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ABSTRACT. We address the problem of dispersing a large number of autonomous mobile
robots, for building wirelessad hocsensor networks performing environmental monitor-
ing and control. For this purpose, we propose the adaptive triangular mesh generation
algorithm that enables robots to generate triangular meshes of various sizes, adapting to
changing environmental conditions. A locally interacting, geometric technique allows each
robot to generate a triangular mesh with its two neighbor robots. Specifically, we have as-
sumed that robots are not allowed to have any identifiers, anypre-determined leaders or
common coordinate systems, or any explicit communication.Under such minimal condi-
tions, the positions of the robots were shown to converge to the desired distribution. This
convergence was mathematically proven and also verified through extensive simulations.
Our results indicate that the proposed algorithm can be applied to problems regarding the
coverage of an area of interest by a swarm of mobile sensors.

1. Introduction

(a) uniform deployment (b) adaptive deployment

FIGURE 1. Uniform vs. adaptive triangular meshes of mobile robot swarms

With the advance of wireless and mobile networking technologies, much attention has
been paid to the use of large-scale swarms of simple, low-cost mobile robots for many
applications [1] [2]. With the goal of deployment of robot swarms in real environments,
researchers in swarm robotics have recently presented manyfundamental coordination ap-
proaches such as self-configuration [9] [16], pattern formation [18] [19], flocking [20] [21],
and consensus [22] [23]. Based on these coordination approaches, robot swarms areex-
pected to perform a wide variety of real tasks, such as environmental or habitat monitor-
ing [14] [17], exploration [24], search-and-rescue [25], odor localization [26]- [28], and so
on.

In particular, for environmental or habitat monitoring, self-configuration of robot swarms
requires a type of collective behavior that allows robots todisperse themselves in a certain
area at a uniform spatial density. Thus, it is essential to properly coordinate the (relative)
positions of robots, and this issue has been widely reportedin literature [5]- [15]. Taking
steps to further improve on those previous approaches, thiswork is aimed at presenting an
algorithm to enable robot swarms to configure themselves adaptively in an area of interest
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with varying spatial densities. As illustrated in Fig. 1, robot swarms can explore an un-
known area and detect and sense oil or chemical spills acrossthe area. The contaminated
area should be covered efficiently with mobile robots or sensors to investigate the degree
and extent of contamination as quickly as possible and, if possible, prevent the possible
expansion of the area. Therefore, in this paper, we address the problem of how to enable
swarms of autonomous mobile robots to self-adjust their configuration or spatial density to
fit local environmental conditions.

Based on our prior research on swarm configuration [16] [17], we propose an adaptive
triangular mesh generation algorithm that enables robot swarms to explore an area, and
to adjust the intervals between neighboring robots autonomously. The main objective is
to provide robots with adaptive deployment capabilities tocover an area of interest more
efficiently with variable triangular meshes according to sensed area conditions. This also
can give us a more accurate picture of variations in the conditions of an area. In this chapter,
the properties of the proposed algorithm are mathematically explained and the convergence
is proven. We also demonstrated through extensive simulations that a large-scale swarm of
robots can establish a triangular mesh network, adapting tovarying degrees of connection.
The results have been encouraging, and indicate that self-configurable robot swarms can
be deployed for environmental or habitat monitoring.

The rest of this chapter is organized as follows. Section 2 gives a brief description on
the state-of-the-art in the field of robot swarms. Section 3 presents the formal definitions
of the adaptive triangular mesh generation problem. Section 4 describes our approach, its
mathematical properties, and convergence at the equilibrium state. Section 5 summarizes
the results of simulations. Section 6 explains our conclusions.

2. Background

Decentralized control for robot swarms can be broadly classified into global and local
strategies, according to whether sensors have range limits. Global strategies [3] [4] [19]
may provide fast, accurate, and efficient deployment, but are technically infeasible, and
lack scalability as the number of robots increases. On the other hand, local strategies are
mainly based on interactions between individual robots, inspired by nature. Local strate-
gies can further be divided into biological emergence [5] [6], behavior-based [7], and vir-
tual physics-based [8]- [15] approaches. Many of the behavior-based and virtual physics-
based approaches use such physical phenomena as electric charges [8], gravitational forces
[9], spring forces [10] [14] [15], potential fields [11], van der Waals forces [12], and other
virtual models [13].

