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ABSTRACT. We address the problem of dispersing a large number of antons mobile
robots, for building wirelesad hocsensor networks performing environmental monitor-
ing and control. For this purpose, we propose the adaptimagular mesh generation
algorithm that enables robots to generate triangular nseshearious sizes, adapting to
changing environmental conditions. A locally interactiggometric technique allows each
robot to generate a triangular mesh with its two neighboot®hbSpecifically, we have as-
sumed that robots are not allowed to have any identifiers,paendetermined leaders or
common coordinate systems, or any explicit communicatidmder such minimal condi-
tions, the positions of the robots were shown to convergbealesired distribution. This
convergence was mathematically proven and also verifieighr extensive simulations.
Our results indicate that the proposed algorithm can beepf problems regarding the
coverage of an area of interest by a swarm of mobile sensors.

1. Introduction

(a) uniform deployment (b) adaptive deployment

FIGURE 1. Uniform vs. adaptive triangular meshes of mobile robairsas

With the advance of wireless and mobile networking techgiels, much attention has
been paid to the use of large-scale swarms of simple, low+oobile robots for many
applications 1] [2]. With the goal of deployment of robot swarms in real envirants,
researchers in swarm robotics have recently presented fuadgmental coordination ap-
proaches such as self-configurati®h[[L6], pattern formation18][19], flocking [20] [ 21],
and consensu®p] [23]. Based on these coordination approaches, robot swarnmexare
pected to perform a wide variety of real tasks, such as emwiemtal or habitat monitor-
ing [14] [17], exploration P4], search-and-rescu2%|, odor localization 26]- [ 28], and so
on.

In particular, for environmental or habitat monitoringlfseonfiguration of robot swarms
requires a type of collective behavior that allows robotdisperse themselves in a certain
area at a uniform spatial density. Thus, it is essential tp@ry coordinate the (relative)
positions of robots, and this issue has been widely repantégbrature p]- [15]. Taking
steps to further improve on those previous approachesytitisis aimed at presenting an
algorithm to enable robot swarms to configure themselvegtagdy in an area of interest
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with varying spatial densities. As illustrated in Fig. 1pbot swarms can explore an un-
known area and detect and sense oil or chemical spills attessea. The contaminated
area should be covered efficiently with mobile robots or sento investigate the degree
and extent of contamination as quickly as possible and, s&iixde, prevent the possible
expansion of the area. Therefore, in this paper, we addnegsroblem of how to enable

swarms of autonomous mobile robots to self-adjust theifigaration or spatial density to

fit local environmental conditions.

Based on our prior research on swarm configurati@h[[17], we propose an adaptive
triangular mesh generation algorithm that enables robatms to explore an area, and
to adjust the intervals between neighboring robots autanshy. The main objective is
to provide robots with adaptive deployment capabilitiesdwer an area of interest more
efficiently with variable triangular meshes according tosssl area conditions. This also
can give us a more accurate picture of variations in the ¢immdiof an area. In this chapter,
the properties of the proposed algorithm are mathematieafilained and the convergence
is proven. We also demonstrated through extensive simuakthat a large-scale swarm of
robots can establish a triangular mesh network, adaptiugriong degrees of connection.
The results have been encouraging, and indicate that seffgurable robot swarms can
be deployed for environmental or habitat monitoring.

The rest of this chapter is organized as follows. Sectiorv@ga brief description on
the state-of-the-art in the field of robot swarms. Sectiomesents the formal definitions
of the adaptive triangular mesh generation problem. Seetidescribes our approach, its
mathematical properties, and convergence at the equitibstate. Section 5 summarizes
the results of simulations. Section 6 explains our conohssi

2. Background

Decentralized control for robot swarms can be broadly diagsinto global and local
strategies, according to whether sensors have range.li@itsbal strategies3] [4] [19]
may provide fast, accurate, and efficient deployment, baittechnically infeasible, and
lack scalability as the number of robots increases. On therdtand, local strategies are
mainly based on interactions between individual robotspired by nature. Local strate-
gies can further be divided into biological emergerisid 6], behavior-based?], and vir-
tual physics-based]- [ 15] approaches. Many of the behavior-based and virtual pbysic
based approaches use such physical phenomena as eleatge<f], gravitational forces
[9], spring forces 10] [14] [15], potential fields 11], van der Waals forced P], and other
virtual models 13].

