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Chapter 1

Introduction

Connectivity of metric spaces is the notion that it cannot be the union of its disjoint open
(or closed) subsets. For example, differentiable function and integrable one in complex
analysis are defined on such a space, so that it is important in such a theory.

In this paper, we will define three connectivities and consider their properties respec-
tively and the relation on them.

Now, we show constructive mathematics in this chapter,

and will consider real numbers theory, a metric space and connectivity of metric spaces
from the next chapter.

Classical mathematics, which is called mathematics by the majority mathematicians,
is formalized by classical logic, and correspondingly constructive mathematics is done by
intuitionistic logic (see [14]). Actually, the character can be showed by the following BHK
( Brouwer — Heyting — Kolmogorov) — interpretation, which is that of logical operators by
Brouwer, Heyting and Kolmogorov (see [14] and [11]).

e A proof of A A B is given by presenting a proof of A and a proof of B.

e A proof of AV B is given by presenting a proof of A or B.

A proof of A = B is a construction which permits us to transform any proof of A
into a proof of B.

Absurdity L (contbradiction) has no proof; a proof of = A is a construction which
transforms any hypothetical poof of A into a proof of a contradiction.

A proof of Ve A(z) is a construction which transforms any d € D (D the intended
range of the variable x) into a proof of A(d).

e A proof of xA(z) is given by presenting a d € D and a proof of A(d).

This interpretation is restricted than that of classical mathematics. Actually, for a proof
of AV B, though it is enough to show that =A A =B details a contradiction in classical



mathematics, it is at least necessary in constructive mathematics either to give a proof of
A or to give a proof of B. For a proof of JzA(z), we can regard it classically as showing
that Vz—A(x) is impossible, but constructively we must present explicitly d with A(d).
Therefore, it can be thought that constructive mathematics classifies rules, translations
and existences in mathematics under computability.

Now, there are some propositions not to be provable in constructive mathematics but
to be provable in classical mathematics. For example, the Principle of Ezxcluded Middle
AV —A is unprovable since for a open problem A, we cannot give a proof of A or a proof of
—A under BHK-interpretation. Then, Aziom of Choice cannot be a part of constructive
mathematics since this axiom implies the Principle of Excluded Middle, where Axiom of
Choice is is as follows.

VS C Ax BVe € A3y € B((z,y) € S)=3f : A — BVz € A((z, f(z)) € 5).]

by implying the Principle of Excluded Middle as follows (see [7]):

(Proof) Let P be a proposition, and let A := {s,t} with s =t if and only if P holds.
Let B :={0,1}. Let S :={(s,0),(¢,1)}. Then, by Axiom of Choice, there exists a choice
function f : A — B such either that f(s) = 1, that f(¢) = 0 or that f(s) = 0 and
f(t) = 1. That is, either s =t or =(s = t). Therefore, either P or =P holds. y

But, Aziom of Countable Choice is acceptable in constructive mathematics, where it is
that of replacing A with the set of natural numbers N in the above Axiom of Choice.

Now, in constructive mathematics, there are the three main schools, which are Bishop's
constructive mathematics, Brouwer's intuitionistic mathematics and Markov's constructive
mathematics. Bishop’s constructive mathematics is the mathematics accepting Axiom of
countable choice under the BHK-interpretation, and Brouwer’s intuitionistic mathematics
can be regarded as Bishop’s one added Brouwer’s characteristic axioms. Markov’s con-
structive mathematics can be also think of Bishop’s one added Church’s thesis i.e. “all
sequences of natural numbers are recursive” and Markov’s principle

MP  V(a,) € {0,1}N[=-3n(a, = 1) = In(a, = 1)].

That is, two other theories are extended from Bishop’s constructive mathematics. Still,
classical one is also the extension from Bishop’s one since classical mathematics is re-
garded as a system that is added the Principle of Excluded Middle to Bishop’s construc-
tive mathematics syntactically. Then, Brouwer’ intuitionistic mathematics and Markov’s
constructive mathematics are inconsistent with classical mathematics respectively, but
Bishop’s constructive mathematics is not so. Therefore, in this paper, the author con-
siders in Bishop’s constructive mathematics. From now on, “constructive mathematics”
means “Bishop’s consructive mathematics” in this paper.
Well, the following propositions are unprovable in constructive mathematics.

LPO(the Least Principle of Omniscience)
V() € {0, 13N [En(a, = 1) V ~3n(ay, = 1)].
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LLPO(the Lesser Principle of Omniscience)
Y(aw), (Ba) € {0, 11N[~(In(a, = 1) A In(B, = 1)) = =In(a, = 1) vV ~3n(B, = 1)].

Actually, we cannot give a proof by the soundness for intuitionistic logic since there
exist some models in such that they are false semantically (see [14]), and MP is also
unprovable constructively in the same way. For example, there is the following Kripke
model for LPO(see [14]):

1@ m@n = 1)

D(0)=D(1)% ¢
0@

LPO is false in this model since 0 = In(a, = 1) and 0 = ~3In(a, = 1).
MP is also false in this model since 0 = ==3n(a, = 1) and 0 |}~ In(a, = 1).
LLPO is also false in the following model

1 h (an = 1)2 h @n = 1)

0(0)=D(1)=D(D)# @
0
since 0 |= ~(In(a, = L AIn(G, = 1)) and 0 £ =3In(a, = 1) V =3In(B, = 1).
On the other hand, we can show it by another method.
For example, the unprovability of LPO is showed as follows (see [11]): Let (&) be a
sequence such that

o — 0, if2n+4=p+gqand 2n 4+ 9 = r + s + ¢ for some pure numbers p,q,r,s and ¢
"o otherwise

Then, under the BHK-interpretation, In(a,, = 1) V =3n(a, = 1) holds only when either
Goldbach's problem “for all nonnegative integer n, there exist some pure numbers p, g, 7, s
and ¢ such that 2n+4 =p+q and 2n+9 = r + s +t” or its negation have proved. But,
we have not known weather or not we can give the proof of either Goldbach’s problem or
its negation yet. Therefore, we now cannot prove LPO under the BHK-interpretation.

But, LPO, LLPO and MP hold in classical mathematics.
In constructive mathematics, “A given position does not hold” means that we can
prove its negation or that it implies LPO, LLPO, MP and so on.

Now, in chapter 2, we will define real numbers, where we assume that the readers know
rational numbers and its theory, and will consider metric spaces and its connectivity in
chapter 3 and 4 respectively.



Chapter 2

Real Numbers

2.1 Real Number System

A ratinal number is an expression of the form p/q, where p and ¢ are integers with ¢f0
(g0 & —(q = 0) for all rational number ¢). Two rational numbers p/q and p'/q’ are equal
if p¢’ = p'q. The integer n is identified with the rational number n/1.

The contents of this chapter are based to [2] and [7].

Definition 2.1.1 Let (x,) be a sequence of rational numbers. Then, (z,) is a real number
if (z,) is a regular sequence i.e. (z,) satisfies

|Tm — 2o <m™ 407t

for all positive integer m and n. The set of real numbers is denoted by R.

Definition 2.1.2 Let = (z,) and y = (y,) be real numbers. z and y are equal if
|2 — yn| < 2071

for all positive integer n. What = and y are equal is described by = = y.

Proposition 2.1.3 Let z = (z,) and y = (y,) be real numbers. Then, x =y if and only
if for each positive integer k, there exists a positive integer N such that |z, — y,| < k™1
for all positive integer n with n > N.

(Proof) Let k be a positive integer. Define N := 2k. Then, for all natural number n with
n > N, we have |z, — y,| < 2n~ ! <2N ! < 2(2k)™! = k!, That is, |z, — y.| < 2k L.
Conversely, let n and k£ be positive integers. Then, by the assumption, there exists
a positive integer N’ such that |z, — y,| < k™! for all positive integer n with n > N.
Then, define N := max{k, N'}, and we have |z, — y,| < |20 — Zm| + |Tm — Ym| + |Ym —
Yol <2n7 1+ 2m t + k7 < 2n7! + 3k! for all positive integer m with m > N. Thus,
VnVk(|zn —yn| < 2071 +3k™!) since Vk(q < k) if and only if ¢ < 0 for a rational number

qg- 1



n

Proposition 2.1.4 “ =" is equivalent relation on R.

(Proof ) Reflexivity and symmetry are trivial.

Transitivity:

Let ¢ = (z,),y = (yn) and z = (z,) be real numbers, assume that z = y and y = z,
and let k£ be a positive number. Then, there exist positive integers N; and N such that
Vn > Ni(|zn —yal < (2k)71) and Vn > No(|yn —2a| < (2k)~1) by Proposition 2.1.3. Then,
define N := max{Ny, N>}, and we have |z, — 2| < |Tn —Yn|+ |y —2a| < (2k)7 +(2k)7 =
k=1 for all positive integer n with n > N. Hence, x = z by Proposition 2.1.3. g

Definition 2.1.5 A sequence of rational numbers (z,) is a Cauchy sequence if for all
positive integer k, there exists a positive integer N such that |z,, — z,| < k! for all
positive integers m and n with m,n > V.

Cauchy sequences of rational numbers have upper bound i.e. there exists a positive
integer K such that |z,| < K for all positive integer n: there exists a positive integer N
such that |z, — z,| < 1 for all positive integers n and m with m,n > N, hence we can
take a natural number K such that K > max{|zi], ..., |zy_1|,|zn| + 1}. The K is called
canonical bound.

Then, a regular sequence of rational numbers is a Cauchy sequence since for all positive
integer k, |Tm —zn| < m 407t < (2k) 1+ (2k) ' = k! for all m and n with m,n > 2k.
Hence, any regular sequence has canonical bound.

Definition 2.1.6 Let z = (z,) and y = (y,) be real numbers and be a be a rational
number, and define K := max{K,, K,}, where K, and K, is canonical bounds of z and
y. Then,

(1) =4y := (220 + y20)

(2) zy:= (TaknY2rn)

(3) max{z,y}:= (max{z,,yn})
(4) —z:= (=)

(5) a* =(a,a,a,..)

(6) |2|:=max{z, —x}

(7) min{z,y} := —max{-z, —y}.

Trivially, —(—z) = z,max{z, y} = max{y, 2}, [z| = (|zn|), min{z,y} = (min{z,, ya})
and | — z| = |z|.

Lemma 2.1.7 Let p, p’, g and q’ be rational numbers. Then,

| max{p, ¢} — max{p’, ¢'}| < max{|p —p'|,[¢ — ¢|}.



(Proof) In the case that max{p, ¢} = p and max{p',¢'} = ¢, max{p, ¢} — max{p’,¢'} <
p—p' <max{|p—p/[,|¢g—¢'|}, and max{p', ¢'} —max{p, ¢} < ¢ —qg < max{|p—p',lg—q|}.
Thus, | max{p, ¢} — max{p',¢'}| < max{|p — p'|,[¢ — ¢[}-

In the case that max{p, ¢} = ¢ and max{p',¢'} = p/, it is similar.

In the case that max{p,q} = p and max{p/,q'} = p/, | max{p, ¢} — max{p',¢'}| =
lp — p| < max{|p—p'|,[¢ — ¢}

In the case that max{p, ¢} = p and max{p', ¢} = p/, it is similar. 4

Proposition 2.1.8 The sequences z +vy,zy, max{z,y}, —z, a*, |z| and min{z,y} of Def-
wmition 2.1.1 are real numbers.

