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Chapter 1

Introduction

Connectivity of metric spaces is the notion that it cannot be the union of its disjoint open

(or closed) subsets. For example, di�erentiable function and integrable one in complex

analysis are de�ned on such a space, so that it is important in such a theory.

In this paper, we will de�ne three connectivities and consider their properties respec-

tively and the relation on them.

Now, we show constructive mathematics in this chapter,

and will consider real numbers theory, a metric space and connectivity of metric spaces

from the next chapter.

Classical mathematics, which is called mathematics by the majority mathematicians,

is formalized by classical logic, and correspondingly constructive mathematics is done by

intuitionistic logic (see [14]). Actually, the character can be showed by the following BHK

(Brouwer �Heyting �Kolmogorov)� interpretation, which is that of logical operators by

Brouwer, Heyting and Kolmogorov (see [14] and [11]).

� A proof of A ^ B is given by presenting a proof of A and a proof of B.

� A proof of A _ B is given by presenting a proof of A or B.

� A proof of A ) B is a construction which permits us to transform any proof of A

into a proof of B:

� Absurdity ? (contbradiction) has no proof; a proof of :A is a construction which

transforms any hypothetical poof of A into a proof of a contradiction.

� A proof of 8xA(x) is a construction which transforms any d 2 D (D the intended

range of the variable x) into a proof of A(d):

� A proof of 9xA(x) is given by presenting a d 2 D and a proof of A(d):

This interpretation is restricted than that of classical mathematics. Actually, for a proof

of A _ B, though it is enough to show that :A ^ :B details a contradiction in classical
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mathematics, it is at least necessary in constructive mathematics either to give a proof of

A or to give a proof of B. For a proof of 9xA(x), we can regard it classically as showing

that 8x:A(x) is impossible, but constructively we must present explicitly d with A(d).

Therefore, it can be thought that constructive mathematics classi�es rules, translations

and existences in mathematics under computability.

Now, there are some propositions not to be provable in constructive mathematics but

to be provable in classical mathematics. For example, the Principle of Excluded Middle

A_:A is unprovable since for a open problem A, we cannot give a proof of A or a proof of

:A under BHK-interpretation. Then, Axiom of Choice cannot be a part of constructive

mathematics since this axiom implies the Principle of Excluded Middle, where Axiom of

Choice is is as follows.

8S � A� B[8x 2 A9y 2 B((x; y) 2 S)) 9f : A! B8x 2 A((x; f(x)) 2 S):]

by implying the Principle of Excluded Middle as follows (see [7]):

(Proof ) Let P be a proposition, and let A := fs; tg with s = t if and only if P holds.

Let B := f0; 1g. Let S := f(s; 0); (t; 1)g. Then, by Axiom of Choice, there exists a choice

function f : A ! B such either that f (s) = 1, that f(t) = 0 or that f(s) = 0 and

f(t) = 1. That is, either s = t or :(s = t). Therefore, either P or :P holds.

But, Axiom of Countable Choice is acceptable in constructive mathematics, where it is

that of replacing A with the set of natural numbers N in the above Axiom of Choice.

Now, in constructive mathematics, there are the three main schools, which are Bishop 0s

constructive mathematics , Brouwer 0s intuitionistic mathematics andMarkov 0s constructive

mathematics. Bishop's constructive mathematics is the mathematics accepting Axiom of

countable choice under the BHK-interpretation, and Brouwer's intuitionistic mathematics

can be regarded as Bishop's one added Brouwer's characteristic axioms. Markov's con-

structive mathematics can be also think of Bishop's one added Church's thesis i.e. \all

sequences of natural numbers are recursive" and Markov's principle

MP 8(�n) 2 f0; 1g
N[::9n(�n = 1)) 9n(�n = 1)]:

That is, two other theories are extended from Bishop's constructive mathematics. Still,

classical one is also the extension from Bishop's one since classical mathematics is re-

garded as a system that is added the Principle of Excluded Middle to Bishop's construc-

tive mathematics syntactically. Then, Brouwer' intuitionistic mathematics and Markov's

constructive mathematics are inconsistent with classical mathematics respectively, but

Bishop's constructive mathematics is not so. Therefore, in this paper, the author con-

siders in Bishop's constructive mathematics. From now on, \constructive mathematics"

means \Bishop's consructive mathematics" in this paper.

Well, the following propositions are unprovable in constructive mathematics.

LPO(the Least Principle of Omniscience)

8(�n) 2 f0; 1g
N[9n(�n = 1) _ :9n(�n = 1)].
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LLPO(the Lesser Principle of Omniscience)

8(�n); (�n) 2 f0; 1g
N[:(9n(�n = 1) ^ 9n(�n = 1))) :9n(�n = 1) _ :9n(�n = 1)].

Actually, we cannot give a proof by the soundness for intuitionistic logic since there

exist some models in such that they are false semantically (see [14]), and MP is also

unprovable constructively in the same way. For example, there is the following Kripke

model for LPO(see [14]):

  ∃n (  α n  =  1 )

0

1

D(0)=D(1)≠φ

LPO is false in this model since 0 6j= 9n(�n = 1) and 0 6j= :9n(�n = 1):

MP is also false in this model since 0 j= ::9n(�n = 1) and 0 6j= 9n(�n = 1):

LLPO is also false in the following model

1

0

2  ∃n  (   ∃n  (   n  =  1)

D(0)=D(1)=D(2)≠φ

 α  βn  =  1 )

since 0 j= :(9n(�n = 1 ^ 9n(�n = 1)) and 0 6j= :9n(�n = 1) _ :9n(�n = 1):

On the other hand, we can show it by another method.

For example, the unprovability of LPO is showed as follows (see [11]): Let (�n) be a

sequence such that

�n =

(
0; if 2n+ 4 = p+ q and 2n+ 9 = r + s+ t for some pure numbers p; q; r; s and t

1; otherwise

Then, under the BHK-interpretation, 9n(�n = 1) _ :9n(�n = 1) holds only when either

Goldbach0s problem \for all nonnegative integer n, there exist some pure numbers p; q; r; s

and t such that 2n+ 4 = p+ q and 2n+ 9 = r+ s+ t" or its negation have proved. But,

we have not known weather or not we can give the proof of either Goldbach's problem or

its negation yet. Therefore, we now cannot prove LPO under the BHK-interpretation.

But, LPO, LLPO and MP hold in classical mathematics.

In constructive mathematics, \A given position does not hold" means that we can

prove its negation or that it implies LPO, LLPO, MP and so on.

Now, in chapter 2, we will de�ne real numbers, where we assume that the readers know

rational numbers and its theory, and will consider metric spaces and its connectivity in

chapter 3 and 4 respectively.
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Chapter 2

Real Numbers

2.1 Real Number System

A ratinal number is an expression of the form p=q, where p and q are integers with q]0

(q]0, :(q = 0) for all rational number q). Two rational numbers p=q and p0=q0 are equal

if pq0 = p0q. The integer n is identi�ed with the rational number n=1.

The contents of this chapter are based to [2] and [7].

De�nition 2.1.1 Let (xn) be a sequence of rational numbers. Then, (xn) is a real number

if (xn) is a regular sequence i.e. (xn) satis�es

jxm � xnj � m�1 + n�1

for all positive integer m and n. The set of real numbers is denoted by R.

De�nition 2.1.2 Let x � (xn) and y � (yn) be real numbers. x and y are equal if

jxn � ynj � 2n�1

for all positive integer n. What x and y are equal is described by x = y:

Proposition 2.1.3 Let x � (xn) and y � (yn) be real numbers. Then, x = y if and only

if for each positive integer k, there exists a positive integer N such that jxn � ynj � k�1

for all positive integer n with n � N .

(Proof ) Let k be a positive integer. De�ne N := 2k. Then, for all natural number n with

n � N , we have jxn � ynj � 2n�1 � 2N�1 < 2(2k)�1 = k�1. That is, jxn � ynj � 2k�1.

Conversely, let n and k be positive integers. Then, by the assumption, there exists

a positive integer N 0 such that jxn � ynj � k�1 for all positive integer n with n � N .

Then, de�ne N := maxfk;N 0

g, and we have jxn � ynj � jxn � xmj + jxm � ymj + jym �

ynj � 2n�1 + 2m�1 + k�1 � 2n�1 + 3k�1 for all positive integer m with m � N . Thus,

8n8k(jxn�ynj � 2n�1+3k�1) since 8k(q � k�1) if and only if q � 0 for a rational number

q.
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Proposition 2.1.4 \ =00 is equivalent relation on R.

(Proof ) Reexivity and symmetry are trivial.

Transitivity:

Let x � (xn); y � (yn) and z � (zn) be real numbers, assume that x = y and y = z,

and let k be a positive number. Then, there exist positive integers N1 and N2 such that

8n � N1(jxn�ynj � (2k)�1) and 8n � N2(jyn�znj � (2k)�1) by Proposition 2:1:3. Then,

de�ne N := maxfN1; N2g, and we have jxn�znj � jxn�ynj+jyn�znj � (2k)�1+(2k)�1 =

k�1 for all positive integer n with n � N . Hence, x = z by Proposition 2:1:3.

De�nition 2.1.5 A sequence of rational numbers (xn) is a Cauchy sequence if for all

positive integer k, there exists a positive integer N such that jxm � xnj < k�1 for all

positive integers m and n with m;n � N .

Cauchy sequences of rational numbers have upper bound i.e. there exists a positive

integer K such that jxnj < K for all positive integer n: there exists a positive integer N

such that jxm � xnj � 1 for all positive integers n and m with m;n � N , hence we can

take a natural number K such that K � maxfjx1j; :::; jxN�1j; jxN j+ 1g. The K is called

canonical bound :

Then, a regular sequence of rational numbers is a Cauchy sequence since for all positive

integer k, jxm�xnj � m�1+n�1 � (2k)�1+(2k)�1 = k�1 for all m and n with m;n � 2k.

Hence, any regular sequence has canonical bound.

De�nition 2.1.6 Let x � (xn) and y � (yn) be real numbers and be � be a rational

number, and de�ne K := maxfKx;Kyg, where Kx and Ky is canonical bounds of x and

y. Then,

(1) x+ y := (x2n + y2n)

(2) xy := (x2Kny2Kn)

(3) maxfx; yg := (maxfxn; yng)

(4) �x := (�xn)

(5) �� := (�; �; �; :::)

(6) jxj := maxfx;�xg

(7) minfx; yg := �maxf�x;�yg:

Trivially, �(�x) = x;maxfx; yg = maxfy; xg; jxj = (jxnj);minfx; yg = (minfxn; yng)

and j � xj = jxj:

Lemma 2.1.7 Let p, p', q and q' be rational numbers. Then,

jmaxfp; qg �maxfp0; q0gj � maxfjp� p0j; jq � q0jg:
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(Proof ) In the case that maxfp; qg = p and maxfp0; q0g = q0; maxfp; qg �maxfp0; q0g �

p�p0 � maxfjp�p0j; jq�q0jg, and maxfp0; q0g�maxfp; qg � q0�q � maxfjp�p0j; jq�q0jg:

Thus, jmaxfp; qg �maxfp0; q0gj � maxfjp� p0j; jq � q0jg:

In the case that maxfp; qg = q and maxfp0; q0g = p0, it is similar.

In the case that maxfp; qg = p and maxfp0; q0g = p0; jmaxfp; qg � maxfp0; q0gj =

jp� pj � maxfjp� p0j; jq � q0jg:

In the case that maxfp; qg = p and maxfp0; q0g = p0; it is similar.

Proposition 2.1.8 The sequences x+y; xy;maxfx; yg;�x; ��; jxj and minfx; yg of Def-

inition 2:1:1 are real numbers.

(Proof ) Let m and n be positive integers.

x+ y : j(x2m + y2m)� (x2n + y2n)j � jx2m � x2nj+ jy2m � y2nj � ((2m)�1 + (2n)�1) +

((2m)�1+(2n)�1) = m�1+n�1: Thus, (x2n+y2n) is regular, hence x+y is a real number.

xy : j(x2kmy2km)�(x2kny2km)j � jy2kmjjx2km�x2knj+jy2knjjy2km�y2knj � k((2km)�1+

(2kn)�1) + k((2km)�1 + (2kn)�1) � m�1 + n�1:

maxfx; yg : jmaxfxm; ymg �maxfxn; yngj � maxfjxm � xnj; jym � ynjg � m�1 + n�1

by Lemma 2:1:7.

