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Efficiency and Optimality of 2-period Limit Cycle Walking

Fumihiko Asano

School of Information Science, Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa 923-1292, JAPAN, e-mail: fasano@jaist.ac.jp

Abstract

This paper investigates the efficiency of a 2-period gait from the kinetic energy view-point. First,

we formulate a steady 2-period gait for a compass-like bipedal robot by using a simple recurrence

formula for the kinetic energy of an asymmetric rimless wheel. Second, we theoretically show that,

in the case that the mean value of the hip angle is constant, the generated 2-period steady gait

is less efficient than a 1-period symmetric one in terms of kinetic energy. We also show that the

symmetric gait is not always optimal from another viewpoint. We then extend the analysis to biped

walking and investigate the validity of the derived method through numerical simulations of virtual

passive dynamic walking.

keywords: Limit cycle walking, 2-period gait, kinetic energy, efficiency, rimless wheel

1 Introduction

Limit cycle walkers based on the robot’s own passive dynamics are good examples of efficient bipedal

locomotion. Since McGeer’s passive dynamic walking (PDW) [1], many follow-on studies have been

undertaken all over the world. One of the major interests is achieving efficient level dynamic walking

with small actuators. The authors have proposed several methods for generating efficient bipedal gaits.

Among them, virtual passive dynamic walking (VPDW) [2] and parametrically excited walking [3] are

the major examples.

Studies on PDW as a nonlinear hybrid dynamical system have also been conducted. Nonlinear

phenomena in PDW are very complicated, and their investigation has proceeded with difficulty for the

last decade. The most interesting phenomenon that passive-dynamic walkers exhibit is the period-

doubling bifurcation and chaotic behavior discovered by Goswami et al. They discovered a period-

doubling bifurcation in a passive gait on a gentle slope and numerically showed that a compass-like

biped robot exhibits period-doubling bifurcation by changing the walking system’s parameters such as

slope and leg-mass location [4]. After that, Garcia et al. showed that the simplest walking model and

kneed model also exhibit period-doubling bifurcation [5][6][7]. Goswami et al. [8] and Sano et al. [9]

investigated the bifurcation mechanism by using the eigenvalues of the Poincaré return map. Osuka
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and Kirihara experimentally confirmed the phenomenon [10]. In addition, controlling chaos in dynamic

gaits has been investigated. The OGY method [11] and delayed feedback control (DFC) [12] are the

major approaches to controlling or stabilizing chaos. These have been used for stabilizing a multiple

period gait into a 1-period one. Sugimoto and Osuka used DFC to stabilize a passive-dynamic gait

and generated an unstable 1-period gait [13]. Suzuki and Furuta also used the OGY method for the

stabilization [14].

As manifested by the above studies, the period-doubling bifurcation phenomenon and the properties

of multiple-period gaits in PDW have been widely studied. However, the reason why this phenomenon

emerges has not yet been discovered, and the effects that bifurcation might have on gait efficiency are

still unclear. Although the application of multiple-period or chaotic behavior to legged locomotion

control has been expected, no useful methods have been proposed to date. It is known that the hip-joint

damper can eliminate the chaotic behavior and create a 1-period limit cycle. This extends the stable

domain and does not have any advantages from an engineering standpoint. Meanwhile, the authors

observed that the efficiency of a 2-period gait grows worse rapidly after the first bifurcation point [15]

and have shown that the gait efficiency of an asymmetric gait would be low.

Based on the observations, in this paper we investigate the efficiency and optimality of a 2-period

gait in terms of the kinetic energy. The convergent kinetic energy is to be an indicator of gait efficiency.

A steady 2-period gait is formulated by using recurrence formulas of kinetic energy just before impact

of an asymmetric rimless wheel on the walking surface. This formula can specify the steady discrete

dynamics of general 2-period limit cycle walking. We then theoretically investigate the relation between

the gait efficiency and gait symmetry from a kinetic energy view-point, and mathematically derive the

optimal condition under several assumptions. The validity of the derived methods is also investigated

in a planar bipedal walking driven in accordance with the method of VPDW.

This paper is organized as follows. In Section II, we summarize the stability mechanism of a rimless

wheel. In Section III, we formulate a steady 2-period gait based on two recurrence formulas of kinetic

energy just before impact. In Section IV, the validity of the analysis is investigated through numerical

simulations of VPDW. Finally, Section V concludes this paper and describes future research directions.

