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Abstract

As an emerging area considering behavioral aspects of decision making, target-oriented decision model lies

in the philosophical root of bounded rationality as well as represents the S-shaped value function. This

paper deals with multi-attribute decision analysis from target-oriented viewpoint. First, the basic (random)

target-oriented decision model is extended to involve three types of target preferences: benefit target, cost

target, and equal target. Next, since applying fuzzy set theory in decision analysis allows the decision maker

to specify imprecise aspiration levels, fuzzy target-oriented decision analysis is formulated to model three

typical types of fuzzy targets: fuzzy min, fuzzy max, and fuzzy equal. Also, different attitudes are used to

derive target achievement functions, which can be viewed as a support for “probability as psychological

distance”. Furthermore, we have proved that multi-attribute target-oriented decision analysis has a similar

structure with discrete fuzzy measure and Choquet integral. Hence, we propose using discrete fuzzy measure

and Choquet integral to model non-additive multi-attribute target-oriented decision analysis. In particular,

the λ-measure is applied to reduce the difficulty of collecting information via a designed bisection search

algorithm. Finally, a new product development example is used to illustrate the effectiveness and advantages

of our model. The main advantages of our target-oriented decision model are its abilities to model the fuzzy

uncertainty of targets as well as capture the non-additive behaviors among targets by means of discrete

fuzzy measure and Choquet integral.

Keywords: Multi-attribute decision analysis; Target-oriented decision; Target preference types; Fuzzy

targets; λ-measure; Choquet integral.

1. Introduction

Multi-attribute decision making (MADM) is one of the most widely used decision methodologies in the

sciences, business, and engineering worlds. A typical problem in MADM is concerned with the task of
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ranking a finite number of decision alternatives, each of which is explicitly described in terms of different

characteristics (also, often called attributes, decision criteria, or objectives), which have to be taken into

account simultaneously. Among various MADM methods, multi-attribute utility theory (MAUT) [24] is one

widely used one1. However, substantial empirical evidence and prior research have shown that it is difficult

to build mathematically rigorous utility functions based on attributes [8] and the conventional attribute

utility function often does not provide a good description of individual preferences [21]. As a substitute for

utility theory, Kahneman and Tversky [21] have proposed an S-shaped value function. Heath et al. [17] have

suggested that the inflection point in this S-shaped value function can be interpreted as a target. To develop

this concept further, target-oriented decision analysis involves interpreting an increasing, bounded function,

properly scaled, as a cumulative distribution function (cdf) and relating it to the probability of meeting or

exceeding a target value. The cdf of the uncertain target is viewed as the target achievement (target-oriented

utility) function.

The use of the cdf as a utility function recurs in the literature. Borch [7] has used it to study the

probability of ruin. Berhold [6] has exploited it to propose a family of natural conjugate utility functions

inspired by results in Bayesian statistics. Castagnoli and LiCalzi [10] have proved that expected utility

can be expressed in terms of “expected probability”, with the utility function interpreted as a cdf in the

case of a single attribute (see also [9]). Abbas and Matheson [2] have defined “aspiration equivalents” for

the alternatives based on an organization’s utility function, drawing an analogy with notion of satisficing

by seeking an alternative that meets or exceeds an aspiration level [32], and showed that these aspiration

equivalents can be used as targets. LiCalzi and Sorato [29] have described a parametric family of utility

functions based on Pearson system of distributions. Huynh et al. [18, 19] have proposed a fuzzy target-

oriented approach to decision making under uncertainty. In many decision making situations, multiple

attributes are of interest, thus it is important to extend basic target-oriented model to the multi-attribute

case. Bordley and Kirkwood [8] have considered situations in which a target-oriented approach is natural

and defined a target-oriented decision maker (DM) for a single attribute as one with a utility that depends

only on whether a target for that attribute is achieved or not. They have then extended this definition to

targets for multiple attributes, requiring that the DM’s utility for a multidimensional outcome depend only

on the subset of attributes for which targets are met. Taking a different tack, Tsetlin and Winkler [37] have

considered multi-attribute target-oriented decision making and studied the impact on changes of expected

utility in parameters of performance and target distributions via statistics techniques. More research of

multi-attribute target-oriented decision analysis and its applications, especially to Kansei evaluations, can

be referred to [20, 45, 46, 47].

