
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 関数型プログラムにおけるプログラム変換の研究

Author(s) 佐賀, 正芳

Citation

Issue Date 1998-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1160

Rights

Description Supervisor:外山 芳人, 情報科学研究科, 修士



Program Transformation in Functional Programs

Masayoshi Saga

School of Information Science,

Japan Advanced Institute of Science and Technology

February 13, 1998

Keywords: program transformation, functional program, deforestation.

In functional programming, each program is composed of small and basic functions.

These module-oriented programs are easy for us to read and understand. However this

function composition makes many intermediate data structures such as tree and list, be-

cause those intermediate data structures are used to pass and receive information between

functions. This intermediate data structure does not directly appear as a part of the result

of the whole program and causes loss of e�ciency.

In order to eliminate intermediate data structures, deforestation was proposed by

Wadler(1990). In his deforestation procedure, 7 rules are applied to a given program

repetitively and the program is transformed into e�cient one. It is a simple procedure,

but it requires complicated memorization to guarantee termination of the procedure.

Gill, etc(1993) capture the structure of program by foldr, a list operating function.

They apply transformations only to programs written in terms of the foldr function.

Their technique does not require memorization for termination.

Deforestation without memorization, like foldr technique, has advantage in a practical

use but their technique is limited to lists and programs have to be abstracted by foldr.

In addition, the well-known e�cient function for reversal of list can not be transformed.

In this study, we propose partial evaluative deforestation, which does not require com-

plicated memorization and program abstraction by foldr. Partial evaluative deforestation

works on a call-by-value language. Furthermore, a function like the e�cient list reversal

function can be transformed by this technique.

The procedure of partial evaluative deforestation has two phases, classi�cation of func-

tions and rewriting a program to a deforested program with a newly de�ned function.

Functions are classi�ed to three groups, successive function (Su), packed function (Pa)

and others. A function in former two function groups is a recursive function and absolutely

produces a part of the result of the whole program whenever it is called. The di�erence

between Su and Pa is as follows.

Copyright c 1998 by Masayoshi Saga

1



� Su … All the elements of input data are equally operated.

� Pa … All the elements of input data are equally operated and a part of the result

of the whole program is accumulated in an extra argument.

Partial evaluative deforestation mainly applies transformation to these two kinds of

functions. 7 transformation rules are made by the structure of a term. Especially, a

function is newly de�ned in four rules. These four rules follow all the patterns of function

composition of Su and Pa. Basic strategies for deriving a new function are as follows.

� Unfold an inner function and apply a outer function to each right side of branch.

� Reduce if possible.

� Rewrite a function composition matching an input to a new term using a newly

de�ned function.

In addition to these basic strategies, terms are recursively transformed by extracting an

operation for the elements of data and adopting the extracted operation as a part of a

newly de�ned function or as a part of a new term.

Equivalence of values of terms between before and after transformation and termina-

tion of the procedure are proved by structural induction on terms. Implementation of this

method shows us raising an e�ciency of a program because of decrease in the number of

referring to data.

In spite of e�ciency, termination and equivalence, partial evaluative deforestation has

three major limitations. One is that types of input and output data for two kinds of

function groups have to be the same. The second problem is that two kinds of functions

absolutely produce a part of the result of the whole program whenever they are called.

The last limitation is all the elements of input data are equally operated.

In order to extend partial evaluative deforestation, there is a serious problem. Ex-

tension of our method causes di�culty of extracting an operation for the elements of

data. One of the solutions of this problem is introduction of another classi�cation mecha-

nism and new transformation rules based on its classi�ed function composition. Another

classi�cation mechanism classi�es functions by whether functions absolutely produce a

part of the result of the whole program every time called and whether all the elements

of input data are equally operated. This classi�cation mechanism is considered to be so

complicated with original classi�cation.

As described above, partial evaluative deforestation without memorization and pro-

gram abstracting by foldr is proposed. Partial evaluative deforestation is for call-by-

value languages. Furthermore, its e�ectiveness, problems and solutions are discussed.

As a future work, studies on characters of functions, higer-order functions and reduction

strategies remain to be done.

2