2 Stability Principle of a Rimless Wheel

We first describe the stability mechanism of a rimless wheel. Since the detailed theory was already

explained in [18], we only outline it here.

Fig. 1 shows the model of a rimless wheel. Let α [rad] be the angle between the frames, and θ [rad]

be the angle with respect to vertical. We assume that the total mass, M [kg], is concentrated at the

central point and the leg frames have no mass. We also assume that 0 ≤ α ≤ π.

Let K− [J] be the kinetic energy just before impact; it satisfies the following recurrence formula:

K−[i + 1] = εK−[i] + ΔE, (1)
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Figure 1: Rimless wheel model

where i is the step number, ε [-] is the energy-loss coefficient, and ΔE [J] is the restored mechanical

energy. The energy-loss coefficient is defined as

ε :=
K+

K− , (2)

where K+ [J] is the kinetic energy just after impact. In this rimless wheel model, ε and ΔE are given

by the following equations.

ε = cos2 α (3)

ΔE = 2Mlg sin
α

2
sinφ (4)

The generated gait becomes asymptotically stable under the assumption that the next heel-strike always

occurs, and K− converges to

K−[∞] := lim
i→∞

K−[i] =
ΔE

1 − ε
. (5)

Note that ε is convex upward in the range of 0 ≤ α ≤ π/4, and ΔE is proportional to the step length.

These properties are common to the original PDW [1] and VPDW [2], and they are very important for

understanding the gait efficiency.

Since the 2-D rimless wheel model is a very simple way to reproduce the discrete walking behavior,

it has often been used for analyzing gait efficiency and robustness [16][17]. In the following, we utilize

it for representing the discrete dynamics of 2-period limit cycle walking.

3 Efficiency of an Asymmetric Rimless Wheel

3.1 Preliminaries

Fig. 2 shows the model of an asymmetric rimless wheel. Let α1 and α2 [rad] be the relative angles

between the frames. We assume the following magnitude relation:

α2 ≤ α ≤ α1, (6)
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where we also define their mean value, α [rad], as

α :=
α1 + α2

2
. (7)

Let εj be the energy-loss coefficient and ΔEj be the restored mechanical energy corresponding to the

angle αj , as follows.

εj := ε(αj) = cos2 αj (j = 1, 2) (8)

ΔE1 = 2Mlg sin
α

2
sin

(
φ +

α1 − α2

4

)
(9)

ΔE2 = 2Mlg sin
α

2
sin

(
φ − α1 − α2

4

)
(10)

Here, ΔEi were derived from the law of conservation of mechanical energy, and are given as changes in

potential energy. They satisfy the following magnitude relations.

ε1 ≤ ε ≤ ε2, ΔE2 ≤ ΔE ≤ ΔE1 (11)

Since εj is convex upward in the range of 0 ≤ αj ≤ π/4, the following magnitude relation holds:

ε ≥ ε1 + ε2

2
≥ √

ε1ε2, (12)

where the second inequality is an arithmetic and geometric means inequality. The equalities in Eq. (12)

hold when α1 = α2. On the other hand, the mean value of restored mechanical energy can be written

as follows:

ΔE1 + ΔE2

2
= 2Mlg sin

α

2
sin φ cos

α1 − α2

4
. (13)

This leads to the following magnitude relation:

ΔE ≥ ΔE1 + ΔE2

2
. (14)

The equality holds when α1 = α2.

By using the above variables, we can formulate the discrete dynamics of a rimless wheel. Let K−
j

be the kinetic energy just before an impact corresponding to the hip angle, αj . The following two

recurrence formulas hold.

K−
2 [2i + 1] = ε1K

−
1 [2i] + ΔE2 (15)

K−
1 [2i + 2] = ε2K

−
2 [2i + 1] + ΔE1 (16)

In the following, we will analyze the gait efficiency of an asymmetric rimless wheel in terms of kinetic

energy.