1Other methods involving attributes, utility and relative measurement, include the analytical hierarchy process (AHP) and

the simple multi-attribute rating technique (SMART) methods, which are simple versions of MAUT [39].
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Despite the great advances in target-oriented decision analysis, there are still some challenges. First, in

target-oriented decision analysis, a monotonically increasing preference on attributes is usually assumed in

advance to simplify the decision problems. However, there exist two other types of attribute preferences:

monotonically decreasing preference and non-monotonic preference. A natural question is whether we can

use the cdf to model these two types of target preferences. Next, target-oriented decision analysis assumes

the target has a probability distribution. As a mathematical counterpart of the probability theory, possibility

theory deals with uncertainty by means of fuzzy set [48]. Applying fuzzy set in decision analysis has the

advantage that the DM is allowed to specify imprecise aspiration levels [44]. One natural question that

arises is how to solve target-oriented decision analysis using fuzzy targets. Although Huynh et al. [18, 19]

have already considered the fuzzy targets, their work only focuses on decision with payoff variables, which

are restricted to a bounded domain. They then derive the probability of meeting the fuzzy target regarding

the monotonically increasing preference. However, as we shall see in Section 3, the derived value function

is counterintuitive and cannot model the other two types of targets. Finally, Tsetlin and Winkler [37]’s

approach to model the mutually dependent MATO decision analysis is too complex in real applications.

On the other hand, even if in an objective sense the targets are mutually independent (probabilistically

independent), the attributes (targets) are not necessarily considered to be independent from the DM’s

subjective viewpoint. In this regard, traditional analytic methods are inadequate and not applicable for

modeling such complex situations.

In light of the above observations, this paper tries to propose a non-additive multi-attribute fuzzy target-

oriented decision model. In Section 2, we extend the basic (random) target-oriented decision analysis by

involving three types of target preferences. In Section 3, we formulate fuzzy target-oriented decision analysis

via the concepts of tolerance level and possibility distribution, and discuss three types of commonly used

fuzzy targets: fuzzy min, fuzzy max, and fuzzy equal. Our model also provides some relationships with goal

programming (GP) and fuzzy goal programming (FGP). Also, different attitudes are used to derive target

achievement functions: fuzzy optimistic target, fuzzy neutral target, and fuzzy pessimistic target. Such

attitudinal targets can be viewed as a support for “probability as psychological distance”. In Section 4,

after formulating MATO decision analysis based on [8, 36, 37], we prove that MATO decision analysis with

stochastic independence among targets has a similar structure with discrete fuzzy measure and Choquet

integral. Hence, we propose using discrete fuzzy measure and Choquet integral to model non-additive MATO

decision analysis. In particular, the λ-measure is applied to reduce the difficulty of collecting information via

a designed bisection search algorithm. In Section 5 we apply a new product development problem, borrowed

from the literature, to illustrate the effectiveness and advantages of our model. Comparisons with existing

research are also given. Finally, some concluding remarks are presented in Section 6.
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2. Random target-oriented decision analysis

Suppose that a DM has to rank several possible decisions. For notational convenience, designate a

decision attribute by X with a continuous domain, and an arbitrary specific level of that attribute by x. In

an uncertain environment, each decision d may lead to different outcomes, usually summarized in a random

consequence Xd. Assume for simplicity that the set O of random consequences is finite. Denote by pd a

probability distribution for the random consequence Xd associated2 with a decision d. Then the expected

utility model suggests that the ranking be obtained by

V (d) = EU(Xd)

=
∑

x

U(x)pd(x),

where U(x) is a von Neumann and Morgenstern (NM) utility function over consequences.

The target-oriented decision model, instead, suggests using the following value function [9, 10]:

V (d) = Pr(Xd � T )

=
∑

x

Pr(x � T )pd(x),
(1)

where Pr(x � T ) is the target achievement (target-oriented utility), i.e., the probability of meeting an

uncertain target T and the target T is stochastically independent of the consequence Xd.

Interestingly, despite the differences in approach and interpretation, both the utility-based procedure

and target-oriented procedure essentially lead to only one basic model for decision making [9, 10]. The idea

that the NM-utility function should be interpreted as a probability distribution may appear unusual but, in

fact, NM-utilities are probabilities [1, 10]. Note that target-oriented decision analysis is strictly more general

than expected utility, in the sense that equivalence holds under stochastic independence of the target.

With the assumption that the DM’s preference function on an attribute X is monotonically increasing, x

and t are mutually independent, Bordley and Kirkwood [8] suggest the target achievement (target-oriented

utility) function be defined as follows:

Pr(x � T ) =

∫ x

−∞

pT (t)dt, (2)

where pT (t) is the probability density function (pdf) of uncertain target T and Pr(x � T ) is in fact the cdf

of the uncertain target T , representing the target achievement function.

Most studies on target-oriented decision analysis assume the DM has a monotonically increasing prefer-

ence on attributes [e.g., 1, 9, 10, 36, 37], and use the cdf as the target achievement function, as shown in

Eq. (2). In general, there are three types of target preferences, introduced as follows.

2Formally, let p be the DM’s subjective probability distribution on the state space S, the probability distribution pd is

induced by the decision d : S → O through the equality pd(Xd = x) = p ({s|d(S) = x}).
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• When the DM has a monotonically increasing preference on an attribute X , the target values are

adjustable and the more the better. Such a type of targets is usually used in MADM for benefit

attributes and will be referred to as “benefit target”.

