valence-Dominance, and Activation-

Dominance in Figures 5.2, 5.3, and 5.4 respectively.
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Figure 5.2: The distribution of Japanese database in the Valence-Activation space.
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Figure 5.3: The distribution of Japanese database in the Valence-Dominance space.
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Figure 5.4: The distribution of Japanese database in the Activation-Dominance space.
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For each space there are three panels (a), (b), (c); the most left panel shows the

distribution of human evaluation, and the middle panel (b) shows the estimation of the

conventional system, while (c) presents the distribution of the proposed system. The

emotional state of each utterance is represented by one point in the dimensional space.

From the activation-dominance space, it is observed that the estimated values of activa-

tion and dominance are equivalent, the reason behind this is that our databases does not

include fear emotional state and mainly dominance dimensions is used to distinguish be-

tween the anger and fear emotional state, therefore the dominance dimension is considered

redundant dimension.

Our proposed emotion recognition system is based on the three-layer of human per-

ception. Therefore, the MAEs are evaluated for the estimated semantic primitives and

the estimated emotion dimensions, to imitate the human error for estimating semantic

primitives and emotion dimensions, respectively. Figure 5.5 shows the MAEs for the

most related semantic primitives for the valence dimension. From this figure it is clearly

that the MAEs for all semantic primitives were very close to zero, which means that the

estimated values using the proposed system are very close to the evaluated values us-

ing human subjects the maximum MAE value was 0.3 which achieved by clear semantic

primitive.

Figure 5.5: MAE for the most related semantic primitives for valence estimated from the
most related acoustic features for valence for Japanese database (Single-speaker).
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In order to asses the performance of the proposed emotion recognition system the final

output for conventional and the proposed system are compared, therefore, the MAEs for

emotion dimensions estimation from the both of them were compared as follows: the

MAEs for emotion dimensions (valence, activation, and dominance) between the two

systems output and human evaluation are calculated using Eq. 5.1.

The results are shown in Fig. 5.6. The error bars represent standard errors. Us-

ing t-test, at level 0.05, the results for all emotion dimensions are as follows: valence

(t(178)=3.16, p≤ 0.05), activation (t(178)=2.47, p≤ 0.05), and dominance (t(178)=4.99,

p≤ 0.05). These results are statistically significant for all emotion dimensions.
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Figure 5.6: MAE between human evaluation and two systems outputs (two-layer and
three-layer system) for Japanese database (Single-speaker).

These results suggest that the proposed system outperform the conventional two-

layer system, for all emotion dimensions. This results reveals that the proposed system

outperform the conventional one for evaluating the valence and dominance. The most

important results The result is that the MAEs values for emotion dimensions valence,

activation, and dominance were 0.28, 0.19, and 0.17, respectively. These results indicate

that emotion dimensions estimation using the proposed system is very close to human

evaluation.
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Table 5.1: Number of utterances used for each speaker from Berlin database In the first
column is the speaker ID M03 means male, 03 is the speaker code used in the database

Speaker ID Total
M03 24
F08 27
F09 15
M10 14
M11 25
M12 15
F13 20
F14 17
M15 22
F16 21

5.4.1.2 System evaluation for German database

The German database contained ten speakers: five male and five female. The number

of utterances for each German speaker are small. Table 5.1 shows the number of utter-

ance for each speaker in the selected German database. Therefore, leave-one-out-cross-

validation (LOOCV) was used for evaluation for each German speaker. The proposed

system and the conventional two-layer system were used to estimate emotion dimensions

by training the systems and testing them using the utterances for each speaker individu-

ally.

The distribution of emotion dimension estimation for all utterances for all speaker-

s are presented together in the valence-activation space, valence-dominance space, and

activation-dominance space as shown in Figures 5.7, 5.8, and 5.9, respectively.

The MAEs for the estimated semantic primitives and the estimated emotion dimen-

sions, are evaluated for each speaker individually. Figure 5.10 shows the average of MAEs

for the most related semantic primitives for the valence dimension, from the ten German

speakers. These results indicate that the MAEs for all semantic primitives were very close

to zero, which means that the estimated values using the proposed system are very close

to the human evaluation. The maximum MAE value was 0.24 which achieved by heavy

semantic primitive.
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Figure 5.7: The distribution of all German speakers’ utterances in the Activation-
Dominance space.
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Figure 5.8: The distribution of all German speakers’ utterances in the Activation-
Dominance space.
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Figure 5.9: The distribution of all German speakers’ utterances in the Activation-
Dominance space.
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Figure 5.10: The average of MAEs for the most related semantic primitives for the valence
dimension, from the estimation using ten German speakers. (Speaker-dependent).

In order to asses the performance of the proposed emotion recognition system the final

output for the the proposed and conventional system are compared, therefore, the MAEs

for emotion dimensions estimation from the both of them were calculated by training

and testing the system using the ten German speakers. Figure 5.11 shows the MAEs

for valence, activation, and dominance for the ten speakers, in panel (a), (b), and (c),

respectively.

Finally, the average of all MAEs from all speakers for each emotion dimension was

calculated. The results are presented in Figure 5.12. In order to compare between the

two-layer system and the proposed system the paired t-tests was used, the results are

statistically significant for valence (t(199)=2.09, p≤ 0.05) and dominance (t(199)=1.78,

p≤ 0.05), but there is no significant differences for activation between the two-layer and

the three-layer model (t(199)=0.23, p-value=0.41). These results reveal that the proposed

system outperform the conventional one for evaluating the valence and dominance.

The most important result is that, the estimation results using the proposed three-

layer system are very close to human evaluation, as demonstrated by the small values of

MAEs for all emotion dimensions, as can be seen from Figure 5.12. The results of MAEs

were 0.27, 0.17, and 0.14 for valence, activation, and dominance, respectively.
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Figure 5.11: Mean Absolute error between human evaluation and the automatic systems
estimation for 10 German Speakers individually.
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Figure 5.12: MAE between human evaluation and two systems outputs (two-layer and
three-layer system) for German database (speaker-dependent).

5.4.2 Evaluation Results for Multi-Speaker Task

In the previous section the proposed emotion recognition system was used to estimate

emotion dimensions for speaker-dependent task. The purpose of this section is to inves-

tigate whether the the proposed system is also effective in case multi-speaker task, and

what is the performance comparing to the traditional two-layer system.

German database contains 200 utterances selected from the Berlin database uttered by

10 speakers. Therefore, German database was used to investigate the multi-speaker effect

on emotion dimension estimation. Thus, the proposed system was validated using the

whole database i.e. all 200 utterances were used to train and test the emotion recognition

system. Five-fold cross validation was used to evaluate this system, i.e, the German

database is divided into 80% training set (160 utterances for training) and 20% testing

set (40 utterances for testing).