3.2 Optimality when α is constant

We first investigate the case in which α [rad] is constant. By substituting Eq. (15) into Eq. (16) and

eliminating K−
2 , we obtain

K−
1 [2i + 2] = ε1ε2K

−
1 [2i] + ε2ΔE2 + ΔE1. (17)
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Figure 2: Asymmetric rimless wheel model

This leads to

K−
1 [∞] =

ε2ΔE2 + ΔE1

1 − ε1ε2
. (18)

In the same way, we obtain

K−
2 [∞] =

ε1ΔE1 + ΔE2

1 − ε1ε2
. (19)

The mean value becomes

K−
m[∞] :=

1
2

(
K−

1 [∞] + K−
2 [∞]

)
=

ε1ΔE1 + ε2ΔE2 + ΔE1 + ΔE2

2(1 − ε1ε2)
. (20)

Define the mean values of Eqs. (12) and (14) as

εm :=
ε1 + ε2

2
, (21)

ΔEm :=
ΔE1 + ΔE2

2
, (22)

and consider the following magnitude relation:

εmΔEm − ε1ΔE1 + ε2ΔE2

2
=

(ε2 − ε1)(ΔE1 − ΔE2)
4

≥ 0

and the relation of arithmetic and geometric means of Eq. (12),

εm ≥ √
ε1ε2. (23)

The upper limit of Eq. (20) can then be derived as

K−
m[∞] ≤ εmΔEm + ΔEm

1 − ε2
m

=
(1 + εm)ΔEm

(1 + εm)(1 − εm)
=

ΔEm

1 − εm
. (24)

This is the upper limit of K−
m[∞] common to general 2-period gaits.

By using the two magnitude relations of Eqs. (12) and (14), the magnitude relation for K−[∞] can

be derived as follows.

K−
m[∞] ≤ ΔEm

1 − εm
≤ ΔE

1 − ε
= K−[∞] (25)
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Figure 3: 3D plot of K−
m[∞] with respect to α1 and α2

The equality holds when ΔE = ΔEm and ε = εm, and this is equivalent to α1 = α2 = α.

Fig. 3 shows the 3D plot of K−
m[∞] with respect to α1 and α2 where M = 20.0 [kg] and l = 1.0

[m]. The 3D plot was drawn with convex curves. Each curve corresponds to a given constant α

(0.10 ≤ α ≤ 0.30). We can see that the optimal solution is α1 = α2(= α) on each curve.

As α1 → 2α and α2 → 0, the generated gait becomes a symmetric 1-period gait whose recurrence

formula is

K−
1 [i + 1] = ε1K

−
1 [i] + ΔE1, (26)

where ε1 = cos2(2α) and ΔE1 = 2Mlg sinα sinφ. In this case, the convergent kinetic energy becomes

the lowest.

Based on the above discussion, we can conclude that gait efficiency grows worse as the gait changes

into a 2-period one because the step grows larger or the energy-loss coefficient becomes smaller.

The magnitude relation (Eq. (14)) holds for a dynamic bipedal gait such as PDW [1] or VPDW [2].

The relation for the energy-loss coefficient, however, does not always hold because it is affected by the

angular velocities just before impact. Except for the gait with a constraint on the impact posture [18],

the condition of Eq. (12) cannot be guaranteed.

3.3 Optimality when α1 is constant

Fig. 4 plots the contour of the 3D plot in Fig. 3 in the α1-α2 plane. We can see that the contour is

symmetric with α1 = α2. Note that the optimal solution, α1 = α2, is obtained in the case that the

mean value, α, is constant (See direction A in Fig. 4).

In the case that α1 is fixed, the optimal solution does not become α1 = α2, as one can see from

direction B in Fig. 4.
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Let α1 be constant. Partially differentiating Eq. (20) with respect to α2 yields

∂K−
m[∞]

∂α2
=

Mlg sin φ

2 (1 − cos2 α1 cos2 α2)
2 F (α2), (27)

where

F (α2) = cos
α2

2
(
1 + cos2 α2

) (
1 − cos2 α1 cos4 α2

) − 2 sin(2α1)
(
1 + cos2 α1

) (
sin

α1

2
cos2 α1 + sin

α2

2

)
.

(28)

It is not easy to find the solution of α2 for F (α2) = 0 analytically. Fig. 5 plots K−
m[∞] with respect to

α2 for five values of α1. We can see that the optimal solutions are not at α1 = α2 in all cases.
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4 Virtual Passive Dynamic Walking

This section investigates the validity of the analysis in the previous section through numerical simulations

of VPDW.