Robot swarm configurations achieved by the above-mentitwoadiinteractions may
result in lattice-type networks. These configurationsrofffigh level coverage and mul-
tiple redundant connections, ensuring maximum religbdid flexibility from the stand-
point of topology. Depending on whether there are inteoastamong all robots, the net-
works can be classified as fully or partially-connected togies [30]. The fully-connected
topologies have each robot interact with all other robothiwia certain range simultane-
ously. Thus, those approaches might over-constrain iddalirobots, and frequently lead
to deadlocks. However, using the partially-connected ltwgpg robots interact selectively
with other robots, but are connected to all robots. For exampbots may choose to exert
force in a certain directionlf], where this selective interaction helps prevent them from
being too tightly constrained. Therefore, robots may be ablachieve faster formation
without deadlocksT5].
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In our earlier work 7], we presented self-configuration of a robot swarm which en-
ables a large number of robots to configure themselves intim2nsional plane with geo-
graphic constraints. A locally-interacting geometridteigue based on partially-connected
topology provides a unique solution that allows robots toverge to uniform distribution
by forming an equilateral triangle with two neighbors. Bylecting this local behavior of
each robot, a uniformly spaced swarm of robots was organ@edver an environment.
Unlike previous works3]- [ 15], our approach first was to construct uniformly spaced equi-
lateral triangles conforming to the borders of an unknoveaawhen the robot sensors are
subject to range and accuracy limitations. Second, anaquall triangle lattice is built,
with a partially-connected mesh topology. Among all thegilole types of regular poly-
gons, equilateral triangle lattices can reduce the contiput burden, and are less influ-
enced by other robots, due to the limited number of neighlam$ are highly scalable. The
proposed local interaction is computationally efficiefice each robot utilizes only po-
sition information of two other robots. Our approach eliat#s such major assumptions
as robot identifiers, common coordinates, global oriemtatand direct communication.
More specifically, robots compute the target positions autirequiring memories of past
actions or states, helping to cope with transient errors.

3. Problem Statement

Definition and Notation. We consider a swarm of mobile robots, denotechas: - , r,,.
It is assumed that all robots are within a swarm network coméig by our previously
proposed self-configuration methotf] [17]. Each robot autonomously moves on a 2-
dimensional plane. They have no leader and no identifiersyalshare any common
coordinate system, and do not retain any memory of pastrectiDue to limited sens-
ing range, they can detect the position of other robots orillgiva certain distance. In
addition, robots do not communicate explicitly with othebots.

Let us consider @obot r; with local coordinates’, ; andr, ;, as illustrated in Fig.
2-(a). Herey), ; defines the vertical axis @f’s coordinate system as its heading direction.
It is straightforward to determine the horizontal axjs; by rotating the vertical axis 90
degrees counterclockwise. Thesitionof r; is denoted ap,. Note thatp; is (0, 0) with
respect tor;’'s local coordinates. Théistancebetweenp; of r; andp; of another robot
r; is denoted asglist(p;,p;). We define auniform distancel,,, the predefined desired
interval between; andr;. As shown in Fig. 2-(b)r; detects the positions;, pi, and
p; of other robots located within its sensing bound&g yielding anobservation sebf
the positionsO; (={p;, pr, pi}) with respect to its local coordinates. Nex{, can select
two robotsry; andrg within r;’'s SB which we call theneighborsof r;, and denote their
positions, {1, ps2}, as N;. Givenp; and N; in Fig. 2-(c), thetriangular configuration
denoted byT;, is defined as a set of three distinct positiops 1, ps2}-

As mentioned above, if robots detect an event such as an oil@mical spill within
the self-configured network, they attempt to cooperate eaith other to cover the area as
efficiently as possible. The gradient in contamination dgracross the area forces robots
to adjust the intervals between neighboring robots. Forrtaicepointp; occupied byr;
as presented in Fig. 2-(d), the densities are exprességdiaynging between < k; < 1,
wherek; = 0 represents the maximum density alyd= 1 corresponds to zero density.
Moreover, it is assumed that each robot can detect and needsusities for positions
occupied by other robots withi8B yielding a set of the densitie&; corresponding to
individual positions in0;.
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(c) triangular configuratioff; (d) density sefs;

FIGURE 2. lllustration of definitions and notations frequently dse
this chapter

Problem Definition. Now, we formally address theDAPTIVE TRIANGULAR MESH
GENERATION problem as follows.