The distribution of human evaluation, traditional method estimation, and the pro-

posed system estimation are shown in Figures 5.13, 5.14, and 5.15 in the valence-

activation space, valence-dominance space, and activation-dominance space respectively.
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Figure 5.13: The distribution of German database in the Valence-Activation space.
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Figure 5.14: The distribution of German database in the Valence-Dominance space.
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Figure 5.15: The distribution of German database in the Activation-Dominance space.
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The MAEs are calculated for the estimated semantic primitives and the estimated

emotion dimensions. Figure 5.16 shows the MAEs for the most related semantic primi-

tives for the valence dimension in case of multi-speaker task. The values of MAEs for all

semantic primitives ranged from 0.36 to 0.46, obtained for low and heavy semantic prim-

itive, respectively. These results are higher then those results achieved by the speaker

dependent task. These results indicate that the estimated values of semantic primitives

are not so close to the evaluated values by human subjects.

Figure 5.16: MAE for the most related semantic primitives for valence estimated using
the most related acoustic features for valence for German database (multi-speaker).

In order to asses the performance of the proposed emotion recognition system, the

estimated emotion dimensions for conventional two-layer system and the proposed system

are compared. The MAEs for all emotion dimensions from the both of systems were

compared as follows. The results for multi-speaker evaluation are shown in Figure 5.17.

The error bars represent standard errors. The results of the paired t-test at 0.05 significant

level were as follows: valence (t(199)=2.83, p≤ 0.05), activation (t(199)=1.93, p≤ 0.05),

and dominance (t(199)=3.38, p≤ 0.05). These results are statistically significant for

all emotion dimensions. These results reveal that the proposed system outperforms the

conventional one in the multi-speaker task.

The results of MAEs for emotion dimensions valence, activation, and dominance were

0.65, 0.19, and 0.17, respectively. The MAE for valence was very high comparing to the
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Figure 5.17: German Database (multi-speaker): MAE between human evaluation and
two systems’ output.

results obtained in case of speaker-dependent. However, the MAEs for activation and

dominance still very close zero, which reveal that the estimation results for activation and

dominance are very close to human evaluation, as shown in Figure 5.12.

5.4.3 Discussion

In order to investigate whether the selected acoustic features are effective for emotion

dimension estimation, first, the most relevant acoustic features were selected for each e-

motion dimensions, for Japanese and German databases as described in Chapter 4. Then,

the proposed emotion recognition system was tested using three different groups of acous-

tic features: (most relevant, not relevant, and all) acoustic features. The highest per-

formance for all emotion dimensions were achieved using the group of the most relevant

acoustic features, demonstrated by the smallest values of MAEs for both databases.

To investigate whether the proposed system improve the estimation results of emotion

dimensions, the performance of the proposed system was compared with that of the

conventional two-layer system, using two different languages Japanese and German, with

two different tasks (speaker-dependent task and multi-speaker task).
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Figure 5.18: Comparison between MAE between human evaluation and two systems’
output for multi-speaker task and Speaker-dependent task.

The results of speaker-dependent task were as follows: The MAEs for Japanese database

were 0.28, 0.19, and 0.17 for valence, activation, and dominance, respectively. Moreover,

for German database, the MAEs were 0.27, 0.17, and 0.14 for valence, activation, and

dominance, respectively. These values indicate that the error between human evalua-

tion and system outputs are very small and close to zero, which means that the estimated

values using the proposed emotion recognition system are very close to human evaluation.

However, the MAEs of multi-speaker emotion recognition task for German database,

were 0.65, 0.29, and 0.31 for valence, activation, and dominance, respectively. Figure 5.18

shows the MAEs for German database for both speaker-dependent and multi-speakers. It

clearly from this figure that the accuracy of all emotion dimensions is greatly improved

when using speaker-dependent emotion recognition. The MAE for valence dimension

decreased from 0.65 using the multi-speaker emotion recognition to 0.27 using speaker-

dependent emotion recognition, while activation decreased from 0.19 to 0.17, and the

dominance decreased from 0.17 to 0.14, the great improvement was for the valence di-

mension.
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5.5 Summary

The aim of this chapter is to investigate whether the following assumptions are satisfied

or not: (1) whether the selected acoustic features using the feature selection method are

effective for predicting emotion dimensions? (2) whether the proposed emotion recognition

system improve the estimation accuracy of emotion dimensions (valence, activation, and

dominance) comparing with the conventional two-layer system?

First, the most relevant acoustic features were selected for each emotion dimensions,

for Japanese and German databases as described in Chapter 4. Then, the proposed

emotion recognition system was tested using three different groups of acoustic features:

(most relevant, not relevant, and all) acoustic features. The results revel that the best

performance for all emotion dimensions were achieved using the selected acoustic features

for both databases.

Furthermore, the performance of the proposed system was compared with that of the

conventional two-layer system, using two different languages Japanese and German, with

two different tasks (speaker-dependent task and multi-speaker task). The results reveal

that the proposed three-layer emotion recognition system is effective and gives the best

results for all emotion dimensions for both speaker-dependent and multi-speaker task.

However, for both language databases, the highest performance achieved for speaker-

dependent task, demonstrated by the very small values of MAEs for all emotion dimen-

sions.
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Chapter 6

Cross-lingual Speech Emotion

Recognition System
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6.1 Introduction

Speech is the most natural and important means of human-human communication in

our daily life, when we use the same language. Even without the understanding of one

language, we can still judge the expressive content of a voice, such as emotions. An

interesting question to ask is whether emotional states can be recognized universally or

not. Several studies have indeed shown evidence for certain universal attributes for both

speech [7, 46] and music [83, 60], not only among individuals of the same culture, but

also across cultures. Therefore, it is interesting to build an automatic speech-emotion

recognition system that has the ability to detect the emotional state regardless of the

input language.

Most of the previous studies for automatic speech emotion recognition were based

on detecting the emotional state working on mono-language, i.e. training and testing

the automatic emotion recognition system using only one language database. However,

in order to develop a generalized emotion recognition system, the performance of these

systems must be analyzed in mono-language as well as cross-language. The ultimate goal

of this chapter is to construct a cross-lingual emotion recognition system that has the

ability to estimate emotion dimensions for one language by training the system using

another language. Therefore, the question we try to answer in this chapter is; whether

our proposed automatic emotion recognition system described in Chapter 4 is able to

estimate emotion dimensions valence, activation, dominance cross-lingually?

6.2 Cross-language emotion recognition system

In order to accomplish this task, we follow these steps: firstly, a variety of acoustic features

were extracted for two different language databases: Japanese and German language, as

described in Chapter 2. Then, the proposed feature selection method was used to select

the most relevant acoustic features for each emotion dimension for the two databases as

described in Chapter 4. In this chapter, we investigate whether the two databases share
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some common acoustic features and semantic primitives which allow us to estimate e-

motion dimensions cross-lingually as described in Section 6.2.1. Then, a cross-language

speech emotion recognition system based on the three-layer model was constructed, the

input of this system are the common acoustic features between the two languages as pre-

sented in Section 6.2.2. Finally, the proposed cross-language emotion recognition system

was validated by training the system using one language and testing using the second

language as introduced in Section 6.3. For instance, to estimate emotion dimensions

for Japanese from German, the acoustic features, semantic primitives, and emotion di-

mensions for German database were used to train the proposed cross-language emotion

recognition system, then the trained system is used to estimate emotion dimensions for

the Japanese database, and vice versa. To avoid multi-speaker variation, the proposed

system is trained using all utterances for one speaker from one language, and tested using

utterances for another speaker from the second language.