4.1 Biped robot model

Fig. 6 shows a planar fully actuated biped model. Since the model is the same as those of [2][18], we only

outline it. This model consists of 2-link and 3-point masses and has feet whose mass and thickness can

be neglected. Let θ =
[

θ1 θ2

]T

be the generalized coordinate vector; the robot’s dynamic equation

is

M(θ)θ̈ + h(θ, θ̇) = Su =

⎡
⎣ 1 1

0 −1

⎤
⎦

⎡
⎣ u1

u2

⎤
⎦ , (29)

where u1 and u2 are the ankle and hip joint torques. The matrices are described in detail elsewhere. If we

assume inelastic collisions for the stance-leg exchange and set suitable values for the physical parameters,

the robot can exhibit passive dynamic walking on a gentle slope. Let E be the total mechanical energy

of the robot, and relationship Ė = θ̇
T
Su between the mechanical energy and the control inputs holds.

The modeling of an inelastic collision is briefly described here. A more detailed explanation is given

elsewhere. We extended the configuration as shown in Fig. 7. We define the stance and swing legs

just before impact as “Leg 1” and “Leg 2” and derive their dynamic models independently. We define

qi =
[

xi zi θi

]T

as the extended coordinate vector for Leg i and define q =
[

qT
1 qT

2

]T

as that

of the whole system. The inelastic collision model is then derived as

M̄(q)q̇+ = M̄(q)q̇− − JI(q)TλI , (30)

where M̄(q) ∈ R
6×6 is the inertia matrix corresponding to q, and superscripts “+” and “−” respectively

stand for just after and just before impact. The JI(q) ∈ R
4×6 is the Jacobian matrix derived from the

geometric constraint conditions at the instant of heel strike; it should satisfy the following velocity

constraint condition just after impact:

JI(q)q̇+ = 04×1. (31)

λI ∈ R
4 is Lagrange’s undetermined multiplier vector within the context of impulsive force, and can be

derived following Eqs. (30) and (31) as

λI = XI(q)−1JI(q)q̇−, XI(q) := JI(q)M (q)−1JI(q)T (32)

In the following, we describe the derivation of JI(q). The velocity constraint conditions between the

two legs to connect them are derived from geometric conditions such that the Leg 1’s hip is positioned

the same as the Leg 2’s, and they can be expressed as

d
dt

(x1 + l sin θ1)
+ =

d
dt

(x2 + l sin θ2)
+

, (33)

d
dt

(z1 + l cos θ1)
+ =

d
dt

(z2 + l cos θ2)
+

. (34)
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These are arranged as

ẋ+
1 + lθ̇

+

1 cos θ1 = ẋ+
2 + lθ̇

+

2 cos θ2, (35)

ż+
1 − lθ̇

+

1 sin θ1 = ż+
2 − lθ̇

+

2 sin θ2. (36)

Further, the contact condition with the ground of the post-impact stance-foot is given by

ẋ+
2 = 0, ż+

2 = 0. (37)

Summarizing the above four conditions of Eqs. (35), (36) and (37), JI(q) yields

JI(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 l cos θ1 −1 0 −l cos θ2

0 1 −l sin θ1 0 −1 l sin θ2

0 0 0 1 0 0

0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (38)

Here, define the half inter-leg angle at impact

α :=
θ−1 − θ−2

2
=

θ+
2 − θ+

1

2
> 0, (39)

then we can find that the matrices M̄ , JI and XI are functions only of α because all of them are

related only to the angular positions θi. For example, θ1(= θ−1 ) and θ2(= θ−2 ) in Eq. (38) are equal to

α and −α. In the following, we will describe the functions only of angular positions as those of α.

Following Eqs. (30) and (31), we can derive the velocity vector just after impact as

q̇+ =
(
I6 − M̄(α)−1JI(α)TXI(α)−1JI(α)

)
q̇− =: Y (α)q̇−. (40)

The relation between q̇− and θ̇
−

is given by

q̇− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

l cos θ1 −l cos θ2

−l sin θ1 l sin θ2

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ θ̇

−
1

θ̇
−
2

⎤
⎦ =: H(α)θ̇

−
. (41)

In addition, by achieving the constraint on impact posture, the angular velocity just before impact can

be written as

θ̇
−

=

⎡
⎣ 1

1

⎤
⎦ θ̇

−
1 . (42)

Summarizing Eqs. (40), (41) and (42), the angular velocity vector just after impact is given by

θ̇
+

=

⎡
⎣ 0 0 0 0 0 1

0 0 1 0 0 0

⎤
⎦Y (α)H(α)

⎡
⎣ 1

1

⎤
⎦ θ̇

−
1 =: ξ(α)θ̇

−
1 . (43)
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4.2 Controller synthesis and typical 2-period gait

As the most basic approach to achieve the two magnitude relations of Eq. (12) and (14), we can consider