(Proof) Let m and n be positive integers.
2+t |(22m + Yom) = (220 + t20)] < J22m = D2n| + [Y2m = y2u| < ((2m) 7"+ (20)71) +
((2m)~'+(2n)™') = m~' +n~'. Thus, (w9, + Yo, ) is regular, hence z +y is a real number.
Y | (TormYorm) — (TornY2km )| < |Yorm!||Torm — Torn| +[Y2kn | [Y2km — Y2rn| < B((2km) ="+
(2kn)™) + k((2km)™ + (2kn)™') <m~' +n7t.
by Lemma 2.1.7.
—x and «o* : trivial.
|z| and min{z,y} : By (1) and (3). y

/ /

n

Let ¢ = (z,),2' = (2},),y = (y) and ¥’ = (y,,) be real numbers. Then , if z = 2’ and
y =1, then © — 2’ = y — ¢/ : for each positive integer k, there exist positive integers NV,
and N, such that |z, — 2 |, |yn — v,| < (2k)~* for all m and n with m > N; and n > Na.
Then, define N := max{Ny, N2}, and |(z2, — @h,,) — (Yon — Yon )| < |T2n — 25, | +|Yon — ¥h,| <
(2k) ™t + (2k) ' = k! for all n with n > N.

Lemma 2.1.9 Let (z,) and (y,) be Cauchy sequences of rational numbers. Then, (x, +
Yn) and (z,y,) are Cauchy sequences of rational numbers.

(Proof) Define K := max{K,, K,}, where K, and K, is a canonical bound of z and y
respectively.

(zn,+Yyn): Let k a positive integer. Then, there exist positive numbers N; and N, such
that |z, — z,| < (2k) for all m and n with m,n > N; and that |y, — y.| < (2k)"! for
all m and n with m,n > Ny. Then [(Zm 4 Ym) — (Tn + Yn)| < |Zm — Zn| + |Ym — Yu| < E7L
That is, VEANYm,n > N(|(zm + ym) — (zn + yn)| < k°1). Hence, (z,y,) is a Cauchy
sequence.

(znyn): Let k be a positive integer. Then, there exist positive integers N, and N, such
that |z, — x,| < (2Kk)™! for all m and n with m,n > N, and |y, — ya| < (2Kk)™!
for all m and n with m,n > N,, and define N := max{N,, Ny}. Then |z,Yn — T2¥n| <
|Zal|Ym — Yn| + |[Yml|Zm — zo| < K(2Kk) ' + K(2Kk) ' = k! for all m and n with
m,n > N.y

Proposition 2.1.10 Let z,y and z be real numbers and o« and B be rational numbers.

Then,



(1) If x=y, thenx + z =y + z,2z = yz and |z| = |y|.
(2) z4+y=y+z, zy=yz.

(3) (z+y)+z=z+(y+2),z(yz) = (zy)z.

(4) x(y+z2)=2axy+xz.

(5) 0"tz=z, I'c=az

(6) ©—a=0"

(7) eyl = [=][y].

(8) (a+p) =a"+05 (af) = a6

(9) (—a)"=—a"

(Proof) x = (2,),y = (yn) and z = (2,). Let K,, K, and K, be canonical bound of z, y
and z respectively.

(1): Suppose that z = y. Then, VkINYn > N(|z, — yo| < k') by Proposition 2.1.3.

x+ 2 = x+1y: For each positive integer k, there exists a positive integer N such
that |(z2n + 22n) — (Y2n + 220)| = |Ton — You| < 7! < 2n7! for all n with n > N. Thus,
T+ 2z =y + z. Similarly, |(z2n — 220) — (Yon — 220)| < 207!

rz = yz: Define K; := max{K,, K.} and K, := max{K,, K.}, define K :=
min{ K, K>} and let k£ be a positive number. Then, there exists a positive number N’
such that |z, — y,| < (2K3k) ™! for all n with n > N'.Then,let N := max{2k.k, N'}.

Now, for all n with n > N,
|$2K1n22KIn - y2K2nz2K2n|
< |2okin|| T2k, 0 — Y2kon| + |V2Kn] | 22800 — 22K,n|
< K2(2K2k)_ + [(2((2[(1n)_1 + (2K3n)™)
< (2k)7'+ Ky((2Kn)™t + (2Kn)™)
= (41 + Ko K(2IGH)
= (2k)1 4+ (2Kk) L < (2k) 1+ (2k) = k7L
Thus, VANV > N(|:1:2K1nz2L1n — YoranZ2kyn| < k1) Hence, zz = yz.

|:1:| = |y|: Since ||z,| — |yn|] < |2n — Y| for all n.

(3): |((zan+Yan)+220) = (T2n+ (Yan+2an)) < |Tan—Ton|+| 240 — 220 < 3(271)71 <2nt
Hence, (z+y) + 2z =2+ (y + 2).

Next, (€,Yn2,) is a Cauchy sequence by Lemma 2.1.9, and for any k, there exist
some N such that |@,Ymzm — Tnynzn| < k! for all m and n with m,n > N. Thus, for
2(yz) = (Taxnlark,.n?axK,.) a0d (2Y)2 = (Tak, nYakK,,n?2kn) and any positive integer
k, where K. .= K, K., K,y == K, K, and K := K,k, K., there exists a positive integer
N such that |CoxnYakk,.nZaKK,, — TaK, nYaKk Koyn?2kn| < k1 for all n with n > N. Hence,
z(yz) = (2y)2.

(4): Define K,, = max{K,, K,}, K,, := max{K,, K,}, K := max{K,,, K,.} and
K':= max{K,, Ky, }, where K, is one of z+y, and define z(y+2) := (Togn(Yar &, .n+



2Kk'K, .n)) and zy + yz = (Tax, wYaK,,n + Tak,.nZak,.n) Then, |Togm(Varik,,.n +
24K Ky on) —(Tak, nYake n ek, 24K n)| < |T2kmYar K, n—TaK,ynYaKeyn || Takeyn 24K Ky n—
TaK,.n?4K . n

Now, (z,y,) and (x,z,) are Cauchy sequence of rational numbers by Lemma 2.1.9.
Thus, for any k, there exist positive integers N; and Ny such that |2,y — Z,y,| < (2k)71
for all positive integers m and n with m,n > N; and that |z,,2 — 7,2, < (2k)~! for all
positive integers m and n with m,n > Ns.

Here, define N := max{Ny, No}. Then, |Zoxim¥ar' i, .n—Tak.,nYaKoyn| | Tak,ynZak Ky pon—
Tk, .n2ak,.n| < k1 for n with n > N.

(5): Since (z,) is a Cauchy sequence, VKINYR > N(|zo, — za| < k1)

(7): Since |zy| = (|22k,ynY2K.5n]); |2 |Y] = (|T260,ynl[T2K0,,m ).

(2), (6), (8) and (9) are trivial. g

Next, we show another relations on R.

Definition 2.1.11 Let 2 = (x,) be a real number. z is positive if there exists a positive
integer N such that zy > N7'. z is also nonnegative if x, > —n~" for all positive integers
n.

Lemma 2.1.12 Let p and q be rational numbers. Then p < q if and only if p < q + k~*
for any positive integer k.

(Proof) Tt is trivial that if p < g, then p < g+ k™' for all positive integer k. Conversely,
suppose that p > ¢. Then, there exists a positive integer N such that p > ¢+ N~'. On th
other hand, p < ¢ + N~! by the assumption. Thus, N < N. It is contradictory. Hence,
p < g since a < 0 or a > 0 for all rational number a.

Proposition 2.1.13 Let ¢ = (z,) be a real number. Then x is positive if and only if
there exists a positive integer N such that x, > N~ for all positive integer n with n > N.

x 1s also nonnegative if and only if for any positive integer k, there exists a positive
integer N such that z,, > —k ! for all positive integer n with n > N.

(Proof) At first, we show = > 0* if and only if ANVn > N(z, > N 1).

Let N’ be a positive integer with =’y > N’~! and let N be a positive integer with
zy — Nt >2N"! > 0. Then, |z, — zy/| < n '+ N for all positive numbers n with
n>N"' Thus,z, > -n'+(z,— N >-nt42N1>-_N14+2N =N

Conversely, let N’ be a positive integer with x,, > N’ for all n with n > N’, and define
N:=N'+1. Thenzy =zy >N 1>(N+1)1=N1>0

Next, we show = > 0* if and only if VKANVn > N(z, > —k1).

Let k be a positive integer. Then, z, > —n ' > —k ! for all positive integers n with
n > k.

Conversely, let k a positive integer, and let N be a positive integer with z,, > —k~!
for all n > N. Then, |z, — z,| < m~'+n~! for all n with n > N. Therefore, z,, >
2, —nt—m™t > k7' —n7! —m~! Thus, z,, > —m~! by Lemma 2.1.12 since k and
n are positive integers. g
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Proposition 2.1.14 Let x and y be real numbers.
(1) Suppose x =y. Then y > 0* whenever x > 0%, and y > 0* whenever x > 0*.
(2) x4y > 0" and zy > 0* whenever z > 0* and y > 0*.
(3) x4y >0" and zy > 0* whenever & > 0* and y > 0*.
(4) x4y > 0" whenever z > 0* and y > 0*.
(5) |z| > 0* if and only if x > 0* or z < 0*.

(Proof) Let z = (z,) and y = (y,) be real numbers, and let K := max{K,, K,}, where
K, and K, are canonical bound of = and y respectively.

(1): In the case z > 0% let N; be a positive integer such that z, > N, ! for all n
with n > N, and let N, be a positive number with |z, — y,| < (2N;)"* for all n with
n > N,. Then, define N := max{2N;, N>}, and for all n with n > N, y, > z,—(2N;)"! <
Ni — (2N;) ' = (2Ny)"* = N1 Thus, ANVn > N(y, > N 1).

In the case x > 0%, let k be a positive integer, let N3 be a positive integer with
T, > —(2k)~! for all n with n > N3 and let N, be a positive integer such that |z, — y,| <
(2k)~! for all n with n > N,. Define N’ := max{N3, N;}. Then for all n with n > N,
Yn > Ty — (2k)71 > —(2k)™ — (2k)™' = —k~'. Thus, VEIN'Vn > N'(y, > —k™1).

(2): Let k be a positive integer.

In the case that © +y > 0%, let N; and N, be positive integers such that z,,,y, >
—(2k)~! for all m and n with m > N; and n > N,, and define N := max{N;, No}. Then,
for all n with n > N, To, + Yo > —(2k) 7' + —(2k)~! = k=%

In the case that zy > 0*, let N3 and N, be a positive integer such that z,,,y, > —k~2
for all m and n with m > N3 and n > Ny, and define N' := max{N3, Ny}. Then, for all
n with n > N', Zogn¥orn > —k72 > -k~ L

(3): Let N, be a positive integer such that z, > N, ! for all n with n > N,., and let
Ny be a positive integer such that y, > N:,f1 for all n with n > N,,.

In the case that z 4+ y > 0*, define N; := N, + N,. Then, for all n with n > Ny,
Tom +Yam > No P4+ Ny P> (No+ N,) =N L

In the case that zy > 0%, Let Ny := N,N,. Then, for all n with n > Ny, Zoxn¥orn >
(N.N,) 1 =Nt

(4): Let N’ be a positive integer with z, > N, let N” be a positive number such
that y, > —(2N’)"! for all n with n > N” and let N := max{2N’, N"}. Then, for all n
with n > N, o, + 4o, > N1 — (2N')"t = (2N')"L < N7

(5): Let = (x,) be a real number with |z| > 0*. Then, for some positive integer N,
|zy| > N~tie. x, > Nt or —zy > 0. Thus, zy > N~! for some N or —zy > N~ for
some N. Therefore, z > 0* or < 0*.

