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Abstract— We propose a new neuro-robotic network that can 

achieve a goal oriented behavior for a visually-guided object 

manipulation tasks based on learning by examples. The proposed 

model considers a brain-like interaction between behavior 

generation and depth perception in mammal brain to 

autonomously improve the robot’s action performance and 

perception accuracy. The brain exploits action to develop 

perception qualities, and this updated perceptual process helps to 

develop qualified-behavior. The perceptual accuracy can be 

enhanced by observing the effects of actions that preserve a 

physical and/or perceptual invariance. Also, the improved 

perceptual accuracy can influence the optimal selection and/or 

modification of actions. In order to import those action and 

perception abilities of a brain into a humanoid robot, we 

considered two key inspirations: 1) Sensory Invariant Driven 

Action (SIDA) and 2) Object Size Invariance (OSI) in depth 

perception. Considering robot manipulation of a target object 

with distance estimation as a perceptual process, we develop a 

new autonomous learning method based on the SIDA for 

behavior generation and OSI property for perceptual judgment. 

The proposed method is evaluated by using a humanoid robot 

(NAO) with stereo cameras, and the experimental results show 

that the proposed method is effective on autonomously improving 

the behavior generation performance as well as depth perception 

accuracy.    

Keywords—component; Autonomous learning, sensory 

invariance driven action, size invariance of object perception 

I.  INTRODUCTION 

How does the brain learn to transform sensory data into 
accurate perceptual information while, at the same time, 
learning to solve complex behavioral tasks? The brain exploits 
action to develop perception qualities and this updated 
perceptual process helps to develop qualified-behavior. Poor 
quality of the perceptual information, due to incomplete 
development and/or training, can interfere with learning to 
solve behavioral tasks, while actions can influence perceptual 
judgments. Perception and action are deeply related, and each 
of them can be used for improve the performance in the other 
side. What an agent can see depends on where it directs its 
sensors, and what an agent senses often determines which 
course of action the agent will take. For example, behavior 
generation task to manipulate an object requires an embodied 
agent to estimate the distance from the agent’s body to a target 
object through vision. How can an agent learn to make sense of 

these sensory signals to accurately estimate the distance to the 
target object while, at the same time, an agent learns to make a 
policy to manipulate the target signal? If we hope to implement 
an intelligent artificial agent that can emulate the autonomous 
learning abilities of human to solve complex problems in the 
physical world, then the developmental learning mechanism 
based on action and perception will be a key issue to 
implement such a smart artificial agent. 

However, due to the complexity of the problem, previous 
literatures have focused on the study of action or perception in 
isolation. Those attempts to modularize the problems seemed 
natural because we often spoke about perception and action as 
if they were two different processes. Recent neuro-scientific 
research, on the other hand, has provided strong evidence that 
perception and action are not isolated processes [1-4]. Those 
processes interact with one another, often in complex ways.  

This work attempts to understand how humans and animals 
might solve a fundamental problem: How does the brain learn 
to transform sensory data into accurate perceptual information 
while, at the same time learning to solve complex behavioral 
tasks? This is a puzzling problem because humans and animals 
are not born with the ability to transform raw sensory data into 
perceptual information to solve various problems throughout 
life. We assumed that there is one option to solve this problem: 
they can try to first solve the sensory problem by using action 
ability and only after that problem is solved, they can focus on 
solving the behavioral problem by using updated perception 
ability. To investigate this problem, we implemented this 
option on a humanoid robot faced with the task of interacting 
with physically distant object. Because the task requires 
understanding physical spaces, the robot needs to learn to 
transform binocular visual images of a target object into 
accurate depth estimates. The estimated depth perception 
affects to modify and/or select optimal behavior generation of 
the robot to achieve the desired manipulation task. 