• When the DM has a monotonically decreasing preference on an attribute X , the target values are

adjustable and the less the better. Such a type of targets is usually used in MADM for cost attributes

and will be referred to as “cost target”.

• When the DM has a non-monotonic preference on an attribute X , the target values are fairly fixed

and not subject to much change, i.e., too much or too little is not acceptable. Such a type of targets

is usually used in MADM for non-monotonic attributes and will be referred to as “equal target”.

Remark 1. Note that the shape of the pdf of the random target does not represent the monotonicity of

the DM’s preference function (utility function). For example, Bordley and LiCalzi [9] consider a situation in

which the target T is represented by a normal distribution. In their example, the DM has a monotonically

increasing preference on an attribute X , the normally distributed target T , therefore, is a benefit target. As

a generalization, the normally distributed target T can also be a cost target or an equal target, depending

on the DM’s preference function on the attribute X .

For notational convenience in the context of MADM, we only consider the target achievement function.

The main problem now is how to use the cdf to represent the target achievement functions with respect to

these three types of targets in a general representation.

2.1. Random target-oriented decision with different types of target preferences

We first define the preference relation � as ≥, ≤, and ∼= for benefit target, cost target, and equal target,

respectively. Recall that target-oriented decision analysis assumes that the pdf pT (t) has a mode value

tm (location of peak point) and views the mode value tm as a reference point (the inflection point of the cdf

of the uncertain target T ) [9]. Furthermore, a DM is said to be target oriented for a single-attribute decision

if his utility for an outcome depends only on whether a target is achieved or not (there are only two levels

of utilities: 1 or 0). With respect to different types of target preferences, the DM will have different utility

functions. Therefore, we define a unified target achievement function Pr(x � T ) as follows:

Pr(x � T ) = ξ1

∫ tm

−∞

u1(x, t)pT (t)dt+ ξ2

∫ tm

tm

u2(x, t)pT (t)dt+ ξ3

∫ +∞

tm

u3(x, t)pT (t)dt. (3)

where u(·)(x, t) and ξ(·) are the utility and adjustment parameter over different intervals, respectively, both

of which are determined by the types of target preferences.
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If T is a benefit target, i.e., the DM has a monotonically increasing preference on an attribute X , the

DM has only one utility function such that

u1(x, t) = u2(x, t) = u3(x, t) =







1, if x ≥ t;

0, otherwise.
(4)

Furthermore, we set the adjustment parameters as ξ1 = ξ2 = ξ3 = 1. Substituting u(·)(x, t) and ξ(·) into

Eq. (3), we can obtain the target achievement function as follows:

Pr(x ≥ T ) =

∫ x

−∞

pT (t)dt, (5)

which is equivalent to the traditional one [9, 10], i.e., the target-oriented model views the cdf as the target

achievement function.

Similar with the benefit target, for a cost target (the DM has a monotonically decreasing preference on

an attribute X) the DM also has only one utility function such that

u1(x, t) = u2(x, t) = u3(x, t) =







1, if x ≤ t;

0, otherwise.
(6)

Furthermore, we set ξ1 = ξ2 = ξ3 = 1. Substituting u(·)(x, t) and ξ(·) into Eq. (3), we can obtain the target

achievement function as

Pr(x ≤ T ) =

∫ +∞

x

pT (t)dt

= 1−

∫ x

−∞

pT (t)dt,

(7)

which also uses the cdf to express the target achievement function.

If T is an equal target (the DM has a non-monotonic preference on the attribute X), the reference point

tm will be the aspiration point. In this case, the DM has a monotonically increasing preference on X when

x ∈ (−∞, tm) and a monotonically decreasing preference on X when x ∈ (tm,+∞). Accordingly, the DM

has three utility functions such that

u1(x, t) = 1, if x ≥ t and x ∈ (−∞, tm); 0, otherwise.

u2(x, t) = 1, if x = tm; 0, otherwise.

u3(x, t) = 1, if x ≤ t and x ∈ (tm,+∞); 0, otherwise.

(8)

Moreover, due to the boundary property of Pr(x � T ), i.e., Pr(x � T ) ∈ [0, 1], the parameters ξ1, ξ2, ξ3 are

defined to adjust Pr(x ∼= T ) such that

ξ1 =
1

∫ tm

−∞
pT (t)dt

, if ∃pT (t) 6= 0; 0, otherwise.

ξ2 =
1

∫ tm

tm
pT (t)dt

.

ξ3 =
1

∫ +∞

tm
pT (t)dt

, if ∃pT (t) 6= 0; 0, otherwise.

(9)
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Substituting Eq. (8) and Eq. (9) into Eq. (3), we can obtain the target achievement function Pr(x ∼= T ) of

meeting an equal target as

Pr(x ∼= T ) =



















ξ1
∫ x

−∞ pT (t)dt, if x ∈ (−∞, tm);

ξ2
∫ tm

tm
pT (t)dt = 1, if x = tm;

ξ3
∫ x

tm
pT (t)dt, if x ∈ (tm,+∞).