Given a swarm of mobile robots self-configured in a 2-din@maiplane, how can the
robots form triangular mesh patterns of various sizes autgpto varying environmental
conditions?

Our approach to the above problem enables robots to disp@seselves into equi-
lateral triangular patterns of various sizes, accordinghtanges in environmental con-
ditions within an area of interest. The basic concept belfigl approach is to enable
robots to form triangular configurations while changingttiseitable distances depending
on locally-sensed information. In other words, given a omif distancel,,, three neigh-
boring robots configure an equilateral triangle with a setegth proportional to the local
measurement data density.

4. Solution Approach

Regarding our solution approach, this section explainggtreeration of triangular
meshes adapting to the measurement data densities in #somaipied by three neighbor-
ing robots, provides two important properties of the apphpand shows the convergence
into a desired stable configuration using Lyapunov’s theory
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ALGORITHM-1 ADAPTIVE TRIANGULAR MESH GENERATION
Function Ptriangular (017 Kz)

Lope= g, listee P
2 psoi= min [dist(ps1,p) + dist(p, pi)]
P€EO; —{pi,ps1}

3 ¢ :=angle betweeps1ps2 andr;’s local horizontal axis
4 pet = (pet,x, Pet,y) Il centroidof T; (= {ps1,ps2, pi})
5 kq:= w /I average contamination density
6 dg:=kq X % Il desired interval fronp..

7 Ptiz = Pet,e +dacos(¢+ 5)
8  Dtiy = Pety + dasin(é + T)
9

pti := (Pti,z» Pti,y) /| Nexttarget point

(a) 1st neighbor selection (b) 2nd neighbor selection

(c) target point computation (d) moving to the target

FIGURE 3. lllustration of ALGORITHM-1

Algorithm Description. Here, we describe the adaptive triangular mesh generation
algorithm. As presented inl&SORITHM-1, the algorithm consists of a functign, ionguiar
whose arguments afg; andK; at each activation. Each time,first observes other robots
within O; to select the closest neighban as illustrated in Fig. 3-(a). If there exist two

or more candidates fot;, r; determineg; according to the high contamination density.
Secondly, as illustrated in Fig. 3-(b), the second neighbpwithin O; is selected, such
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that the total distance from the positippy, of r5; to p; passing througl,. is minimized.
Similarly, if there are two or more candidates fQg, r; selectsrso occupied in the area
with higher density of contamination. Then, as illustraiedrig. 3-(c),r; measures the
angle¢ between the lin@,1p,5 connecting two neighbors and the horizontal axis of the
observing;'s coordinate system. Thirdly, the centrgid in T; (Ap;ps1ps2) is computed.
Moreover, based oh;, ks1, andk,, at each position occupied by, r51, andr,, r; finds
the local average density, in T; through the computation dk; + ks1 + ks2)/3. Then,
from p.;, r; calculates an appropriate interval as follows:= k, x d, /+/3. Utilizing d,
andg, r; calculates its target poipk; = (pu ., pri,y) l0cated on the same line as the pre-
viously calculated interval from.; and perpendicular tp;1p52. Finally, »; moves toward
p+; as illustrated in Fig. 3-(d). By repeating this processcan form a triangular mesh
depending on the contamination densities.

Mathematical Properties. Let’s consider a triangle (whose centroighis) Ap;ps1pso
(or T;) configured from the three positions occupiedrbyr,;, andrss. By ALGORITHM-

1 above, at time, r; in T;(¢) finds the next target poini;; of which the line segment
Peibii 1S kad,, /+/3 in length and is perpendicular @1 psz in Fig. 3-(c). In other words, at
t + 1, the height ofAp;;ps1ps2 is the straight line through,; and perpendicular to;1p5s.
Similarly, sincer,; andr,, also execute the same algorithm, it is easily seenpheat ¢
is the orthocenteH att + 1.