6.2.1 Feature selection for the cross-language emotion recogni-

tion system

This section investigates whether their are some common acoustic features and semantic

primitives for the two languages. Therefore, a perceptual three-layer model was con-

structed for each emotion dimension in case of cross-language. To construct this model,

a perceptual three-layer model was constructed for each emotion dimension individual-

ly for both language, then the common acoustic features between each model for the

two languages were selected to constitute the bottom layer for the cross-language per-

ceptual model. Moreover, the common semantic primitives between each model for the

two-languages were selected, to constitute the middle layer for the cross-language model.

6.2.1.1 Acoustic feature and semantic primitives selection

Using feature selection method described in Chapter 4, firstly, the most relevant semantic

primitives were selected for each emotion dimension. Secondly, the most relevant acoustic
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features for each semantic primitive were selected. Finally, a perceptual three-layer model

was constructed for each emotion dimension as follows: the emotion dimensions in the

top layer, and the most relevant semantic primitives for this dimension are in the middle

layer, while the relevant acoustic features are in the bottom layer. Fig. 6.1 illustrates

the valence perceptual models for Japanese and German database, respectively, where the

solid lines in this figure represent a positive correlation, and the dashed ones indicate a

negative correlation. The thickness of each line indicates the strength of the correlation;

the thicker the line is, the higher the correlation.

(a) Japanese database.

(b) German database.

Figure 6.1: The perceptual three-layer model for valence.

The valence perceptual model for German and Japanese language are compared as

follows: For both languages, the valence dimension is found to be positively correlated

with Bright, High and Clear semantic primitives, while it is negatively correlated with

Dark, Low, and Heavy semantic primitives. Therefore, the two languages not only share
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Table 6.1: The elements in the perceptual three-layer model for Valence dimensions for
cross-language emotion recognition system, using Japanese and German language, the
first indicate the position of the layer in the model, the second column is the elements in
each layer, the third is the number of elements in each layer

Layer Elements in each layer Number
Top layer Valence 1
Middle Layer Bright, Dark, High, Low, Heavy, Clear 6
Bottom Layer MH A, MH E, MH O, F0 RS, F0 HP, PW R 6

six semantic primitives but also share similar correlations between the emotion dimensions

and the corresponding semantic primitives.

In addition, comparing the relationship between semantic primitives and acoustic fea-

tures, it is found that the six semantic primitives that were shared by both German and

Japanese have a similar correlations with six common acoustic features (MH A, MH E,

MH O, F0 RS, F0 HP, and PW R). This finding suggests the possibility of some type

of universality of acoustic cues associated with semantic primitives. Therefore, the pro-

posed method can be used effectively to select the most relevant acoustic features for each

emotion dimension regardless the used language.

Using these common acoustic features and semantic primitives for valence dimen-

sion, we can easily build the valence perceptual model for the cross-language mode. The

elements in each layer for the cross-language perceptual three-layer model for valence di-

mension are listed in Table 6.1 as follow: valence dimension in the top layer, six common

semantic primitives in the middle layer, and six common acoustic features in the bottom

layer.

6.2.2 The proposed cross-language speech emotion recognition

system

In the previous section a cross-language perceptual three-layer model were constructed

for each emotion dimension, by selecting the common acoustic features and the common

semantic primitives between the two languages. This section introduces the proposed

cross-language emotion recognition system using a bottom-up method for the perceptual
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models which were constructed in the previous section.

Figure 6.2 shows the block diagram of the proposed cross-language emotion recog-

nition system for estimating the valence dimension. To estimate the valence dimension

the following steps are preformed: estimating values of the six semantic primitives in

the middle layer from the six acoustic features in the bottom layer using six FISs one

for estimating each semantic primitive, as shown in Fig. 6.2. In addition, one FIS was

needed to estimate the value of the valence dimension from the six estimated semantic

primitives. In a similar way, the activation and dominance can be estimated using FIS

for each semantic primitive, and one FIS for the activation and dominance, respectively.

Figure 6.2: Block diagram of the proposed cross-language emotion recognition system for
estimating valence dimension.

6.3 System Evaluation

The aim of this chapter, is to investigate whether an automatic emotion recognition

system trained using one language has the ability to detect the emotion dimension from
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another languages. To accomplish this task, the common acoustic features and semantic

primitives between Japanese and German databases were investigated, as explained in

section 6.2.1. For example, in the case of the valence dimension, it was found that their

were six common acoustic features and also six common semantic primitives for both

databases. These acoustic features were used as input to the proposed system, as shown

in Fig. 6.2.

To estimate emotion dimensions for Japanese language from German language, the

proposed cross-language emotion recognition system is trained using the acoustic features,

semantic primitives, and emotion dimensions for the German language. Then, the acoustic

features for Japanese language are used as an input to the trained system to estimate

emotion dimensions for Japanese language, and vice-versa. The mean absolute error

MAE between the predicted values of emotion dimensions and the corresponding average

value given by human subjects is used as a metric of the discrimination associated with

each case. The MAE is calculated according to the following equation

MAE(j) =

∑N
i=1|x̂

(j)
i − x

(j)
i |

N
(6.1)

where j ∈ {V alence, Activation,Dominance}, x̂(j)
i is output of the emotion recognition

system, and x
(j)
i is the values evaluated by the human subjects.

The results of estimating emotion dimensions using the cross-language emotion recog-

nition system were compared with those of the mono-language emotion recognition system

evaluated in Chapter 5. Section 6.3.1 explains the results of estimating Japanese emo-

tion dimensions from a trained cross-language emotion recognition system using German

database, while Section 6.3.2 presents the results of estimating German emotion dimen-

sions from a trained cross-language emotion recognition system using German database.

To avoid the multi-speaker variation, the evaluation of cross-language emotion recognition

system was conducted by training the system using one speaker from one language, and

testing the system using one speaker from the other language.
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6.3.1 Japanese emotion dimensions estimation from German

database

For estimating Japanese emotion dimensions from German database, the cross-language

emotion recognition system was trained 10 times, one for each German speaker. More-

over, the Japanese database was tested 10 times, one time for each German speaker.