(10)

with the notation that 0
0 = 1. Roughly, when x ≤ tm the attribute X can be viewed as a pseudo-benefit

attribute; when x > tm the attribute X can be viewed as a pseudo-cost attribute. We know pT (t) is

monotonically non-decreasing for t ≤ tm and monotonically non-increasing for t > tm, respectively. Thus,

when x ≤ tm or x ≥ tm, Eq. (10) is convex shaped which indicates that the convex functions can be viewed

as losses relative to the reference point tm. Note that the benefit and cost targets have the same adjustment

parameter as ξ1 = ξ2 = ξ3 = 1∫
+∞

−∞
pT (t)dt

= 1.

Remark 2. Obviously, Pr(x ∼= T ) is not a traditional probability measure, but a combination of the cdf of

the random target T . The main reason why we define Eq. (10) is that there exists a reference point tm of the

target-oriented utility. For the equal target, the utility (probability of meeting the target) of the reference

point should be one. Therefore, we defined Eq. (10) by adding some adjustment parameters.

As a generalization of the non-monotonic target preference, the mode value may be an interval range,

denoted as tm ≡ [tml, tmr]. An example of this case is the uncertain target having a trapezoidal probability

distribution [12]. Similar with Eq. (10), we can induce the target achievement function with respect to a

non-monotonic target having an interval mode as follows:

Pr(x ∼= T ) =



















ξ1
∫ x

−∞ pT (t)dt, if x ∈ (−∞, tml);

ξ2
∫ tmr

tml
pT (t)dt = 1, if x ∈ [tml, tmr];

ξ3
∫ x

tmr
pT (t)dt, if x ∈ (tmr,+∞).

(11)

where

ξ1 =
1

∫ tml

−∞
pT (t)dt

, if ∃pT (t) 6= 0; 0, otherwise.

ξ2 =
1

∫ tmr

tml
pT (t)dt

.

ξ3 =
1

∫ +∞

tmr
pT (t)dt

, if ∃pT (t) 6= 0; 0, otherwise.

(12)

2.2. Discussion: Degree of achievement

Bordley and Kirkwood [8] have generalized the “degree of achievement” of targets to a more general case

by the following loss functions

u(x, t) =







−a(t− x), x < t,

b− c(x− t), otherwise,
(13)
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where a ≥ 0, b ≥ 0, and c is a real value. In Eq. (13), if a > 0 there is added loss of value for missing the

target on the low side by greater amounts, and either added value, no change in value, or added loss for

exceeding the target by greater amounts depending on whether c > 0, c = 0, c < 0. For example,

• if the DM has a monotonically increasing preference, we can set a = 0, b = 1, c = 0;

• if the DM prefers non-monotonic preference (equal target), we can set a > 0, b = 0, c > 0.

However, this approach is debatable. As pointed by Bordley and Kirkwood, an expected utility DM is

defined to be target oriented for a single attribute decision if the DM’s utility for an outcome depends only

on whether a target is achieved with respect to X [8, p. 824]. Thus we shall have only two utility levels

u(x, t) = 1 or u(x, t) = 0. The above functions allow more than two utility levels, thus there exists some

inconsistency in Bordley and Kirkwood’s approach.

Bordley and Kirkwood [8] first consider the generalized “degree of achievement” of targets, Eq. (13),

with respect to a crisp target t. They then apply it to the case of uncertain target. However, Bordley and

Kirkwood’s method of the “degree of achievement” of targets to a more general case by the loss functions

is not suitable. For example, consider the uncertain target with a normal distributed pdf. If we assume the

DM has an equal target preference on an attribute X , we will always obtain the non-positive (negative or

zero) value as

Pr(x ∼= T ) =

∫ +∞

−∞

u(x, t) · pT (t)dt.

The main reason is that u(x, t) is a loss function, i.e., u(x, t) ≤ 0.

Although the target uncertainty has been discussed in both our work and Bordley and Kirkwood’s

work, the “degree of achievement” of targets is different. Instead of using loss functions to model target

achievement function, we have used the cdf to express the target achievement function, in which we have

only two utility levels (1 or 0) in the case of crisp targets.

3. Fuzzy target-oriented decision model

As a mathematical counterpart of probability theory, possibility theory [49] deals with uncertainty via

fuzzy sets [48]. Formally, the soft constraint imposed on a variable V is a statement “V is A”, where A

is a fuzzy set and νA(x) is the membership function of A. The fuzzy sets can be considered as inducing a

possibility distribution π on the domain of A such that νA(x) = πA(x) for each x. In this paper, we shall

use the “possibility distribution” and “membership function” interchangeably. Since the introduction of

possibility, the relationship between possibility and probability has received much attention from the research

community. Particularly, the issue of associating probability distributions with possibility distributions has

been discussed extensively. Yager [40] has proposed a proportional method for instantiating a possibility
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variable over a discrete domain by converting its possibility distribution into a probability distribution as

p(x) = π(x)/
∑

x π(x). This transformation method has been extended into a continuous context as

p(x) =
π(x)

∫

x
π(x)dx

. (14)

In the following we will use this conversion of a possibility distribution into a probability distribution for

decision making with fuzzy targets.