VPDW with a constraint on the impact posture, which is termed as the constrained compass-gait. In

our previous work [18], we applied high-gain PD feedback to the hip-joint control ignoring the effect of

ankle-joint torque. In this approach, however, negligible but small tracking error remains. This paper

then considers more accurate control approach.
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In VPDW, the joint torques are determined to satisfy the following relation between the X-position

of CoM, Xg, and the total mechanical energy:

∂E

∂Xg
= Mg tan φ, (44)

where φ [rad] is the virtual slope angle and M := mH + 2m [kg] is the robot’s total mass. Taking

Ė = θ̇
T
Su into account, we can expand Eq. (44) to

Ė = θ̇1u1 + θ̇Hu2 = Mg tanφẊg, (45)

and we determine u1 and u2 according to the priority order. Hence, we will realize VPDW with a

constraint on the impact posture.

Next, we synthesize the motion controller for generating ΔE2 in Eq. (15). During the stance phase,

the hip angle θH must move smoothly during the change from −2α1 to 2α2. We introduce the following

5-order desired-time trajectory.

θHd(t) =

⎧⎨
⎩ a51t

5 + a41t
4 + a31t

3 + a01 (0 ≤ t < Tset)

2α2 (t ≥ Tset)
(46)

The coefficients, ai1, are determined so that they satisfy

θ̈Hd(0) = 0, θ̇Hd(0) = 0, θHd(0) = −2α1, θ̈Hd(Tset) = 0, θ̇Hd(Tset) = 0, θHd(Tset) = 2α2, (47)

and are given by

a51 =
12(α1 + α2)

T 5
set

, a41 = −30(α1 + α2)
T 4

set

, a31 =
20(α1 + α2)

T 3
set

, a01 = −2α1. (48)

The coefficients, ai2, of the desired-time trajectory for generating ΔE1 in Eq. (16) are determined in

the same manner. a52, a42, and a32 are determined with the same equation as above and a02 = −2α2.

The desired settling time, Tset [s], is chosen empirically. Let T1 and T2 [s] be the steady step periods;

we found that a constrained compass-gait could be successfully generated if the settling-time condition,

Tset ≤ T1 and T2, is satisfied.

We then consider the output following control for the desired-time trajectory. We resolve the control

input vector as

Su =

⎡
⎣ 1

0

⎤
⎦u1 +

⎡
⎣ 1

−1

⎤
⎦u2 =: S1u1 + S2u2, (49)

and conduct input-output linearization. The hip-joint angle for the control output can be written as

θH = ST
2 θ, and its second-order derivative with respect to time becomes

θ̈H = ST
2 θ̈ = ST

2 M(θ)−1
(
S1u1 + S2u2 − h(θ, θ̇)

)
. (50)

Then we can consider the following condition for the tracking control:

θ̈H = v := θ̈Hd + kd

(
θ̇Hd − θ̇H

)
+ kp (θHd − θH) , (51)
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where kp and kd are the PD gains and are positive constants. By summarizing the relations of Eqs.

(45), (50) and (51), we can specify the condition for the control inputs as

Φu = Γ, (52)

where

Φ =

⎡
⎣ θ̇1 θ̇H

ST
2 M(θ)−1S1 ST

2 M(θ)−1S2

⎤
⎦ , Γ =

⎡
⎣ Mg tan φẊg

v + ST
2 M (θ)−1h(θ, θ̇)

⎤
⎦ . (53)

The control input is then determined as u = Φ−1Γ. The problem is the regularity of matrix Φ, but it

did not matter in the numerical simulations of this paper.

Fig. 8 shows the phase portrait of a steady 2-period constrained compass-gait where α1 = 0.24,

α2 = 0.16, Tset = 0.75 [s], and φ = 0.02 [rad]. The physical parameters of the robot are chosen as listed

in Table 1. The PD gains were chosen sufficiently large (kd = 100 and kp = 2500) to achieve trajectory

tracking control and a constraint on the impact posture with satisfactory accuracy. The figure shows

that we return to the original position after two laps.

Table 1: Physical parameters of biped robot

mH 10.0 kg

m 5.0 kg

a 0.5 m

b 0.5 m

l (= a + b) 1.0 m

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

Angular position [rad]

Stance leg
Swing leg

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

Angular position [rad]

Stance leg
Swing leg

Figure 8: Phase portrait of steady 2-period constrained compass-gait
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4.3 Restored mechanical energy

In 2-period gaits, the restored mechanical energy is determined not only by the control inputs but also

by the difference in the potential energies at impact. Eq. (15) can be detailed as

K−
2 [∞] + P2[∞] = ε1K

−
1 [∞] + P1[∞] +

∫ T−
2

0+
θ̇

T
Su dt, (54)

where P1 and P2 are the potential energies corresponding to each impact. By grouping the terms in Eq.