For a comparative analysis of the performance of the proposed cross-language emotion

recognition system, the results were compared with those of the mono-language emotion

recognition system, which was trained and tested using the Japanese database. The mean

absolute error MAE for all emotion dimensions, for the mono-language (Japanese-from-

Japanese) emotion recognition system and the cross-language (Japanese-from-German)

emotion recognition system are illustrated in Figures 6.3(a), 6.3(b), and 6.3(c). These

figures show that the MAEs between human evaluation and estimated emotion dimension-

s from the 10 German speakers as well as the MAEs for estimating emotion dimensions

from Japanese database.

From Figures 6.3(a) and 6.3(b) it is clearly that the estimation of valence and activa-

tion dimension from 10 German speakers were very close to the estimation from Japanese

database except in three different speakers M10, M12, and M15, the difference between

MAE were the highest. Therefore, we can conclude that using the cross-language emo-

tion recognition system the MAE is increased for estimating Japanese emotion dimensions,

however this increment were very small.

Finally, in order to determine the over all estimation for the whole estimation from all

German speakers, each utterance in the Japanese database is estimated 10 times for each

emotion dimensions (valence, activation, and dominance), one from each German speaker.

For each emotion dimension, the average value from the 10 estimations was calculated for

each utterance. Moreover, the MAEs for the average Japanese emotion dimensions from

all German speakers were determined and the results are presented in Figure 6.4. From

this figure, the increment of the MAE for estimating Japanese emotion dimensions from

German database is as follows: the MAE for valence increased from 0.28 using the mono-
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(a) Valence.
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(b) Activation.
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(c) Dominance.

Figure 6.3: Mean absolute error (MAE) for estimating Japanese emotion dimensions (va-
lence, activation, and dominance) using (1) a mono-language emotion recognition system
trained using Japanese database and (2) a cross-language emotion recognition system
trained using 10 German speakers individually.
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language emotion recognition system to 0.41 using the cross-language emotion recognition

system, the MAE for activation increased from 0.19 to 0.32, and for dominance increased

from 0.17 to 0.42. In all cases, the mean absolute error of emotion dimensions increased,

however these increments do not constitute a large difference. Therefore, we can conclude

that the cross-language emotion recognition system that trained using German database

has the ability to estimate Japanese emotion dimensions as good as using the Japanese

language for training the system.
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Figure 6.4: Mean absolute error (MAE) for (1) the estimated values of emotion dimensions
using mono-language emotion recognition system trained using Japanese database and
(2) the average of estimated values of emotion dimensions using cross-language emotion
recognition system.

6.3.2 German emotion dimensions estimation from Japanese

database

On the other hand, in order to estimate German emotion dimensions from Japanese

database, a cross-language emotion recognition system was constructed and trained using

Japanese database. This system was tested using the utterances from German database,

for each German speaker individually.
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(b) Activation.
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(c) Dominance.

Figure 6.5: Mean absolute error (MAE) for estimating German emotion dimensions
(valence, activation, and dominance) for 10 German speakers individually using: (1) a
mono-language emotion recognition system trained using each German speaker dataset
individually and (2) a cross-language emotion recognition system trained using Japanese
database.
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Figures 6.5(a), 6.5(b), and 6.5(c) show the MAEs for estimating German emotion

dimensions (valence, activation, and dominance) for 10 German speakers, using mono-

language emotion recognition system and cross-language emotion recognition system. The

results for each speaker individually revel that the estimation using the cross-language

system were close to the estimation using mono-language system for all speakers.

The combination of all speaker utterances constitute the whole German database. The

MAE for emotion dimensions estimation of the whole database using the cross-language

emotion recognition system was calculated and compared with the estimation of emotion

dimensions using the mono-language emotion recognition system, as shown in Figure 6.6.
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Figure 6.6: Mean absolute error (MAE) for estimating emotion dimensions using: (1) a
mono-language emotion recognition system trained using each all German speakers and
(2) a cross-language emotion recognition system trained using Japanese database.

From this figure, the difference between MAE for estimating German emotion di-

mensions using the mono-language emotion recognition system and the cross-language

emotion recognition system is as follows: The MAE for valence is unchanged for both

mono-language and cross-language system, the MAE for activation increases from 0.17

using the mono-language emotion recognition system to 0.30 using the cross-language e-

motion recognition system, and the MAE for dominance increases from 0.14 to 0.34. In
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cases of the activation and dominance, the mean absolute error of the emotion dimension

increases, however these increments do not constitute a large difference.

These results revel that our cross-language emotion recognition system trained using

Japanese database has the ability to estimate German emotion dimensions with a little

bit higher error than the estimation using the mono-language emotion recognition system.

Therefore, we can conclude that the emotion dimension for the German database can be

detected from a speech emotion recognition system trained with the Japanese database

with a small error.

6.4 Summary

The aim of this chapter is to investigate whether emotion dimensions (valence, activation,

and dominance) can be estimated cross-lingually or not? In order to accomplish this task,

we work with two language databases Japanese and German language. First, we inves-

tigate whether their are common acoustic features between the two languages. Second,

we construct a cross-language emotion recognition system based on human perception

three-layer model to accurately estimate emotion dimensions.

For both languages, our proposed feature selection method was used to select the most

relevant acoustic features for each emotion dimension. Then, we investigate whether the

two databases share some common acoustic features and semantic primitives which al-

low us to estimate emotion dimensions cross-lingually. For each emotion dimension, it

was found many acoustic features and semantic primitives were shared by both database.

These common acoustic features and semantic primitives allow us to construct our pro-

posed cross-language emotion recognition system based on the three-layer model. The

input of this system are the common acoustic features and the outputs are the estimated

emotion dimensions: valence, activation, and dominance.

For estimating emotion dimensions, the proposed cross-language emotion recognition

system was trained using one language and testing using the second language. For in-

stance, Japanese emotion dimensions were estimated form German database by train-
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ing the system using acoustic features, semantic primitives, and emotion dimensions for

each German speaker dataset individually, then the trained system was used to estimate

Japanese emotion dimensions using Japanese acoustic features as inputs, in a similar way

the German emotion dimensions were estimated from Japanese database.

These results revel that our cross-language emotion recognition system trained us-

ing one language database has the ability to estimate emotion dimensions for the other

language database as good as the estimation using the mono-language emotion recogni-

tion system. Therefor, our assumption that emotion dimensions can be estimated cross-

lingually is confirmed i.e. values of emotion dimensions for Japanese language can be esti-

mated from a cross-language emotion recognition system trained with German database,

and vice-versa.
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Chapter 7

Mapping the estimated emotion

dimensions into emotion categories
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7.1 Introduction

Emotion dimensions and emotion categories are closely related, i.e. by detecting the

emotional content using one of these two approaches, we can infer its equivalents in the

other scheme. Using the dimensional approach, emotion categories are represented by

regions in an n-dimensional space, for example, in the two-dimensional space valence-

activation, happy is represented by a region which lies in the first quarter, in which

valence is positive, and activation/arousal is high as shown in Figure 7.1.

Figure 7.1: Basic emotions are marked as areas within the Valence-Arousal space.