�x and �� : trivial.

jxj and minfx; yg : By (1) and (3).

Let x � (xn); x
0

� (x0n); y � (yn) and y0 � (y0n) be real numbers. Then , if x = x0 and

y = y0, then x� x0 = y � y0 : for each positive integer k, there exist positive integers N1

and N2 such that jxm�x0mj; jyn� y0nj � (2k)�1 for all m and n with m � N1 and n � N2:

Then, de�ne N := maxfN1; N2g, and j(x2n�x
0

2n)�(y2n�y
0

2n)j � jx2n�x
0

2nj+jy2n�y
0

2nj �

(2k)�1 + (2k)�1 = k�1 for all n with n � N .

Lemma 2.1.9 Let (xn) and (yn) be Cauchy sequences of rational numbers. Then, (xn +

yn) and (xnyn) are Cauchy sequences of rational numbers.

(Proof ) De�ne K := maxfKx;Kyg, where Kx and Ky is a canonical bound of x and y

respectively.

(xn+yn): Let k a positive integer. Then, there exist positive numbers N1 and N2 such

that jxm � xnj � (2k)�1for all m and n with m;n � N1 and that jym � ynj � (2k)�1 for

all m and n with m;n � N2. Then j(xm+ ym)� (xn+ yn)j � jxm�xnj+ jym� ynj � k�1:

That is, 8k9N8m;n � N(j(xm + ym) � (xn + yn)j � k�1): Hence, (xnyn) is a Cauchy

sequence.

(xnyn): Let k be a positive integer. Then, there exist positive integers Nx and Ny such

that jxm � xnj � (2Kk)�1 for all m and n with m;n � Nx and jym � ynj � (2Kk)�1

for all m and n with m;n � Ny, and de�ne N := maxfNx; Nyg. Then jxmym � xnynj �

jxnjjym � ynj + jymjjxm � xnj � K(2Kk)�1 + K(2Kk)�1 = k�1 for all m and n with

m;n � N .

Proposition 2.1.10 Let x; y and z be real numbers and � and � be rational numbers.

Then,
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(1) If x=y, then x+ z = y + z; xz = yz and jxj = jyj:

(2) x+ y = y + x; xy = yx:

(3) (x+ y) + z = x+ (y + z); x(yz) = (xy)z:

(4) x(y + z) = xy + xz:

(5) 0� � x = x; 1�x = x:

(6) x� x = 0�:

(7) jxyj = jxjjyj:

(8) (�+ �)� = �� + ��; (��)� = ����:

(9) (��)� = ���:

(Proof ) x � (x
n
); y � (y

n
) and z � (z

n
): Let Kx;Ky and Kz be canonical bound of x, y

and z respectively.

(1): Suppose that x = y: Then, 8k9N8n � N(jxn � ynj � k�1) by Proposition 2:1:3.

x + z = x + y: For each positive integer k, there exists a positive integer N such

that j(x2n + z2n) � (y2n + z2n)j = jx2n � y2nj � n�1 < 2n�1 for all n with n � N: Thus,

x+ z = y + z: Similarly, j(x2n � z2n)� (y2n � z2n)j � 2n�1:

xz = yz: De�ne K1 := maxfKx;Kzg and K2 := maxfKy;Kzg, de�ne K :=

minfK1;K2g and let k be a positive number. Then, there exists a positive number N 0

such that jxn � ynj � (2K2k)
�1 for all n with n � N 0:Then;let N := maxf2k2k;N

0

g:

Now, for all n with n � N ,

jx2K1nz2K1n � y2K2nz2K2nj

� jz2k1njjx2K1n � y2K2nj+ jy2K2njjz2K1n � z2K2nj

� K2(2K2k)
�1 +K2((2K1n)

�1 + (2K2n)
�1)

� (2k)�1 +K2((2Kn)�1 + (2Kn)�1)

� (2k)�1 +K2(K(2K2k))
�1

= (2k)�1 + (2Kk)�1 � (2k)�1 + (2k)�1 = k�1:

Thus, 8k9N8n � N(jx2K1nz2L1n � y2K2nz2K2nj � k�1): Hence, xz = yz:

jxj = jyj: Since jjxnj � jynjj � jxn � ynj for all n.

(3): j((x4n+y4n)+z2n)�(x2n+(y4n+z4n)) � jx4n�x2nj+jz4n�z2nj � 3(2n)�1 � 2n�1:

Hence, (x+ y) + z = x+ (y + z):

Next, (xnynzn) is a Cauchy sequence by Lemma 2:1:9, and for any k, there exist

some N such that jxmymzm � xnynznj � k�1 for all m and n with m;n � N: Thus, for

x(yz) � (x2Kny4KKyznz4KKyz
) and (xy)z � (x4Kxyny4KKxynz2Kn) and any positive integer

k, where Kyz := KyKz, Kxy := KxKy and K := KxkyKz, there exists a positive integer

N such that jx2Kny4KKyznz4KKyz
�x4Kxyny4KKxynz2Knj � k�1 for all n with n � N: Hence,

x(yz) = (zy)z:

(4): De�ne Kxy := maxfKx;Kyg;Kxz := maxfKx;Kyg;K := maxfKxy;Kxzg and

K 0 := maxfKx;Ky+xg, whereKy+z is one of x+y, and de�ne x(y+z) := (x2K0n(y4K0Ky+zn+
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z4K 0Ky+zn)) and xy + yz := (x4Kxyny4Kxyn + x4Kxznz4Kxzn). Then, jx2K0n(y4K0Ky+zn +

z4K 0Ky+zn)�(x4Kxyny4Kxyn+x4Kxznz4Kxzn)j � jx2K 0ny4K0Ky+zn�x4Kxyny4Kxynj+jx4kxynz4K0Ky+zn�

x4Kxznz4Kxznj:

Now, (xnyn) and (xnzn) are Cauchy sequence of rational numbers by Lemma 2:1:9.

Thus, for any k, there exist positive integers N1 and N2 such that jxmym�xnynj � (2k)�1

for all positive integers m and n with m;n � N1 and that jxmz � xnznj � (2k)�1 for all

positive integers m and n with m;n � N2.

Here, de�neN := maxfN1; N2g. Then, jx2K0ny4K0Ky+zn�x4Kxyny4Kxynj+jx4Kxynz4K0Ky+zn�

x4Kxznz4Kxznj � k�1 for n with n � N .

(5): Since (xn) is a Cauchy sequence, 8k9N8n � N(jx2n � xnj � k�1:)

(7): Since jxyj = (jx2Kxyny2Kxynj); jxjjyj � (jx2Kxynjjx2Kxynj):

(2), (6), (8) and (9) are trivial.

Next, we show another relations on R.

De�nition 2.1.11 Let x � (xn) be a real number. x is positive if there exists a positive

integer N such that xN > N�1: x is also nonnegative if xn � �n
�1 for all positive integers

n.

Lemma 2.1.12 Let p and q be rational numbers. Then p � q if and only if p � q + k�1

for any positive integer k.

(Proof ) It is trivial that if p � q, then p � q + k�1 for all positive integer k. Conversely,

suppose that p > q. Then, there exists a positive integer N such that p > q+N�1: On th

other hand, p � q + N�1 by the assumption. Thus, N < N . It is contradictory. Hence,

p � q since � � 0 or � > 0 for all rational number �.

Proposition 2.1.13 Let x � (xn) be a real number. Then x is positive if and only if

there exists a positive integer N such that xn � N�1 for all positive integer n with n � N:

x is also nonnegative if and only if for any positive integer k, there exists a positive

integer N such that xn � �k
�1 for all positive integer n with n � N:

(Proof ) At �rst, we show x > 0� if and only if 9N8n � N(xn � N�1):

Let N 0 be a positive integer with x0N � N 0�1, and let N be a positive integer with

x0N � N 0�1 > 2N�1 > 0: Then, jxn � xN 0j � n�1 + N 0�1 for all positive numbers n with

n � N�1. Thus, xn � �n
�1 + (xn �N 0�1) > �n�1 + 2N�1

� �N�1 + 2N�1 = N�1:

Conversely, let N 0 be a positive integer with xn � N 0 for all n with n � N 0; and de�ne

N := N 0 + 1. Then xN = xN 0+1 � N 0�1 > (N + 1)�1 = N�1 > 0:

Next, we show x � 0� if and only if 8k9N8n � N(xn � �k
�1):

Let k be a positive integer. Then, xn � �n�1 � �k�1 for all positive integers n with

n � k.

Conversely, let k a positive integer, and let N be a positive integer with xn � �k�1

for all n � N: Then, jxm � xnj � m�1 + n�1 for all n with n � N . Therefore, xm �

xn � n�1 �m�1
� �k�1 � n�1 �m�1: Thus, xm � �m�1 by Lemma 2:1:12 since k and

n are positive integers.
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Proposition 2.1.14 Let x and y be real numbers.

(1) Suppose x = y. Then y > 0� whenever x > 0�, and y � 0� whenever x � 0�.

(2) x+ y � 0� and xy � 0� whenever x � 0� and y � 0�.

(3) x+ y > 0� and xy > 0� whenever x > 0� and y > 0�:

(4) x+ y > 0� whenever x > 0� and y � 0�:

(5) jxj > 0� if and only if x > 0� or x < 0�.

(Proof ) Let x � (xn) and y � (yn) be real numbers, and let K := maxfKx;Kyg, where

Kx and Ky are canonical bound of x and y respectively.

(1): In the case x > 0�, let N1 be a positive integer such that xn � N1
�1 for all n

with n � N1, and let N2 be a positive number with jxn � ynj � (2N1)
�1 for all n with

n � N2. Then, de�ne N := maxf2N1; N2g; and for all n with n � N , yn � xn�(2N1)
�1
�

N1 � (2N1)
�1 = (2N1)

�1 = N�1: Thus, 9N8n � N(yn � N�1):

In the case x � 0�, let k be a positive integer, let N3 be a positive integer with

xn � �(2k)
�1 for all n with n � N3 and let N4 be a positive integer such that jxn� ynj �

(2k)�1 for all n with n � N4: De�ne N
0 := maxfN3; N4g. Then for all n with n � N 0,

yn � xn � (2k)�1 � �(2k)�1 � (2k)�1 = �k�1: Thus, 8k9N 0

8n � N 0(yn � �k�1):

(2): Let k be a positive integer.

In the case that x + y � 0�, let N1 and N2 be positive integers such that xm; yn �

�(2k)�1 for all m and n with m � N1 and n � N2, and de�ne N := maxfN1; N2g. Then,

for all n with n � N; x2n + y2n � �(2k)
�1 +�(2k)�1 = k�1:

In the case that xy � 0�, let N3 and N4 be a positive integer such that xm; yn � �k�2

for all m and n with m � N3 and n � N4, and de�ne N 0 := maxfN3; N4g. Then, for all

n with n � N 0, x2Kny2Kn � �k
�2
� �k�1:

(3): Let Nx be a positive integer such that xn � Nx
�1 for all n with n � Nx; and let

Ny be a positive integer such that yn � Ny
�1 for all n with n � Ny:

In the case that x + y > 0�, de�ne N1 := Nx + Ny: Then, for all n with n � N1,

x2n + y2n � Nx
�1 +Ny

�1
� (Nx +Ny)

�1 = N�1
1 :

In the case that xy > 0�, Let N2 := NxNy. Then, for all n with n � N2, x2Kny2Kn �

(NxNy)
�1 = N�1

2 :

(4): Let N 0 be a positive integer with xn � N 0�1, let N 00 be a positive number such

that yn � �(2N 0)�1 for all n with n � N 00 and let N := maxf2N 0; N 00

g: Then, for all n

with n � N , x2n + y2n � N 0�1
� (2N 0)�1 = (2N 0)�1 � N�1:

(5): Let x � (xn) be a real number with jxj > 0�. Then, for some positive integer N ,

jxN j > N�1 i.e. xn > N�1 or �xN > 0. Thus, xN > N�1 for some N or �xN > N�1 for

some N . Therefore, x > 0� or x < 0�.