(54) except those of the kinetic energy, ΔE2 of (15) can be derived as

ΔE2 =
∫ T−

2

0+
θ̇

T
Su dt + P1[∞] − P2[∞]

= Mgl tan φ (sin α1 + sin α2) + (mH l + 2ma) g (cosα1 − cosα2) . (55)

In the same way, ΔE1 of Eq. (16) can be derived as

ΔE1 = Mgl tanφ (sin α1 + sin α2) − (mH l + 2ma) g (cosα1 − cosα2) . (56)

From Eq. (46) and (47), the magnitude relation of Eq. (14) can be written as follows.

ΔEm =
ΔE1 + ΔE2

2
= 2Mgl tanφ sin α cos

α1 − α2

2
≤ 2Mgl tan φ sin α = ΔE (57)

4.4 Energy-loss coefficient

Let θ∗H > 0 be the desired relative hip-angle at impact. If the impact posture is constrained and

θ−H = θ∗H , the energy-loss coefficient becomes

ε(β, γ, θ∗H) =
Nε(β, γ, θ∗H)
Dε(β, γ, θ∗H)

, (58)

Nε(β, γ, θ∗H) = 4β2 (β(β − 1) + 1) + 2βγ(β + 1) + γ2 + 4β(β − 1)(β + γ) cos θ∗H

+γ(2β + γ) cos(2θ∗H), (59)

Dε(β, γ, θ∗H) = (2 + 2β(β − 1) + γ + 2(β − 1) cos θ∗H)
(
1 + 2β2 + 2γ − cos(2θ∗H)

)
, (60)

where β = a/l [-] and γ = mH/m [-]. The value for the simplest walking model [6] can be derived as

lim
γ→∞ ε(β, γ, θ∗H) = cos2 θ∗H . (61)

That is, ε is uniquely determined by the hip angles regardless of the leg-mass position. In addition, ε

becomes 0 when θ∗H = π/2. In other words, the robot completely loses its kinetic energy and the motion

stops if falling down with θ∗H = π/2.

Fig. 9 plots ε with respect to θ∗H in the range of 0 ≤ θ∗H ≤ π for four values of γ where β = 0.5.

Each ε has an absolute minimum in the neighborhood of θ∗H = π/2. Note that ε = 0 occurs only in the

case of γ = ∞. In other words, existence of the leg mass enables the robot to avoid completely energy

loss when the heel strikes the walking surface.

In general, θ∗H is less than or comparable to about 0.30 [rad] in VPDW, and ε is convex upward in

this range of values. The robot that we are considering here has γ = 2.0, and Fig. 9 clearly indicates

that ε is convex upward.
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Figure 9: θ∗H versus ε for four values of γ

4.5 Analysis of gait efficiency

In biped walking systems, unlike in rimless wheels, maximizing K− is not always equivalent to maxi-

mizing the gait efficiency for the following reasons.

• The convergent level of K− is not always equivalent to that of the walking speed.

• Even if the convergent kinetic energy is at a maximum, energy efficiency is not always maximum

because it is evaluated in another way.

In this paper, we also consider an accurate control without PD feedback to examine the rigorous

property of the desired-time trajectory. The initial conditions must be identical to the desired values in

this case. If we apply the Jacobian matrix of Eq. (38) for transition, however, the angular velocity of

relative hip-joint, θ̇
+

H , does not become zero. We therefore add another condition:

θ̇
+

H = 0, (62)

which represents the mechanical lock of the hip joint at impact. The Jacobian matrix of Eq. (38) then

becomes

ĴI(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 l cos θ1 −1 0 −l cos θ2

0 1 −l sin θ1 0 −1 l sin θ2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (63)

The Lagrange’s undetermined multiplier vector of Eq. (32) and the angular velocity just after impact

of Eq. (40) are calculated in the same manner by replacing JI(α) with ĴI(α). The control input for
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the tracking control is given only by the feed forward of angular acceleration. The vector Γ of Eq. (53)

is thus determined as

Γ =

⎡
⎣ Mg tan φẊg

θ̈Hd + ST
2 M(θ)−1h(θ, θ̇)

⎤
⎦ . (64)

By applying this approach, the tracking error can be completely zero. The difference between with and

without PD feedback is discussed later.