For instance, if an utterance is estimated with positive valence and high activation it

could be inferred as Happy, and vice versa. Thus, we can easily map emotion categories

into the dimensional space and vice, versa. Therefore, any improvement in dimensional

approach will leading to an improvement in the categorical approach. In this chapter,

we investigate whether using the estimated emotion dimensions as inputs to the emotion

recognition classifier will improve the categorical classification or not.

Gaussian Mixture Model (GMM) traditional used for classifying emotion category by

mapping acoustic features to emotion category as show in Figure 7.2(a). However, in this
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chapter the estimated values of emotion dimensions (valence, activation, and dominance)

were used as inputs for GMM to predict the corresponding emotional category as show

in Figure 7.2(b).

(a) Using acoustic features for emotion classification

(b) Using estimated emotion dimensions for emotion classification

Figure 7.2: Emotion classification using Gaussian Mixture Model (GMM) as classifier and
the input are as follows: (a) acoustic features (b) estimated emotion dimensions.

To measure the improvement for the proposed method, we compared the classifications

into emotion categories using (1) acoustic features directly, with the classification using

(2) the estimated values of emotion dimensions.

7.2 Classification into emotion categories

Gaussian Mixture Model GMM classifier was widely used for emotion classification from

acoustic features into emotion categories. In this study GMM was used to detect the emo-

tion category but not from the acoustic features instead the estimated emotion dimensions

were used as the input for the emotion recognition system based on GMM. Figure 7.3

shows the used procedure for classifying emotion categories by mapping acoustic features

and estimated emotion dimensions into emotion categories.
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Figure 7.3: Emotion classification using acoustic features directly and estimated emotion
dimensions.

The most relevant acoustic features which were used for estimating emotion dimensions

as described in Chapter 5, were used to predict the emotional categories using GMM

for the two databases. However, in order to predict the emotional categories using the

proposed method, the most relevant acoustic features for each emotion dimensions were

used to estimate semantic primitives using FIS, then the estimated semantic primitives

were used to estimate emotion diminutions using FIS, finally, GMM is used to map the

values of emotion dimensions to the corresponding emotion category.
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Table 7.1: Classification results for Japanese database.

(a) Mapping acoustic features directly to emotion categories using GMM classifier
(Ave. 53.9%)

Neutral Joy Cold Anger Sad Hot Anger
Neutral 30.0% 15.0% 45.0% 5.0% 5.0%
Joy 2.5% 40.0% 12.5% 2.5% 42.5%
Cold Anger 7.7% 12.8% 71.8% 5.1% 2.6%
Sad 0.0% 7.5% 12.5% 77.5% 2.5%
Hot Anger 2.5% 45.0% 2.5% 0.0% 50.0%

(b) Mapping the estimated emotion dimensions for speaker-dependent task to emotion
categories using GMM classifier (Ave. 94.0%)

Neutral Joy Cold Anger Sad Hot Anger
Neutral 80.0% 10.0% 5.0% 5.0% 0.0%
Joy 0.0% 97.5% 2.5% 0.0% 0.0%
Cold Anger 0.0% 0.0% 100.0% 0.0% 0.0%
Sad 0.0% 0.0% 0.0% 100.0% 0.0%
Hot Anger 0.0% 2.5% 5.0% 0.0% 92.5%

(c) Evaluation using listening test experiment by human subjects, from the work of
Huang et al. [33] (Ave. 92.0%).

Neutral Joy Cold Anger Sad Hot Anger
Neutral 98.0% 0.0% 2.0% 0.0% 0.0%
Joy 12.0% 87.0% 1.0% 0.0% 0.0%
Cold Anger 10.0% 0.0% 86.0% 4.0% 0.0%
Sad 5.0% 0.0% 3.0% 92.0% 0.0%
Hot Anger 1.0% 0.0% 2.0% 0.0% 97.0%

7.2.1 Classification for Japanese Database

For the Japanese database, first, the acoustic features were used as input to train the

GMM classifier to classify the Japanese database into five categories: Neutral, Joy, Hot

Anger, Sadness, and Cold Anger. Moreover, the estimated values of emotion dimensions

were used as input to train GMM to classify the values of every point in the space Valence-

Activation-Dominance into one emotion category.

The confusion matrix of the results is shown in Table 7.1(a) for mapping acoustic

features into categories and in Table 7.1(b) for mapping values of emotion dimensions

into emotion categories. In these tables, the numbers are the percentages of recognized

utterances of the category in the top line versus the number of utterances for emotions in

the left column.
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Sad and cold anger achieved the best recognition results both of them achieved 100%.

The classification error was highest for neutral, joy, and hot anger using the categorical

approach. In contrast, joy and neutral achieved the highest improvement, neutral in-

creased from 30% using the categorical approach to 80% using the dimensional approach,

moreover, joy rate increased from 40% to 97.5%.

Tables 7.1(b) and 7.1(c) show the classification rate for the proposed emotion recogni-

tion system and the human evaluation using a listening test. From the listening test [33],

as shown in Table 7.1(c): neutral and hot anger achieved the best recognition rate they

achieve 98% and 97%, respectively, however, these two categories achieved 80%, 92.5%

using the proposed system. The overall classification rate using the proposed system is

close to the human perception, the results were 94% and 92% , respectively.

It can be summarized that the emotion dimensions estimation lends itself well to

emotion categorization as shown in Figure 7.4.
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Figure 7.4: Recognition rate for emotion categories (Neutral, Joy, Cold Anger, Sadness,
Hot Anger) for Japanese database using GMM classifier by mapping (1) acoustic features
and (2) the estimated emotion dimensions from the speaker-dependent task.

From this figure we can easily see that using the dimensional approach the classification

rate increased for all emotion categories. The average classification rate increased from

53.9% to 94% for categorical approach and dimensional approach, respectively.
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Table 7.2: Classification results for German database.
(a) Mapping acoustic features directly to emotion cate-
gories using GMM classifier (Ave. 60.0%)

Neutral Happy Anger Sad
Neutral 66.0% 16.0% 0.0% 18.0%
Happy 12.0% 54.0% 32.0% 2.0%
Anger 2.0% 42.0% 54.0% 2.0%
Sad 16.0% 6.0% 12.0% 66.0%

(b) Mapping the estimated emotion dimensions for multi-
speaker task to to emotion categories using GMM classifier
(Ave. 75.0%)

Neutral Happy Anger Sad
Neutral 74.0% 10.0% 4.0% 12.0%
Happy 6.0% 62.0% 32.0% 0.0%
Anger 2.0% 18.0% 80.0% 0.0%
Sad 16.0% 0.0% 0.0% 84.0%

(c) Mapping the estimated emotion dimensions for speaker-
dependent task to emotion categories using GMM classifier (Ave.
95.5%)

Neutral Happy Anger Sad
Neutral 98.0% 0.0% 2.0% 0.0%
Happy 0.0% 94.0% 6.0% 0.0%
Anger 0.0% 8.0% 92.0% 0.0%
Sad 2.0% 0.0% 0.0% 98.0%

(d) Using speaker-dependent emotion recognition using probabilistic neu-
ral network, from the work of Iliou et al. [36] (Ave. 94.8%).