Remark 3. The possibility-probability consistency principle is a heuristic relationship between possibilities

and probabilities. The normalization based transformation approach satisfies Zadeh’s consistency princi-

ple [49]. However, even Yager [40, p. 265] himself pointed out that:

“We should note using this normalizing approach to possibility distribution-probability dis-

tribution conversion the probability measure obtained is not always dominated by the possibility

measure. That is, using this approach to generate a probability distribution and assuming an

additive probability measure situations can arise in which the probability measure of a subset of

outcomes is greater than the possibility measure of the subset. . . . . .”

In this paper, we prefer Yager’s transformation method due to the following reasons. From a theoretical

point of view, the possibility-probability transformation method proposed by Yager [40] relates to the defuzzi-

fication method used in [49]. In this section, we will consider the fuzziness of the target, therefore we believe

a defuzzification characteristic in the transformation is natural, whereas the alpha-cuts based transformation

method [13, 15] does not display this characteristic [40]. In addition, it is easily and explicitly to analyze

the properties of the utility function with respect to a fuzzy target by using Yager’s transformation method,

which is important for our work. From an applicable point of view, the possibility-probability transformation

method proposed by Yager [40], has been widely used in the literature [3, 11, 18, 19, 22, 26, 27, 31, 41, 43].

The main reasons are twofold. First, this method is easy to use. Second, due to the nature of the problem

to be solved, such a method has good properties in application [3, 11, 22, 31].

3.1. General formulation of fuzzy target-oriented decision

Assume that a DM specifies a target T for an attributeX . If there is no impreciseness about his judgment,

we shall denote it as tm. However, this is a difficult task for the DM. Applying fuzzy set theory allows the

DM to specify imprecise target values. To build possibility distribution of a target, aspiration level tm and

the tolerance level δ should be determined first. The tolerance can be chosen either subjectively by the DM

or objectively by a technical process [44]. The left and right tolerance values relative to tm are denoted as

δ− and δ+ (δ−, δ+ ≥ 0), respectively. Without loss of generalization, we define tm ≡ [tml, tmr], tml ≤ tmr,

with tml = tmr as a special case. Accordingly, we can set tmin = tml − δ−, tmax = tmr + δ+. Then the fuzzy

9



target can be expressed in the canonical form of a fuzzy number [25] as follows:

πT (t) =































fT (t), tmin ≤ t < tml,

1, t ∈ [tml, tmr],

gT (t), tmr < t ≤ tmax,

0, otherwise.

(15)

where πT (t) is the possibility distribution of T , fT (t) and gT (t) are real-valued monotonically non-decreasing

and non-increasing functions, respectively. In addition, if we assume fT and gT are linear functions, the

fuzzy targets in Eq. (15) can also be represented by a trapezoidal fuzzy number such that

T = (tmin, tml, tmr, tmax). (16)

Possibility distributions are known to be somewhat limited in expressiveness when compared with other

models such as belief function [38] and possibility theory can deal with uncertainty via fuzzy sets [48].

In addition, trapezoidal fuzzy sets are usually used in most situations [42]. Therefore, trapezoidal fuzzy

numbers are used to express different fuzzy targets in form of Eq. (16). Based on the proportional possibility-

probability conversion method in Eq. (14), we can derive a pdf pT (t) of the fuzzy target T .

If the DM has monotonic preferences on an attribute X , substituting pT (t) into Eq. (5) and Eq. (7), we

can induce the target achievement function as follows:

Pr(x ≥ T ) =

∫ x

−∞ πT (t)dt
∫ +∞

−∞ πT (t)dt
, benefit target; (17)

Pr(x ≤ T ) =

∫ +∞

x
πT (t)dt

∫ +∞

−∞ πT (t)dt
, cost target. (18)

Since the canonical form of a fuzzy number is used to express a fuzzy target, the pdf pT derived from

the possibility distribution πT has a mode range tm ≡ [tml, tmr]. If the DM has a non-monotonic preference

on an attribute X , substituting pT into Eq. (11), we can induce the following target achievement function

Pr(x ∼= T ) =



































∫
x

tmin
πT (t)dt

∫ tml
tmin

πT (t)dt
, tmin ≤ x < tml;

1, tml ≤ x ≤ tmr;
∫

tmax
x

πT (t)dt
∫

tmax
tmr

πT (t)dt
, tmr < x ≤ tmax;

0, otherwise.

(19)

with the notation 0
0 = 1.