The converse is trivial. g

Definition 2.1.15 Let z and y be real numbers. Then we write < y (or y > z) if and

only if y — x is positive.
We also write z < y (or y > ) if and only if y — z is nonnegative.

11



By Proposition 2.1.10 and 2.1.14 (1), we find that « is positive if and only if > 0%, and
that = is nonnegative if and only if > 0* for all real number z.

Let z, ', y and 3/ be real numbers. Then, ifz = 2’ and y = ¢/, then z < yi.e y—xz > 0*
ie. y —2' >0%ie ¢ >2' byy—ax =1y — 2’ and Proposition 2.1.14(1). Hence, z < y if
and only if 2’ < ¢/, and = < y if and only if 2’ < ¥/.

Proposition 2.1.16 Let z,z’,y and y' be real numbers.
1) z <y whenever eitherz <2’ andz' <y orzxz <z and 2’ <y.
Y Yy Y
(2) x <y whenever z <z’ and 2’ < y.

(3) x4y <z +y whenever x <z’ and y <y, and,
r+y <z +y whenever x < ' and y < y'.

(4) zy < z'y whenever x < ' and y > 0%, and
zy < 'y whenever x < ' and y > 0*.

(5) Ifx <y, then —z > —y, and, if v <y, then —x > —y.
(6) =<y andz >y if and only if z = y.
(7) max{z,y} >z, min{z,y} <z.

(8) Ifzx<yandz <y, then max{z,2'} <y, and,
ifz <y andz <y, then z < min{y,y'}.

(9) Ifz<yand 2 <4y, then max{z,z'} < y,and,
ife <yandz <y, then z < min{y,y'}.

(10) If z <y, then max{z,y} = y and min{z,y} = =.
(11) |z| > 0*.

(12) Ifx <y and —x <y, then |z| < y.

(13) Ifx <y and —z <y, then |z| < y.

(14) |z +y| < fz] + |y|.

(15) =] = lyl| < |z —yl.

(16) —(z < z).

12



(Proof) (1): Inthecase xz < ' and 2’ <y, y—z = (y—2')+ (' —z) > 0* by Proposition
2.1.14 (4) since y — ' > 0* and 2’ — = > 0*.

(2): By Proposition 2.1.14 (2), it is similar to the proof of (1).

(3): By Proposition 2.1.14 (2), (v'+2') —(z+vy) = (¥ —y) + (2’ —x) > 0*. Similarly,
(' +vy') — (z + y) > 0* by Proposition 2.1.14(4).

(4): 'y — zy = (2’ — &)y > 0* by Proposition 2.1.14 (2). Similarly, z'y — zy > 0* by
Proposition 2.1.14 (2).

(5 If e <y, thenz —y <0*ie —y+ax<0 ie —y—(—z)<0* Thus, —z> —y.
Also, if —z > —y, then —z — (—y) < 0*ie. —z +y < 0*ie. y—a <0* Thus, z <.

(6): Foranyn, y, —x, > —n tand z, —y, > —n tie |z, —y,| <nt<2nh
Thus, =z = y.

Conversely, for any k, there exists N such that =, — y, > —|z, — y,| > —k ! and
Yn — Yn > —|Tn — Yyn| > —k ! for all n with n > N. Hence, z > y and = < y.

(7): max{z,,yn} — , > 0> —k ! and z, — min{z,,y,} > 0> —k ! for all ¥ and n.

(8): By (1), y — max{xz,z'} <y — « < 0*. That is, max{z,z'} < y.

Similarly, min{y,y'} — 2 >y — 2 > 0*.

(9): By the same way as (8).

(10): y — max{z,y} <y —y = 0*. Thus, y = max{x,y} by (6) and (7).

Similarly, z = min{z, y}.

(11): Since |z3,| > 0 for all n.

(12): |z| = max{z, —x} < y by (8).

(13): It’s similar to (13).

(14): For any n, (|an| + |Yan|) — |[Tan + yan| > 0> —n"t.
(15): For any n, [2an — Y] — l[23a] — lysn]| = 0> —n".
(16): Since —(0* > 0*), z — x is not positive. y

Proposition 2.1.17 Let ¢ and y be real numbers. Then , if x <y s contradictory, then
T > y.

(Proof) For z = (z,) and y = (y,), if ~In(y, — z, > n '), then Vn(z, —y, > —n ).
Hence, y > x. g

Now, for all real numbers x and y, x < y whenever < y or x = y. But the converse
does not hold. See Proposition 2.3.1.

Definition 2.1.18 For real numbers  and y , we write zfiy if and only if z < y or z > y.

Proposition 2.1.19 Let x and y be real numbers. Then xfy is contradictory if and only
if T=y.

(Proof) zfy is contradictory if and only if # < y or > y are contradictory i.e. = >y
and = < y. That is, z = y by Proposition 2.1.16(7) and Proposition 2.1.17.
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If zfy, then =(z = y). But the converse doesn’t holds since =(z = y) = afy if and
only if MP. See Proposition 2.3.1.

Next proposition means the existence of the inverse element in R — 0* for the product.
Hence, R is a field by Proposition 2.1.10.

Definition 2.1.20 Let z = (z,) be a real number with 2#0*, and let N be a positive
integer such that z, > N ! for all n with n > N or that —z,, > N ! for all n with n > N.
Let y = (y») be a rational sequence with

| (zye)t,  ifn< N
Yn = (zon2)"t, ifn>N.

Define that 271 := (y,).

Proposition 2.1.21 Let z and y be real numbers with x, y§0*. Let a be a rational number
with af0*. Then

(1) z=' is a real number.

(2) xz7l=zx"lz =1%

(3) x !> 0* whenever z > 0*, and z~! < 0* whenever z < 0*.
(4) Ifzt=1, thent =z 1.

(5) (@)=

(6) (zy)~' =y la7".

(7) |z ==

(8) (") =(a7t)".

(Proof) Let N be a positive integer such that z, > N~ for all n with n > N or that
—z, > N ! for all n with n > N, and let K be a upper bound of canonical bounds of
(z,) and (y,) with K > N, where 2! := (y,).

(1): Incase m > N and n < N, |ym —Yn| < [Tmyz P —zys | < N3N 34+mIN2) =
Ntl4mt<ntl4+m?L

(2): Let k be a positive integer, and define N’ := min{k, N}. Then, for all positive
integer n with n > N', |zagnYorn — 1| = |TornTornzn T —1] < N(2Kn) 1+ (2KNn) ! <
(2k)7t + (2N2k) "t = (2k) 1 + (2N%k) ! < (2k)' + (2k)! = k1. Thus, VEIN'Vn >
N'(|z2xnYorxn — 1*| < k7). Hence, zz~! = 1*. Thus, zz ! = 2 'z = 1* by Proposition
2.1.3.

(3): In case z > 0* there exists N such that z, > N~! for all n with n > N. Then,
for all n with n > N, (K,)™" < (zy2,)"", where K, is a canonical bound of z. Here,
define N' := max{N, K,}. Then, (zy2,)"" > N'~! for all n with n > N’. Thus, z7* > 0*.
Similarly, z=! < 0* whenever 2 < 0*.
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(4): Let t be a real number with zt = 1*. Then z 'zt = z~'1* by Proposition

2.1.10 (1)
( )-

(5): B
(6): (y'o~)(zy) =y H(z~'z)y = y~'y = 1*. Thus, by (4), (zy)~' =y~ 'z~ "
(7): | 1||96| |z~ x| = 1. Thus, |z|~" = [27!| by (4).
(8): It’s trivial. y

By Proposition 2.1.10 and 2.1.21, (f)* = a*F*, (e + §) = o* + 5%, (—a)* = —a*,
la|* = |a*| and (o t)* = (a*)! for all rational numbers « and 3. It is also that aAS if
and only if a*AB*, where ¢ stands for any of the relations =, <, >, <, > and {.

Thus the map * : Q — R is order isomorphic, hence we can identify a rational number
a with a real number o*.

Proposition 2.1.22 Let 2 = (z,) be a real number. Then Vn(|z — z,*| < n™").

(Proof) Let n be fixed. Then, we may show n™! — |24, — x,| > —m ! for all positive
integer m.
For all m, n™' — |24 — x| > 07t — (A4m) ™ +n7Y) = —(4m)~' > m™1.

Proposition 2.1.23 Let x and y be real number with x < y. Then, there exists a rational
number o such that r < a < y.

(Proof) Let = = (x,) and y = (ya), let Ny be a positive integer with yu, — 2o, > Ny
for all n with n > N, define let N := 2N, and define « := 27! (zyx + y2). Then,
Yo — @ = Yoy — Toy > (2Np)™' = N7 Thus, y — a > 0. Similarly, o — z > 0. 3

Corollary 2.1.24 Let x be a real number. Then for any € > 0, there exists a rational
number o such that |z — af < €.

(Proof) For all real number z, there exists a rational number a such that —e+z < o < et
for all € > 0 by Proposition 2.1.23. Thus, |z — a| < €.

Next, we show the proposition for a certain judgment on R.

Lemma 2.1.25 Let zq,...,x, be real numbers with 1 + ... + ©, > 0. Then, there exists
a positive integer ¢ such that 0 < ¢ < n and z; > 0.

(Proof) There exists a rational number « such that z; + ... + #, > a > 0 by Proposition
2.1.23, and there exists a rational finite sequence (a;) such that |z; — a;| < an™! for
all ¢ with ¢ < n by Proposition 2.1.24. Then, > ;a; — Y2 2 = 28 (0, — x;) >
" ,—an ' = —a. Thus, ¥ ;a; > ¥, 2; —a > 0 by the assumption. Thus, there
exists 7 such that a; > 0 and that : < n.
Now, define M := min{a; !, na '}, where ¢ satisfies that ¢ < n and that a; > 0. Then,

M > 0, therefore a; — N ' > 0. Thus, z; > a; —an ' > a; — N 1 > 0. Hence, z; > 0. 4

Corollary 2.1.26 Let x,y and z be real numbers with ¢ <y. Then x < z or z < y.
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(Proof) Sincey—xz > 0, (2 —z)+(y—2) =y—a > 0. Thus, by Lemma 2.1.25, z—z > 0
ory—z>01e z<zorz<y.y

Here, we show uncountability for R.

Theorem 2.1.27 Let (a,) be a sequence of real numbers. Let xy and yo be real number
with xg < yo. Then there exists a real number x such that xqg < z < yg and that a,fx for
all positive integer n.

(Proof) We define sequence of rational numbers (z,) and (y,) such that
(1) 2o <2p < & < Ym < Yn < yp for all positive integers m and n with m > n
(2) a, <z, ory, < a, for positive integer n
(3)  yn— x, <n ! for all positive integer n

as follows inductively.

Assume that for n, zo < z, < y» < v, that a, < z, or y, < a, and that y,—z, < n L.
Then, z, < a,41 or ayy1 < y, by Corollary 2.1.26. In the case z, < a,y1, we can
take a rational number z, 1 with z, < z,+1 < min{a,41,v,}, and let y, be one with
Tpi1 < Yni1 < MIN{api1, Yn, Tur1 + (n+ 1)1} by Proposition 2.1.23 and 2.1.16. In the
case apy1 < Yn, We can take a rational number y, 1 with max{a,.1,Zs} < Yns1 < Yn,
and let x,,; be one with max{ani1,Zn,Yni1 — (n + 1)} < Zn11 < Yni1. In the both
case, g < Ty < Tpt1 < Ynt1 < Ynt1 < Yo, that a,1 < 241 OF Ypy1 < a,y1 and that
Ynt1 — Tos1 < (n+ 1)t Thus, (z,) and (y,) satisfy (1), (2) and (3) by induction on n
(since g < ay or a; < yo for zg and yp with 29 < yo by Proposition 2.1.26, z; and y; are
defined as the above. )

Now, by (1), (2) and (3), [Zm —2n| = Tm —Tn < Ym — T < Yo —Tp < ' <m 40!
for all positive integer m and n . Thus, (z,) is a real number. Similarly, (y,) is a real
number. Therefore, (z,) = (v,) by (3).