The converse is trivial.

De�nition 2.1.15 Let x and y be real numbers. Then we write x < y (or y > x) if and

only if y � x is positive.

We also write x � y (or y � x) if and only if y � x is nonnegative.
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By Proposition 2:1:10 and 2:1:14 (1), we �nd that x is positive if and only if x > 0�, and

that x is nonnegative if and only if x � 0� for all real number x.

Let x; x0; y and y0 be real numbers. Then, if x = x0 and y = y0, then x < y i.e y�x > 0�

i.e. y0� x0 > 0� i.e. y0 > x0 by y� x = y0� x0 and Proposition 2:1:14(1). Hence, x < y if

and only if x0 < y0, and x � y if and only if x0 � y0.

Proposition 2.1.16 Let x; x0; y and y0 be real numbers.

(1) x < y whenever either x < x0 and x0 � y or x � x0 and x0 < y.

(2) x � y whenever x � x0 and x0 � y.

(3) x+ y � x0 + y0 whenever x � x0 and y � y0, and,

x+ y < x0 + y0 whenever x � x0 and y < y0.

(4) xy � x0y whenever x � x0 and y � 0�, and

xy < x0y whenever x < x0 and y > 0�.

(5) If x < y, then �x > �y, and, if x � y, then �x � �y.

(6) x � y and x � y if and only if x = y:

(7) maxfx; yg � x, minfx; yg � x:

(8) If x < y and x0 < y, then maxfx; x0g < y; and,

if x < y and x < y0, then x < minfy; y0g:

(9) If x � y and x0 � y0, then maxfx; x0g � y;and,

if x � y and x0 � y0, then x � minfy; y0g:

(10) If x � y, then maxfx; yg = y and minfx; yg = x.

(11) jxj � 0�:

(12) If x < y and �x < y, then jxj < y:

(13) If x � y and �x � y, then jxj � y:

(14) jx+ yj � jxj+ jyj:

(15) jjxj � jyjj � jx� yj:

(16) :(x < x):
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(Proof ) (1): In the case x < x0 and x0 � y, y�x = (y�x0)+(x0�x) > 0� by Proposition

2:1:14 (4) since y � x0 � 0� and x0 � x > 0�.

(2): By Proposition 2:1:14 (2), it is similar to the proof of (1).

(3): By Proposition 2:1:14 (2), (y0+x0)� (x+ y) = (y0� y)+ (x0�x) � 0�: Similarly,

(x0 + y0)� (x+ y) > 0� by Proposition 2:1:14(4).

(4): x0y � xy = (x0 � x)y � 0� by Proposition 2:1:14 (2). Similarly, x0y � xy � 0� by

Proposition 2:1:14 (2):

(5): If x < y, then x� y < 0� i.e. �y + x < 0� i e. �y � (�x) < 0�. Thus, �x > �y:

Also, if �x � �y, then �x� (�y) � 0� i.e. �x+ y � 0� i.e. y � x � 0�. Thus, x � y.

(6): For any n, yn � xn � �n�1 and xn � yn � �n�1 i.e. jxn � ynj � n�1 � 2n�1:

Thus, x = y.

Conversely, for any k, there exists N such that xn � yn � �jxn � ynj � �k�1 and

yn � yn � �jxn � ynj � �k
�1 for all n with n � N . Hence, x � y and x � y.

(7): maxfxn; yng � xn � 0 � �k�1 and xn �minfxn; yng � 0 � �k�1 for all k and n.

(8): By (1), y �maxfx; x0g � y � x < 0�. That is, maxfx; x0g < y:

Similarly, minfy; y0g � x � y � x > 0�:

(9): By the same way as (8).

(10): y �maxfx; yg � y � y = 0�. Thus, y = maxfx; yg by (6) and (7).

Similarly, x = minfx; yg:

(11): Since jx2nj � 0 for all n.

(12): jxj = maxfx;�xg < y by (8).

(13): It's similar to (13).

(14): For any n, (jx4nj+ jy4nj)� jx4n + y4nj � 0 � �n�1:

(15): For any n, jx4n � y4nj � jjx4nj � jy4njj � 0 � �n�1:

(16): Since :(0� > 0�), x� x is not positive.

Proposition 2.1.17 Let x and y be real numbers. Then , if x < y is contradictory, then

x � y:

(Proof ) For x � (xn) and y � (yn), if :9n(yn � xn > n�1), then 8n(xn � yn � �n�1).

Hence, y � x:

Now, for all real numbers x and y, x � y whenever x < y or x = y. But the converse

does not hold. See Proposition 2:3:1.

De�nition 2.1.18 For real numbers x and y , we write x]y if and only if x < y or x > y:

Proposition 2.1.19 Let x and y be real numbers. Then x]y is contradictory if and only

if x=y.

(Proof ) x]y is contradictory if and only if x < y or x > y are contradictory i.e. x � y

and x � y. That is, x = y by Proposition 2:1:16(7) and Proposition 2:1:17:
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If x]y, then :(x = y). But the converse doesn't holds since :(x = y) ) x]y if and

only if MP. See Proposition 2:3:1.

Next proposition means the existence of the inverse element in R�0� for the product.

Hence, R is a �eld by Proposition 2:1:10.

De�nition 2.1.20 Let x � (xn) be a real number with x]0�, and let N be a positive

integer such that xn � N�1 for all n with n � N or that �xn � N�1 for all n with n � N .

Let y � (yn) be a rational sequence with

yn =

(
(xN3)�1; if n < N

(xnN2)�1; if n � N .

De�ne that x�1 := (yn).

Proposition 2.1.21 Let x and y be real numbers with x; y]0�. Let � be a rational number

with �]0�. Then

(1) x�1 is a real number.

(2) xx�1 = x�1x = 1�:

(3) x�1 > 0� whenever x > 0�, and x�1 < 0� whenever x < 0�:

(4) If xt = 1, then t = x�1:

(5) (x�1)�1 = x:

(6) (xy)�1 = y�1x�1:

(7) jx�1j = jxj�1:

(8) (��)�1 = (��1)�:

(Proof ) Let N be a positive integer such that xn � N�1 for all n with n � N or that

�xn � N�1 for all n with n � N , and let K be a upper bound of canonical bounds of

(xn) and (yn) with K � N , where x�1 := (yn):

(1): In casem � N and n < N , jym�ynj � jxmN2
�1
�xN3

�1
j � N 2(N�3+m�1N�2) =

N�1 +m�1
� n�1 +m�1:

(2): Let k be a positive integer, and de�ne N 0 := minfk;Ng: Then, for all positive

integer n with n � N 0, jx2Kny2Kn� 1j = jx2Knx2KN2n
�1
�1j � N(2Kn)�1+(2KNn)�1 �

(2k)�1 + (2N 2k)�1 = (2k)�1 + (2N2k)�1 � (2k)�1 + (2k)�1 = k�1: Thus, 8k9N 0

8n �

N 0(jx2Kny2Kn � 1�j � k�1): Hence, xx�1 = 1�. Thus, xx�1 = x�1x = 1� by Proposition

2:1:3.

(3): In case x > 0�, there exists N such that xn � N�1 for all n with n � N . Then,

for all n with n � N , (Kx)
�1 < (xN2n)

�1; where Kx is a canonical bound of x. Here,

de�ne N 0 := maxfN;Kxg. Then, (xN2n)
�1
� N 0�1 for all n with n � N 0. Thus, x�1 > 0�.

Similarly, x�1 < 0� whenever x < 0�:
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(4): Let t be a real number with xt = 1�. Then x�1xt = x�11� by Proposition

2:1:10 (1).

(5): By (4).

(6): (y�1x�1)(xy) = y�1(x�1x)y = y�1y = 1�. Thus, by (4), (xy)�1 = y�1x�1:

(7): jx�1jjxj = jx�1xj = 1. Thus, jxj�1 = jx�1j by (4).

(8): It's trivial.

By Proposition 2:1:10 and 2:1:21, (��)� = ����, (� + �) = �� + ��, (��)� = ���,

j�j� = j��

j and (��1)� = (��)�1 for all rational numbers � and �. It is also that ��� if

and only if �����, where � stands for any of the relations =; <;>;�;� and ]:

Thus the map � : Q! R is order isomorphic, hence we can identify a rational number

� with a real number ��.

Proposition 2.1.22 Let x � (xn) be a real number. Then 8n(jx� xn
�

j � n�1
�

):

(Proof ) Let n be �xed. Then, we may show n�1 � jx4m � xnj � �m�1 for all positive

integer m.

For all m, n�1 � jx4m � xnj � n�1 � ((4m)�1 + n�1) = �(4m)�1 � m�1:

Proposition 2.1.23 Let x and y be real number with x < y. Then, there exists a rational

number � such that x < � < y:

(Proof ) Let x � (xn) and y � (yn), let N0 be a positive integer with y4n � x2n � N�1
0

for all n with n � N0, de�ne let N := 2N0, and de�ne � := 2�1(x2N + y2N ). Then,

y2N � � = y2N � x2N � (2N0)
�1 = N�1: Thus, y � � > 0: Similarly, �� x > 0:

Corollary 2.1.24 Let x be a real number. Then for any � > 0, there exists a rational

number � such that jx� �j < �.

(Proof ) For all real number x, there exists a rational number � such that��+x < � < �+x

for all � > 0 by Proposition 2:1:23. Thus, jx� �j < �.

Next, we show the proposition for a certain judgment on R.

Lemma 2.1.25 Let x1; :::; xn be real numbers with x1 + ::: + xn > 0. Then, there exists

a positive integer i such that 0 � i � n and xi > 0.

(Proof ) There exists a rational number � such that x1 + :::+ xn > � > 0 by Proposition

2:1:23, and there exists a rational �nite sequence (ai) such that jxi � aij < �n�1 for

all i with i � n by Proposition 2:1:24. Then,
Pn

i=1 ai �
Pn
i=1 xi =

Pn
i=1(ai � xi) >Pn

i=1��n
�1 = ��. Thus,

Pn
i=1 ai >

Pn
i=1 xi � � > 0 by the assumption. Thus, there

exists i such that ai > 0 and that i � n:

Now, de�neM := minfai
�1; n��1

g, where i satis�es that i � n and that ai > 0. Then,

M > 0, therefore ai �N�1 > 0: Thus, xi > ai � �n�1 � ai �N�1
� 0. Hence, xi > 0:

Corollary 2.1.26 Let x; y and z be real numbers with x < y. Then x < z or z < y.
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(Proof ) Since y�x > 0, (z�x)+(y�z) = y�x > 0. Thus, by Lemma 2:1:25, z�x > 0

or y � z > 0 i.e. x < z or z < y:

Here, we show uncountability for R.

Theorem 2.1.27 Let (an) be a sequence of real numbers. Let x0 and y0 be real number

with x0 < y0. Then there exists a real number x such that x0 � x � y0 and that an]x for

all positive integer n.

(Proof ) We de�ne sequence of rational numbers (xn) and (yn) such that

(1) x0 � xn � xm < ym � yn � y0 for all positive integers m and n with m � n

(2) an < xn or yn < an for positive integer n

(3) yn � xn < n�1 for all positive integer n

as follows inductively.

Assume that for n, x0 � xn < yn � y0, that an < xn or yn < an and that yn�xn < n�1.

Then, xn < an+1 or an+1 < yn by Corollary 2:1:26. In the case xn < an+1, we can

take a rational number xn+1 with xn < xn+1 < minfan+1; yng; and let yn be one with

xn+1 < yn+1 < minfan+1; yn; xn+1 + (n + 1)�1g by Proposition 2:1:23 and 2:1:16. In the

case an+1 < yn, we can take a rational number yn+1 with maxfan+1; xng < yn+1 < yn,

and let xn+1 be one with maxfan+1; xn; yn+1 � (n + 1)�1g < xn+1 < yn+1: In the both

case, x0 � xn < xn+1 < yn+1 < yn+1 � y0, that an+1 < xn+1 or yn+1 < an+1 and that

yn+1 � xn+1 < (n + 1)�1. Thus, (xn) and (yn) satisfy (1), (2) and (3) by induction on n

(since x0 < a1 or a1 < y0 for x0 and y0 with x0 < y0 by Proposition 2:1:26, x1 and y1 are

de�ned as the above. )

Now, by (1), (2) and (3), jxm�xnj = xm�xn < ym�xn < yn�xn < n�1 < m�1+n�1

for all positive integer m and n . Thus, (xn) is a real number. Similarly, (yn) is a real

number. Therefore, (xn) = (yn) by (3).