To evaluate the learned depth estimator, we applied it to the 
problem of depth prediction at various distances with specific 
behavior generation task in same time. We also recorded 
behavioral information during evaluation while considering 
with and without developmental learning mechanism, and 
compared these measures to determine whether one condition 
was superior to the other with respect to learned behavior. We 
found that the proposed developmental learning mechanism 
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produced higher qualified binocular distance estimates and 
resulted in higher quality of behavior on an object 
manipulation task. 

II. BACKGROUND 

Previous research has primarily focused on either learning 
to perform some behavioral task for robot with fixed perceptual 
processing or learning to improve perceptual processing either 
passively (without action) or actively. In the next two 
subsections we will describe the approaches that have been 
applied to construct autonomous learning mechanism for action 
and perception. 

A. Sensory Invariance Driven Action (SIDA) 

A key inspiration for our approach is the idea of Sensory 
Invariance Driven Action (SIDA) [5]. SIDA explains how the 
brain can learn the meaning of encoded sensory stimuli. 
Because the brain does not have direct access to external 
stimuli, a critical problem facing the brain is to understand the 
meaning of complex neural spiking patterns and to use those 
patterns to make decisions about how to act in the world. The 
critical insight of SIDA concept is that “learn to act in a way 
which maintains invariance in internal sensory representations”, 
is a useful mechanism for learning the meaning of encoded 
sensory stimuli. SIDA concept emphasizes the role of 
simultaneously learning about both sensory information and 
action.  

The notion of SIDA is similar to the idea of intrinsic 
motivation because both SIDA and the idea of intrinsic 
motivation propose a mechanism for learning about the agent-
environment interface without respect to a particular goal. Both 
ideas direct the agent to learn general knowledge about the 
environment. However, SIDA emphasize she role of 
simultaneously learning about both sensory information and 
action, which is more closely related to our current objective. 
In the next section, we train the robot to maintain perceptual 
invariance in situations where, although the robot has 
physically moved (in our case, by rotating its neck), its action 
should, in principle, not alter the true distance from robot to the 
target. If the robot’s perceived distance estimate differs, then 
we can use this difference as an error signal for training by 
robot-self. 

1) Distance invariance 
Based on stereo cameras, we can easily obtain distance by 

using the radians of two angles (θR; θL) of the center of target 
object (x; y) in two cameras by simple triangular equation with 
focal length and CCD width of two cameras [10]. However, 
notice that the left and right angles estimate depend on the 
robot’s ability to accurately detect the center of the target 
object location from the left and right camera images. If these 
x-coordinates are biased, then they introduce bias into the angle 
estimates. Therefore, very small biases toθRand θL can cause 
large errors in distance estimates as the distance of the target 
from the observer grows. 

One way to improve the ability of distance estimation by 
vision sense is to acquire several training samples that, in 
principle, should have identical distance from the agent to 
remove the biases to θR and θL. As long as every sample has 
identical distance from the observer, the agent can invent a 

distance unit and apply that to all of the samples. Using these 
samples would allow us to eliminate biases that produce 
inconsistent distance estimators [6]. In order to find appropriate 
parameter values, we have applied genetic algorithms in [6]. 

Now if we have a strong enough parametric model, we can 
generalize to other distances. The main question is: How can 
the agent acquire samples that should, in principle, have 
identical distance from the observer? The use of head 
movements such as rotation and shifting for depth estimation is 
strongly supported by observations of birds, small mammals, 
and insects [7], [8]. It has also been established that humans 
use head motion for depth perception [9]. Head movement does 
not require high level cognitive abilities and does not depend 
on binocular depth estimation. Thus we may be able to use 
head movement to train binocular depth estimation. Note that 
when a humanoid robot rotates its neck, the axis of rotation 
remains invariant, with respect to distance, to points that were 
not rotated. So if the robot rotates its neck, the distance from 
the neck to the target point remains invariant, even though the 
distance from the cameras to the target may have changed as 
shown in Fig. 1. Now, if the agent estimates distance from the 
axis of neck rotation to the target, it can easily acquire samples 
that should, in principle, have identical distance to the origin. 
This physical invariance can expose perceptual inconsistency, 
which can be used to train a perceptual process [6]. 