Next, let z = (z,). Then, z, < z for all n and = < y, for all n by (1). Thus, a, < z
or r < a, i.e. ayfiz for all n. 3

Next, we show completeness for R.

Definition 2.1.28 A sequence of real numbers (z,) conveges to a real number z if for
all € > 0, there exists positive integer N such that |z, — x| < k™! for all n with n > N.
Then, we write z, — z and call z a limit of (z,).

Here, A Cauchy segence of real numbers is defined by replacing “rational”in Definition
2.1.5 with “real”, and it has also canonical bounds : for a Cauchy sequence (z,) of real
numbers, there exists N such that |z, — z,| < 1 for all m and n with m,n > N. Then,
|z, < max{|z1|,..., |y 1|,|zn| + 1} for all n. Thus, we can take a positive integer K
with K > max{Kj, ..., Ky,, Ky + 1} as canonical bound of (z,) since z,, < K, for all n,
where K, (1 < n < N) is a canonical bound of a regular sequence of rational numbers
z, (1<n<N).
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Theorem 2.1.29 A real number sequence (x,,) is a Cauchy sequence if and only if (x,,)
converges.

(Proof) Let a real number sequence (z,) be a Cauchy sequence.

Let (IV},) be a sequence of positive integers such that |z,, — z,| < (2k)~! for all m
and n with m,n > Ny, and for each positive integer k, let (yx) be a sequence of rational
numbers with |zy, — yi| < (2k)7" (by Corollary 2.1.24).

We will show that y = (y,) is a real number and that y is a limit of (z,,).

Now, define N, ,, := max{N,,, N,,} for each m and n. Then, |y, — ¥n| < |Ym — .|+
TN = TN o | TN — T |28, — U] < (2m) 71+ (2m) -+ (20) 7 +(20) " =m0
Thus, |[ym — ¥n| < m™t +n~'. Hence, y is a real number.

Next, for any k, we have |z, — y| < |2z, — n,, | + |Zny — Y2r| + |y2r — y| < (4k) 1 +
(4k)~t+(2k)~! = k! for all n with n > Ny by Proposition 2.1.22. Thus, |z, —y| < kL.
Hence, z, — x.

Conversely, let z be the limit of (z,).

Let k be a positive integer, and let N be a positive integer with |z, — z| < (2k)~! for
all n with n > N. Then, |z, — z,| < |zm — @] + |z — 2,| < (2k) ' + (2k) P = k! for all
m and nwith n > N. Thus, |z, — z,| < k~'. Hence, (z,) is a Cauchy sequence. g

2.2 Sequences of Real Numbers
Now, we show some properties of converging sequence.

Lemma 2.2.1 Let z and y be real numbers. Then, x <y if and only if x < y + k= for
all positive integer k.

(Proof) Tt is easy that if x < y, then z < y + k1.
Conversely, if £ > y, then there exists positive integer N such that z —y > N1 > 0,
therefore y + N~! < z < y. It’s contradictory. Thus, z < y by Proposition 2.1.17. 4

If z,, has limits  and 2/, then z = 2":
let & be a positive number, and let N; and Ny be positive numbers such that |z, — z| <
(2k) ! and |z, — 2’| < (2k) ! for all m and n with m > N; and n > N,. Then,
|z — 2| < |z — zn| + |2 — 2| < (2k) 1+ (2k)~! < k1. Thus, |z — 2’| < 0 by the above
lemma. Thus, z = 2’

Lemma 2.2.2 Letz = (z,),2' = (z)),y = (ya) and ¥ = (y.,) be real numbers. Then,
| max{z,z'} — max{y, '} < max{|z —2'|,|y — |}

(Proof) Since | max{zsn, 7y, } — max{yan, Y }| < max{|sn — 2l an — oo} for all m by
Lemma 2.1.7. g

Proposition 2.2.3 Let (z,) and (y,) be sequences of real numbers such that (z,) con-
verges to a real number x and that (y,) converges to a real number y. Then
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(1) (znt+ya) — (z+y).

(2) (znyn) — (zy).

(3) max{z,,y,} — max{z,y}.

(4) Ifzn=c for all n, then z = c.

(5)  If z, 2,40 for all n, then z;* — z 1.
(6) If 3 < yn for all n, then z < y.

(7)  Suppose x = y. Then for a sequence of real numbers (2,), if Tn < 2z, < Yy for all
n, then z, — .

(Proof) (1) and (2): They are showed by the same way as Lemma 2.1.9 respectively.

(3): Let k a positive integer, and let N; and N, be positive integers with |x,, — 2|, |y, —
y| < k7! for all m and n with m > N; and n > N,. Then, | max{z,,y,} — max{z,y}| <
max{|z, — x|, |y, — y|} < k! by Lemma 2.2.2.

(4): z, — c since Yk, n(|z, — ¢| < k™'). Thus, z = c.

(5): Let k be a positive integer, and let Ny be a positive number such that |z, — z| <
(2k)~tz|? for all n n > Ny. Then, |z| < (2k)~!|z|? for all n with n > N;. Also, let N, a
positive number such that |z, —z| < 27!|z| for all n with n > N,. Then, |z,| > 27!|z| for
all n with n > N,. Here, let N := max{Ny, No}. Then, |z ' — 27 = |z,| 7 Hz| e, — 2| <
2|z| x|~ (2k) "z = k! for all n with n > N.

(6): Assume that x > y. Then, there exits Ny such that z —y > N~! by Proposition
2.1.23, and there exist N; and N, such that |z,, — z|, |y, — y| < (2Ng)~! for all m
and n with m > N; and n > N,. Let N := max{Ny, No}. Then, Ny < z —y =
(2 —2n) + (Zn — Un) + (U —¥) < |2 — 20| + 04 Jyn —y| < (2No) ™"+ (2Ng) ™! = Ny * for
all n with n > N. It is contradictory. Then, z < y by Proposition 2.1.17.

(7): Let k a positive integer, let N; and N, be positive integers such that |z,, —z| < k!
and |y, — x| < k! for all m and n with m > N; and n > N, and let N := max{N;, N, }.
Then, z, —z2 < yp—z <k tand z—2, <z —=z, <k !forall n withn > N. Thus,
|zn — x| < k! by Proposition 2.1.16 (12). y

2.3 On Omniscience Principles
Here, we show some propositions are equivalent to LPO, LLPO and MP respectively.

Proposition 2.3.1

(1) LPO if and only if Vr e R(r >0V r <0V r=0).
(2) LLPO if and only if Vr € R(r > 0V r <0).
(3) MP if and only if Vr € (=(r =0) = r > 0).

18



(Proof) (1): At first, we show that if LPO holds, then Vr € R(r >0V r <0V r =0).

Let 7 = (r,) be a real number. Let (o) be a sequence of integers such that

0 if |r,| <nt
a — ) n g
" 1, if |7, > n~t

Then, a,, = 1 for some n if and only if |r| > 0ie. 7 >0o0rr <0, and o, = 0 for all n if
and only if » = 0. Thus, » > 0, » < 0 or 7 = 0 by the assumption.

Conversely, let (a,) be a sequence of integers taking 0 or 1, and let » = (r,) be
a sequence of rational numbers with r, = >*  27%a,;. Then, r is a real number since
[rm = 7] = | X227 = T 2 <R 27 <X, 270 =2 -2 <2 <
n 't <n '+ m!for all m and n with m > n. Then, |r| > 0 if and only if In(a, = 1)
since 3.7, 27'a; > n~! for some n if and only if a,, = 1 for some n, and |r| = 0 if and
only if Vn(a, = 0) since | X", 2 'a;| < n~! for all n if and only if there exist no n such
that o, = 1.

Thus, In(a, = 1) or =In(a, = 1) by the assumption.

(2): We show that if LLPO holds then V7 € R(r > 0V r < 0).

Let 7 be a real number, and let (o) and (3,) sequences of integers such that

] 0, ifr>-—-n-t
=11, ifr<—(n+1)Y

and

3, = 0, if r <nl
"1, ifr>(n+1)7h

Then, if there exist m and n such that a,, = 1 and 8, = 1, then r < —(m + 1)!
and 7 > (n+ 1)"'. It’s contradictory. Thus, =(In(a, = 1) A In(B, = 1)). Therefore,
=3n(a, = 1) V =3In(B, = 1) by the assumption. Thus, o, = 0 for all n or 5, = 0 for all
n. Hence, r > 0 or r < 0 by Lemma 2.2.1.

Conversely, let (a,) and (5,) be sequences of integers taking either 0 or 1, and let
r = (r,) be a sequence of rational numbers with r, = 3" , 27%(8; — «;). Then, r is a real
number since |ry, — 7| < TP 270 — )| < 2,027 <m t+ 0t for all moand
n with m > n.

Now, suppose that =(3In(a, = 1) A In(B, = 1)). Then, we can classify by the
assumption as follows: in the case that » > 0, suppose that «, = 1 for some n. Then,
there exist no ¢ such that 3; = 1 by the supposition. That is, §; = 0 for all . Therefore,
for some n with o, = 1, =2~ < pyupn = Z?:{l 276 — o) = E?:{l 27— < =277
since r > 0ie. 7, > —n~!forall nand 1 < n < 2°*! Tt is contradictory. Thus,
—3n(a, = 1). Hence, 73n(a, = 1) V ~3n(B, = 1).

In case the case that » < 0, suppose that 3, = 1 for some n. Then, o; = 0 for all .
Therefore, for some n with £, =1, 27t > ppiy = E?Sl 2796 — ;) = E?Sl 273 >
2" since r < 0ie. 7, < —n ! forallnand 1 < n < 2*"L It is contradictory. Thus,
—=3n(a, = 1). Hence, =3n(a, = 1) V =3In(G, = 1).

(3): We show that if MP, then Vr € (=(r =0) — r > 0).
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Let 7 = (r,) be a real number, and let (a,) be a sequence of integers such that

0 if |r,| <nt
o — ) n g
" 1, if |7, > n~t

Then, a, = 1 for some n if and only if |r| > 0, and «, = 0 for all n if and only
if » = 0. Here, suppose that =(r = 0). Then —Vn(a, = 0). Thus, -—3n(a, = 1) by
-3n(a, = 1) = Vn(o, = 0). Therefore, In(a, = 1) by MP. Hence, |r| > 0 i.e. r§0.

Conversely, let (a,) be a sequence of integers taking 0 or 1, and let » = (r,) be a
sequence of rational numbers with 7, = 3" | 27a;. Then, 7 is a real number by the same
way as (1). |r| > 0 if and only if o, = 1 for some n, and r = 0 if and only if o, = 0 for
all n.

Now, suppose that ==3n(a, = 1) i.e. ==(|r| > 0). Then, »r = 0. Thus, r§0 by the
assumption. That is, || > 0. Therefore, In(a, = 1). y

Then, Vz € R(r > 0= r >0V r =0) if and only if LPO as follows:

Assume that for all real number 7, if » < 0, then » = 0 or » > 0 . Then, |r| > 0 for
any real number r. Thus, |r| =0 or |r| > 0. That is, » =0, r > 0 or » < 0. Hence, LPO
holds by the above proposition.