In Fig. 4, we denote;, ps1, andp,, for simplicity asA, B, andC, respectively. The
lengths of linesAB, AC, andBC are denoted as b, anda, respectively. The point®,
@, andR are the foot of the perpendiculars from the verti€gsB, and A to the vectors
@, ﬁ andB?, respectively. The anglesCAB, ZABC, andZBC A are denoted as
«, B, and~, respectively. Moreover{ is the orthocenter of ABC'. Moreover,H is the
orthocenter o\ ABC (Sincep.; and H exist in the same location undeLAORITHM-1,
we also use onlyf instead ofp.;).

FIGURE 4. lllustrating the derivation of;’s position vector toward?
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Sinceﬁ andﬁ are linearly independenﬁ can be defined as
Q) ﬁ = xﬁ + ym,

wherex andy are scaling coefficients. Since we can easily seeﬁtz bc"%xﬁ the
following relation holds:

B = 7 — 7 = (o — beona T8 4 70

Thus, the inner product betweé??[ and/@ can be expressed as follows:

2 ﬁ-@:(z—bCOSQ)CQ—l-(bccosa)y:O.
C
Similarly, the following equation holds:
(3) Cﬁ%ﬁ:(bccosa)x—i-(y—Cczsa)bzzo.
Now, using (2) and (3), the following simultaneous equatioan be obtained:
cx — (beosa)y = bceosa
4)
(ccosa)r +by = ccosa.

By solving (4), we can obtain the coefficienas follows:

_ bceosa(b—ccos a)
=T a
csin? a

Using the cosine formula (= ccos a 4 a cos ), X is expressed as follows:

a cos o cos
o= qeosacosy

csin?
In addition, by utilizing the sine formula;{— = shfv), X is rewritten as the following
equation:
T = COS (x COS 7y

sinasiny *
Thus, if we do not consider the case of a right triangle, itigightforward to rewritex as
the following equation:

1 tan 8
(5) T = = .
tanatany  tanatan tan-y

Similarly, the coefficieny can be represented as follows:

(6)

Using the addition theorems of the trigonometric functiase, can obtain the following
result:

_ tan -y
4= tan o tan Btany

tan atan ftany = tan a + tan § + tan-y.
Thus, (5) and (6) are rewritten as follows:

r = tan 3
tan a+tan S+tan v
(7)
— tan y
y = tan a+tan S+tany "

With respect to a reference poift (1) can be rewritten as follows:

AH = OH — OA = (OB — OA) + y(OC — OA).
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Now(ﬁ[ can be represented in the following form:
(8) O?:(l—a:—y)O—f)l—i-a:O?—l-yO?.
Substituting (7) into (8), finallm is given by

(ﬁ[) _ tanaﬁ—i—tanﬂ(ﬁ—i—tanv(ﬁ.

9
©) tan v + tan 3 + tan~y

target point
o¥ of I,

FIGURE 5. lllustrating two important propertieg;; and position vector

Under the adaptive triangular mesh generation algorithergtare two mathematical
properties. Firstp,; is determined wittp., in T;(¢) att used as{ att + 1. Moreover,
r; usesp.; att as a basis to generdig (¢ + 1) with d,. from p., to py; att + 1 (see Fig.
3-(c)). Secondly, sincg.; and H betweert andt + 1 remain unchangedﬁ in (9) is the
position vector towarg,.; with respect to the origin aof;’s local coordinates as illustrated
in Fig. 5.