Robot swarm configurations achieved by the above-mentionedlocal interactions may
result in lattice-type networks. These configurations offer high level coverage and mul-
tiple redundant connections, ensuring maximum reliability and flexibility from the stand-
point of topology. Depending on whether there are interactions among all robots, the net-
works can be classified as fully or partially-connected topologies [30]. The fully-connected
topologies have each robot interact with all other robots within a certain range simultane-
ously. Thus, those approaches might over-constrain individual robots, and frequently lead
to deadlocks. However, using the partially-connected topology, robots interact selectively
with other robots, but are connected to all robots. For example, robots may choose to exert
force in a certain direction [14], where this selective interaction helps prevent them from
being too tightly constrained. Therefore, robots may be able to achieve faster formation
without deadlocks [15].
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In our earlier work [17], we presented self-configuration of a robot swarm which en-
ables a large number of robots to configure themselves into a 2-dimensional plane with geo-
graphic constraints. A locally-interacting geometric technique based on partially-connected
topology provides a unique solution that allows robots to converge to uniform distribution
by forming an equilateral triangle with two neighbors. By collecting this local behavior of
each robot, a uniformly spaced swarm of robots was organizedto cover an environment.
Unlike previous works [5]- [15], our approach first was to construct uniformly spaced equi-
lateral triangles conforming to the borders of an unknown area, when the robot sensors are
subject to range and accuracy limitations. Second, an equilateral triangle lattice is built,
with a partially-connected mesh topology. Among all the possible types of regular poly-
gons, equilateral triangle lattices can reduce the computational burden, and are less influ-
enced by other robots, due to the limited number of neighbors, and are highly scalable. The
proposed local interaction is computationally efficient, since each robot utilizes only po-
sition information of two other robots. Our approach eliminates such major assumptions
as robot identifiers, common coordinates, global orientation, and direct communication.
More specifically, robots compute the target positions without requiring memories of past
actions or states, helping to cope with transient errors.

3. Problem Statement

Definition and Notation. We consider a swarm of mobile robots, denoted asr1, · · · , rn.
It is assumed that all robots are within a swarm network configured by our previously
proposed self-configuration method [16] [17]. Each robot autonomously moves on a 2-
dimensional plane. They have no leader and no identifiers, donot share any common
coordinate system, and do not retain any memory of past actions. Due to limited sens-
ing range, they can detect the position of other robots only within a certain distance. In
addition, robots do not communicate explicitly with other robots.

Let us consider arobot ri with local coordinates~rx,i and~ry,i, as illustrated in Fig.
2-(a). Here,~ry,i defines the vertical axis ofri’s coordinate system as its heading direction.
It is straightforward to determine the horizontal axis~rx,i by rotating the vertical axis 90
degrees counterclockwise. Thepositionof ri is denoted aspi. Note thatpi is (0, 0) with
respect tori’s local coordinates. Thedistancebetweenpi of ri andpj of another robot
rj is denoted asdist(pi, pj). We define auniform distancedu, the predefined desired
interval betweenri andrj . As shown in Fig. 2-(b),ri detects the positionspj , pk, and
pl of other robots located within its sensing boundarySB, yielding anobservation setof
the positionsOi (={pj, pk, pl}) with respect to its local coordinates. Next,ri can select
two robotsrs1 andrs2 within ri’s SB, which we call theneighborsof ri, and denote their
positions, {ps1, ps2}, asNi. Givenpi andNi in Fig. 2-(c), thetriangular configuration,
denoted byTi, is defined as a set of three distinct positions {pi, ps1, ps2}.

As mentioned above, if robots detect an event such as an oil orchemical spill within
the self-configured network, they attempt to cooperate witheach other to cover the area as
efficiently as possible. The gradient in contamination density across the area forces robots
to adjust the intervals between neighboring robots. For a certain pointpi occupied byri
as presented in Fig. 2-(d), the densities are expressed byki ranging between0 < ki ≤ 1,
whereki = 0 represents the maximum density andki = 1 corresponds to zero density.
Moreover, it is assumed that each robot can detect and measure densities for positions
occupied by other robots withinSB, yielding a set of the densitiesKi corresponding to
individual positions inOi.
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FIGURE 2. Illustration of definitions and notations frequently used in
this chapter

Problem Definition. Now, we formally address theADAPTIVE TRIANGULAR MESH

GENERATION problem as follows.