The converse is trivial by the above proposition.
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Chapter 3

Metric Spaces

Here, “A set X is inhabited” means that X has at least one element. Actually, in con-
structive mathematics, “X is nonempty” is not equivalent to “X is inhabited” since “If
X is nonempty, then X is inhabited” implies MP ( by X := {n € N|a,, = 1} for a given
sequence (¢, ) taking 0 or 1).

3.1 Metric Spaces

Definition 3.1.1 Let X be a set, and let d be a map by X to R%+ with the following
conditions:

(1) d(z,y) =0if and only if z = y
(2) d(z,y) = d(y,z)
(3) d(z,y) < d(z,2) + d(z,y),

where R%% is the set of nonnegative real numbers. Then, this d is called metric or
distance function, and (X, d) is called metric space. We sometimes omit the metric d.

In a metric space (X, d), the subset A of X is a metric space for the following map d:
da(z,y) = d(z,y) (z,y € A).
This (A, d4) is called a metric subspace of (X, d).
Example 3.1.2
(1) Euclid space R, where d(z,y) := |z — y| (z, y € R).

(2) (II, X;, d), where (X5, d;) (1 <4 < n) are metric spaces and d(z,y) := >." ; di(z;, i)
(513 = (2171, ...,l’n), Yy = (yl: 7yn> € H:;v,:1 )(2 = X]_ X ... X Xn)

Definition 3.1.3 A open ball of radius r > 0 (or r-neighborhood) for a point x in metric
space (X, d) is the subset B(z,r) = {y € X|d(z,y) < r}.
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The open ball in the subspace A of X is as follows:

Ba(z,r) = {y € Alda(z,y) <r}
{y € X|d(z,y) <r}N A.

Definition 3.1.4 Let (X, d) be a metric space, and let V' be a subset of X. Then,
e Vi:={zeV|Ir>0B(z,r)CV)}
o V :={ze X|Vr>0(B(z,r)NVis inhabited)}.

V' is called the interior of V, and V~ is called the closure of V.
Then, V is open if V =V* and V is closed if V =V .

Proposition 3.1.5 Let X be a metric space, and let A and B be subsets of X. Then

(1) (ANB)=A'nNB.

(2) A-UB C(AUB) .
(Proof) (1): Let z € (ANB). Then, B(z,r) C ANB for some r > 0. That is, B(z,r) C A
and B(z,r) C B. Hence, z € A*' N B".

Conversely, let z € A* N B*. Then, N(z,7) C A and N(z,73) C B for some 7; > 0
and 7y > 0. Here, let r := min{ry,72}. Then, B(z,7) C AN B since B(z,r) C N(z,71)N
N(z,r2). Hence, z € AN B.

(2): Let # € (AU B)~. Then, B(xz,r) N (AN B) is inhabited for all » > 0. Thus,

N(z,r1) N A is inhabited for all r; > 0, and N(x,r2) N B is inhabited for all 7o > 0. That
is, t€ AN B .y

About the above (2), “ (AU B)~ D A~ U B~” imply LLPO. See Example 3.1.12.

Lemma 3.1.6 Let X be a metric space, and let A be a subset of X. Then,
(1) A" is the maximal open set contained in A.

(2) A~ is the minimal closed set containing A.

(Proof) (1): Let O be a open set contained in A and z be any element of O. Then, B(z,r)
is contained in O for some r > 0. Thus, B(z,r) is contained in A. Therefore,  belongs
to A’

(2): Let F be a closed set containing A, and let = be any element of A~. Then,
B(z,7)N A is inhabited for all » > 0. Thus, B(z,r) N F is inhabited, hence & belongs to
F.y

Example 3.1.7 Let a and b be a real number with a < b.

(1) [a,b] is closed in Euclid space R.
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(2) (a,b) is open in Euclid space R.
(3) {0} and {1} is open and closed in subspace {0, 1} of Euclid space R.

(4) In Example 3.1.2(2), O, is open in X, for each i = 1,...,n if and only if O; X ... X O,,
is open in [[* ; X;.

(Proof) (1): We may show [a,b]” C [a, b)].

Let « € [a,b]”. Then, B(z,r) N [a,b] is inhabited for all » > 0. Here, z < bor z > a
by Corollary 2.1.26.

In the case z < b, suppose that a < . Then, z < ¢ < a for some rational number ¢
by Corollary 2.1.24 and N(z,|q — z|) N [a,b] = ¢. It is contradictory. Thus, z < a by
Proposition 2.1.17. Therefore, = € [a, b].

In the case ¢ > a, x € [a,b] similarly. Hence, z € [a, b].

(2):We may show (a,b) C (a,b)'.

Let z € (a,b), and let 7 := 2 'min{|z — a|,|b — z|}. Then, if y € B(z,r), then
|z —y| < |z —a| and |z —y| < |b—z|. Thus, a <y < bie y € (a,b)bya<az <0
Hence, z € (a,b)".

(3): Since B(0,27') = {0}, 0 € {0}*. That is, {0} = {0}*. Therefore, if z € {0},
then B(z,r)N {0} = {0} for all » > 0. Thus, « € {0}. Hence, {0} = {0} .

About {1}, it is similar to {0}.

(4): Let Oq,...,0, be open sets in X, ..., X, respectively, and let z = (z1,...,2,)
be in O = O; X ... X O,. Then, there exist positive real numbers rq,...,7, such that
Bi(z;,r;) C O; for any ¢ = 1,...,n, where B;(z;,7;) is a open ball in X;. Here, let
r:=min{ry,...,7, }, and let y = (y1, ..., yn) bein [, X; with d(z,y) = S5, di(zi, vi) < 7.
Then, di(z;,y;) <r <7 forall i =1,...,nie. y; € By(x;,r) for all i. Thus, y; € O; for
all i i.e. y € O. Therefore, B(z,r) C O. Hence O is open, where B(z, ) is a open ball in

i=1 Xi-

Conversely, let O; X ... X O, be a open set in [[;*; X;. Then, there exists » > 0 such
that B(z,r) C O; X ... X O,. Now, let y = (y1,...,¥n) be a element of [[*; X; with
y; € Bi(z;,n'r). Then, d(z,y) := 2F , di(z;,5:) < SF,n'r = r. Thus, y € O ie.
y; € O; for all i = 1,...,n. Hence, O; is open for all for all : =1,...,n. 4

Lemma 3.1.8 Let A a subspace of X. Then
(1)  for all open set O in X, ON A is open in A

(2) F is closed in A if and only if F = F' N A for some closed set F' in X.

(Proof) For a set M, let M'4 be the interior of M in A and M 4 be the closure of M in
A.

(1): We may show ON A C (O N A)4.

Let x € ON A. Then, B(z,r) C O for some r > 0. Thus, B(z,7) N A C ON A ie.
Ba(z,7) C O N A. Therefore, z € (O N A)'A.

(2): Let F be aclosed set in A, and let F' := F~. Weshow F=F'NA. FCFNA
is trivial.
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we show that FF O F'NA. Let z € F'FNnAie x € F-NA. Then, B(z,r)N F is
inhabited for all » > 0, and « € A. That is, B(z,7) N AN F is inhabited for all » > 0.
Therefore, x € F~4 = F', hence FFNAC F.

Conversely, let © € (F' N A)~4. Then, B(z,7)a N (AN F’) is inhabited for all » > 0.
Thus, B(z,r) N F' is inhabited for all » > 0. That is, € F’. On the other hand, z € A
since (F' N A)~4. Hence, z € ' N A. 3

The author hasn’t known weather or not “A*4 = M* N A” holds constructively.

Definition 3.1.9 Let (z,) be a sequence in X, and let z be in X. (z,) converges to z if
for all positive real number €, there exist a positive integer N such that d(z,,z) < € for
all positive integer n with n > N.

Then, we write z, — = .

Lemma 3.1.10 A subset A of X is closed if and only if there exists a sequence converging
to x for all x in A.

(Proof) Let = be a element of A~. Then, B(z,k™')N A is inhabited for all positive integer
k. Thus, there exists a sequence (z;) of A such that z; € B(z, k™) for all k. That is ,
(xy) converges to .

Conversely, suppose that for each x in A, there exists a sequence (xy) of elements of A
converging to . Then, for any k, there exists a positive integer N such that d(z,,z) < k!
for all n with n > N. That is, for each positive integer k, there exists n such that

T, € B(z,k™'). Hence, B(z, k') N A is inhabited for all k by (z)) C A. y

For the above proof, we reason (z,) converges to z if and only if for each positive
integer k, there exists a positive integer N such that d(z,,z) < k™! for all n with n > N.
The reason is that if the later holds, then for each € there exists k such that 0 < k™! < ¢
and that if the former holds, particularly we can take a positive rational number k= as
any € > 0.

Example 3.1.11 In Example 3.1.2(2), A1 X .. x A,” = (A1 X ... x A,)".

(Proof) Let z =
exists a sequence
sequence (($k, .. ,x )
r € (A x. A,)” by Lemma 3.1.10.

Conversely, let © = (@1, ...,2,) be a elements of (A; x ... X A,)~. Then, there exists a
sequence (zy) = ((z}, ..., 7)) of elements of A; X ... X A, converging to x . Thus, for any

1, a sequence (.I‘k) of elements of A; converges to x;. Hence, = belongs to A;,” x ... x A;~
by Lemma 3.1.10. g

1.y Zn) be a element of A1~ X ... x A, . Then, for any 4, there
k) of elements of A; converging to x; by Lemma 3.1.10. Thus, a
is a sequence of elements of A; X ... X A, converges to x. Hence,

(21, .
(z

D

Example 3.1.12 ([-1,0]U[0,1])~ C [-1,0]U [0, 1] implies LLPO. Thus, the converse of
Proposition 3.1.5(2) doesnt holds.
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(Proof) Let (a,) and (f,) be binary sequences, which are a sequence taking 0 or 1 for
each n, and assume that =(3In(a, = 1) A In(B, = 1)). Let r, := ™, 2748 — o), and
let 7 := (r,). Then, 7 is a real number in [—1, 1] by the same way as Proposition 2.3.1(2),
and (r,) converges to r by Proposition 2.1.22.
Now, suppose that a positive integer n is given. Then, in case that a; =0 and 5; =0
for all ¢ with ¢ < n, r, € [-1,0] N[0, 1].
In case that a; = 1 for some 7 < n and that §; =0 for all i < n, %, 276 — o) =
* 27 Y~a;) €0. Thus, r, € [-1,0].
In case that o; = 0 for all ¢ < n, and 3; = 1 for some ¢ < n, 3% 274G — o) =
» 2716, > 0. Thus, r, € [0,1].
In the case that o; =1 and 3; = 1 for some ¢ and j, it is opposed to the assumption.
Therefore, (7,) is in [—1,0] U [0,1]. Thus, » € [-1,0] or 7 € [0.1] by Lemma 3.1.10.
Hence, =3n(a, = 1) or =3(B, = 1) by the same way as Proposition 2.3.1. y

By Proposition 2.1.22, there exists a rational sequence (g,) converging to r for any
real number r. Thus, Q~ = R.

3.2 Continuity

Let X and Y be metric spaces.

Definition 3.2.1 A map f from X to Y is continuus if for any = in X and any positive
real number ¢, there exist a positive real number § such that B(z,8) C f~Y(B(f(z),¢€)).

Proposition 3.2.2 Let f and g be continuous maps from X to R. Then, max{f, g}, f+g
and fg are continuous.

(Proof) Let € be any positive real number and z be any element of X.