 

        (a)        (b)                  (c)    

Fig. 1. If the origin is the axis of neck rotation, then rotating the neck does 

not change the distance to the target, even though the distance from the left 

and right cameras may have changed.D: distance from robot to target object, 
θR, θL: angles of the center of target object at right and left cameras. 

Because an agent does not have a complete model of its 
environment, it needs to explore the effects of various actions 
to determine their long-term value. Once the agent estimates of 
the value of each action, the agent can exploit this knowledge 
to behave intelligently. However, the agent has to decide when 
to stop exploring and start exploiting. If the agent stops 
exploring too early, the estimated value for each action may be 
inaccurate. On the other hand, if the agent explores for too long, 
then it potentially wastes resources on exploring. This problem 
is known as the exploration-exploitation dilemma. Thus, it is 
important to decide the suitable timing for the specific action 
such as head movements to gather training data by considering 
distance invariance. 

B. Size invariance 

Focusing on manipulation of a target object with distance 
estimation as the perceptual process by bimanual motor action, 



the agent should decide when to approach the target object by 
walking or rotating and should manipulate the target object 
within suitable distance and angle between agent and target 
object. It means that the agent should understand a suitable 
timing for policy of action and physical relationship between 
the agent and target object in same time. 

Fig. 2 shows the comparison of perceived object size 
according to different distance. Given that a physical object 
typically maintains the same size (i.e. it is size invariant), we 
may be able to use this physical invariance to learn about 
physical relationship between the agent and target object. 
However, it is important to keep in mind that the size itself is 
not, in general, a reliable clue of distance unless we know the 
size of the object at a reference distance. This information can 
be used as a training set for our binocular vision system. 
Unfortunately the relationship between perceived size and 
distance is not linear [6]. But there is a straight forward 
relationship between size and distance. We use a relationship 
between distance and perceived size modified from [11]: 



 0 0D s
D

s



 

 

where D is the distance given the current observation, s is 
perceived size of the object given the current observation, D0is 
the reference distance of the object for which the perceived size 
is known, s0 is the perceived size of the object at reference 
distance D0and  is a constant. Using Eq. (1), we can establish 

a linear relationship for training our binocular vision system. 
Therefore, size invariance could be useful value as a reference 
to update poor qualified depth parameters. Also, it could be 
used to decide when the robot should update depth parameters 
by gathering training data. Moreover, as a result of accurate 
distance estimator, the agent could generate suitable actions for 
achieving behavior task by considering accurate distance 
estimation. 

 

Fig. 2. Comparison of perceived object size according to different distances 

C. Manager for selction of action and perception 

Based on the object size invariance (OSI) characteristic, 
robot can enhance the depth perception ability. After that, 
simple reinforcement learner can easily decide the suitable 
action to achieve the goal directed behavior task with object 
according to a result of perception. In order to autonomously 

decide the suitable action, we pre-define a reinforcement 
learning strategy for understanding the spatial relationship 
between robot body and target object. We consider three 
different states considering both the quality of perception 
ability to estimate physical distance which is measured by the 
OSI and spatial relationship such as distance and angle points 
of view as shown in Table I. The reinforcement learning 
generates a suitable behavior patterns corresponding to three 
different states both for perception ability and spatial 
relationship.  

TABLE I.  Q-TABLE FOR PROPOSED MODEL 

States Reinforcement learner 

State 1 Object is not located in center position of robot body 

Action 1 Rotating to the target object 

State 2 Object is not located in appropriate distance from robot  

Action 2 Walking to forward or backward side from target object 

State 3 Object is located in appropriate position from robot  

Action 3 Big turning to righ-side 

III. PROPOSED AUTONOMOUS LEARNING MECHANISM 

A. Experimental setting 

Our experiments were implemented on an Aldebaran NAO 
humanoid robot with two cameras mounted on its head that 
were used for binocular depth estimation as shown in Fig. 3. 
Nao is a bipedal humanoid robot with existing software 
modules that enable the robot to behave. Movement of the 
arms, neck, and head are controlled by manipulating joint 
angles. This platform allows us to investigate binocular depth 
estimation as well as behavioral object manipulation tasks that 
require locomotion. 