4.5.1 When α is constant

Fig. 10 shows the analysis results of the constrained compass-gait when α is constant. All system

parameters except α1 and α2 were chosen as the same values of Fig. 8. All indicated data are mean

values. Δα := α1−α = α−α2 ≥ 0 is used for the horizontal axis. Here, (a) is the walking speed, (b) the

kinetic energy just before impact, (c) the energy-loss coefficient, (d) the restored mechanical energy, (e)

the specific resistance, and (f) the step period. We can see that the larger Δα is, the more asymmetric

the gait becomes. The value at which Δα = 0 (1-period gait, symmetric) is plotted with a solid circle

to distinguish it from other 2-period cases.

From Fig. 10 (a) and (b), we can see that the walking speed and kinetic energy monotonically

decrease as the gait asymmetry grows. From (c) and (d), we can confirm that the two magnitude

relations of Eqs. (12) and (14) hold. (e) and (f) are plotted for reference, and these results are explained

as follows. Let ΔXg [m] be the step length, and this is given by

ΔXg = l (sin α1 + sinα2) = 2l sin α cos(α − α1). (65)

This is a constant, and its partial derivative with respect to α1 becomes

∂ΔXg

∂α1
= 2l sinα sin(α − α1) ≤ 0. (66)

Note that α1 ≥ α holds. Therefore, the step length decreases as the gait becomes more asymmetrized

when α is constant. The change ratio is, however, much smaller than that of the walking speed, and

the step period then increases inversely with the decrease of walking speed. On the other hand, the

minimum specific resistance in VPDW is tanφ [-], and the specific resistance (SR) is kept tan φ [-] if the

maximum efficiency condition is achieved. There is a tendency, however, that the negative input power

increases as the gait becomes more asymmetrized, and this caused the decrease in energy efficiency. See

APPENDIX for further detailed discussions.

From Fig. 10(a), we can also see that the walking speed in the case without PD feedback is slower

than that with PD feedback. We discuss the reason in the following. Kinetic energies just after and just

before impact are respectively given by

K+ =
1
2
ξ(α)TM(α)ξ(α)

(
θ̇
−
1

)2

, K− =
1
2

[
1

1

]T

M(α)

[
1

1

](
θ̇
−
1

)2

, (67)
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Figure 10: Gait descriptors of constrained compass-gait where α is constant

and the energy-loss coefficient is then defined as

ε =
ξ(α)TM(α)ξ(α)[
1

1

]T

M(α)

[
1

1

] . (68)

Energy-loss coefficients in the cases with and without PD feedback are respectively calculated in the

same manner above by using JI(α) or ĴI(α). In this case, ε is also a function only of α and Fig. 11

plots the values in the two cases with respect to α. We can see that the value of ε without PD feedback

is smaller than that with PD feedback. This is caused by adding one more constraint condition for

achieving θ̇
+

H = 0. In VPDW, however, the restored mechanical energies in both cases are the same if

the step lengths are identical, and this is strongly supported by Fig. 10 (d). The kinetic energy just

before impact, K− = ΔE/(1 − ε), then decreases as ε decreases. Therefore, we can conclude that the

walking speed in the case without PD feedback accordingly decreased with respect to the decreases of

ε and K−. A small decrement of kinetic energy causes a significant decrement of walking speed.

4.5.2 When α1 is constant

Fig. 12 shows the analysis results where α1 is constant. The horizontal axis is the mean value of

the hip-joint angle, α, except in (f) where α1 and α2 are used for the horizontal axis and we have

indicated the corresponding step periods. From (a) and (b), we can see that the walking speed and
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Figure 11: α versus ε in cases with and without PD feedback

kinetic energy increase with decreasing α. In contrast to the above case, the gait efficiency improves as

the gait asymmetry grows. This means that the point on the line of α1 = α2 in Fig. 4 moves toward

the left in the direction B. In contrast, if the point moves toward the right in the direction B, as Fig. 12

(b) indicates, the kinetic energy decreases. (c) shows that εm monotonically increases with decreasing

α, i.e. with the mean value of the step length, in accordance with the constraint on the impact posture.

Following Eqs. (57) and (65), it is shown that the following equality

ΔEm = Mg tan φΔXg (69)

holds in a 2-period gait. This shows that ΔEm monotonically decreases with decreasing α, and Fig.