(max{f,g}): there exist positive real numbers §; and &, such that for all y and 3’ in
X, |f(z)— f(y)| < € and |g(z) — g(¥')| < € whenever d(z,y) < 6; and d(z,y’) < 62. Then,
let Omax := min{éy, 62 }.

Now, | max{f(2), g(z)} ~ max{/(s), g(s)} < max{|f(2) — F(W)],lg(2) — g(x)[} < € for
any y € X with d(z,y) < émax, by Lemma 2.2.2.

(f+g): Fore>0 and x, there exist positive real numbers 83 and ¢, such that for all
yand ¢ in X, |f(z) — f(y)] < 27'e and |g(z) — g(¢')| < 27 '€ whenever d(z,y) < &3 and
d(z,y') < 4. Then, let 6, := min{6y, 62}

Now, for any y € X with d(z,4) < 61, |(7(x) +g(z)) — (f(5) + ()| < |7() — ()] +
l9(z) — g(y)| <27+ 27 e =

(fg) : First, let 65 be a positive real number such that for any y € X, if d(z,y) < 85,
then |f(z) — f(y)| < 1, and let &g be a positive real number such that for all y € X, if
d(z,y) < 86, then [g(z) — g(y)| < 1. Then, [f(y)] < [f(z)| +1,]9(y)] < [g(=)] + 1 for all
y € X.
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Next, there exist positive real numbers é; and ég such that for any y and any ' in X,
if d(z,y) < 67 and d(z,y') < &g, then | f(z) — f(y)| < (2(|g(z)+1)) e and |g(z) —g(¥')| <
(2(|f(z) + 1))"'e. Then, let &, := min{ds, &, o7, s }-

Now, for any y € X with d(z,y) < b, [f(z)g(z) — f(y)9(y)| < [9(y)[|f(z) — F(y)] +
[F(@)llg(x) = g(y)| < (lg(2)| + DIf(z) = f¥)] + (1F(2)] + Dlg(z) — 9(w)] < (lg(z)] +
D2(lg(z) + 1) e+ (/@) + DE(f(2) + 1)) e = e

Proposition 3.2.3 Let f be a continuous map from X to R such that there exists a
positive real number ¢ such that |f(z)| > ¢ for all z. Then, (f)~* is continuous.

(Proof) For any € X and any positive real number €, there exists a positive real number

§ such that for all y € X, if d(z,y) < 4, then |f(z) — f(y)| < c?e.

Now, for any y € X with d(z,y) < 6, |f(z)™t = f(y)7| = |f(2)| | f(y)| | f(z) —
fy)| < c?Fe=ey

Proposition 3.2.4 Let X,Y and Z be metric spaces, andlet f : X — Y andg:Y — Z.
Then, iof f and g are continuous, then go f is continuous.

(Proof) (1): Ve > 036,68 > 0(B(=,8) C f X (B(f(x),8)) C £ (g (B(g(f(x)),e))).

Definition 3.2.5 A map from X to Y is segentially continuous if for all  in X and all
sequences (z,) in X, f(z,) — f(z) whenever z,, — x.

Propositions replacing “continuous” with “ sequentially continuous” on Proposition 3.2.2,
3.2.3 and 3.2.4 are also shown by the same way.

Definition 3.2.6 A map from X to Y is nondiscontinuous if for all  in X and all
sequences (z,) in X, what (z,) converges to  and what there exists a real number § such
that d(f(z,), f(z)) > 6 for all n imply that 6 < 0.

Proposition 3.2.7 Let f be a map from X toY.
(1) fis continuous if and only if f~1(O) is open in X for all open subset O of Y.

(2) fis continuous =
f is sequentially continuous =
F7UF) is closed in X for all closed subset F of Y =
f(A7) is contained in (f(A))~ for all subset F of X =
f is nondiscontinuous.

(Proof) (1): Let O e be an open subset of Y.

Take any z in f~*(O). Then f(z) belongs to O, so that B(f(z), €) is contained in O for
some € > 0. That is, f *(B(f(z),¢€) is contained in f!(O). Then, there exists a positive
real number § such that B(z,§) is contained in f~*(B(f(z),€)) by f is continuous. Thus,
B(z,§) is contained in f~!(O) since f~Y(B(f(z),¢) is contained in f~*(O).
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Conversely, let ¢ be a positive real number, and let = be a elements of X. Then,
I Y B(f(z),€)) is open in X by the assumption since B(f(z),€) is open in Y. On the
other hand, = belongs to f~!(B(f(z),€)). Thus, there exists a positive real number § such
that B(z,d) is contained in f~Y(B(f(z),r)).

(2): f is continuous = f is sequentially continuous:

Let = be any element of X, and let (x,) be a sequence of elements of X. Suppose that
() converges to z, and let € be a positive real number. Then, there exists a positive
real number § such that B(z,§) is contained in f~!(B(f(z),€)) since f is continuous, and
there exists a positive integer N such that z, belongs to B(z, ) for all n with n > N.
Therefore, f(z,) belongs to B(f(z),€). That is, f(z,) — f(z).

[ is sequentially continuous = f~1(F) is closed in X for all closed subset I of Y:

Let F' be any closed subset of Y. Then, we may show f~1(F)™ C f1(F).

Let = be a element of f~'(F)”. Then, there exists a sequence (z,) of elements of
/Y F) conversing to . Thus, the sequence (f(z,)) converges to f(z) since f is se-
quentially continuous. Therefore, f(x) belongs to Fby Lemma 3.1.10 since (f(z,)) is a
sequence of elements of F. Hence, z belongs to f~(F).

f7Y(F) is closed in X for all closed subset F' of Y = f(A™) is contained in f(A)~ for
all subset F' of X:

Let A be a subset of X. Then, since A is a subset of A~, A is contained in f~!( f(A)7).
On the other hand, f~!(f(A4)7) is closed by the assumption. Thus, A~ is a subset of
I (f(A)") by Lemma 3.1.6. That is, f(A™) is contained in f(A)~.

f(A7) is contained in f(A)~ for all subset F of X = f is nondiscontinuous:

Let z be a element of X and (z,) be a sequence of elements of X. Let ¢ be a real
number.

Suppose that (z,) converges to = and d(f(z,), f(z)) > 6 for all n. Then, f(z) €
f((z,)") since z € (x,). Then, f(z) belongs to (f(z,))” by the assumption. Therefore,
there exists a subsequence (f(z,,)) converging to f(z) by Lemma 3.1.6. Here, if 6 > 0,
then there exists NV such that d(f(z,,), f(z)) < ¢ for all n with n > N. It is opposed to
the supposition. Therefore, 6 > 0. Hence, 6 < 0. g

Example 3.2.8 Constant function and identical function etc. are continuous. Moreover,
about the product space (I[\; X;, d) in Example 3.1.2, the projection p; from [ ; X, to
X; (1 <i<mn)is also one.

(Proof) For all open subset O; in X;, pyH(0;) = X1 X .. X X3 1 X O3 X X1 X .. X Xy,
thus p;*(0;) is open in [[*, X;. Therefore, p; is continuous by Proposition 3.2.7(1). y

Now, Ishihara showed in [9] “Ever sequentially continuous map on a metric space is
continuous” doesn’t hold in constructive mathematics. Therefore, “f~*(F) is closed in X
for all closed subset F' of Y | “f(A7) is contained in f(A)~ for all subset F' of X” and
“f is continuous” are classically equivalent to each other (see [1],[13] or [16]), but aren’t
so constructively.

However, the author hasn’t known for the following:
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e f is nondiscontinuous =

J7HF) is closed in X for all closed subset F' of Y.

e f(A7) is contained in f(A)~ for all subset F' of X =
J7HF) is closed in X for all closed subset F' of Y.

e f71(F)is closed in X for all closed subset F' of Y =

f is sequentially continuous.

But, they are showed partly. Ishihara showed in [§]

e “Every nondiscontinuous map from a complete metric space to a metric space is
sequentially continuous.”

e “Every map from a complete metric space to a metric space is strongly extensional.”

e WMP:“Every pseudopositive real number is positive.”
are equivalent to each other. Here

Definition 3.2.9 Let (z,) be a sequence in X.Then, (z,) is a Cauchy sequence if for
any positive number r, there exist some positive integer N such that d(z,, z,) < r for all
m and n with m,n > N. A metric space X is complete if any Cauchy sequence in X is
converges.

Definition 3.2.10 A map by (X, d) to (Y, d') is strongly extentinal if d'(f(z), f(y)) >0
implies d(z,y) > 0 for all z and y in X.

Definition 3.2.11 A real number r is pseudopsitive if
—|—|(0 < :U) V —|—|(:c < 7’)
for all real number .

(WMP(weak Markov’s principle) is a omniscience principle implied by MP.)

Here, all maps are strongly extensional in classical mathematics , but it doesn’t holds
by the above in constructive mathematics [8]. Actually, the next holds.

Proposition 3.2.12 Any map from X to Y is strongly continuous if and only if MP.

(Proof) Let r be a real number. Suppose that == (|| > 0), and let X := {rz|z € R}
and Y := R. Then, X and Y are metric space for normal metric. And, let f be a
correspondence rx in X with x in Y. Then, f is a map since rz = ry implies © = y, so
that f is strongly extensional.

Now, |r| > 0ie. r>0orr < 0since f(r) = f(rl) =1 and f(0) = f(r0) = 0 imply
|f(r) — f(0)] > 0. Thus, by the supposition, r > 0.

Conversely, let f be a map from X to Y. Suppose that d(f(z), f(y)) > 0 for z and y
in X. Then, =~(d(f(z), f(y)) = 0) i.e. =(f(z) = f(y)), so that =(z = y) i.e.~(d(z,y) = 0)
i.e.n=(d(z,y) > 0). Thus, d(z,y) > 0 by MP. y

Also, Ishihara showed in [9]
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e a map f from a complete metric space to a metrics space is sequentially continuous
if and only if f is strongly extensional and nondiscontinuous.
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Chapter 4

Connectivity

First, we will consider under Definition 4.1.1 which appear in [14], and second under
another definitions which classically is equivalent to each other (see [1]). Finally, we will
consider the relation on these definitions and the intermediate value theorem.

Let X and Y be metric spaces.

4.1 Connectivity

Definition 4.1.1 [connected] A metric space X is connected if for any inhabited and
open set V and W with VUW = X, V N W is inhabited.

A subset A of X is connected if subspace A of X is connected.

Proposition 4.1.2 Let A be a connected set. Then, for all subset M of X, if A C M C
A~ then M is connected.

(Proof) Let V and W be inhabited and open set in M with VUW = M. Then, VN A
and W N A are open in A by Lemma 3.1.8, and (VN A)U (W N A) = A. Thus, we may
show that V N A and W N A are inhabited respectively.

Let z be a element of V, and let § be a positive real number with B(z,6)y C V
ie. B(z,6)N M C V. Now, since z € A~, B(z,6) N A is inhabited, and B(z,6) N A C
B(xz,6) N M. Thus, there exists y with y € B(x,6) N A, therefore y € V N A.

Similarly, it is shown that W N A. y

Proposition 4.1.3 Let {X,, C X|n € N} be a class of connected subsets of X such that
N{X, C X|n € N} is inhabited. Then, U{X, C X|n € N} is connected.

(Proof) Let © € N{X,, C X|n € N}, and let V and W be inhabited and open in subspace

U{X, C X|n € N} with VUW = U{X, C X|n € N}.
In case x € W, let y € V since V is inhabited.
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Here, in case y € X,,, VN X, and W N X,, are inhabited and open in X,, and
(VUX,)UWnX,)=X,. Thus, since X,, is connected, V N X, NW N X,, is inhabited.
Therefore, V' N W is inhabited.