 
Fig. 3. Nao humanoid robot platform with stero cameras 

One cardboard tower is located in similar height (52cm 
from floor) at the same level as the robot’s eye. The position of 
the color mark was fixed and the NAO’s initial position as 
shown in Fig.4. The two stereo cameras, each having a 
resolution of 640x480 and 60°field of view, are separated by 
76mm. Goal directed behavior task was defined that humanoid 
robot should understand current states of physical body and 
target object, and then approach the target object to hit it on 
appropriate distance from the target object. In order to do so, 
robot should have qualified depth estimation (perception) 
ability and should understand about the relationship between 



action and perception according to a (given) physical 
environment. In the current experiment, the robot was trained 
about the relationship between object size and physical 
distance by considering the OSI characteristic. Based on the 
OSI characteristic, this relationship is used as reference depth-
perception result to correct parameters for estimating more 
accurate depth information. Also, according to enhanced depth 
perception ability, humanoid robot could autonomously 
generate suitable behavior to hit the target object. Therefore, 
perception (depth estimation) can guide appropriate action 
which can help to understand about environment at the same 
time. The basic actions such as head rotation to update depth 
parameter, approaching, finding, and hitting to the target object 
are previously trained by Multiple Timescales Recurrent 
Neural Networks (MTRNN) [12]. After training the basic 
behavior sequences, the tests were conducted for achievement 
of goal-directed behavior generation by using trained basic 
behavior with suitable timing. It was considered that a trial was 
successful if the target object was successfully knocked down 
by the robot arm during the course of the experiment. 

 

Fig. 4. Experimental workbench 

B. Overall architecture  

The proposed model consists of two main parts; (1) OSI 
and SIDA based autonomous learning model to enhance action 
and perception abilities in same time and (2) adaptive behavior 
sequence generation to achieve the tasks involving target object 
by using MTRNN, reinforcement learner and updated depth 
perception ability. Figs.5 (a) and (b) describe the block diagram 
of proposed model to enhance depth perception ability and 
adaptive behavior generation model. The two main parts have 
different roles and work in shifts throughout the running time. 
First, in Fig. 5 (a), OSI decides suitable timing to correct the 
current depth parameters for getting accurate depth estimation, 
and updating of the depth parameter is working based on SIDA 
if the current depth accuracy doesn’t enough. After updating 
depth parameters, Fig. 5 (b) describes adaptive behavior 
sequence generation model which is to achieve the tasks 
involving target object by using MTRNN and reinforcement 
learners with the updated depth parameters. 

 

(a) 

  

(b) 

Fig. 5. Block diagram of robot behavior generation model. (a) OSI and SIDA 
based autonomous learning model, (b) adaptive behavior generation model 

based on MTRNN and reinforcement learner with updated depth parameters 

The selective visual saliency map in Figs. 5 (a) and (b) is 
used for sequentially pop-out the salient areas within the 
environment and estimate depth information of the salient area 
or object [10], [13].It is important to compare the estimated 
depth information with the size invariance characteristic to 
decide whether the current parameters for depth estimation are 
appropriate value according to the current robot states. Also, 
the selective attention model helps the robot to easily identify 
the target with in the environment. 