3.2. Three typical types of fuzzy targets

In decision making involving fuzzy targets, three typical types of fuzzy targets are: “fuzzy min tm”,

“fuzzy max tm”, “fuzzy equal tm” [5, 50]. In this section, we discuss these three types of fuzzy targets

in the framework of our target-oriented decision model.
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3.2.1. Fuzzy min tm

If a DM specifies a fuzzy min type target, i.e., fuzzy at least tm(tml = tmr), there will be a monotonically

increasing preference. Also, there is no right tolerance δ+ relative to tm such that δ+ = 0, we can easily

obtain tmin < tm = tml = tmr = tmax.

First, similar with the membership function of the fuzzy target in FGP [44], we can build the possibility

distribution for a fuzzy target T bene
1 as

πTbene
1

(t) =







t−tmin

tm−tmin
, tmin ≤ t ≤ tm;

0, otherwise.
(20)

which can also be expressed as T bene
1 = (tmin, tm, tm, tm). Here, the term “bene” is used to represent a

benefit target. Substituting Eq. (20) into Eq. (17), we can induce the following target achievement function

Pr(x ≥ T bene
1 ) =



















0, x < tmin,
∫

x

tmin
(t−tmin)dt

∫
tm
tmin

(t−tmin)dt
, tmin ≤ x ≤ tm,

1, x > tm.

(21)

Since (t− tmin) increases with t over the interval [tmin, tm], thus Pr(x ≥ T bene
1 ) has a convex shaped function

over the interval [tmin, tm], as shown in Fig. 1 (indexed by Pr(x ≥ T bene
1 )). Based on Eq. (14), T bene

1 derives

a pdf having a mode value tm. In target-oriented decision framework, tm is the reference point, all the

attribute values below tm are viewed as losses. This observation is consistent with the psychological finding

that people tend to be risk seeking over losses, in other words, convex over losses [21]. Also, T bene
1 implies

that the DM assesses higher possibility about his target toward the maximal value tm, which corresponds to

the attitude that the DM believes that ‘best thing may happen’. Since the convex shaped function reflects

the DM’s optimistic attitude, T bene
1 will also be called fuzzy optimistic target with respect to a benefit

attribute.

Conversely, a DM may assess higher possibility about his target toward the reservation point tmin, which

corresponds to the attitude that the DM believes that the best thing that may happen is tmin. Such a

fuzzy target is referred to as fuzzy pessimistic target and can be expressed by T bene
2 = (tmin, tmin, tmin, tm).

Substituting T bene
2 into Eq. (17), we can induce the following target achievement function

Pr(x ≥ T bene
2 ) =



















0, x < tmin;
∫

x

tmin
(tm−t)dt

∫
tm
tmin

(tm−t)dt
, tmin ≤ x ≤ tm;

1, x > tm.

(22)

Since (tm − t) decreases with t in [tmin, tm], Pr(x ≥ T bene
2 ) is a concave shaped function over the interval

[tmin, tm], as shown in Fig. 1 (indexed by Pr(x ≥ T bene
2 )). In this case, tmin is the reference point, all the

attribute values greater than tmin are viewed as gains. This observation is consistent with the psychological

finding that people tend to be risk averse over gains, in other words, concave over gains [21].

11
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Figure 1: Target achievement function of fuzzy min target

If the DM assesses a uniform possibility distribution about his target over the interval [tmin, tm], it implies

that the DM has a fuzzy neutral target, expressed as T bene
3 = (tmin, tmin, tm, tm). Substituting T bene

3 into

Eq. (17), we can simply derive the target achievement function as follows:

Pr(x ≥ T bene
3 ) =



















0, x < tmin;

x−tmin

tm−tmin
, tmin ≤ x ≤ tm;

1, x > tm.

(23)

It is clearly seen that Pr(x ≥ T bene
3 ) is equivalent to the utility function of fuzzy min type target in FGP

problems [50], as shown in Fig. 1 (indexed by Pr(x ≥ T bene
3 )).

3.2.2. Fuzzy max tm

In this case, the DM has a monotonically decreasing preference on an attribute X . There is no left

tolerance relative to tm such that δ− = 0, we can easily obtain tm = tml = tmr = tmin < tmax. We also

first consider the possibility distribution used in FGP [44], which is expressed as T cost
1 = (tm, tm, tm, tmax).
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Figure 2: Target achievement function of fuzzy max target

Substituting T cost
1 into Eq. (18), Pr(x ≤ T cost

1 ) is derived by

Pr(x ≤ T cost
1 ) =



















1, x < tm;

1−
∫

x

tm
(tmax−t)dt

∫
tmax
tm

(tmax−t)dt
, tm ≤ x ≤ tmax;

0, x > tmax.