In case z € V, it is similarly shown that VV N W is inhabited.

In classical mathematics, the proposition that is replaced “N” with “A” in the above
proposition holds by Axiom of Choice, where A is any index set. But, since we assume only
Axiom of Countable Choice in constructive mathematics, such rewritten proposition holds
only under the assumption that there exist some choice functions for {X, C X/|\ € 4}.

Theorem 4.1.4 Let X be a connected set, and let f be a continuous map from X toY.
Then, f(X) is connected.

(Proof) Let V and W be open and inhabited subsets of X with VU W = f(X). Then,
since fH(V)UfHW) = f~H(VUW) and f~HVUW) = X, f~(V), and f~'(W) are open
and inhabited in X and f~HV)U f~4(W) = X. Thus, there exists z in f~H(V)N f~H{(W).
Therefore, f(z) € VN W since f (V)N f W)=Y VNW). y

Proposition 4.1.5 Every metric space (X;,d;) (1 < i < n) is connected if and only if
(17, X;,d) is connected, where d(z,y) := Yr  di(xi, 45) (2 = (21,000, T0), ¥ = (Y1, 000y Yn) €
nX).
=1 2

(Proof) Let V. =V; x ... x V;; and W = W; x ... X W, be inhabited and open set with
VUW =T1I;-, X;. Then, V,;UW,; = X, and V; and W, are open in X, forallz=1,...,n
by Example 3.1.2. Thus, for all ¢, V; N W; is inhabited since X; is connected. Hence,
V N W is inhabited.

Conversely, since the projection p; : [I7.; X; — X, is continuous and surjective for any
¢t , any X, is connected by Theorem 4.1.4. y

Definition 4.1.6 (path-connectivity) A metric space X is path — connected if all a
and b are joined by an arc f i.e. there exists a continuous map from [0, 1] to X with

f(0) =a and f(1)="b.
Theorem 4.1.7 A path-connected set s connected.

(Proof) Let X be path- connected, and let V' and W be open and inhabited subsets
in X with VUW = X. Then, we can take z¢ in V and y, in W, and there exists a
continuous map f such that f(0) = zo, f(1) = yo. Here, let ag := 0,0y := 1. Then, we
construct sequences (z,) and (y,) on X and (a,) and (b,) on [0, 1] as follows:
let z,, Yn, a, and b, be given.

In the case that f(27'(a, + b,)) € V, let z, 1 := f(27(an + b2))s Yns1 = Yn,
ani1:=2"Ya, +b,) and b, 1 :=b,.

In the case that f(27'(a, + b,)) € W, let 2,1 = Tp, Yur1 = f(27an + b,)),
Ani1:= ap and by 41 = 27 (a, + by,).

Then,
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(1) (ay) is increasing, and (b,) is decreasing.
(2) a, < b, for all n.
(3) |bp —a,| <277

(1) and (2) is trivial by induction on n. About (3), if |b, —a,| < 27", then |b,11 — apy1| =
127 (ay + by) — an| < 27127 = 27(**1Y) 50 that it holds by induction on n.

Thus, |am — an| = am — an < by — an < by — a, < 27" for all m and n, therefore (ay,)
is a Cauchy sequence. Thus (a,) converges by Theorem 2.1.29. Here, let a be a limit of
(ay) , and let = := f(a). Then, (b,) converges to a since |b, — a| < |b, — a,| + |a, — a| for
all n.

Therefore, (x,) and (y,) converge x since f is also sequentially continuous by Propo-
sition 3.2.7 (2).

Here, in the case that z € W, let § with B(z,6) C W, then z, € VN W for some n
since there exists N such that z, € B(z, ) for all n with n > N.

In the case that z € V, y, € V N W for some n since there exists N’ such that
Yn € B(z,6) for all n with n > N'.

Hence, V N W is inhabited.

Example 4.1.8 In Euclid space R, a interval is path-connected, where a interval is one
in the next:
(a,b) :={z € Rla<z <b}, a,b]:={z€Rla<z<b},
[a,b) ;== {z € R|a < = < b}, (a,b] :={z € Rla < z < b},
(—o0,b) := {z € Rlz < b}, (—00,b] :={z € R|z < b},
(a,00) := {z € Rla < z}, [a,00) :={z € R|a < z},
(—o00,00) :=R,
where a < b.
Actually, f(t) = at+ (1 —1t)b (t € [0,1]) is continuous for every a and b by Proposition
3.2.2, hence the f can be take as the arc.

In classical mathematics, there exists a space such that it is not path-connected but
connected (see [1], [16] or [13]). However, the author has not known weather or not the
metric space is connected in constructive mathematics.

Proposition 4.1.9 Let X be path-connected, and let f be a continuous map from X to
Y. Then, f(X) is path-connected.

(Proof) By Theorem 4.1.4 and Proposition 3.2.4. 4

Proposition 4.1.10 The path-connected set defined by replacing “continuous” with “se-
quentially continuous” in Definition 4.1.6 is connected.

(Proof) It is trivial by the proof of Theorem 4.1.7. g
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Theorem 4.1.11 Let X be a path-connected set in Proposition 4.1.10, and let f be a
sequentially continuous map from X toY. Then, f(X) is path-connected in Theorem

4.1.10.

(Proof) By Proposition 3.2.4, it is shown similarly to the proof of Theorem 4.1.7.

The author has not known weather or not the proposition obtained by replacing “con-
tinuous” with “sequentially continuous” in Theorem 4.1.4 holds constructively.

4.2 C-connectivity

Definition 4.2.1 [C-connectivity] A metric space X is C — connected if for any inhabited
and closed set V and W with VUW = X, V N W is inhabited.

Proposition 4.2.2 Let {X,, C X|n € N} be a class of C-connected subsets of X such
that N{X, C X|n € N} is inhabited . Then, J{X, C X|n € N} is C-connected.

(Proof) By the same way as Theorem 4.1.3. 4

Theorem 4.2.3 Let X be C-connected, and let f : X — Y such that f~'(F) is closed
for all closed subset F of X. Then, f(X) is C-connected.

(Proof) By the same way as Theorem 4.1.4. y

Proposition 4.2.4 Every metric space (X;,d;) (1 < i < n) is C-connected if and only

if (11, X;,d) is C-connected, where d(z,y) = Y1 _(w,,y,) (z = (21,.00y ),y =
(yh :yn) S H?:l XZ)

(Proof) we show by the same way as Proposition 4.1.5 that what (X;,d;) (1 < i < n)
are C-connected spaces implies what ([ ; X;, d) is C-connected.

Conversely, the projection p; : [T ; X; — X is continuous for any ¢, and p; is surjective
and satisfies that p;*(F) is closed in []7, X; for all closed subset F' in X; by Proposition
3.2.7. Thus, any X; is C-connected by Theorem 4.2.3. y

Theorem 4.2.5 A path-connected set 1s C-connected.

(Proof) Let X be path-connected. Let V' and W be closed and inhabited subsets in X
with VUW = X. Then, we can take zy in V and gy, in W, and there exists a continuous
map f such that f(0) = zo, f(1) = yo. Let ag := 0,by := 1. Then, we construct sequences
(2,) and (y,) on X and (a,) and (b,) on [0, 1] by the same way as Theorem 4.1.7. Then,
(a,) and (b,) satisfy

e (a,) is increasing, and (b,) is decreasing

e a, <b, foralln
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o b, —a,| <27

Thus, (a,) and (b,) have the same limit respectively. Here, let a be a limit of (a,) , and
let z := f(a). Then, (z,) and (y,) converge to x since f is also sequentially continuous
by Proposition 3.2.7. Hence, x € V NW by Lemma 3.1.10.

Proposition 4.2.6 The path-connected set defined by replacing “continuous” with “se-
quentially continuous” in Definition 4.1.6 s C-connected.

(Proof) It is trivial by the proof of Theorem 4.2.5. y

The author has not known weather or not for a C-connected set A, if A C M C A~
for all subset M of A, then M is C-connected.

4.3 Strong Connectivity

Definition 4.3.1 [strong connectivity] A metric space X is strongly connected if for any
inhabited set V with VNW =X, V- NW or VN W™ is inhabited.

Proposition 4.3.2 Let {X,, C X|n € N} be a class of strongly connected subsets of
X such that N{X, C X|n € N} is inhabited. Then, U{X, C X|n € N} is strongly
connected.

(Proof) Let & € N{X,, C X|n € N}, and let V and W be inhabited sets with V. UW =
U{X, C X|n € N}.

In the case z € W. Let y a elements of V.

In the case y € X,,, VN X, and W N X, is inhabited and W U X,, = X,,. Since X, is
strongly connected, (V N X,,)~*» N (W N X,,) is inhabited or (V N X,,) N (W N X,) %" is
inhabited.

If there exists z in (VN X, ) *»N(WNX,), then z € (VNX,) " *n(WnNX,) cV-nW
since (VN X,) ™ cV—*nNX,cV-nNnX, by Lemma 3.1.8

If there exists z in VN X, N (W N X,) ™ C V- NW, z belongs to VN W~ by the
same way.

In the case z € V, it is similar. y

Theorem 4.3.3 Let X be strongly connected, and let f : X — Y such that f(A7) is
contained in f(A)~ for all subset A in Y. Then, f(X) is strongly connected.

(Proof) Let V and W be inhabited sets with V UW = X.

Now, f1(V), f1(W) is inhabited, and fH(V)U fY{(W) = f YV UW) = X. Thus,
V)Y nfYW)or fYV)n f (W) is inhabited.

In the case z € f~ (V) N f W), f(f X (V))c(ffYV)) =V by the assump-
tion. Therefore, f(z) € f(f V) )N f(f7X (W) CcV NW.

In the case Iz € f~HV) N fHW), f(z) € VN W by the same way. y
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Proposition 4.3.4 Every (X;,d;) (1 < i < n) is strongly connected if and only if

(IT7, X;,d) is strongly connected, where d(z,y) = Y0 di(x;,y;) (@ = (21,0, p),y =
(y17 8] yn) € H?:l Xz)

(Proof) Let V.=V; x ... x V, and W = Wy x ... X W, be inhabited sets with J["_; X; =
VUW. Then, for any 1, V; UW; = X, , therefore V;" NW; or V;UW,™ is inhabited since X,
is strongly connected. Thus, (Vi x...xV,)"NWy X ... X W, or Vi X ... x V,N(Wy x ... x W)~
is inhabited by Example 3.1.11.

Conversely, the projection p; : [['; X; — X, is continuous for any ¢, therefore p,
satisfies that f(A~) C f(A)~ for all inhabited set A in X by Proposition 3.2.7, and any
p; is surjective. Thus, any X; is strongly connected by Theorem 4.3.3. 4

Theorem 4.3.5 A path-connected set is strongly connected.

(Proof) Let X be path-connected. Let V' and W be closed and inhabited subsets in X
with VUW = X. Then, we can take xo in V and y in W, and there exists a continuous
map f such that f(0) = =z, f(1) = yo. Here, let ao := 0,0y := 1, then we construct
sequences (x,) and (y,) on X and (a,) and (b,) on [0,1] by the same way as Theorem
4.1.7. Then, (a,) and (b,) satisfy

(1) (ay) is increasing, and (b,) is decreasing
(2) a, <b, for all n
(3) b — an| <277

Thus, (a,) and (b,) have the same limit. Here, let a be a limit of (a,) , and define
z := f(a). Then, (z,) and (y,) converge to x since f is also sequentially continuous by
Proposition 3.2.7.
Now, in the case that € W, x € V™ since (x,) converges to . Therefore z € V- NW.
In the case z € V, . € VN W™ since (y,) converges to x. g

Theorem 4.3.6 The path-connected set defined by replacing “continuous” with “sequen-
tially continuous” in Definition 4.1.6 is strongly connected.