The pre-trained behavior functions by MTRNN are used to 
control the robot and the reinforcement learner selects one of 
the pre-trained functions. The inputs for the reinforcement 
learner consist of spatial information related to a target object. 
The reinforcement learner predicts 3 different behavior 



commands (At: turning, walking, hitting) through time. The 
inputs for the MTRNN consist of visual attention command (vt), 
robot behavior command (bt) and spatial information (st). Here, 
the visual attention and behavior commands indicate one of the 
three different colored objects (red, green and blue) and one of 
the three different behavior categories (walk, turn and hit) 
respectively.  Spatial information consists of 2 different 
relations (angle and distance) between the robot states and the 
target object. The visual attention and behavior commands are 
transformed by a Topology Preserving Map (TPM) to cluster 
as 16 TPM units and spatial information is transformed to 64 
TPM units in our experiments [12]. The stereo visual attention 
system receives a visual attention command from the MTRNN 
and the retina image from the robot’s vision [14]. The spatial 
location of a target object is encoded by using an angle 
between the robot body and a target object together with depth 
information obtained from the stereo-type visual attention 
system. The spatial location of a target object, the visual 
attention and behavior commands are fed back as inputs to the 
MTRNN. 

C. Visual attention and depth estimation based on stereo 

vision system 

In the course of detecting an object to achieve a desired 
object manipulation task, the stereo-type Saliency Map (SM) 
model works for selecting a specified object region in an input 
scene and estimates the depth for a specified object region [13]. 
It is important to recognize whether current states are similar 
with the initial state in which the bi-pad robot learns in advance, 
and also continuously catches the visual environment to 
generate the suitable behavior patterns by the MTRNN. A 
localized area selected by a bottom-up SM model is tested for 
matching how much the selected area meets the visual 
characteristics such as color of an object for a behavior 
sequence generation by the MTRNN. For example, if a visual 
attention command from the MTRNN is to find a blue object, 
then only the blue characteristic is intensified in the SM model 
and other colors are inhibited. After successfully localizing the 
corresponding landmarks on both the left and right images (θR, 
θL), the robot obtains depth information by means of the stereo 
visual attention model using simple triangular equation [10]. 

D. Adaptive behavior generation 

Prior to the actual training of the MTRNN for the behavior 
sequence generation, reinforcement learning is used to adjust 
the initial state of the robot. After correcting the initial state of 
the robot, we considered adaptive behavior generator to 
achieve the goal-oriented multiple object manipulation task. 
The MTRNN is a type of Continuous Time Recurrent Neural 
Network (CTRNN) model in which neurons have different 
time scales; therefore, the MTRNN has the functional 
hierarchy characteristic [12]. Due to this characteristic, neurons 
with a fast time constant encode a set of primitive behaviors, 
and neurons with a slow time constant prepare for the 
compositional sequences of the primitive behavior. The 
MTRNN has three groups of neural units in present study, 
namely input-output units, fast context units and slow context 
units. The input units consist of visual input (angle and depth), 
visual attention command and behavior command. The 8 
dimensional inputs were transformed into 68 dimensional 
sparsely encoded vectors by a TPM with 3×10

6
 training epochs 

[12]. This transformation reduces the redundancy of the input 
trajectories for units. The fast context units are connected with 
the input-output units of which synaptic weights are 
determined through learning by examples. The membrane 
potential of these neurons is modeled by the conventional 
firing rate model which is calculated by linear differential 
equation.  

The context units are connected with the input-output units 
of which synaptic weights are determined through learning by 
examples. The membrane potential of these neurons is modeled 
by the conventional firing rate model which is calculated by 
linear differential equation given by Eq. (2) 


, , ,( / )i i t i t ij j t

j

du dt u w x   
    

where ui,t is the membrane potential of each i-th neural unit at 
time step t and xj,t is the neural state of the j-th unit at time step 
t, and wij is a synaptic weight from the j-th unit to the i-th unit. 
The time constant τ is defined as the decay rate of a unit’s 
membrane potential. If the τ value is large, the activation of the 
unit changes slowly because the internal state potential is 
strongly affected by the history of the unit’s potential. On the 
other hand, if the τ value is small, the effect of history of the 
unit’s potential is also small, and thus it is possible for 
activation of the unit to change quickly. The activity of the fast 
context units with small time constant (τ = 2) changes quickly, 
whereas the activity of slow context unit with a large time 
constant (τ = 30) changes slowly. The updating of ui,t values is 
done using Eq. (3), which is the numerical approximation of Eq. 
(2) 