(24)

Since (tmax−t) decreases with t in [tm, tmax], 1−
∫

x

tm
(tmax−t)dt

∫
tmax
tm

(tmax−t)dt
is a convex shaped function in [tm, tmax]. The

psychological semantic behind this observation is that since tm is the reference point, all the attribute values

upper than tm are viewed as losses (for a monotonically decreasing preferences), i.e., convex over losses,

as shown in Fig. 2. The convex shaped value function in Eq. (24) implies that the DM has an optimistic

attitude toward a cost attribute, in other words, the DM believes that the best thing may happen is tm.

Now let us consider a DM’s pessimistic and neutral attitudes with respect to the fuzzy max target.

Similar with the fuzzy min target, we can define the following possibility distributions on [tm, tmax]:

T cost
2 = (tm, tmax, tmax, tmax), for pessimistic target; (25)

T cost
3 = (tm, tm, tmax, tmax), for neutral target. (26)

13



Substituting them into Eq. (18), we can derive the following target achievement functions

Pr(x ≤ T cost
2 ) =



















1, x < tm;

1−
∫

x

tm
(t−tm)dt

∫
tmax
tm

(t−tm)dt
, tm ≤ x ≤ tmax;

0, x > tmax.

(27)

Pr(x ≤ T cost
3 ) =



















1, x < tm;

tmax−x
tmax−tm

, tm ≤ x ≤ tmax;

0, x > tmax.

(28)

In Eq. (27), since (t− tm) increases with t over [tm, tmax], we can conclude that Pr(x ≤ T cost
2 ) has a concave

shaped value function, which implies that tmax is the most possible target value, thus value less than tmax

in [tm, tmax] will be viewed a gain, i.e., concave over gains, as shown in Fig. 2. Pr(x ≤ T cost
3 ) in Eq. (28) is

equivalent to the utility function of fuzzy max type target in FGP [44], as shown in Fig. 2.

3.2.3. Fuzzy equal tm

The third case is the “fuzzy equal” type target, which means a non-monotonic preference on an attribute

X . In this case, there exist both the left and right tolerances δ−, δ+ relative to tm ≡ [tml, tmr]. We can

obtain tmin = tml − δ−, tmax = tmr + δ+, and T equal = (tmin, tml, tmr, tmax). Here, the term “equal” is used

to represent the fuzzy equal target. Substituting T equal into Eq. (10), we can derive the target achievement

function as follows:

Pr(x ∼= T equal) =



































∫
x

tmin
(t−tmin)dt

∫ tml
tmin

(t−tmin)dt
, tmin ≤ x < tml;

1, tml ≤ x ≤ tmr;

1−
∫

x

tmr
(tmax−t)dt

∫
tmax
tmr

(tmax−t)dt
, tmr < x ≤ tmax;

0, otherwise.

(29)

Since tm ≡ [tml, tmr] is the reference point, all the attribute values below or upper than tm will be viewed

losses, which indicates a convex shaped function. Especially, when tml = tmr, we have tm = tml = tmr.

Note that the canonical form of fuzzy numbers is used to represent the fuzzy target in the previous cases,

which derives a pdf with a mode of T , thus we can only obtain convex shaped value functions for the fuzzy

equal target. As a generalization, if we allow the DM to specify separate possibility distributions for the left

and right sides relative to tm ≡ [tml, tmr], we can obtain two fuzzy numbers for left and right hands relative

to tm. Since when x ≤ tm the attribute is a pseudo-benefit attribute and when x ≥ tm the attribute is a

pseudo-cost attribute, we can derive the target achievement functions for the left and right hands based on

the fuzzy min and max targets, respectively. For example, if the DM specifies the fuzzy targets for left and

right hands as

T equal
l = (tmin, tmin, tmin, tml), left side relative to tm;

T equal
r = (tmr, tmr, tmr, tmax), right side relative to tm.
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Figure 3: Target achievement function of fuzzy equal target

By using Eqs. (17)-(18) we can derive value functions for left and right hands as follows:

Pr(x ∼= T equal) =



































∫
x

tmin
(tml−t)dt

∫ tml
tmin

(tml−t)dt
, tmin ≤ x < tml;

1, tml ≤ x ≤ tmr;

1−
∫

x

tmr
(tmax−t)dt

∫
tmax
tmr

(tmax−t)dt
, tmr < x ≤ tmax;

0, otherwise.

(30)

We know that T equal
l decreases with t in [tmin, tml], thus Pr(x ∼= T equal

l ) is concave shaped, which indicates

that the DM is pessimism oriented in the left side. Similarly, as T equal
r decrease with t in [tmr, tmax],

Pr(x ∼= T equal
r ) is convex shaped, which incidents that the DM has a optimistic attitude toward the right

side with respect to an equal target.