(Proof) Tt is trivial by the proof of Theorem 4.3.5. y

The author has not known weather or not for a strongly connected set A, if A C M C
A~ for all subset M of A, then M is strongly connected.
Next, we consider the relation on three definitions for connectivity.

Proposition 4.3.7

(1) If X is strongly connected, then X is connected

(2) If X is strongly connected, then X is C-connected.

35



(Proof) (1): Let V and W be inhabited and open sets in X with V. UW = X, so that
V-NW or VNWT~ is inhabited by the assumption. Then, in the case that V— N W is
inhabited, let = be a element of V~ NW and 6 be a positive number with N(z,¢) C W.
Then, there exists a sequence (z,) on V such that (z,) converges to . Thus, there exist
Some N such that z, € VNW for all n with n > N since z, € N(z, ).

In the case that V' N W™ is inhabited, it is similar.

(2): Let V and W be inhabited and closed sets in X with VUW = X so that V- NW
or V N W~ is inhabited by the assumption . In both cases, V N W is inhabited. 4

The author has not known the converses of (1) and (2) in the above and the relation
between connectivity and C-connectivity hold.

4.4 The Intermediate Value Theorem

The intermediate value theorem is one of the conclusion by the argument of connectivity
in classical mathematics, where the theorem is as the next:
“Let X be connected and f be a continuous map from X to R, let a and b be a element
of X with f(a) < f(b), and let vy be a real number with f(a) <y < f(b). Then, for each
€ > 0, there exists ¢ in X with f(c) =~ .”

In section, we show that the intermediate value theorem implies LLPO, so that doesn’t
hold in constructive mathematics, but a certain weak theorem holds.

Proposition 4.4.1 The intermediate value theorem implies LLPO

(Proof) Let a be any real number.

Let f be a map from R to R with f(z) = min{z — 1,0} + max{0,z — 2} (z € [0, 3]),
and let g(z) := f(z) +a (z €]0,3]).

Now, [0, 3] is connected, therefore g is continuous by Proposition 3.2.2 and ¢(0) =
—14+a<14a=g(3). Thus, by the intermediate value theorem, we can take x in [0, 3]
such that g(z) = 0 for a suitable a.

a in [0, 3] such that g(z) = 0 is decided as follows: since < 2 or 1 < z, in the case
that 2 < 2, max{0,2 — 2} = 0 and min{z — 1,0} < 0. Thus, 0 = g(z) = f(z) + a =
min{z — 1,0} + a < a. That is, 0 < a.

In the case 1 < z, max{0,z — 2} > 0 and min{z — 1,0} = 0. Thus, 0 = g(z) =
f(z) + a=max{0,z — 2} + a > a. That is, 0 > a.

Therefore, 0 < aV 0 > a. That is, Va € R(0 < aV 0 > a). Hence, LLPO is implied by
Proposition 2.3.1.

Theorem 4.4.2 Let X be connected, and let x and y be elements of X. Let f be a contin-
uous map from X to R, let a and b be elements of X with f(a) < f(b), and let vy be a real
number with f(a) <y < f(b). Then, for any €, there exists ¢ in X with |f(c) — | <e.

(Proof) Let ¢ be a positive number. Let V := {c € X|f(¢) < v+ €} and W := {c €
X|y—e€< f(c)}. Then, V and W are inhabited sets by f(¢) <y < f(¢),and VUW = X
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by Corollary 2.1.26. Therefore, V and W are open in X by f’s continuity and Proposition
3.2.7, since f(V') and f(W) are open in R. Thus, VNW is inhabited since X is connected.
That is, for any e > 0, there exists ¢ in X with v — e < f(¢) <y +eie. [f(c)—7| <e. y

Theorem 4.4.3 Let X be C-connected, and let f be a map from X to R such that f~(F)
is closed in X for all closed subset F of R. Let a and b be elements of X with f(a) < f(b),
and let v be a real number with f(a) < v < f(b). Then, for any € > 0, there exists ¢ in
X with |f(c) — ] < e.

(Proof) Let ¢ be a positive number. Let V := {c € X|f(c) < v+ €} and W := {c €
X|y—€< f(c)}. Then, V and W are inhabited sets, and V' UW = X. Therefore, V' and
W are closed by the assumption for f since f(V) and f(W) are closed. Thus, V U W

is inhabited since X is C-connected. That is, for any ¢ > 0, there exists ¢ in X with
y—e< fle)<y+eie |flc)—7| <e

Theorem 4.4.4 Let X be strongly connected, and let f be a map from X to R such that
f(A7) is contained in f(A)~ for all subset A of Y. Let a and b be the elements of X with
f(a) < f(b), and let vy be a positive number with f(a) <~ < f(b). Then, for any e > 0,
there exists ¢ in X with |f(c) — | < e.

(Proof) Let ¢ be a positive number. Let V := {c € X|f(¢) < v+ €} and W := {c €
X|y — €< f(e)}. Then, V and W are inhabited sets, and VUW = X, and V- NW or
V' NW~ is inhabited since X is strongly connected. Thus, f(V)~Nf(W) or f(V)Nf(W)~
is inhabited since f(V- NW) = f(V7)n f(W) C (V)" N f(W) and f(VNIW™) =
fV)yn f(W=) c f(V)n f(W)~ by the assumption for f. Therefore, in the both cases,
for any € > 0, there exists ¢ in X with v — e < f(¢) <y +eie. |f(c) =7 <e

Theorem 4.4.3 and 4.4.4 imply the next.

Corollary 4.4.5 Let f be a map from [a,b] to R such that f(A™) is contained in f(A)~
for all subset A of Y and that f(a) < f(b). Let vy be a positive number with f(a) <y <
f(b). Then, for any € > 0, there exists ¢ in [a,b] with |f(c) — | < e.
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Chapter 5

Conclusion

5.1 Conclusion

Here, we arrange what we showed in this paper.

First, we showed that for any map f from a metric space X to a metric space Y, f is
continuous = f is sequentially continuous = f~!(F) is closed in X for all closed subset
FofY = f(A7) is contained in f(A)~ for all subset A of X.

Next, we defined connectivity, C-connectivity and strongly connectivity of metric
spaces and showed that a image of a connected space by a continuous map is connected,
that a image of a C-connected space by the map such that f~!(F') is closed in X for all
closed subset F' of Y is C-connected and that a image of a strongly connected space by
the map such that g(A™) is contained in g(A)~ for all subset A of Y is strongly connected.

We also defined path-connectivity and showed that a path-connected space is con-
nected, C-connected and strongly-connected.

Then, we showed that a strongly connected space is connected and C-connected.

Finally, we showed that the intermediate value theorem does not hold in constructive
mathematics, and did the weak versions of it for connected, C-connected and strongly
connected metric spaces respectively and found that the weak version hold for intervals
on Euclid space R as the corollary.

5.2 Notes

In classical mathematics, any connected set in Euclid space R is a interval (see [13]), but
it implies the intermediate value theorem. Actually, assume that any connected set in
Euclid space R is a interval, and let S be connected in R. Then, [a,b] C S for all a and
bin S. Now, let X be connected, let f : X — R be continuous, let a and b be elements
of X with f(a) < f(b) and let v be a real number with f(a) <y < f(b). Then, f(X) is
connected by Theorem 4.1.4, therefore [f(a), f(b)] C f(X) by the above. Hence, f(c) = v
for some cin X.
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Now, it is known that all of propositions in Proposition 3.2.7(2) are classically equiv-
alent to each other (see [1], [13] or [16]), but they are open in constructive mathematics.
Also, Definition 4.1.1, 4.2.1 and 4.3.1 are also classically equivalent (see [1]), but it has
not be clear constructively except Proposition 4.3.7. What they are solved means that
the relation on the three notions of connectivity as a topological property that is conserved
by continuous maps in constructive mathematics becomes clear.

Here, if X is connected, there exist no continuous and surjective map from X to
{0,1}: (Proof) Assume that f : X — {0,1} is continuous and surjective. Then, f*(0)
and f!(1) are inhabited, open and closed by Example 3.1.7 and Proposition 3.2.7 and
X = f7Y0)uU f~*(1). Since X is connected, 3z € f~1(0) N f~1(1). Then, f(z) = 0 and
f(z) = 0. It is opposed to the definition of a map. g

“there exist no continuous and surjective map from X to {0, 1}” is classically equivalent
to “ X is connected,” hence is classically equivalent to “X is C-connected” and “ X is
strongly connected” respectively (see [1]). But, in constructive mathematics, the author
has not known weather or not it holds. Also, “If A is open and closed, then A = X or
A = ¢” is equivalent to them in classical mathematics (see [1]), but the author knows
nothing about the relation on them.

Finally, in [15], Troelstra considered the connectivity in the sense that it cannot be
the union of finite , inhabited, disjoint and closed sets in intuitionistic topology, and
Bridges do under the original definition in [3], [4], [5] and [6]. Mandelker showed that
intervals on the set of real numbers couldn’t be the union of two inhabited disjoint open
subsets, and Bishop and Bridges gave connected sets in [2], where they are defined as
path — connected sets in this paper.

39



Bibliography

1]
2]
[3]

[4]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

M.A.Armstrong, Basic Topology, Springer-Verlag, New York, 1983.
E.Bishop and D.Bridges, Constructive Analysis, Springer-Verlag, Berlin, 1985.

D.Bridges, On the connectivity of convex sets, Bull.London.Math.Soc., 10 (1977),
pp-86-90.

D.Bridges, More on the connectivity of convex sets, Proceeding of the American

Math.Soc., Vol 68 (1978), no.2 , pp.214-216.

D.Bridges, Connectivity property of metric spaces, Pacific Journal of Mathematics,
Vol.80 (1979), no.2, pp.325-331.

D.Bridges, Constructive Functional Analysis, Pitman, London, 1979.

D.Bridges and F.Richman, Varieties of Constructive Mathematics, Cambridge Uni-
versity Press, 1987.

H.Ishihara, Continuity and nondiscontinuity in constructive Mathematics, The Jour-
nal of Symbolic Logic, Vol. 56 (1991), pp.1349-1354.

H.Ishihara, Continuity Properties in Constructive Mathematics, The Journal of
Symbolic Logic, Vol. 57 (1992), n0.21992, pp.557-565.

H.Ishihara, Kouseiteki-Kaisekigaku-Nyumon -Kanbise no shuhen-, Summer school
of foundations of mathematics 92 (in Japanese).

H.Ishihara, Kouseiteki-Sugaku to sono shuhen -Kaisekigaku wo chushin to shite-,
Math. Soc.of Japan, autumn synthetic sectional meeting '97 (in Japanese).

M.Mandelker, Connectivity of an interval, Proceeding of the American Math.Soc.,
Vol. 54 (1976), pp.170-172.

K.Matsuzaka, Shugo Iso Nyumon, Iwanami-shoten, 1993 (in Japanese).

A.S.Troelstra and D.van Dalen, Constructivism in Mathematics An Introduction I,
II, North-Holland, Amsterdam, 1988.

A.S.Troelstra, Intuitionistic connectedness, Indag Math, Vol.29 (1967), pp. 96-105.

40



[16] F.Uchida Shugo to Iso, Shoka-bou, 1992 (in Japanese).

41