12 (d) strongly supports it. (e) shows that the specific resistance grows worse as the gait becomes

more asymmetrized. This result comes from the same reason previously described. See APPENDIX

for further detail. We plotted the step period in (f) to show that the stable gait generation becomes

impossible because the step period becomes too short to satisfy the settling-time condition. We can see

that the step periods in both cases approach the desired settling-time, Tset = 0.75 [s].

5 Conclusion and Future Work

We discussed the efficiency and optimality of a 2-period gait from the kinetic energy view-point. Nu-

merical simulations of VPDW proved the validity of the method derived from the discrete dynamics

of a rimless wheel. We must note, however, that a dynamic bipedal gait achieving the two magnitude

relations of Eqs. (12) and (14) is limited.

In the future, we should theoretically investigate the relation between the convergent kinetic energy

level and walking speed in more detail. Although a one-to-one relation between walking speed and
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Figure 12: Gait descriptors of constrained compass-gait where α1 is constant

kinetic energy holds for a rimless wheel, limit cycle walkers have leg-swing motions that destroys the

one-to-one relation. The author considers that the swing-leg retraction is the cause [19]. On the other

hand, the effects of hip damper and DFC as means of gait symmetrization on gait efficiency would also

be an interesting subject. Extension of our approach to general multiple-period cases, i.e., 2n-period

and chaotic gaits, should also be investigated.
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APPENDIX

This appendix discusses the reason why the energy efficiencies in Figs. 10 and 12 worsened as the gait

became more asymmetrized in more detail.

Let pj [J/s] and vj [m/s] be the average input power and the walking speed in the generated 2-period

bipedal gait in section 4, and they are respectively given by

pj :=
1
Tj

∫ T−
j

0+

(∣∣∣θ̇1u1

∣∣∣ +
∣∣∣θ̇Hu2

∣∣∣)dt, (70)

vj :=
1
Tj

∫ T−
j

0+
Ẋg dt =

ΔXg

Tj
. (71)

The subscript j (= 1 or 2) corresponds to that of ΔEj in Eqs. (55) and (56). ΔXg [m] is the step length

given by (65), and this does not change in 2-period gait.

Using the above quantities, the specific resistance (SR) is defined as

SR :=
pj

Mgvj
=

pjTj

MgΔXg
, (72)

which means the expenditure of energy per unit mass and per unit length, and this is a dimensionless

quantity. The main question of how to attain energy-efficient biped locomotion rests on how to increase

walking speed, v, while keeping p small. The smaller SR is, the better energy-efficiency is.

In VPDW, the average input power in Eq. (70) satisfies the following inequality.

pj ≥ 1
Tj

∫ T−
j

0+

∣∣∣θ̇1u1 + θ̇Hu2

∣∣∣ dt =
1
Tj

∫ T−
j

0+

∣∣∣Ė∣∣∣dt ≥ 1
Tj

∫ T−
j

0+
Ė dt =

Mg tan φΔXg

Tj
(73)

Therefore, the minimum SR in 2-period gait also becomes

SR ≥ tanφ. (74)

Fig. 13 plots (a) the step length and (b) the consumed energy (the mean value of pjTj [J]) in Fig.

6 with respect to Δα. As Eqs. (65) and (66) indicate, from Fig. 6 (a) we can see that the step length

monotonically decreases as the gait becomes more asymmetrized. If the maximum efficiency condition

is achieved or negative input power does not occur, the following equality

pjTj = Mg tan φΔXg (75)
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holds. Therefore, the consumed energy must monotonically decrease as Δα decreases if the maximum

efficiency condition is achieved. On the contrary, however, Fig. 13 (b) shows that the consumed energy

increases as Δα increases. Therefore, we can conclude that the increase of SR comes from the negative

input power.

Fig. 14 plots (a) the step length and (b) the consumed energy in Fig. 7 with respect to α. In

this case, only α2 monotonically decreases and it is thus obvious that the step length monotonically

decreases with it. Therefore, the consumed energy must decrease as α2 decreases if Eq. (75) holds or

the maximum efficiency condition is achieved. Whereas from (b), we can see that the consumed energy

monotonically increases as the gait becomes more asymmetrized. Therefore, we can conclude that the

increase of SR comes from the same reason as the above case.
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Figure 13: Step length and consumed energy with respect to Δα where α is constant
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21