Next, let x = (xn): Then, xn � x for all n and x � yn for all n by (1). Thus, an < x

or x < an i.e. an]x for all n.

Next, we show completeness for R.

De�nition 2.1.28 A sequence of real numbers (xn) conveges to a real number x if for

all � > 0, there exists positive integer N such that jxn � xj < k�1 for all n with n � N .

Then, we write xn ! x and call x a limit of (xn).

Here, A Cauchy seqence of real numbers is de�ned by replacing \rational"in De�nition

2:1:5 with \real", and it has also canonical bounds : for a Cauchy sequence (xn) of real

numbers, there exists N such that jxm � xnj � 1 for all m and n with m;n � N . Then,

jxnj � maxfjx1j; :::; jxN�1j; jxN j + 1g for all n. Thus, we can take a positive integer K

with K � maxfK1; :::;KN1
; KN + 1g as canonical bound of (xn) since xn < Kn

� for all n,

where Kn (1 � n � N) is a canonical bound of a regular sequence of rational numbers

xn (1 � n � N) .
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Theorem 2.1.29 A real number sequence (xn) is a Cauchy sequence if and only if (xn)

converges.

(Proof ) Let a real number sequence (xn) be a Cauchy sequence.

Let (Nk) be a sequence of positive integers such that jxm � xnj � (2k)�1 for all m

and n with m;n � Nk, and for each positive integer k, let (yk) be a sequence of rational

numbers with jxNk � ykj � (2k)�1 (by Corollary 2:1:24).

We will show that y � (yn) is a real number and that y is a limit of (xn).

Now, de�ne Nm;n := maxfNm; Nng for each m and n. Then, jym� ynj � jym�xNm
j+

jxNm
�xNm;n

j+jxNm;n
�xNn

j+jxNn�ynj � (2m)�1+(2m)�1+(2n)�1+(2n)�1 = m�1+n�1:

Thus, jym � ynj � m�1 + n�1: Hence, y is a real number.

Next, for any k, we have jxn � yj � jxn � xN2k
j + jxN2k

� y2kj + jy2k � yj � (4k)�1 +

(4k)�1+(2k)�1 = k�1 for all n with n � N2k by Proposition 2:1:22. Thus, jxn�yj � k�1:

Hence, xn ! x.

Conversely, let x be the limit of (xn).

Let k be a positive integer, and let N be a positive integer with jxn � xj < (2k)�1 for

all n with n � N . Then, jxm � xnj � jxm � xj+ jx� xnj < (2k)�1 + (2k)�1 = k�1 for all

m and nwith n � N . Thus, jxm � xnj < k�1: Hence, (xn) is a Cauchy sequence.

2.2 Sequences of Real Numbers

Now, we show some properties of converging sequence.

Lemma 2.2.1 Let x and y be real numbers. Then, x � y if and only if x � y + k�1 for

all positive integer k.

(Proof ) It is easy that if x � y, then x � y + k�1.

Conversely, if x > y, then there exists positive integer N such that x� y > N�1 > 0;

therefore y +N�1 < x � y. It's contradictory. Thus, x � y by Proposition 2:1:17.

If xn has limits x and x0, then x = x0:

let k be a positive number, and let N1 and N2 be positive numbers such that jxm � xj <

(2k)�1 and jxn � x0j < (2k)�1 for all m and n with m � N1 and n � N2. Then,

jx� x0j � jx� xnj + jxn � x0j � (2k)�1 + (2k)�1 � k�1. Thus, jx � x0j � 0 by the above

lemma. Thus, x = x0.

Lemma 2.2.2 Let x � (xn); x
0

� (x0n); y � (yn) and y0 � (y0n) be real numbers. Then,

jmaxfx; x0g �maxfy; y0g � maxfjx� x0j; jy � y0jg:

(Proof ) Since jmaxfx4n; x
0

4ng�maxfy4n; y
0

4ngj � maxfjx4n�x04nj; jy4n�y04njg for all n by

Lemma 2:1:7.

Proposition 2.2.3 Let (xn) and (yn) be sequences of real numbers such that (xn) con-

verges to a real number x and that (yn) converges to a real number y. Then
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(1) (xn + yn) ! (x+ y).

(2) (xnyn) ! (xy).

(3) maxfxn; yng ! maxfx; yg.

(4) If xn = c for all n, then x = c.

(5) If x; xn]0 for all n, then x�1n ! x�1.

(6) If xn � yn for all n, then x � y.

(7) Suppose x = y: Then for a sequence of real numbers (zn), if xn � zn � yn for all

n, then zn ! x:

(Proof ) (1) and (2): They are showed by the same way as Lemma 2:1:9 respectively.

(3): Let k a positive integer, and let N1 and N2 be positive integers with jxm�xj; jyn�

yj < k�1 for all m and n with m � N1 and n � N2. Then, jmaxfxn; yng �maxfx; ygj �

maxfjxn � xj; jyn � yjg � k�1 by Lemma 2:2:2.

(4): xn ! c since 8k; n(jxn � cj < k�1). Thus, x = c.

(5): Let k be a positive integer, and let N1 be a positive number such that jxn � xj <

(2k)�1jxj2 for all n n � N2. Then, jxj < (2k)�1jxj2 for all n with n � N1. Also, let N2 a

positive number such that jxn�xj < 2�1jxj for all n with n � N2. Then, jxnj > 2�1jxj for

all n with n � N2. Here, let N := maxfN1; N2g: Then, jx
�1
n �x�1j = jxnj

�1
jxj�1jxn�xj <

2jxj�1jxj�1(2k)�1jxj2 = k�1 for all n with n � N .

(6): Assume that x > y. Then, there exits N0 such that x� y > N�1 by Proposition

2:1:23, and there exist N1 and N2 such that jxm � xj; jyn � yj < (2N0)
�1 for all m

and n with m � N1 and n � N2: Let N := maxfN1; N2g. Then, N0 < x � y =

(x� xn) + (xn� yn) + (yn� y) � jx� xnj+ 0+ jyn� yj � (2N0)
�1 + (2N0)

�1 = N0
�1 for

all n with n � N . It is contradictory. Then, x � y by Proposition 2:1:17.

(7): Let k a positive integer, let N1 and N2 be positive integers such that jxm�xj < k�1

and jyn � xj < k�1 for all m and n with m � N1 and n � N2 and let N := maxfN1; N2g:

Then, zn � x � yn � x < k�1 and x � zn � x � xn � k�1 for all n with n � N . Thus,

jzn � xj < k�1 by Proposition 2:1:16 (12).

2.3 On Omniscience Principles

Here, we show some propositions are equivalent to LPO, LLPO and MP respectively.

Proposition 2.3.1

(1) LPO if and only if 8r 2 R(r > 0 _ r < 0 _ r = 0).

(2) LLPO if and only if 8r 2 R(r � 0 _ r � 0).

(3) MP if and only if 8r 2 (:(r = 0)) r > 0).
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(Proof ) (1): At �rst, we show that if LPO holds, then 8r 2 R(r > 0 _ r < 0 _ r = 0).

Let r � (rn) be a real number. Let (�n) be a sequence of integers such that

�n =

(
0; if jrnj � n�1

1; if jrnj > n�1:

Then, �n = 1 for some n if and only if jrj > 0 i.e. r > 0 or r < 0 , and �n = 0 for all n if

and only if r = 0. Thus, r > 0, r < 0 or r = 0 by the assumption.

Conversely, let (�n) be a sequence of integers taking 0 or 1, and let r � (rn) be

a sequence of rational numbers with rn =
Pn

i=1 2
�i�i. Then, r is a real number since

jrm � rnj = j
Pm

i=1 2
�i�i �

Pn
i=1 2

�i�ij �
Pm

i=n+1 j2
�i�ij �

Pn
i=1 2

�i = 2�n � 2�m � 2�n �

n�1 < n�1 +m�1 for all m and n with m � n. Then, jrj > 0 if and only if 9n(�n = 1)

since
Pn
i=1 2

�i�i � n�1 for some n if and only if �n = 1 for some n, and jrj = 0 if and

only if 8n(�n = 0) since j
Pn
i=1 2

�i�ij � n�1 for all n if and only if there exist no n such

that �n = 1:

Thus, 9n(�n = 1) or :9n(�n = 1) by the assumption.

(2): We show that if LLPO holds then 8r 2 R(r � 0 _ r � 0).

Let r be a real number, and let (�n) and (�n) sequences of integers such that

�n =

(
0; if r > �n�1

1; if r < �(n+ 1)�1;

and

�n =

(
0; if r < n�1

1; if r > (n+ 1)�1:

Then, if there exist m and n such that �m = 1 and �n = 1, then r < �(m + 1)�1

and r > (n + 1)�1. It's contradictory. Thus, :(9n(�n = 1) ^ 9n(�n = 1)). Therefore,

:9n(�n = 1) _ :9n(�n = 1) by the assumption. Thus, �n = 0 for all n or �n = 0 for all

n. Hence, r � 0 or r � 0 by Lemma 2:2:1.

Conversely, let (�n) and (�n) be sequences of integers taking either 0 or 1, and let

r � (rn) be a sequence of rational numbers with rn =
Pn
i=1 2

�i(�i � �i): Then, r is a real

number since jrm � rnj �
Pm

i=n+1 j2
�i(�i � �i)j �

Pm
i=n+1 2

�i
� m�1 + n�1 for all m and

n with m � n:

Now, suppose that :(9n(�n = 1) ^ 9n(�n = 1)). Then, we can classify by the

assumption as follows: in the case that r � 0, suppose that �n = 1 for some n. Then,

there exist no i such that �i = 1 by the supposition. That is, �i = 0 for all i. Therefore,

for some n with �n = 1, �2�(n+1) � r2n+1 =
P2n+1

i=1 2�i(�i � �i) =
P2n+1

i=1 2�i � �i � �2�n

since r � 0 i.e. rn � �n�1 for all n and 1 � n � 2n+1. It is contradictory. Thus,

:9n(�n = 1). Hence, :9n(�n = 1) _ :9n(�n = 1):

In case the case that r � 0, suppose that �n = 1 for some n. Then, �i = 0 for all i.

Therefore, for some n with �n = 1, 2�(n+1) � r2n+1 =
P2n+1

i=1 2�i(�i � �i) =
P2n+1

i=1 2�i�i �

2�n since r � 0 i.e. rn � �n�1 for all n and 1 � n � 2n+1. It is contradictory. Thus,

:9n(�n = 1). Hence, :9n(�n = 1) _ :9n(�n = 1):

(3): We show that if MP, then 8r 2 (:(r = 0)! r > 0).

19



Let r � (rn) be a real number, and let (�n) be a sequence of integers such that

�n =

(
0; if jrnj � n�1

1; if jrnj > n�1:

Then, �n = 1 for some n if and only if jrj > 0 , and �n = 0 for all n if and only

if r = 0: Here, suppose that :(r = 0). Then :8n(�n = 0): Thus, ::9n(�n = 1) by

:9n(�n = 1)) 8n(�n = 0): Therefore, 9n(�n = 1) by MP. Hence, jrj > 0 i.e. r]0:

Conversely, let (�n) be a sequence of integers taking 0 or 1, and let r � (rn) be a

sequence of rational numbers with rn =
Pn
i=1 2

�i�i. Then, r is a real number by the same

way as (1). jrj > 0 if and only if �n = 1 for some n, and r = 0 if and only if �n = 0 for

all n.