Given a swarm of mobile robots self-configured in a 2-dimensional plane, how can the
robots form triangular mesh patterns of various sizes adapting to varying environmental
conditions?

Our approach to the above problem enables robots to dispersethemselves into equi-
lateral triangular patterns of various sizes, according tochanges in environmental con-
ditions within an area of interest. The basic concept behindthis approach is to enable
robots to form triangular configurations while changing their suitable distances depending
on locally-sensed information. In other words, given a uniform distancedu, three neigh-
boring robots configure an equilateral triangle with a side length proportional to the local
measurement data density.

4. Solution Approach

Regarding our solution approach, this section explains thegeneration of triangular
meshes adapting to the measurement data densities in the areas occupied by three neighbor-
ing robots, provides two important properties of the approach, and shows the convergence
into a desired stable configuration using Lyapunov’s theory.
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ALGORITHM-1 ADAPTIVE TRIANGULAR MESH GENERATION

Function ϕtriangular(Oi,Ki)
1 ps1 := min

p∈Oi−{pi}
[dist(pi, p)]

2 ps2 := min
p∈Oi−{pi,ps1}

[dist(ps1, p) + dist(p, pi)]

3 φ := angle betweenps1ps2 andri’s local horizontal axis

4 pct := (pct,x, pct,y) // centroidof Ti (= {ps1, ps2, pi})

5 ka := ki+ks1+ks2

3
// average contamination density

6 da := ka ×
du√
3

// desired interval frompct

7 pti,x := pct,x + da cos(φ+ π
2
)

8 pti,y := pct,y + da sin(φ + π
2
)

9 pti := (pti,x, pti,y) // next target point
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FIGURE 3. Illustration of ALGORITHM-1

Algorithm Description. Here, we describe the adaptive triangular mesh generation
algorithm. As presented in ALGORITHM-1, the algorithm consists of a functionϕtriangular

whose arguments areOi andKi at each activation. Each time,ri first observes other robots
within Oi to select the closest neighborrs1 as illustrated in Fig. 3-(a). If there exist two
or more candidates forrs1, ri determinesrs1 according to the high contamination density.
Secondly, as illustrated in Fig. 3-(b), the second neighborrs2 within Oi is selected, such
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that the total distance from the positionps1 of rs1 to pi passing throughps2 is minimized.
Similarly, if there are two or more candidates forrs2, ri selectsrs2 occupied in the area
with higher density of contamination. Then, as illustratedin Fig. 3-(c),ri measures the
angleφ between the lineps1ps2 connecting two neighbors and the horizontal axis of the
observingri’s coordinate system. Thirdly, the centroidpct in Ti (△pips1ps2) is computed.
Moreover, based onki, ks1, andks2 at each position occupied byri, rs1, andrs2, ri finds
the local average densityka in Ti through the computation of(ki + ks1 + ks2)/3. Then,
from pct, ri calculates an appropriate interval as follows:da = ka × du/

√
3. Utilizing da

andφ, ri calculates its target pointpti = (pti,x, pti,y) located on the same line as the pre-
viously calculated interval frompct and perpendicular tops1ps2. Finally,ri moves toward
pti as illustrated in Fig. 3-(d). By repeating this process,ri can form a triangular mesh
depending on the contamination densities.

Mathematical Properties. Let’s consider a triangle (whose centroid ispct)△pips1ps2
(orTi) configured from the three positions occupied byri, rs1, andrs2. By ALGORITHM-
1 above, at timet, ri in Ti(t) finds the next target pointpti of which the line segment
pctpti is kadu/

√
3 in length and is perpendicular tops1ps2 in Fig. 3-(c). In other words, at

t+1, the height of△ptips1ps2 is the straight line throughpti and perpendicular tops1ps2.
Similarly, sincers1 andrs2 also execute the same algorithm, it is easily seen thatpct at t
is the orthocenterH at t+ 1.