Motion Control. Under the adaptive triangular mesh generation algorithregtneigh-
boring robots attempt to cooperatively configure themseiaeo an equilateral triangle,
adapting to the density of contamination. As presenteddn &;ilet's consider the circum-
scribed an equilateral triangtep,; ps1ps2 configured from three positions occupiedhy
rs1, andrso where the center is.; and the radius i, (= k, x f/—ug) in length. From the
triangular configuration and the two mathematical propsréibove, we design the motion
of r; by controlling the distancé; from p., and the internal anglé; betweerp.p;; and

PctPs2-
First, d; in Fig. 6 is controlled by the following equation:

(10) di(t) = —a(di(t) — da),
whereq is a positive constant. Indeed, the solution of (10) is ot#dias follows:
dz(t) = |di(0)|€7at + da-

The solution converges exponentiallydg ast approaches infinity. Secondl; is con-
trolled by the following equation:

(11) 0i(t) = k(0s1(t) + 0s2(t) — 26,(2)),
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FIGURE 6. Motion control of a robot by the algorithm

wherek is a positive number. Using the features of a triangle whots external angles
is 27, (11) can be rewritten as

(12 0i(t) = K (57— 0:(0).

wherek’ is 3k. Similarly, the solution of (12) is obtained as follows:

0;(t) = 10;(0)|e "t + 2.
The soultion converges exponentially %@' ast approaches infinity. Note that (10) and
(12) imply that the trajectory of; converges to an equilibrium sta, %w]T. From Fig.
6, this also implies that the equilibrium féy is defined a®; = 04, sinceApg;peips1 and
Apipepse are eventually congruent§]. In order to show the convergence into the state
[d;(t) 0;(t)]", we will take advantage of stability based on Lyapunov'stlgg31]. The
convergence into the desired stable configuration is orterthamizes the energy level of
the scalar function. Consider the following scalar funetio

1 1
(13) Ji(di, 0;,061) = E(dz‘ —do)? + 5(951 —0;)°.

This scalar function is always positive definite except whgg d, andd; # 0s;. The
derivative of the scalar function is given as follows:

fi=—(di —da)? = (01 — 6:)?,
which is negative definite. The scalar function is radialibaunded, since it tends to

infinity as||[d;(t) 8;(t)]"|| — oo. Therefore, the equilibrium state is asymptotically stabl
implying thatr; reaches a vertex of the stable triangle.
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Now we show the convergence of the algorithm forobots. Then-order scalar
functionF is defined as

n

(14) F=>" fi(di0;,04).

i=1

It is straightforward to verify thaF is positive definite andF is negative definite.F is

radially unbounded, since it tends to infinity aspproaches infinity. Consequentty,
robots move toward the equilibrium state.

5. Simulation Results and Discussion

L

@ ) ©
@ © ®
® M) 0

FIGURE 7. Simulation result for the whole deployment of 100 robots
((@)~(c): uniform configuration 16], (d)~(i): adaptive configuration
with increasing center density of 0.7)

In this section, we describe simulations of filling an are@antérest with a swarm of
robots in order to show the validity of our proposed alganithin these simulations, we
represent the area of varying contamination density asaembkircle that will be sparsely
or densely populated with robots.
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(a) uniform configuration (b) adaptive configuration

FIGURE 8. Adaptive triangular mesh generation with geographidbm

. 5 . i e * - % L] - . ’ - : 4 : 1 : ° : 1 : Y L
(a) center density: 0.9 (b) center density: 0.8
. : ® 3 ] * Py *w ® . : a ¥ . . . *
. . . . . M - .
- . - . - . . . .
. . L] L] . . . . .
L] . L] - Ll . . . ‘ .
45 » 3
(c) center density: 0.7 (d) center density: 0.6

FIGURE 9. Simulation results according to varying contaminatienglties

First, in order to assist in understanding the self-conétian of robot swarms from an
initial distribution, Fig. 7 presents snapshots for theldation result by 100 robots. From
the initial distribution in Fig. 7-(a), the robots configdrtnemselves in the 2-dimensional
plane (see Fig. 7-(c)). After constructing an equilateiahgle network, we investigated
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how they adapt their triangular mesh network according ®dhksigned contamination
densities. The snapshots from Fig. 7-(d) to (i) show thabteloould generate adaptive
triangular meshes based bpandd,,. If the series of snapshots are carefully observed, the
number of robots within the area of interest, representeriey circle, increases. In detall,

it is initially observed in Fig. 7-(d) that there are 7 robufithin the area. By executing
the adaptive triangular mesh generation algorithm repiatite number of robots located

in that area rises to 17 robots in the final distribution (sige ¥(i)). Compared with Fig.
7-(c), the overall size of the final distribution was reduc&imilarly, Fig. 8 shows the
result from another simulation with geographical bordéig.[

Secondly, Fig. 9 shows the results from simulations withr fdifferent degrees of
center density. In the figure, the number of robots withindinele increases in proportion
to the degree of density. Similarly, the size of the swarntdfiinal converged shape varies
according to the center density. Higher densities forceddhots to decrease the intervals
between neighboring robots.