Neutral Happy Anger Sad Others
Neutral 92.4.0% 0.0% 0.0% 1.3 % 6.3 %
Happy 0.0% 93.0% 0.0% 0.0% 7.0%
Anger 0.8% 0.8% 95.2% 0.0% 3.2%
Sad 1.60% 0.0% 0.0% 98.4% 0.0%

7.2.2 Classification for German Database

In order to investigate the speaker-dependency impact on emotion classification, German

database was used because it is a multi-speaker database. Therefore, we applied the

classification from estimated emotion dimensions to both the individual speakers of the

German database (speaker-dependent task) and the combined set of all sentences across

all speakers in the database (multi-speaker task).

The results of classification of the German database into four categories (Neutral,

Happy, Angry, and Sad) are as follows: the confusion matrix of the results is shown in
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Table 7.2(a) for mapping acoustic feature into categories, Table 7.2(b) for mapping

emotion dimensions into categories for multi-speaker estimation, and Table 7.2(c) for

mapping emotion dimensions into categories for speaker-dependent estimation.

From these tables, we can conclude that the recognition rate increased of all emotion

categories when using the estimated emotion dimensions instead of acoustic features di-

rectly. Happy and anger achieved the highest improvement, happy increased from 54%

using the categorical approach to 94% using emotion dimensions form speaker-dependent

task, moreover, anger rate increased from 54% to 92%. The reason for these improvement

for happy and anger classification rate was due to the high performance for the valence

dimension using the proposed approach.

Tables 7.2(c) and 7.2(d) show the classification rate for the proposed system and the

probabilistic neural network [36], respectively, for speaker-dependent task. As can seen

from these tables that, the classification rate for the two systems were very close for all

emotion categories. Moreover, the overall classification rate using the proposed system is

very close to those of the probabilistic neural network, the results were 95.5% and 94.8%,

respectively.

Figure 7.5 shows the improvement for each emotion categories for German database.

It is clearly that using the dimensional approach the classification rate increased for all

emotion categories. The average classification rate are as follows: 60%, 75%, and 95.5%

form acoustic features, estimated emotion dimensions using the multi-speaker task, and

speaker-dependent task, respectively. The best recognition rate was achieved for the

speaker-dependent task. This result is consistent with most of previous studies indicating

that speaker-dependent training of the estimator achieves the most accurate emotion

classification results.

7.3 Discussion

In this chapter we investigate whether the estimated emotion dimensions valence, acti-

vation, and dominance can be used to improve emotion classification for categorical ap-
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Figure 7.5: Recognition rate for emotion categories (Neutral, Happy, Angry, Sad) for
German database using GMM classifier by mapping (1) acoustic features, (2) the esti-
mated emotion dimensions from the multi-speaker task, and (3) the estimated emotion
dimensions from the speaker-dependent task.

proach. The performance of the proposed emotion recognition system greatly improved

when using the dimensional approach for both language databases. These improvement

in the dimensional representation can be reflected to the categorical representation by

mapping the estimated emotion dimensions into emotion categories.

To accomplish this task, the estimated emotion dimensions were mapped using Gaus-

sian Mixture Model (GMM) into emotion categories as follows: for Japanese database

GMM was used to map the emotion dimensions to emotion categories (Neutral, Joy,

Cold-Anger, Sadness, Hot Anger), and in German database, GMM was used to map

emotion dimensions to the emotion categories (Neutral, Joy, Anger, Sadness).

The results for speaker-dependent task were as follows: in case of Japanese database;

sad and cold anger achieved the best recognition results, they achieved 100% as shown

in Table 7.1(b). In addition, for German database, neutral and sad achieved the best

recognition rate, both of them achieved 98% as shown in Table 7.2(c). the overall recog-

nition rate for speaker-dependent task were, 94% and 95.5% for Japanese and German

database, respectively.
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However, in case of multi-speaker task for German database, sad category achieved the

highest recognition rate 84% as presented in Table 7.2(b). The over all classification rate

for multi-speaker task for German database was 75%. These, reveal that, sad is the most

easily recognized emotional category among all categories for both speaker-dependent

and multi-speaker task, for both language. The most important result is that the highest

performance achieved for speaker-dependent task, in both languages.

7.4 Summary

The aim of this chapter is to investigate whether the estimated emotion dimensions can

to improve the categorical classification or not. Therefor, the emotion dimensions values

are mapped into the given emotion categories using a GMM classifier, for Japanese and

German database. To measure the improvement of using the dimensional approach, the

classification rate of emotion categories from acoustic features directly was compared with

that of using the estimated values of emotion dimensions.

For the Japanese database, the overall recognition rate was 53.9% using direct classi-

fication using acoustic features and up to 94% using emotion dimensions. For the Ger-

man database, the rate of classification directly from acoustic features was 60%, which

was increased by up to 75% and 95.5% using emotion dimensions for multi-speaker and

speaker-dependent tasks, respectively. The result reveals that the recognition rate in

speaker-dependent tasks is higher than in multi-speaker tasks. This corresponds with

previous studies indicating that speaker-dependent training of the estimator achieves the

most accurate emotion classification results. The most important results is that, the clas-

sification using emotion dimensions instead of acoustic features improves the recognition

rate for both database.
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Chapter 8

Summary and Future Work
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This work is motivated by the long-term goal to construct an automatic speech emotion

recognition system that has the ability to accurately estimate emotion dimensions valence,

activation and dominance from a speech signal. Our focus, in the dimensional approach

is to improve the estimation results of the valence dimension. It was found in most of

the previous studies that the acoustic features related to the valence dimension are very

few, very weak and inconsistent. Due to these limitations, it was very difficult to predict

this dimension. This study investigate the answer of the following important questions

for constructing emotion recognition system:

• the first question is: what are the acoustic features relevant to emotion dimen-

sions valence, activation and dominance?

• the second question is: how to develop the model or the relationship between

acoustic features and emotion dimensions to improve the estimation results for e-

motion dimensions?

• the third question is: whether there are common acoustic features between lan-

guages? which allow us to build an automatic emotion recognition system to es-

timate emotion dimensions for one language by training the system using another

language.