Now, suppose that ::9n(�n = 1) i.e. ::(jrj > 0). Then, r = 0. Thus, r]0 by the

assumption. That is, jrj > 0: Therefore, 9n(�n = 1):

Then, 8x 2 R(r � 0) r > 0 _ r = 0) if and only if LPO as follows:

Assume that for all real number r, if r � 0, then r = 0 or r > 0 . Then, jrj � 0 for

any real number r. Thus, jrj = 0 or jrj > 0. That is, r = 0, r > 0 or r < 0. Hence, LPO

holds by the above proposition.

The converse is trivial by the above proposition.
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Chapter 3

Metric Spaces

Here, \A set X is inhabited" means that X has at least one element. Actually, in con-

structive mathematics, \X is nonempty" is not equivalent to \X is inhabited" since \If

X is nonempty, then X is inhabited" implies MP ( by X := fn 2 Nj�n = 1g for a given

sequence (�n) taking 0 or 1).

3.1 Metric Spaces

De�nition 3.1.1 Let X be a set, and let d be a map by X to R0+ with the following

conditions:

(1) d(x; y) = 0 if and only if x = y

(2) d(x; y) = d(y; x)

(3) d(x; y) � d(x; z) + d(z; y);

where R0+ is the set of nonnegative real numbers. Then, this d is called metric or

distance function, and (X; d) is called metric space. We sometimes omit the metric d.

In a metric space (X; d), the subset A of X is a metric space for the following map dA:

dA(x; y) := d(x; y) (x; y 2 A):

This (A; dA) is called a metric subspace of (X; d).

Example 3.1.2

(1) Euclid space R, where d(x; y) := jx� yj (x, y 2 R).

(2) (
Qn
i=1Xi; d), where (Xi; di) (1 � i � n) are metric spaces and d(x; y) :=

Pn
i=1 di(xi; yi)

(x � (x1; :::; xn), y � (y1; :::; yn) 2
Qn
i=1Xi � X1 � :::�Xn).

De�nition 3.1.3 A open ball of radius r > 0 (or r-neighborhood) for a point x in metric

space (X; d) is the subset B(x; r) � fy 2 X jd(x; y) < rg.
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The open ball in the subspace A of X is as follows:

BA(x; r) � fy 2 AjdA(x; y) < rg

= fy 2 Xjd(x; y) < rg \ A:

De�nition 3.1.4 Let (X; d) be a metric space, and let V be a subset of X. Then,

� V i := fx 2 V j9r > 0(B(x; r) � V )g:

� V � := fx 2 Xj8r > 0(B(x; r) \ V is inhabited)g:

V i is called the interior of V , and V � is called the closure of V .

Then, V is open if V = V i, and V is closed if V = V �:

Proposition 3.1.5 Let X be a metric space, and let A and B be subsets of X. Then

(1) (A \ B)i = Ai
\Bi:

(2) A�

[ B�

� (A [ B)�:

(Proof ) (1): Let x 2 (A\B). Then, B(x; r) � A\B for some r > 0. That is, B(x; r) � A

and B(x; r) � B. Hence, x 2 Ai
\ Bi.

Conversely, let x 2 Ai
\ Bi. Then, N(x; r1) � A and N(x; r2) � B for some r1 > 0

and r2 > 0. Here, let r := minfr1; r2g. Then, B(x; r) � A \B since B(x; r) � N(x; r1)\

N(x; r2). Hence, x 2 A \ B.

(2): Let x 2 (A [ B)�. Then, B(x; r) \ (A \ B) is inhabited for all r > 0. Thus,

N(x; r1)\A is inhabited for all r1 > 0, and N(x; r2)\B is inhabited for all r2 > 0. That

is, x 2 A�

\ B�:

About the above (2), \ (A [B)� � A�

[ B�" imply LLPO. See Example 3:1:12.

Lemma 3.1.6 Let X be a metric space, and let A be a subset of X. Then,

(1) Ai is the maximal open set contained in A.

(2) A� is the minimal closed set containing A.

(Proof ) (1): Let O be a open set contained in A and x be any element of O. Then, B(x; r)

is contained in O for some r > 0. Thus, B(x; r) is contained in A. Therefore, x belongs

to Ai.

(2): Let F be a closed set containing A, and let x be any element of A�. Then,

B(x; r) \ A is inhabited for all r > 0. Thus, B(x; r) \ F is inhabited, hence x belongs to

F .

Example 3.1.7 Let a and b be a real number with a < b.

(1) [a; b] is closed in Euclid space R.
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(2) (a; b) is open in Euclid space R.

(3) f0g and f1g is open and closed in subspace f0; 1g of Euclid space R.

(4) In Example 3:1:2 (2), Oi is open in Xi for each i = 1; :::; n if and only if O1�:::�On

is open in
Qn
i=1Xi.

(Proof ) (1): We may show [a; b]� � [a; b].

Let x 2 [a; b]�. Then, B(x; r) \ [a; b] is inhabited for all r > 0. Here, x � b or x � a

by Corollary 2:1:26.

In the case x � b, suppose that a < x. Then, x < q < a for some rational number q

by Corollary 2:1:24 and N(x; jq � xj) \ [a; b] = �. It is contradictory. Thus, x � a by

Proposition 2:1:17. Therefore, x 2 [a; b].

In the case x � a, x 2 [a; b] similarly. Hence, x 2 [a; b].

(2):We may show (a; b) � (a; b)i.

Let x 2 (a; b), and let r := 2�1minfjx � aj; jb � xjg. Then, if y 2 B(x; r), then

jx � yj < jx � aj and jx � yj < jb � xj. Thus, a < y < b i.e. y 2 (a; b) by a < x < b.

Hence, x 2 (a; b)i.

(3): Since B(0; 2�1) = f0g, 0 2 f0gi. That is, f0g = f0gi. Therefore, if x 2 f0g� ,

then B(x; r) \ f0g = f0g for all r > 0. Thus, x 2 f0g. Hence, f0g = f0g�.

About f1g, it is similar to f0g.

(4): Let O1; :::; On be open sets in X1; :::; Xn respectively, and let x � (x1; :::; xn)

be in O � O1 � ::: � On. Then, there exist positive real numbers r1; :::; rn such that

Bi(xi; ri) � Oi for any i = 1; :::; n, where Bi(xi; ri) is a open ball in Xi. Here, let

r := minfr1; :::; rng, and let y � (y1; :::; yn) be in
Qn
i=1Xi with d(x; y) �

Pn
i=1 di(xi; yi) < r.

Then, di(xi; yi) < r � ri for all i = 1; :::; n i.e. yi 2 Bi(xi; r) for all i. Thus, yi 2 Oi for

all i i.e. y 2 O. Therefore, B(x; r) � O. Hence O is open, where B(x; r) is a open ball inQn
i=1Xi.

Conversely, let O1 � ::: � On be a open set in
Qn
i=1Xi. Then, there exists r > 0 such

that B(x; r) � O1 � ::: � On. Now, let y � (y1; :::; yn) be a element of
Qn
i=1Xi with

yi 2 Bi(xi; n
�1r). Then, d(x; y) :=

Pn
i=1 di(xi; yi) <

Pn
i=1 n

�1r = r. Thus, y 2 O i.e.

yi 2 Oi for all i = 1; :::; n. Hence, Oi is open for all for all i = 1; :::; n.

Lemma 3.1.8 Let A a subspace of X. Then

(1) for all open set O in X, O \ A is open in A

(2) F is closed in A if and only if F = F 0

\A for some closed set F 0 in X.

(Proof ) For a set M, let M iA be the interior of M in A and M�A be the closure of M in

A.

(1): We may show O \ A � (O \ A)iA.

Let x 2 O \ A. Then, B(x; r) � O for some r > 0. Thus, B(x; r) \ A � O \ A i.e.

BA(x; r) � O \ A. Therefore, x 2 (O \A)iA.

(2): Let F be a closed set in A, and let F 0 := F�. We show F = F 0

\A. F � F 0

\A

is trivial.
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we show that F � F 0

\ A. Let x 2 F 0

\ A i.e. x 2 F�

\ A. Then, B(x; r) \ F is

inhabited for all r > 0, and x 2 A. That is, B(x; r) \ A \ F is inhabited for all r > 0.

Therefore, x 2 F�A = F , hence F 0

\ A � F .

Conversely, let x 2 (F 0

\ A)�A . Then, B(x; r)A \ (A \ F 0) is inhabited for all r > 0.

Thus, B(x; r) \ F 0 is inhabited for all r > 0. That is, x 2 F 0. On the other hand, x 2 A

since (F 0

\ A)�A. Hence, x 2 F 0

\ A.

The author hasn't known weather or not \M iA = M i
\A" holds constructively.

De�nition 3.1.9 Let (xn) be a sequence in X, and let x be in X . (xn) converges to x if

for all positive real number �, there exist a positive integer N such that d(xn; x) < � for

all positive integer n with n � N:

Then, we write xn ! x .

Lemma 3.1.10 A subset A of X is closed if and only if there exists a sequence converging

to x for all x in A.

(Proof ) Let x be a element of A�. Then, B(x; k�1)\A is inhabited for all positive integer

k. Thus, there exists a sequence (xk) of A such that xk 2 B(x; k�1) for all k. That is ,

(xk) converges to x.

Conversely, suppose that for each x in A, there exists a sequence (xk) of elements of A

converging to x. Then, for any k, there exists a positive integerN such that d(xn; x) < k�1

for all n with n � N . That is, for each positive integer k, there exists n such that

xn 2 B(x; k�1). Hence, B(x; k�1) \ A is inhabited for all k by (xk) � A.

For the above proof, we reason (xn) converges to x if and only if for each positive

integer k, there exists a positive integer N such that d(xn; x) < k�1 for all n with n � N .

The reason is that if the later holds, then for each � there exists k such that 0 < k�1 < �

and that if the former holds, particularly we can take a positive rational number k�1 as

any � > 0.

Example 3.1.11 In Example 3:1:2(2), A1
�

� :::� An
� = (A1 � :::� An)

�.

(Proof ) Let x � (x1; :::; xn) be a element of A1
�

� ::: � An
�. Then, for any i, there

exists a sequence (xik) of elements of Ai converging to xi by Lemma 3:1:10. Thus, a

sequence ((x1k; :::; x
n
k)) is a sequence of elements of A1 � ::: � An converges to x. Hence,

x 2 (A1 � :::�An)
� by Lemma 3:1:10.

Conversely, let x � (x1; :::; xn) be a elements of (A1 � :::�An)
�. Then, there exists a

sequence (xk) � ((x1k; :::; x
n
k)) of elements of A1� :::�An converging to x . Thus, for any

i, a sequence (xik) of elements of Ai converges to xi. Hence, x belongs to Ai
�

� :::� Ai
�

by Lemma 3:1:10.

Example 3.1.12 ([�1; 0][ [0; 1])� � [�1; 0][ [0; 1] implies LLPO. Thus, the converse of

Proposition 3:1:5(2) doesn't holds.
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(Proof ) Let (�n) and (�n) be binary sequences, which are a sequence taking 0 or 1 for

each n, and assume that :(9n(�n = 1) ^ 9n(�n = 1)). Let rn :=
Pn

i=1 2
�1(�i � �i), and

let r := (rn). Then, r is a real number in [�1; 1] by the same way as Proposition 2:3:1(2),

and (rn) converges to r by Proposition 2:1:22.

Now, suppose that a positive integer n is given. Then, in case that �i = 0 and �i = 0

for all i with i � n, rn 2 [�1; 0] \ [0; 1].

In case that �i = 1 for some i � n and that �i = 0 for all i � n,
Pn

i=1 2
�1(�i � �i) =Pn

i=1 2
�1(��i) � 0: Thus, rn 2 [�1; 0].

In case that �i = 0 for all i � n, and �i = 1 for some i � n,
Pn

i=1 2
�1(�i � �i) =Pn

i=1 2
�1�i � 0: Thus, rn 2 [0; 1].

In the case that �i = 1 and �j = 1 for some i and j, it is opposed to the assumption.

Therefore, (rn) is in [�1; 0] [ [0; 1]. Thus, r 2 [�1; 0] or r 2 [0:1] by Lemma 3:1:10.

Hence, :9n(�n = 1) or :9(�n = 1) by the same way as Proposition 2:3:1.

By Proposition 2:1:22, there exists a rational sequence (qn) converging to r for any

real number r. Thus, Q� = R.