Thirdly, we performed simulations for multiple varying dsties in a single swarm.
Figs. 10-(a) and (b) show the results for two identical cetdmsities. Although the swarm
was spilt into two smaller groups, robots could adaptivelgfigure themselves near the
area. Figs. 10-(c) and (d) present the results when therammigamination densities vary:
0.7 on the left hand side and 0.9 on the right hand side. Theehigenter contamination
density area is more densely populated. In Figs. 10-(e) Bnthé simulation was per-
formed for three different center contamination densitiesswarm: 0.9, 0.7, and 0.8 from
left to right. Robots could adapt the interval between edbleroaccording to the varying
contamination densities, which is similar to previous daetions. Thus the overall size of
the swarm also varies accordingly.

Three main features highlight our adaptive triangular mgsheration as follows.
First, the approach enables the swarm of robots to deplaypdbkres while adapting to
contamination densities. More specially, we proposed anotontrol to form equilateral
triangles with a appropriate intervals depending on thesitenSecondly, the triangle lat-
tice is built based on a partially-connected mesh topolamyeseach robot locally interacts
with its selected neighbors. Among all the possible typaggtilar polygons, the triangle
elementis easy to construct and highly scalable as the nushbabots increases. Thirdly,
our approach eliminates major assumptions such as rohtfides, common coordinates,
global orientation, specific leaders, and direct commuitina Robots calculate their tar-
get position without having to remember past actions oestathich makes it easier to
cope with transient error.

We believe that our algorithm works well under real world dibions, but several
issues remain to be addressed. Our approach relies on theagtssn that robots can
sense the positions of neighboring robots and contamimatémsities withinSB Prac-
tically speaking, it is difficult to precisely measure thesflions of other robots using in-
frared P][29] or sonar sensord ], and to detect the contamination densities. When direct
communications are employed, it is possible to exchangernmdtion about densities. So,
as our future work, (to further facilitate implementatioitloe proposed method in a real
environment,) robot swarms exchanging information aresetqa to be effectively applied
to such deployment. Robots, however, still reqaingriori knowledge, such as individual
identifiers or global coordinates. Direct communicatioryrakso involve difficulties such
as limited bandwidth, range, and interference. These itapbengineering issues are left
for future work.
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(a) 2 identical densities (b) adaptive deployment
(c) 2 different densities (d) adaptive deployment
(e) 3 different densities (f) adaptive deployment

FIGURE 10. Simulation results for varying local contamination siéins

6. Conclusions

The adaptive triangular mesh generation problem was asklilés disperse a swarm
of mobile robots which can adapt to the degree of contamiinati a target area. There
were several major assumptions underlying our proposetbapp to this problem: no
robot identifiers, no common coordinates or global oriéotatand no direct communica-
tion. Robots computed their target positions without reaggimemories of past actions or
states. Under such conditions, the proposed adaptive negshragion algorithm enables a
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large-scale swarm of robots to configure themselves irdoduilar patterns, while chang-
ing the uniform interval according to the contamination slges that can be detected by
sensors. We took advantage of the fact that, among all thalgesypes oh-polygons,
the triangle is highly scalable, and less influenced by thebr of neighboring robots. To
form the triangular pattern, robots were allowed to inteveith only two selected neigh-
bors at each time. By collecting such a local behavior of eatlot, a swarm of robots
arranged in triangular meshes was self-configured into ite@ af varying degrees of the
local density. The properties of the algorithm were showthexatically, and also verified
through extensive simulations. Finally, we expect thatgiroposed approach can be used
as a simple and effective way to deploy mobile sensor netsvinkcoverage of unknown
areas of interest.
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