     

The activation of the i-th unit at time t is determined by the 
following Eq. (4) using non-linear activation function 

     

where Z is a set of output units that correspond to visual 
attention command or behavior command. The softmax 
activation function is applied only to the output units, and not 
to the context units. Activation values of the context units are 
calculated by the function f which is a conventional unipolar 
sigmoid function.  

The MTRNN is trained to obtain the optimal connective 
weights by minimizing the learning error E. The error function 
E was defined by the Kullback-Leibler divergence, as shown in 
Eq. (5) 
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where y*i,t is the desired activation value of the output neuron 
at time t, O is a set of output units, and yi,t is the activation 
value of the output neuron with the current connective weight. 
A conventional back propagation through time (BPTT) 
algorithm was used to train the model [14]. Through iterative 
calculation of the BPTT, the values of the connective weights 
reach their optimal values in the sense that the errors between a 
teaching sequence and an output sequence is minimized. 

IV. EXPERIMENTAL RESULTS 

The purpose of this experiment was to determine whether 
there is an advantage in updating the behavioral and perceptual 
processes as compared to without learning process. In order to 
show the advantage of depth parameter learning with SIDA 
concept, initial parameter values are randomly set. Robot 
generates specific action such as head movement to gather the 
training data by considering SIDA concept. It means that this 
specific action can enhance for perception skill [6]. Table II 
shows the results of reinforcement learning. 

TABLE II.  Q-TABLE FOR PROPOSED MODEL 

States 
Actions 

Action 1 Action 2 Action 3 

State 1 2.52166 0.0465623 0 

State 2 2.66569 13.6363 2.96754 

State 3 -0.188005 0.096173 -0.173884 

 

Based on the Table II, robot autonomously generates 
suitable behavior considering estimated depth.  Therefore, the 
estimated depth information is important to select appropriate 
behavior at each time step. Table III shows the comparison of 
depth estimation accuracy at each running step by considering 
with and without learning at initial running step using SIDA 
and OSI characteristic. As shown in Table II, learning with 
SIDA concept and OSI characteristic can enhance the 
perception ability to estimate the depth information as 
compared to estimation without learning based on SIDA and 
OSI characteristic. Also, this updated depth parameter can 
guide suitable behavior to achieve the goal-directed behavior 
task. For example, robot can effectively generate approach the 
target object within appropriate distance to hit the target object. 
However, poor depth parameters caused poor behavior such as 
getting closer than required to the target object. This poor 
behavior caused the robot to knock down the target object by 
its body or it missed the target object. Therefore, the robot 
could not complete the desired manipulation tasks. 

TABLE III.  ACCURACY OF PERCEPTION ABILITY TO ESTIMATE DEPTH 

Robot 

steps 

Distance from robot to target object (mm)  

Ground truth Without learning With learning  

1st 1511.94 2054.08 1499.52 

5th 706.88 871.72 735.02 

7th 561.13 700.29 593.67 

9th 481.68 578.89 505.99 

V. CONCLUSION 

We proposed a new autonomous learning mechanism based 
on action and perception. There are two main contributions: (1) 
simple actions and low level visual processing can improve 
depth estimation, (2) maintaining that the perceptual invariance 
is a powerful principal for implementing the autonomous 
developmental robot. The experiments show that the proposed 
model can autonomously generate the behavior sequences to 
improve ability of action and depth estimation (perception). 

As a future work, we would like to answer: (1) what other 
invariances can be used to calibrate perceptual predictions? (2) 
And how can we learn accurate parameters in more complex 
error situations? (3) What kinds of principles can iteratively 
and continuously improve the action and perception in a cyclic 
learning process? 
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