3.2 Continuity

Let X and Y be metric spaces.

De�nition 3.2.1 A map f from X to Y is continuus if for any x in X and any positive

real number �, there exist a positive real number � such that B(x; �) � f�1(B(f(x); �)):

Proposition 3.2.2 Let f and g be continuous maps from X to R. Then, maxff; gg, f+g

and fg are continuous.

(Proof ) Let � be any positive real number and x be any element of X.

(maxff; gg): there exist positive real numbers �1 and �2 such that for all y and y0 in

X, jf(x)� f(y)j < � and jg(x)� g(y0)j < � whenever d(x; y) < �1 and d(x; y0) < �2. Then,

let �max := minf�1; �2g.

Now, jmaxff(x); g(x)g�maxff(y); g(y)gj � maxfjf(x)�f(y)j; jg(x)�g(y)jg < � for

any y 2 X with d(x; y) < �max, by Lemma 2:2:2.

(f + g): For � > 0 and x, there exist positive real numbers �3 and �4 such that for all

y and y0 in X, jf(x) � f(y)j < 2�1� and jg(x) � g(y0)j < 2�1� whenever d(x; y) < �3 and

d(x; y0) < �4. Then, let �+ := minf�1; �2g.

Now, for any y 2 X with d(x; y) < �+, j(f(x)+g(x))� (f(y)+g(y))j � jf(x)�f(y)j+

jg(x)� g(y)j < 2�1�+ 2�1� = �.

(fg) : First, let �5 be a positive real number such that for any y 2 X, if d(x; y) < �5,

then jf(x) � f(y)j < 1, and let �6 be a positive real number such that for all y 2 X, if

d(x; y) < �6, then jg(x)� g(y)j < 1. Then, jf(y)j < jf(x)j + 1; jg(y)j < jg(x)j + 1 for all

y 2 X .
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Next, there exist positive real numbers �7 and �8 such that for any y and any y0 in X,

if d(x; y) < �7 and d(x; y
0) < �8, then jf(x)�f (y)j < (2(jg(x)+1))�1� and jg(x)�g(y0)j <

(2(jf(x) + 1))�1�. Then, let �
�
:= minf�5; �6; �7; �8g.

Now, for any y 2 X with d(x; y) < �
�
, jf(x)g(x) � f(y)g(y)j � jg(y)jjf(x) � f(y)j +

jf(x)jjg(x) � g(y)j < (jg(x)j + 1)jf(x) � f(y)j + (jf(x)j + 1)jg(x) � g(y)j < (jg(x)j +

1)(2(jg(x) + 1))�1�+ (jf(x)j+ 1)(2(jf(x) + 1))�1� = �.

Proposition 3.2.3 Let f be a continuous map from X to R such that there exists a

positive real number c such that jf(x)j � c for all x. Then, (f)�1 is continuous.

(Proof ) For any x 2 X and any positive real number �, there exists a positive real number

� such that for all y 2 X , if d(x; y) < �, then jf(x)� f(y)j < c2�.

Now, for any y 2 X with d(x; y) < �, jf(x)�1 � f(y)�1j = jf(x)j�1jf(y)j�1jf(x) �

f(y)j < c�2c2� = �.

Proposition 3.2.4 Let X;Y and Z be metric spaces, and let f : X ! Y and g : Y ! Z.

Then, if f and g are continuous, then g � f is continuous.

(Proof ) (1): 8� > 09�; �0 > 0(B(x; �) � f�1(B(f(x); �0)) � f�1(g�1(B(g(f(x)); �))):

De�nition 3.2.5 A map from X to Y is seqentially continuous if for all x in X and all

sequences (xn) in X, f(xn)! f(x) whenever xn ! x.

Propositions replacing \continuous" with \ sequentially continuous" on Proposition 3:2:2,

3:2:3 and 3:2:4 are also shown by the same way.

De�nition 3.2.6 A map from X to Y is nondiscontinuous if for all x in X and all

sequences (xn) in X, what (xn) converges to x and what there exists a real number � such

that d(f(xn); f(x)) � � for all n imply that � � 0:

Proposition 3.2.7 Let f be a map from X to Y .

(1) f is continuous if and only if f�1(O) is open in X for all open subset O of Y.

(2) f is continuous )

f is sequentially continuous )

f�1(F ) is closed in X for all closed subset F of Y )

f(A�) is contained in (f (A))� for all subset F of X )

f is nondiscontinuous.

(Proof ) (1): Let O e be an open subset of Y .

Take any x in f�1(O). Then f(x) belongs to O, so that B(f(x); �) is contained in O for

some � > 0. That is, f�1(B(f(x); �) is contained in f�1(O). Then, there exists a positive

real number � such that B(x; �) is contained in f�1(B(f(x); �)) by f is continuous. Thus,

B(x; �) is contained in f�1(O) since f�1(B(f(x); �) is contained in f�1(O).
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Conversely, let � be a positive real number, and let x be a elements of X. Then,

f�1(B(f(x); �)) is open in X by the assumption since B(f(x); �) is open in Y . On the

other hand, x belongs to f�1(B(f(x); �)). Thus, there exists a positive real number � such

that B(x; �) is contained in f�1(B(f(x); r)).

(2): f is continuous ) f is sequentially continuous:

Let x be any element of X, and let (xn) be a sequence of elements of X . Suppose that

(xn) converges to x, and let � be a positive real number. Then, there exists a positive

real number � such that B(x; �) is contained in f�1(B(f(x); �)) since f is continuous, and

there exists a positive integer N such that xn belongs to B(x; �) for all n with n � N .

Therefore, f(xn) belongs to B(f(x); �). That is, f(xn)! f(x).

f is sequentially continuous ) f�1(F ) is closed in X for all closed subset F of Y :

Let F be any closed subset of Y . Then, we may show f�1(F )
�

� f�1(F ).

Let x be a element of f�1(F )
�

. Then, there exists a sequence (xn) of elements of

f�1(F ) conversing to x. Thus, the sequence (f(xn)) converges to f(x) since f is se-

quentially continuous. Therefore, f(x) belongs to Fby Lemma 3:1:10 since (f(xn)) is a

sequence of elements of F . Hence, x belongs to f�1(F ).

f�1(F ) is closed in X for all closed subset F of Y ) f(A�) is contained in f(A)� for

all subset F of X:

Let A be a subset of X. Then, since A is a subset of A�, A is contained in f�1(f (A)�).

On the other hand, f�1(f(A)�) is closed by the assumption. Thus, A� is a subset of

f�1(f(A)�) by Lemma 3:1:6. That is, f(A�) is contained in f(A)�.

f(A�) is contained in f(A)� for all subset F of X ) f is nondiscontinuous:

Let x be a element of X and (xn) be a sequence of elements of X. Let � be a real

number.

Suppose that (xn) converges to x and d(f(xn); f (x)) � � for all n. Then, f(x) 2

f((xn)
�) since x 2 (xn)

�. Then, f (x) belongs to (f(xn))
� by the assumption. Therefore,

there exists a subsequence (f(xnk)) converging to f (x) by Lemma 3:1:6. Here, if � > 0,

then there exists N such that d(f (xnk); f(x)) < � for all n with n � N . It is opposed to

the supposition. Therefore, � > 0. Hence, � � 0.

Example 3.2.8 Constant function and identical function etc. are continuous. Moreover,

about the product space (
Qn
i=1Xi; d) in Example 3:1:2, the projection pi from

Qn
i=1Xi to

Xi (1 � i � n) is also one.

(Proof ) For all open subset Oi in Xi, p
�1
i (Oi) = X1 � :::�Xi�1 � Oi �Xi+1 � :::�Xn,

thus p�1i (Oi) is open in
Qn
i=1Xi. Therefore, pi is continuous by Proposition 3:2:7(1).

Now, Ishihara showed in [9] \Ever sequentially continuous map on a metric space is

continuous" doesn't hold in constructive mathematics. Therefore, \f�1(F ) is closed in X

for all closed subset F of Y " , \f (A�) is contained in f(A)� for all subset F of X" and

\f is continuous" are classically equivalent to each other (see [1],[13] or [16]), but aren't

so constructively.

However, the author hasn't known for the following:
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� f is nondiscontinuous )

f�1(F ) is closed in X for all closed subset F of Y .

� f(A�) is contained in f(A)� for all subset F of X )

f�1(F ) is closed in X for all closed subset F of Y .

� f�1(F ) is closed in X for all closed subset F of Y )

f is sequentially continuous.

But, they are showed partly. Ishihara showed in [8]

� \Every nondiscontinuous map from a complete metric space to a metric space is

sequentially continuous."

� \Every map from a complete metric space to a metric space is strongly extensional."

� WMP:\Every pseudopositive real number is positive."

are equivalent to each other. Here

De�nition 3.2.9 Let (xn) be a sequence in X.Then, (xn) is a Cauchy sequence if for

any positive number r, there exist some positive integer N such that d(xm; xn) < r for all

m and n with m; n � N . A metric space X is complete if any Cauchy sequence in X is

converges.

De�nition 3.2.10 A map by (X; d) to (Y; d0) is strongly extentinal if d0(f(x); f(y)) > 0

implies d(x; y) > 0 for all x and y in X.

De�nition 3.2.11 A real number r is pseudopsitive if

::(0 < x) _ ::(x < r)

for all real number x.

(WMP(weak Markov's principle) is a omniscience principle implied by MP.)

Here, all maps are strongly extensional in classical mathematics , but it doesn't holds

by the above in constructive mathematics [8]. Actually, the next holds.

Proposition 3.2.12 Any map from X to Y is strongly continuous if and only if MP.

(Proof ) Let r be a real number. Suppose that ::(jrj > 0); and let X := frxjx 2 Rg

and Y := R. Then, X and Y are metric space for normal metric. And, let f be a

correspondence rx in X with x in Y . Then, f is a map since rx = ry implies x = y, so

that f is strongly extensional.

Now, jrj > 0 i.e. r > 0 or r < 0 since f (r) = f(r1) = 1 and f(0) = f(r0) = 0 imply

jf(r)� f (0)j > 0. Thus, by the supposition, r > 0:

Conversely, let f be a map from X to Y . Suppose that d(f(x); f(y)) > 0 for x and y

in X. Then, :(d(f(x); f(y)) = 0) i.e. :(f(x) = f(y)), so that :(x = y) i.e.:(d(x; y) = 0)

i.e.::(d(x; y) > 0). Thus, d(x; y) > 0 by MP.

Also, Ishihara showed in [9]
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� a map f from a complete metric space to a metrics space is sequentially continuous

if and only if f is strongly extensional and nondiscontinuous.
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Chapter 4

Connectivity

First, we will consider under De�nition 4:1:1 which appear in [14], and second under

another de�nitions which classically is equivalent to each other (see [1]). Finally, we will

consider the relation on these de�nitions and the intermediate value theorem.

Let X and Y be metric spaces.

4.1 Connectivity

De�nition 4.1.1 [connected] A metric space X is connected if for any inhabited and

open set V and W with V [W = X, V \W is inhabited.

A subset A of X is connected if subspace A of X is connected.

Proposition 4.1.2 Let A be a connected set. Then, for all subset M of X, if A � M �

A�, then M is connected.

(Proof ) Let V and W be inhabited and open set in M with V [W = M . Then, V \ A

and W \ A are open in A by Lemma 3:1:8, and (V \A) [ (W \A) = A. Thus, we may

show that V \ A and W \A are inhabited respectively.

Let x be a element of V , and let � be a positive real number with B(x; �)M � V

i.e. B(x; �) \M � V . Now, since x 2 A�, B(x; �) \ A is inhabited, and B(x; �) \ A �

B(x; �) \M . Thus, there exists y with y 2 B(x; �) \ A, therefore y 2 V \ A.

Similarly, it is shown that W \ A.

Proposition 4.1.3 Let fXn � Xjn 2 Ng be a class of connected subsets of X such thatT
fXn � Xjn 2 Ng is inhabited. Then,

S
fXn � Xjn 2 Ng is connected.

(Proof ) Let x 2
T
fXn � Xjn 2 Ng, and let V and W be inhabited and open in subspaceS

fXn � Xjn 2 Ng with V [W =
S
fXn � Xjn 2 Ng.