In Fig. 4, we denotepi, ps1, andps2 for simplicity asA, B, andC, respectively. The
lengths of linesAB, AC, andBC are denoted asc, b, anda, respectively. The pointsP ,
Q, andR are the foot of the perpendiculars from the verticesC, B, andA to the vectors−−→
AB,

−→
AC, and

−−→
BC, respectively. The angles∠CAB, ∠ABC, and∠BCA are denoted as

α, β, andγ, respectively. Moreover,H is the orthocenter of△ABC. Moreover,H is the
orthocenter of△ABC (Sincepct andH exist in the same location under ALGORITHM-1,
we also use onlyH instead ofpct).

ip 1sp
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ctp

)(A )(B

)(C

)(H
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α

γ

β

a
b

c

FIGURE 4. Illustrating the derivation ofri’s position vector towardH
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Since
−−→
AB and

−→
AC are linearly independent,

−−→
AH can be defined as

(1)
−−→
AH = x

−−→
AB + y

−→
AC,

wherex andy are scaling coefficients. Since we can easily see that
−→
AP = b cosα

c

−−→
AB, the

following relation holds:
−−→
PH =

−−→
AH −−→

AP = (x− b cosα
c

)
−−→
AB + y

−→
AC.

Thus, the inner product between
−−→
PH and

−−→
AB can be expressed as follows:

(2)
−−→
PH · −−→AB = (x− b cosα

c
)c2 + (bc cosα)y = 0.

Similarly, the following equation holds:

(3)
−−→
QH · −→AC = (bc cosα)x+ (y − c cosα

b
)b2 = 0.

Now, using (2) and (3), the following simultaneous equations can be obtained:

(4)
cx− (b cosα)y = b cosα

(c cosα)x+ by = c cosα.

By solving (4), we can obtain the coefficientx as follows:

x = b cosα(b−c cosα)
bc sin2 α

.

Using the cosine formula (b = c cosα+ a cos γ), x is expressed as follows:

x = a cosα cos γ
c sin2 α

.

In addition, by utilizing the sine formula (asinα
= c

sin γ
), x is rewritten as the following

equation:

x = cosα cos γ
sinα sin γ

.

Thus, if we do not consider the case of a right triangle, it is straightforward to rewritex as
the following equation:

(5) x =
1

tanα tan γ
=

tanβ

tanα tanβ tan γ
.

Similarly, the coefficienty can be represented as follows:

(6) y =
tan γ

tanα tanβ tan γ
.

Using the addition theorems of the trigonometric function,we can obtain the following
result:

tanα tanβ tan γ = tanα+ tanβ + tan γ.

Thus, (5) and (6) are rewritten as follows:

(7)
x = tan β

tanα+tan β+tan γ

y = tan γ
tanα+tan β+tan γ

.

With respect to a reference pointO, (1) can be rewritten as follows:
−−→
AH =

−−→
OH −−→

OA = x(
−−→
OB −−→

OA) + y(
−−→
OC −−→

OA).
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Now
−−→
OH can be represented in the following form:

(8)
−−→
OH = (1− x− y)

−→
OA+ x

−−→
OB + y

−−→
OC.

Substituting (7) into (8), finally,
−−→
OH is given by

(9)
−−→
OH =

tanα
−→
OA + tanβ

−−→
OB + tan γ

−−→
OC

tanα+ tanβ + tan γ
.

ir

ctp )( H=OHOH

tip

1sp

2sp

target point 
of       1sr

ixr ,

r

iyr ,
r target point 

of 2sr

(0,0)

FIGURE 5. Illustrating two important properties:pct and position vector

Under the adaptive triangular mesh generation algorithm, there are two mathematical
properties. First,pti is determined withpct in Ti(t) at t used asH at t + 1. Moreover,
ri usespct at t as a basis to generateTi(t + 1) with dr from pct to pti at t + 1 (see Fig.

3-(c)). Secondly, sincepct andH betweent andt+1 remain unchanged,
−−→
OH in (9) is the

position vector towardpct with respect to the origin ofri’s local coordinates as illustrated
in Fig. 5.