Acoustic features are very important for building an automatic speech emotion recog-

nition system. They are used as an input for automatic emotion recognition system. As

far as the input more discriminative the best output results will be obtained for the sys-

tem. Most of acoustic feature selection technique were based on the correlation between

acoustic features and emotion dimensions as a two-layer model. Using the convention-

al two-layer model the activation, and dominance could be predicted with high accuracy,

while valence was poorly estimated in most of them. This problem not only for the dimen-

sional approach but also for categorical approach. For instance, some emotion categories

such as happy and angry share the same acoustic features which make it difficult for the

learning algorithm to discriminate between these emotions. This is the reasons why a-

coustic discriminate ability for valence still problematic: there are no strong discriminate
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acoustic features available to discriminate between positive (e.g., happiness) and negative

(e.g., anger), however, these emotions are usually not hard to distinguish for humans. All

these studies suggest that finding relevant features to discriminate in the valence domain

is one of the main challenges in speech emotion recognition. For all of these reasons,

our motivation in this study is to investigate the most related acoustic feature for each

emotion dimensions, especially the most challenging dimension valence.

To improve the estimation results for emotion dimensions valence, activation, and

dominance from a speech emotion recognition system, this study propose the following

assumptions:

• the first assumption is: human perception is a three-layer model not two-layer

model, therefor, constructing a speech emotion recognition system based on a three-

layer model which imitate human perception will help us to find the most related

acoustic feature to each emotion dimension, moreover, using these acoustic features

will improve the estimation accuracy for emotion dimensions valence, activation,

and dominance.

• the second one is: human has the ability to detect the emotional state of a

speaker even without understanding the language of the speaker, therefore, auto-

matic emotion recognition system could detect the emotional state regardless of the

language.

The conventional two-layer model has limited ability to find the most relevant acoustic

features for each emotion dimension, especially valence, or to improve the prediction

of emotion dimensions from acoustic features. However, this model does not imitate

human perception, this is reason behind the poor estimation of valence dimension. Human

perception is a multi-layer process as described by Scherer [79]. Huang and Akagi 2008,

assume that human perceive emotional speech not directly from a change of acoustic

features, but rather from a composite of different types of smaller perceptions that are

expressed by semantic primitives or adjectives.

In this thesis, the proposed idea to improve the prediction of emotion dimensions
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can be done by imitating the process of human perception for recognizing the emotional

state from a speech signal. Therefore, to overcome the limitations of the two-layer model,

this study proposes a three-layer model for human perception to improve the estimating

values of emotion dimensions from acoustic features. Our proposed model consists of

three layers: emotion dimensions (valence, activation, and dominance) constitute the top

layer, semantic primitives the middle layer, and acoustic features the bottom layer. A

semantic primitive layer is added between the two conventional layers acoustic features

and emotion dimensions.

The following are the details of constructing the proposed emotion recognition system

in this study:

8.1 The elements of the proposed system

In Chapter 3 the elements of the proposed three-layer emotion recognition system were

collected, ranging from the used databases, over acoustic feature extraction, to the ex-

perimental evaluation for emotion dimensions and semantic primitives using two listening

tests by human subjects. Two databases were selected to validate the proposed system

one Japanese and the other German database.

The input of our automatic emotion recognition system are the acoustic features, there-

fore, 21 acoustic features were extracted for each utterance in the two databases as initial

set of acoustic features. Semantic primitives are adjectives describing emotional voice,

this is the new layer we added between the two traditional layers: acoustic features and

emotion dimensions. 17 semantic primitives are used to represent the new layer as follow:

(Bright, Dark, High, Low, Strong, Weak, Calm, Unstable, Well-modulated, Monotonous,

Heavy, Clear, Noisy, Quiet, Sharp, Fast, and Slow). Three emotion dimensions (valence,

activation, and dominance) are constitute the top layer which are the final outputs for

the proposed system.

In order to build the perceptual model for each dimension, two listening experiments

were conducted to evaluate all elements of the semantic primitive layer and emotion
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dimensions layer, for the two databases. Finally, inter-rater agreement was preformed in

order to obtain a reliable data by excluding the subjects who have very low correlation

coefficient among all subjects.

8.2 Selecting the most relevant features for each e-

motion dimension

The first half of Chapter 4 attempt to answer the first question of this study; what are the

most relevant acoustic features for each emotion dimension? Based on the first assumption

of this study, we assume that the acoustic features that are highly correlated with semantic

primitives will have a large impact for predicting values of emotion dimensions, especially

for valence. Therefore, a top-down feature selection method was proposed to select the

most related acoustic features based on the three-layer model. By firstly, selecting the

highly correlated semantic primitives for emotion dimension, then selecting the set of

all acoustic features which are highly correlated with the selected semantic. The set of

selected acoustic features are considered the most related to the emotion dimension in the

top layer.

Having identified the most relevant acoustic features and semantic primitives for each

emotion dimension, a perceptual three-layer model was constructed for each emotion

dimension. The perceptual three-layer model for each emotion dimensions consists of:

the desired emotion dimension in the top layer, the most relevant semantic primitives in

the middle layer, the most relevant acoustic features in the bottom layer.

The most important result is that, using the proposed three-layer model for feature

selection, the number of relevant acoustic features to emotion dimensions increases. For

example, the number of relevant features for the most difficult dimension valence increases

from one using the conventional method to nine using the proposed method. Moreover,

the number of features increased from eight to nine for activation and from eight to ten

for dominance.
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The proposed three-layer model based on human perception assumption allow us to

find a set of acoustic features for each emotion dimension, especially for valence which was

the most difficult dimension. Therefore, the three-layer model outperform the traditional

two-layer model for selecting acoustic feature.

8.3 System Implementation

The second half of Chapter 4, tried to improve the exciting emotion recognition system in

order to accurately estimate emotion dimensions from acoustic features. The constructed

perceptual three-layer model for each emotion dimension was used to improve emotion

dimensions estimation using a bottom-up method. The bottom-up method imitating

human perception process for estimate emotion dimensions. This method was used to

construct our emotion recognition system as follows: the input of the proposed system

are the acoustic features in the bottom layer, the output of are the emotion dimensions

valence, activation, and dominance. Fuzzy inference system FIS was used to connect

the elements of the proposed system. Firstly one FIS was used to estimate each semantic

primitive in the middle layer form the acoustic features in the bottom layer. Then one FIS

was used to estimate each emotion dimensions from the estimated semantic primitives.

8.4 System Evaluation

Chapter 5 investigate whether the first assumption is satisfied or not. Therefor, we try

to answer the following two questions: whether the selected acoustic features are effective

for predicting emotion dimensions? second, whether the proposed emotion recognition

system improve the estimation accuracy of emotion dimensions (valence, activation, and

dominance) or not?

In order to assess the performance of the proposed system, mean absolute error (MAE)

is used to measure the distance between the estimated dimensions by the proposed system

and the evaluated emotion dimensions by human listeners. The smaller MAE the closer
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estimated value to the human evaluation.

To investigate the first question, the most relevant acoustic features for each emotion

dimension, which was selected using the feature selection method, were used as inputs

of the proposed emotion recognition system, to estimate values of emotion dimensions.