In case x 2 W , let y 2 V since V is inhabited.
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Here, in case y 2 Xn, V \ Xn and W \ Xn are inhabited and open in Xn, and

(V [Xn)[ (W \Xn) = Xn. Thus, since Xn is connected, V \Xn \W \Xn is inhabited.

Therefore, V \W is inhabited.

In case x 2 V , it is similarly shown that V \W is inhabited.

In classical mathematics, the proposition that is replaced \N" with \�" in the above

proposition holds by Axiom of Choice, where � is any index set. But, since we assume only

Axiom of Countable Choice in constructive mathematics, such rewritten proposition holds

only under the assumption that there exist some choice functions for fX� � Xj� 2 �g.

Theorem 4.1.4 Let X be a connected set, and let f be a continuous map from X to Y .

Then, f(X) is connected.

(Proof ) Let V and W be open and inhabited subsets of X with V [W = f(X). Then,

since f�1(V )[f�1(W ) = f�1(V [W ) and f�1(V [W ) = X, f�1(V ), and f�1(W ) are open

and inhabited in X and f�1(V )[f�1(W ) = X. Thus, there exists x in f�1(V )\f�1(W ).

Therefore, f(x) 2 V \W since f�1(V ) \ f�1(W ) = f�1(V \W ).

Proposition 4.1.5 Every metric space (Xi; di) (1 � i � n) is connected if and only if

(
Qn
i=1Xi; d) is connected, where d(x; y) :=

Pn
i=1 di(xi; yi) (x = (x1; :::; xn); y := (y1; :::; yn) 2Qn

i=1Xi):

(Proof ) Let V � V1 � ::: � Vn and W � W1 � ::: �Wn be inhabited and open set with

V [W =
Qn
i=1Xi. Then, Vi [Wi = Xi, and Vi and Wi are open in Xi for all i = 1; :::; n

by Example 3:1:2. Thus, for all i, Vi \Wi is inhabited since Xi is connected. Hence,

V \W is inhabited.

Conversely, since the projection pi :
Qn
i=1Xi ! Xi is continuous and surjective for any

i , any Xi is connected by Theorem 4:1:4.

De�nition 4.1.6 (path-connectivity) A metric space X is path � connected if all a

and b are joined by an arc f i.e. there exists a continuous map from [0; 1] to X with

f(0) = a and f(1) = b.

Theorem 4.1.7 A path-connected set is connected.

(Proof ) Let X be path- connected, and let V and W be open and inhabited subsets

in X with V [ W = X. Then, we can take x0 in V and y0 in W , and there exists a

continuous map f such that f(0) = x0; f(1) = y0. Here, let a0 := 0; b0 := 1. Then, we

construct sequences (xn) and (yn) on X and (an) and (bn) on [0; 1] as follows:

let xn; yn; an and bn be given.

In the case that f(2�1(an + bn)) 2 V , let xn+1 := f(2�1(an + bn)), yn+1 := yn,

an+1 := 2�1(an + bn) and bn+1 := bn.

In the case that f(2�1(an + bn)) 2 W , let xn+1 := xn; yn+1 := f(2�1(an + bn)),

an+1 := an and bn+1 := 2�1(an + bn).

Then,

31



(1) (an) is increasing, and (bn) is decreasing.

(2) an � bn for all n.

(3) jbn � anj � 2�n:

(1) and (2) is trivial by induction on n. About (3), if jbn�anj � 2�n, then jbn+1�an+1j =

j2�1(an + bn)� anj � 2�12�n = 2�(n+1), so that it holds by induction on n.

Thus, jam � anj = am � an � bm � an � bn � an � 2�n for all m and n, therefore (an)

is a Cauchy sequence. Thus (an) converges by Theorem 2:1:29. Here, let a be a limit of

(an) , and let x := f(a). Then, (bn) converges to a since jbn� aj � jbn� anj+ jan� aj for

all n.

Therefore, (xn) and (yn) converge x since f is also sequentially continuous by Propo-

sition 3:2:7 (2).

Here, in the case that x 2 W , let � with B(x; �) � W , then xn 2 V \W for some n

since there exists N such that xn 2 B(x; �) for all n with n � N .

In the case that x 2 V , yn 2 V \ W for some n since there exists N 0 such that

yn 2 B(x; �) for all n with n � N 0.

Hence, V \W is inhabited.

Example 4.1.8 In Euclid space R, a interval is path-connected, where a interval is one

in the next:

(a; b) := fx 2 Rja < x < bg; [a; b] := fx 2 Rja � x � bg;

[a; b) := fx 2 Rja � x < bg, (a; b] := fx 2 Rja < x � bg;

(�1; b) := fx 2 Rjx < bg; (�1; b] := fx 2 Rjx � bg;

(a;1) := fx 2 Rja < xg; [a;1) := fx 2 Rja � xg;

(�1;1) := R;

where a < b.

Actually, f(t) = at+(1� t)b (t 2 [0; 1]) is continuous for every a and b by Proposition

3:2:2, hence the f can be take as the arc.

In classical mathematics, there exists a space such that it is not path-connected but

connected (see [1], [16] or [13]). However, the author has not known weather or not the

metric space is connected in constructive mathematics.

Proposition 4.1.9 Let X be path-connected, and let f be a continuous map from X to

Y . Then, f(X) is path-connected.

(Proof ) By Theorem 4:1:4 and Proposition 3:2:4.

Proposition 4.1.10 The path-connected set de�ned by replacing \continuous" with \se-

quentially continuous" in De�nition 4:1:6 is connected.

(Proof ) It is trivial by the proof of Theorem 4:1:7.
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Theorem 4.1.11 Let X be a path-connected set in Proposition 4:1:10, and let f be a

sequentially continuous map from X to Y . Then, f(X) is path-connected in Theorem

4:1:10.

(Proof ) By Proposition 3:2:4, it is shown similarly to the proof of Theorem 4:1:7.

The author has not known weather or not the proposition obtained by replacing \con-

tinuous" with \sequentially continuous" in Theorem 4:1:4 holds constructively.

4.2 C-connectivity

De�nition 4.2.1 [C-connectivity] A metric spaceX is C�connected if for any inhabited

and closed set V and W with V [W = X, V \W is inhabited.

Proposition 4.2.2 Let fXn � X jn 2 Ng be a class of C-connected subsets of X such

that
T
fXn � X jn 2 Ng is inhabited . Then,

S
fXn � Xjn 2 Ng is C-connected.

(Proof ) By the same way as Theorem 4:1:3.

Theorem 4.2.3 Let X be C-connected, and let f : X ! Y such that f�1(F ) is closed

for all closed subset F of X. Then, f(X) is C-connected.

(Proof ) By the same way as Theorem 4:1:4.

Proposition 4.2.4 Every metric space (Xi; di) (1 � i � n) is C-connected if and only

if (
Qn
i=1Xi; d) is C-connected, where d(x; y) :=

Pn
i=1 di(xi; yi) (x = (x1; :::; xn); y :=

(y1; :::; yn) 2
Qn
i=1Xi):

(Proof ) we show by the same way as Proposition 4:1:5 that what (Xi; di) (1 � i � n)

are C-connected spaces implies what (
Qn
i=1Xi; d) is C-connected.

Conversely, the projection pi :
Qn
i=1Xi ! Xi is continuous for any i, and pi is surjective

and satis�es that p�1i (F ) is closed in
Qn
i=1Xi for all closed subset F in Xi by Proposition

3:2:7. Thus, any Xi is C-connected by Theorem 4:2:3.

Theorem 4.2.5 A path-connected set is C-connected.

(Proof ) Let X be path-connected. Let V and W be closed and inhabited subsets in X

with V [W = X. Then, we can take x0 in V and y0 in W , and there exists a continuous

map f such that f(0) = x0; f(1) = y0. Let a0 := 0; b0 := 1. Then, we construct sequences

(xn) and (yn) on X and (an) and (bn) on [0; 1] by the same way as Theorem 4:1:7. Then,

(an) and (bn) satisfy

� (an) is increasing, and (bn) is decreasing

� an � bn for all n
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� jbn � anj � 2�n:

Thus, (an) and (bn) have the same limit respectively. Here, let a be a limit of (an) , and

let x := f(a). Then, (xn) and (yn) converge to x since f is also sequentially continuous

by Proposition 3:2:7. Hence, x 2 V \W by Lemma 3:1:10.

Proposition 4.2.6 The path-connected set de�ned by replacing \continuous" with \se-

quentially continuous" in De�nition 4:1:6 is C-connected.

(Proof ) It is trivial by the proof of Theorem 4:2:5.

The author has not known weather or not for a C-connected set A, if A � M � A�

for all subset M of A, then M is C-connected.

4.3 Strong Connectivity

De�nition 4.3.1 [strong connectivity] A metric space X is strongly connected if for any

inhabited set V with V \W = X, V �

\W or V \W� is inhabited.

Proposition 4.3.2 Let fXn � Xjn 2 Ng be a class of strongly connected subsets of

X such that
T
fXn � Xjn 2 Ng is inhabited. Then,

S
fXn � Xjn 2 Ng is strongly

connected.

(Proof ) Let x 2
T
fXn � X jn 2 Ng, and let V and W be inhabited sets with V [W =S

fXn � Xjn 2 Ng.

In the case x 2W . Let y a elements of V .

In the case y 2 Xn, V \Xn and W \Xn is inhabited and W [Xn = Xn. Since Xn is

strongly connected, (V \Xn)
�Xn \ (W \Xn) is inhabited or (V \Xn) \ (W \Xn)

�Xn is

inhabited.

If there exists x in (V \Xn)
�Xn\(W\Xn), then x 2 (V \Xn)

�Xn\(W\Xn) � V �

\W

since (V \Xn)
�Xn � V �Xn \Xn � V �

\Xn by Lemma 3:1:8

If there exists x in V \Xn \ (W \Xn)
�Xn � V �

\W , x belongs to V \W� by the

same way.

In the case x 2 V , it is similar.

Theorem 4.3.3 Let X be strongly connected, and let f : X ! Y such that f(A�) is

contained in f(A)� for all subset A in Y. Then, f(X) is strongly connected.

(Proof ) Let V and W be inhabited sets with V [W = X.

Now, f�1(V ); f�1(W ) is inhabited, and f�1(V )[ f�1(W ) = f�1(V [W ) = X. Thus,

f�1(V )� \ f�1(W ) or f�1(V ) \ f�1(W )� is inhabited.

In the case 9x 2 f�1(V )� \ f�1(W ), f(f�1(V )�) � (ff�1(V ))� = V by the assump-

tion. Therefore, f(x) 2 f(f�1(V )�) \ f(f�1(W )) � V �

\W:

In the case 9x 2 f�1(V ) \ f�1(W ), f(x) 2 V \W� by the same way.
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Proposition 4.3.4 Every (Xi; di) (1 � i � n) is strongly connected if and only if

(
Qn
i=1Xi; d) is strongly connected, where d(x; y) :=

Pn
i=1 di(xi; yi) (x = (x1; :::; xn); y :=

(y1; :::; yn) 2
Qn
i=1Xi):

(Proof ) Let V � V1 � :::� Vn and W � W1 � :::�Wn be inhabited sets with
Qn
i=1Xi =

V [W . Then, for any i, Vi[Wi = Xi , therefore Vi
�

\Wi or Vi[Wi
� is inhabited since Xi

is strongly connected. Thus, (V1�:::�Vn)
�

\W1�:::�Wn or V1�:::�Vn\(W1�:::�Wn)
�

is inhabited by Example 3:1:11.

Conversely, the projection pi :
Qn
i=1Xi ! Xi is continuous for any i, therefore pi

satis�es that f(A�) � f(A)� for all inhabited set A in X by Proposition 3:2:7, and any

pi is surjective. Thus, any Xi is strongly connected by Theorem 4:3:3.

Theorem 4.3.5 A path-connected set is strongly connected.