Motion Control. Under the adaptive triangular mesh generation algorithm, three neigh-
boring robots attempt to cooperatively configure themselves into an equilateral triangle,
adapting to the density of contamination. As presented in Fig. 6, let’s consider the circum-
scribed an equilateral triangle△ptips1ps2 configured from three positions occupied byri,
rs1, andrs2 where the center ispct and the radius isda (= ka × du√

3
) in length. From the

triangular configuration and the two mathematical properties above, we design the motion
of ri by controlling the distancedi from pct and the internal angleθi betweenpctpti and
pctps2.

First,di in Fig. 6 is controlled by the following equation:

(10) ḋi(t) = −a(di(t)− da),

wherea is a positive constant. Indeed, the solution of (10) is obtained as follows:

di(t) = |di(0)|e−at + da.

The solution converges exponentially toda ast approaches infinity. Secondly,θi is con-
trolled by the following equation:

(11) θ̇i(t) = k(θs1(t) + θs2(t)− 2θi(t)),
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FIGURE 6. Motion control of a robot by the algorithm

wherek is a positive number. Using the features of a triangle whose total external angles
is 2π, (11) can be rewritten as

(12) θ̇i(t) = k′(
2

3
π − θi(t)),

wherek′ is 3k. Similarly, the solution of (12) is obtained as follows:

θi(t) = |θi(0)|e−k′t + 2
3π.

The soultion converges exponentially to23π as t approaches infinity. Note that (10) and
(12) imply that the trajectory ofri converges to an equilibrium state[da 2

3π]
T . From Fig.

6, this also implies that the equilibrium forθi is defined asθi = θs1 since△ptipctps1 and
△ptipctps2 are eventually congruent [16]. In order to show the convergence into the state
[di(t) θi(t)]

T , we will take advantage of stability based on Lyapunov’s theory [31]. The
convergence into the desired stable configuration is one that minimizes the energy level of
the scalar function. Consider the following scalar function:

(13) fi(di, θi, θs1) =
1

2
(di − da)

2 +
1

2
(θs1 − θi)

2.

This scalar function is always positive definite except whendi 6= da andθi 6= θs1. The
derivative of the scalar function is given as follows:

ḟi = −(di − da)
2 − (θs1 − θi)

2,

which is negative definite. The scalar function is radially unbounded, since it tends to
infinity as||[di(t) θi(t)]T || → ∞. Therefore, the equilibrium state is asymptotically stable,
implying thatri reaches a vertex of the stable triangle.
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Now we show the convergence of the algorithm forn robots. Then-order scalar
functionF is defined as

(14) F =

n∑

i=1

fi(di, θi, θs1).

It is straightforward to verify thatF is positive definite anḋF is negative definite.F is
radially unbounded, since it tends to infinity ast approaches infinity. Consequently,n
robots move toward the equilibrium state.

5. Simulation Results and Discussion

FIGURE 7. Simulation result for the whole deployment of 100 robots
((a)∼(c): uniform configuration [16], (d)∼(i): adaptive configuration
with increasing center density of 0.7)

In this section, we describe simulations of filling an area ofinterest with a swarm of
robots in order to show the validity of our proposed algorithm. In these simulations, we
represent the area of varying contamination density as a colored circle that will be sparsely
or densely populated with robots.
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(a) uniform configuration (b) adaptive configuration

FIGURE 8. Adaptive triangular mesh generation with geographic borders

(a) center density: 0.9 (b) center density: 0.8

(c) center density: 0.7 (d) center density: 0.6

FIGURE 9. Simulation results according to varying contamination densities

First, in order to assist in understanding the self-configuration of robot swarms from an
initial distribution, Fig. 7 presents snapshots for the simulation result by 100 robots. From
the initial distribution in Fig. 7-(a), the robots configured themselves in the 2-dimensional
plane (see Fig. 7-(c)). After constructing an equilateral triangle network, we investigated
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how they adapt their triangular mesh network according to the assigned contamination
densities. The snapshots from Fig. 7-(d) to (i) show that robots could generate adaptive
triangular meshes based onka andda. If the series of snapshots are carefully observed, the
number of robots within the area of interest, represented bya red circle, increases. In detail,
it is initially observed in Fig. 7-(d) that there are 7 robotswithin the area. By executing
the adaptive triangular mesh generation algorithm repeatedly, the number of robots located
in that area rises to 17 robots in the final distribution (see Fig. 7-(i)). Compared with Fig.
7-(c), the overall size of the final distribution was reduced. Similarly, Fig. 8 shows the
result from another simulation with geographical borders [17].