Then, the estimation results of emotion dimensions are compared with those of estimation

using the non-relevant acoustic features and all acoustic features. For both databases, the

results reveal that, the MAEs by using the selected acoustic features group as an inputs

to the proposed emotion recognition system were the smallest compared with the other

two of groups features, these results indicate that, the selected acoustic features improve

the prediction of all emotion dimensions.

Furthermore, to investigate the second question which mean is how effectively our

proposed system improve emotion dimensions estimation. Therefore, the performance

of the proposed system was compared with that of the conventional two-layer system,

using two different languages Japanese and German, with two different tasks (speaker-

dependent task and multi-speaker task).

To accomplish these tasks, two emotion recognition system were constructed the first

system was constructed based on the proposed approach and the other based on the

conventional approach. The selected acoustic features group was used as input for both

the proposed system and the conventional system. The proposed system was constructed

based on the three-layer model of human perception as follows: one FIS was used to

estimate each semantic primitive from the selected acoustic features, then one FIS was

used to estimate each emotion dimension from the estimated semantic primitives. For

constructing the conventional system which based on the two-layer model, one FIS was

used to estimate each emotion dimension from the selected acoustic features directly.

For both Japanese and German database, The MAEs for all dimensions were very

small which indicate that the proposed three-layer system is effective and gives the best

results for all emotion dimensions (valence, activation, and dominance) for both speaker-

dependent and multi-speaker task. However, the MAEs for the multi-speakers task were

higher than those for the speaker-dependent task.
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For German and Japanese databases, the overall best result is achieved for all emo-

tion dimensions using speaker-dependent task. These results suggest that the valence

dimension estimation is speaker dependent, while activation and dominance is may be s-

peaker independent. The multi-speaker variation have a great effect for valence dimension

estimation results.

Therefore, from this study it was evident that the valence dimension estimation is

improved by using the proposed model. Therefore, the most important results is that the

proposed automatic speech emotion recognition system based on the three-layer model

for human perception was superior to the conventional two-layer system.

8.5 Cross-language emotion recognition System

Most of the previous studies for automatic speech emotion recognition were based on

detecting the emotional state working on mono-language, i.e. training and testing the

automatic emotion recognition system using only one language database. However, in

order to develop a generalized emotion recognition system, the performance of these sys-

tems must be analyzed in mono-language as well as cross-language. The goal of Chapter

6, is to construct a cross-lingual emotion recognition system that has the ability to esti-

mate emotion dimensions for one language by training the system using another language.

Therefore, the question we try to answer the third question in this study, whether there

are common acoustic features between two languages? which allow us to build an au-

tomatic emotion recognition system to estimate emotion dimensions for one language

by training the system using another language. Therefore, we investigate whether our

proposed automatic emotion recognition system is able to estimate emotion dimensions

valence, activation, dominance cross-lingually?

To accomplish this task, first, we investigate whether their are common acoustic fea-

tures between the two languages. Second, we construct a cross-language emotion recogni-

tion system based on human perception three-layer model to accurately estimate emotion

dimensions.
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For both languages, our proposed feature selection method was used to select the

most relevant acoustic features for each emotion dimension. For each emotion dimension,

it was found that many acoustic features and semantic primitives were shared by both

database. These common acoustic features and semantic primitives allow us to construct

our proposed cross-language emotion recognition system based on the three-layer model.

The input of this system are the common acoustic features and the outputs are the

estimated emotion dimensions: valence, activation, and dominance.

For estimating emotion dimensions, the proposed cross-language emotion recognition

system was trained using one language and testing using the second language. For in-

stance, Japanese emotion dimensions were estimated form German database by train-

ing the system using acoustic features, semantic primitives, and emotion dimensions for

each German speaker dataset individually, then the trained system was used to estimate

Japanese emotion dimensions using Japanese acoustic features as inputs, in a similar way

the German emotion dimensions were estimated from Japanese database.

These results revel that our cross-language emotion recognition system trained us-

ing one language database has the ability to estimate emotion dimensions for the other

language database as good as the estimation using the mono-language emotion recogni-

tion system. Therefor, our assumption that emotion dimensions can be estimated cross-

lingually is confirmed i.e. values of emotion dimensions for Japanese language can be esti-

mated from a cross-language emotion recognition system trained with German database,

and vice-versa.

8.6 Mapping estimated emotion dimensions into e-

motion categories

Emotion dimensions and emotion categories are closely related, i.e. by detecting the

emotional content using one of these two approaches, we can infer its equivalents in the

other scheme. For instance, if an utterance is estimated with positive valence and high
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activation it could be inferred as Happy, and vice versa. Thus, we can easily map emotion

categories into the dimensional space and vice, versa. Therefore, any improvement in

dimensional approach will leading to an improvement in the categorical approach.

Chapter 7 investigates whether the estimated emotion dimensions can be used as

inputs to the emotion recognition classifier to improve the categorical classification or not.

Therefor, the emotion dimensions values are mapped into the given emotion categories

using a GMM classifier. For Japanese and German database used in this study, the results

of classifying into emotion categories using acoustic features directly and the estimated

values of emotion dimensions was compared to measure the improvement of using the

dimensional approach.

For the Japanese database, the overall recognition rate was 53.9% using direct classi-

fication using acoustic features and up to 94% using emotion dimensions. For the Ger-

man database, the rate of classification directly from acoustic features was 60%, which

was increased by up to 75% and 95.5% using emotion dimensions for multi-speaker and

speaker-dependent tasks, respectively. The result reveals that the recognition rate in

speaker-dependent tasks is higher than in multi-speaker tasks. The most important results

is that, the classification using emotion dimensions instead of acoustic features improves

the recognition rate for both database.

8.7 Contributions

Compared with the conventional approach for feature selection, the proposed approach

take into account human perception which helps us,

• to find the many acoustic features related to the valence dimension, which the most

challenging dimension in all previous study, as well as to find new acoustic features

for activation and dominance.

• to improve the estimation results of emotion dimensions especially valence dimen-

sion, using the acoustic features determined by this approach. Moreover, to improve
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the activation and dominance dimensions.

• to investigate the common acoustic features related to emotion dimensions among

different language (German/Japanese).

• to construct a cross-language emotion recognition system to estimate emotion di-

mensions cross-lingually, using the common acoustic features between the two lan-

guages selected by the proposed approach.

8.8 Future Work

In the future my focus is on emotional speech modification. The question I try to answer

how neutral speech should be modified in order to perceived as emotional speech. In

other words, we investigate the speech acoustic features that are effective for perception

of emotions, and propose an emotion modification model to transform neutral speech into

emotional speech. The modification can be achieved by modifying acoustic features ac-

cording the relationship between the acoustic feature and emotion dimensions. Using the

dimensional approach for modification will make the emotional state of the transformed

speech more natural. The proposed acoustic feature selection method can be used to find

the most related acoustic feature for each emotional state. The immediate application,

for the proposed neutral to emotion transformation system can be used in the field of

text-to-speech (TTS) synthesis.
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