(Proof ) Let X be path-connected. Let V and W be closed and inhabited subsets in X

with V [W = X. Then, we can take x0 in V and y0 in W , and there exists a continuous

map f such that f(0) = x0; f(1) = y0. Here, let a0 := 0; b0 := 1, then we construct

sequences (xn) and (yn) on X and (an) and (bn) on [0; 1] by the same way as Theorem

4:1:7. Then, (an) and (bn) satisfy

(1) (an) is increasing, and (bn) is decreasing

(2) an � bn for all n

(3) jbn � anj � 2�n:

Thus, (an) and (bn) have the same limit. Here, let a be a limit of (an) , and de�ne

x := f(a). Then, (xn) and (yn) converge to x since f is also sequentially continuous by

Proposition 3:2:7.

Now, in the case that x 2 W , x 2 V � since (xn) converges to x. Therefore x 2 V �

\W .

In the case x 2 V , x 2 V \W� since (yn) converges to x.

Theorem 4.3.6 The path-connected set de�ned by replacing \continuous" with \sequen-

tially continuous" in De�nition 4:1:6 is strongly connected.

(Proof ) It is trivial by the proof of Theorem 4:3:5.

The author has not known weather or not for a strongly connected set A, if A �M �

A� for all subset M of A, then M is strongly connected.

Next, we consider the relation on three de�nitions for connectivity.

Proposition 4.3.7

(1) If X is strongly connected, then X is connected

(2) If X is strongly connected, then X is C-connected.
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(Proof ) (1): Let V and W be inhabited and open sets in X with V [W = X, so that

V �

\W or V \W� is inhabited by the assumption. Then, in the case that V �

\W is

inhabited, let x be a element of V �

\W and � be a positive number with N(x; �) � W .

Then, there exists a sequence (xn) on V such that (xn) converges to x. Thus, there exist

Some N such that xn 2 V \W for all n with n � N since xn 2 N(x; �).

In the case that V \W� is inhabited, it is similar.

(2): Let V and W be inhabited and closed sets in X with V [W = X, so that V �

\W

or V \W� is inhabited by the assumption . In both cases, V \W is inhabited.

The author has not known the converses of (1) and (2) in the above and the relation

between connectivity and C-connectivity hold.

4.4 The Intermediate Value Theorem

The intermediate value theorem is one of the conclusion by the argument of connectivity

in classical mathematics, where the theorem is as the next:

\Let X be connected and f be a continuous map from X to R, let a and b be a element

of X with f(a) < f(b), and let  be a real number with f(a) �  � f(b). Then, for each

� > 0, there exists c in X with f(c) =  ."

In section, we show that the intermediate value theorem implies LLPO, so that doesn't

hold in constructive mathematics, but a certain weak theorem holds.

Proposition 4.4.1 The intermediate value theorem implies LLPO

(Proof ) Let a be any real number.

Let f be a map from R to R with f(x) = minfx� 1; 0g+maxf0; x� 2g (x 2 [0; 3]),

and let g(x) := f(x) + a (x 2 [0; 3]).

Now, [0; 3] is connected, therefore g is continuous by Proposition 3:2:2 and g(0) =

�1 + a < 1 + a = g(3). Thus, by the intermediate value theorem, we can take x in [0; 3]

such that g(x) = 0 for a suitable a.

a in [0; 3] such that g(x) = 0 is decided as follows: since x < 2 or 1 < x, in the case

that x < 2, maxf0; x � 2g = 0 and minfx � 1; 0g � 0: Thus, 0 = g(x) = f(x) + a =

minfx� 1; 0g+ a � a: That is, 0 � a:

In the case 1 < x, maxf0; x � 2g � 0 and minfx � 1; 0g = 0: Thus, 0 = g(x) =

f(x) + a = maxf0; x� 2g+ a � a: That is, 0 � a:

Therefore, 0 � a_ 0 � a: That is, 8a 2 R(0 � a_ 0 � a): Hence, LLPO is implied by

Proposition 2:3:1.

Theorem 4.4.2 Let X be connected, and let x and y be elements of X. Let f be a contin-

uous map from X to R, let a and b be elements of X with f(a) < f(b), and let  be a real

number with f(a) �  � f(b). Then, for any �, there exists c in X with jf(c)� j < �.

(Proof ) Let " be a positive number. Let V := fc 2 Xjf(c) <  + �g and W := fc 2

Xj� � < f(c)g: Then, V and W are inhabited sets by f(c) �  � f(c), and V [W = X
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by Corollary 2:1:26. Therefore, V andW are open in X by f 's continuity and Proposition

3:2:7, since f(V ) and f(W ) are open in R. Thus, V \W is inhabited since X is connected.

That is, for any � > 0, there exists c in X with  � � < f(c) <  + � i.e. jf (c)� j < �.

Theorem 4.4.3 Let X be C-connected, and let f be a map from X to R such that f�1(F )

is closed in X for all closed subset F of R. Let a and b be elements of X with f (a) < f (b),

and let  be a real number with f(a) �  � f(b). Then, for any � > 0, there exists c in

X with jf (c)� j < �.

(Proof ) Let " be a positive number. Let V := fc 2 Xjf(c) �  + �g and W := fc 2

Xj � � � f (c)g: Then, V and W are inhabited sets, and V [W = X . Therefore, V and

W are closed by the assumption for f since f (V ) and f (W ) are closed. Thus, V [W

is inhabited since X is C-connected. That is, for any � > 0, there exists c in X with

 � � < f(c) <  + � i.e. jf(c)� j < �.

Theorem 4.4.4 Let X be strongly connected, and let f be a map from X to R such that

f(A�) is contained in f(A)� for all subset A of Y. Let a and b be the elements of X with

f(a) < f(b), and let  be a positive number with f(a) �  � f(b). Then, for any � > 0,

there exists c in X with jf(c)� j < �.

(Proof ) Let " be a positive number. Let V := fc 2 Xjf(c) �  + �g and W := fc 2

Xj � � � f(c)g: Then, V and W are inhabited sets, and V [W = X, and V �

\W or

V \W� is inhabited since X is strongly connected. Thus, f(V )�\f(W ) or f(V )\f (W )�

is inhabited since f(V �

\ W ) = f(V �) \ f(W ) � f(V )� \ f(W ) and f(V \ W�) =

f(V ) \ f(W�) � f(V ) \ f(W )� by the assumption for f . Therefore, in the both cases,

for any � > 0, there exists c in X with  � � < f (c) <  + � i.e. jf(c)� j < �.

Theorem 4:4:3 and 4:4:4 imply the next.

Corollary 4.4.5 Let f be a map from [a; b] to R such that f(A�) is contained in f(A)�

for all subset A of Y and that f (a) < f(b). Let  be a positive number with f(a) �  �

f(b). Then, for any � > 0, there exists c in [a; b] with jf(c)� j < �.
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Chapter 5

Conclusion

5.1 Conclusion

Here, we arrange what we showed in this paper.

First, we showed that for any map f from a metric space X to a metric space Y , f is

continuous ) f is sequentially continuous ) f�1(F ) is closed in X for all closed subset

F of Y ) f(A�) is contained in f(A)� for all subset A of X .

Next, we de�ned connectivity, C-connectivity and strongly connectivity of metric

spaces and showed that a image of a connected space by a continuous map is connected,

that a image of a C-connected space by the map such that f�1(F ) is closed in X for all

closed subset F of Y is C-connected and that a image of a strongly connected space by

the map such that g(A�) is contained in g(A)� for all subset A of Y is strongly connected.

We also de�ned path-connectivity and showed that a path-connected space is con-

nected, C-connected and strongly-connected.

Then, we showed that a strongly connected space is connected and C-connected.

Finally, we showed that the intermediate value theorem does not hold in constructive

mathematics, and did the weak versions of it for connected, C-connected and strongly

connected metric spaces respectively and found that the weak version hold for intervals

on Euclid space R as the corollary.

5.2 Notes

In classical mathematics, any connected set in Euclid space R is a interval (see [13]), but

it implies the intermediate value theorem. Actually, assume that any connected set in

Euclid space R is a interval, and let S be connected in R. Then, [a; b] � S for all a and

b in S. Now, let X be connected, let f : X ! R be continuous, let a and b be elements

of X with f(a) < f(b) and let  be a real number with f(a) �  � f (b). Then, f (X) is

connected by Theorem 4:1:4, therefore [f (a); f(b)] � f(X) by the above. Hence, f(c) = 

for some c in X.

38



Now, it is known that all of propositions in Proposition 3:2:7(2) are classically equiv-

alent to each other (see [1], [13] or [16]), but they are open in constructive mathematics.

Also, De�nition 4:1:1, 4:2:1 and 4:3:1 are also classically equivalent (see [1]), but it has

not be clear constructively except Proposition 4:3:7. What they are solved means that

the relation on the three notions of connectivity as a topological property that is conserved

by continuous maps in constructive mathematics becomes clear.

Here, if X is connected, there exist no continuous and surjective map from X to

f0; 1g: (Proof ) Assume that f : X ! f0; 1g is continuous and surjective. Then, f�1(0)

and f�1(1) are inhabited, open and closed by Example 3:1:7 and Proposition 3:2:7 and

X = f�1(0) [ f�1(1). Since X is connected, 9x 2 f�1(0) \ f�1(1). Then, f(x) = 0 and

f(x) = 0. It is opposed to the de�nition of a map.

\there exist no continuous and surjective map fromX to f0; 1g" is classically equivalent

to \ X is connected," hence is classically equivalent to \X is C-connected" and \ X is

strongly connected" respectively (see [1]). But, in constructive mathematics, the author

has not known weather or not it holds. Also, \If A is open and closed, then A = X or

A = �" is equivalent to them in classical mathematics (see [1]), but the author knows

nothing about the relation on them.

Finally, in [15], Troelstra considered the connectivity in the sense that it cannot be

the union of �nite , inhabited, disjoint and closed sets in intuitionistic topology, and

Bridges do under the original de�nition in [3], [4], [5] and [6]. Mandelker showed that

intervals on the set of real numbers couldn't be the union of two inhabited disjoint open

subsets, and Bishop and Bridges gave connected sets in [2], where they are de�ned as

path � connected sets in this paper.

39



Bibliography

[1] M.A.Armstrong, Basic Topology, Springer-Verlag, New York, 1983.

[2] E.Bishop and D.Bridges, Constructive Analysis, Springer-Verlag, Berlin, 1985.

[3] D.Bridges, On the connectivity of convex sets, Bull.London.Math.Soc., 10 (1977),

pp.86-90.

[4] D.Bridges, More on the connectivity of convex sets, Proceeding of the American

Math.Soc., Vol 68 (1978), no.2 , pp.214-216.

[5] D.Bridges, Connectivity property of metric spaces, Paci�c Journal of Mathematics,

Vol.80 (1979), no.2, pp.325-331.

[6] D.Bridges, Constructive Functional Analysis, Pitman, London, 1979.

[7] D.Bridges and F.Richman, Varieties of Constructive Mathematics, Cambridge Uni-

versity Press, 1987.

[8] H.Ishihara, Continuity and nondiscontinuity in constructive Mathematics, The Jour-

nal of Symbolic Logic, Vol. 56 (1991), pp.1349-1354.

[9] H.Ishihara, Continuity Properties in Constructive Mathematics, The Journal of

Symbolic Logic, Vol. 57 (1992), no.21992, pp.557-565.

[10] H.Ishihara, Kouseiteki-Kaisekigaku-Nyumon -Kanbise no shuhen-, Summer school

of foundations of mathematics '92 (in Japanese).

[11] H.Ishihara, Kouseiteki-Sugaku to sono shuhen -Kaisekigaku wo chushin to shite-,

Math. Soc.of Japan, autumn synthetic sectional meeting '97 (in Japanese).

[12] M.Mandelker, Connectivity of an interval, Proceeding of the American Math.Soc.,

Vol. 54 (1976), pp.170-172.

[13] K.Matsuzaka, Shugo Iso Nyumon, Iwanami-shoten, 1993 (in Japanese).

[14] A.S.Troelstra and D.van Dalen, Constructivism in Mathematics An Introduction I,

II, North-Holland, Amsterdam, 1988.

[15] A.S.Troelstra, Intuitionistic connectedness, Indag Math, Vol.29 (1967), pp. 96-105.

40



[16] F.Uchida Shugo to Iso, Shoka-bou, 1992 (in Japanese).

41