Secondly, Fig. 9 shows the results from simulations with four different degrees of
center density. In the figure, the number of robots within thecircle increases in proportion
to the degree of density. Similarly, the size of the swarm in its final converged shape varies
according to the center density. Higher densities forced the robots to decrease the intervals
between neighboring robots.

Thirdly, we performed simulations for multiple varying densities in a single swarm.
Figs. 10-(a) and (b) show the results for two identical center densities. Although the swarm
was spilt into two smaller groups, robots could adaptively configure themselves near the
area. Figs. 10-(c) and (d) present the results when the center contamination densities vary:
0.7 on the left hand side and 0.9 on the right hand side. The higher center contamination
density area is more densely populated. In Figs. 10-(e) and (f), the simulation was per-
formed for three different center contamination densitiesin a swarm: 0.9, 0.7, and 0.8 from
left to right. Robots could adapt the interval between each other according to the varying
contamination densities, which is similar to previous simulations. Thus the overall size of
the swarm also varies accordingly.

Three main features highlight our adaptive triangular meshgeneration as follows.
First, the approach enables the swarm of robots to deploy themselves while adapting to
contamination densities. More specially, we proposed motion control to form equilateral
triangles with a appropriate intervals depending on the density. Secondly, the triangle lat-
tice is built based on a partially-connected mesh topology since each robot locally interacts
with its selected neighbors. Among all the possible types ofregular polygons, the triangle
element is easy to construct and highly scalable as the number of robots increases. Thirdly,
our approach eliminates major assumptions such as robot identifiers, common coordinates,
global orientation, specific leaders, and direct communication. Robots calculate their tar-
get position without having to remember past actions or states, which makes it easier to
cope with transient error.

We believe that our algorithm works well under real world conditions, but several
issues remain to be addressed. Our approach relies on the assumption that robots can
sense the positions of neighboring robots and contamination densities withinSB. Prac-
tically speaking, it is difficult to precisely measure the positions of other robots using in-
frared [9] [29] or sonar sensors [19], and to detect the contamination densities. When direct
communications are employed, it is possible to exchange information about densities. So,
as our future work, (to further facilitate implementation of the proposed method in a real
environment,) robot swarms exchanging information are expected to be effectively applied
to such deployment. Robots, however, still requirea priori knowledge, such as individual
identifiers or global coordinates. Direct communication may also involve difficulties such
as limited bandwidth, range, and interference. These important engineering issues are left
for future work.
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(a) 2 identical densities (b) adaptive deployment

(c) 2 different densities (d) adaptive deployment

(e) 3 different densities (f) adaptive deployment

FIGURE 10. Simulation results for varying local contamination densities

6. Conclusions

The adaptive triangular mesh generation problem was addressed to disperse a swarm
of mobile robots which can adapt to the degree of contamination in a target area. There
were several major assumptions underlying our proposed approach to this problem: no
robot identifiers, no common coordinates or global orientation, and no direct communica-
tion. Robots computed their target positions without requiring memories of past actions or
states. Under such conditions, the proposed adaptive mesh generation algorithm enables a
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large-scale swarm of robots to configure themselves into triangular patterns, while chang-
ing the uniform interval according to the contamination densities that can be detected by
sensors. We took advantage of the fact that, among all the possible types ofn-polygons,
the triangle is highly scalable, and less influenced by the number of neighboring robots. To
form the triangular pattern, robots were allowed to interact with only two selected neigh-
bors at each time. By collecting such a local behavior of eachrobot, a swarm of robots
arranged in triangular meshes was self-configured into the area of varying degrees of the
local density. The properties of the algorithm were shown mathematically, and also verified
through extensive simulations. Finally, we expect that theproposed approach can be used
as a simple and effective way to deploy mobile sensor networks for coverage of unknown
areas of interest.
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