Based on the fuzzy min and fuzzy max targets, for each side, we can obtain three kinds of target

achievement functions, as shown in Fig. 3. In Fig. 3, we have assumed that tm = tml = tmr. In the left side

relative to tm, Pr(x ∼= T equal
l1 ),Pr(x ∼= T equal

l2 ),Pr(x ∼= T equal
l3 ) represent the fuzzy optimistic, pessimistic,

and neutral attitudes, respectively. Similarly, in the right side relative to tm, Pr(x ∼= T equal
r1 ),Pr(x ∼=

T equal
r2 ),Pr(x ∼= T equal

r3 ) represent the fuzzy optimistic, pessimistic, and neutral attitudes, respectively.
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3.3. Comparative analysis with related research

In this section, we analyze the main differences of target achievement function between our model and

GP, FGP. The GP model has been developed to respond to the DM’s desire to satisfy many objective at

the same time. Considering only one objective, the achievement function is formulated as

min δ+ + δ−

s.t. x− tm = δ+ − δ−,

where δ−, δ+ ≥ 0 are the left and right distance to the crisp target value tm. The main idea is to use a

distance based optimization function |x− tm| < ε. However, in several application situations the DM is not

able to establish exactly the goal value associated with each objective [44]. The FGP has the advantage of

allowing for the vague aspirations of a DM, which can be quantified using some natural language or vague

phenomena. The FGP can be formulated as follows

max γ

s.t. γ ≤ 1− (x−tm)
δ+

,

γ ≤ 1− (tm−x)
δ−

.

or s.t. γ − πT (x) ≤ 0.

where γ ≥ 0 is an additional continuous variable and δ is the tolerance level specified by the DM or technical

process. The main idea behind FGP is using the membership function to represent the DM’s utility based

on a linear transformation. In fact, FGP is based on the seminal work on fuzzy decision making introduced

by Bellman and Zadeh [5]. As pointed out by Beliakov and Warren [4], many researchers, including Zadeh

himself, refer to membership functions as ‘a kind of utility functions’. We shall call the membership degree

based utility as Bellman-Zadeh’s paradigm.

Compared with GP, our model relaxes the crisp target to a fuzzy target. Instead of using the distance

based approach, we have used the target-oriented utility as the achievement function. We can derive different

shaped achievement functions according to a DM’s preferences. In this regard, our model provides a support

for “probability as a psychological distance” [35].

Compared with Bellman-Zadeh paradigm, our model also utilizes the fuzzy set to capture the imprecise-

ness of the target. The main differences between our model and Bellman-Zadeh’s paradigm are twofold.

1. First, the semantics of membership functions are different. Bellman-Zadeh framework views the mem-

bership function as ‘a kind of utilities’, whereas our approach views the membership function as a kind

of uncertainty representations, possibility distribution. In fact, according to the context of problems,

membership degrees can be interpreted as similarity, preference, or uncertainty [14].

2. Second, the rules governing operations in fuzzy set theory are fairly specific, whereas in our model

there are virtually no constraints (other than monotonicity) on how one ought to model the costs

of falling short of a target. In our approach, even the same shaped fuzzy number can have more
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than one semantic depending on DM’s preferences. Whereas, Bellman-Zadeh framework considers

only one semantic. For example, the fuzzy min target T = (tmin, tm, tm, tm) for a benefit attribute

in Section 3.1, can be viewed as a optimistic fuzzy target. However, the same shaped fuzzy set, e.g.,

[tm, tmax, tmax, tmax], is viewed as a fuzzy pessimistic target with respect to a cost attribute. The linear

utility function is FGP is equivalent to target-oriented utility derived by the fuzzy neutral target.

In a similar but different framework, Huynh et al. [18, 19] have also considered fuzzy target-oriented deci-

sion analysis under uncertainty, in which only payoff variables are considered. They assume a monotonically

increasing preference on an attribute, thus their approach cannot model cost and equal targets. Moreover,

they assume that a payoff variable is restricted to a bounded domain [xmin, xmax], and then assume that the

target is possibly distributed in [xmin, xmax]. For example, they defined the fuzzy min target as

T bene =







(t− xmin)/(tm − xmin), xmin ≤ x < tm;

1, tm ≤ x ≤ xmax.

However, such a formulation of the fuzzy min type target is debatable. First, the tolerance level is not

necessarily (tm−xmin), it may be provided by the DM or the technical process. Even if we can use (tm−xmin)

as the tolerance level, there is no right tolerance level relative to tm for the fuzzy min type target. Thus

we believe that the possibility distribution of fuzzy target T is zero when x ∈ (tm, xmax], whereas Huynh

et al.’s formulation is one when tm ≤ x ≤ xmax. In general, Huynh et al have used the target achievement

function in FGP to represent the possibility distribution of a target. As tm is the aspiration value and there

is no right tolerance relative to tm, the Pr(x ≥ T bene) should be 1 if x ≥ tm. However, as we see in [19],

only if x→ xmax, Pr(x ≥ T bene) = 1.

4. Non-additive multi-attribute target-oriented decision analysis based on λ-measure and Cho-

quet integral

In this section, after formulating multi-attribute target-oriented (MATO) decision model based on [36,

37], we prove that MATO decision analysis has a similar structure with discrete fuzzy measure and Choquet

integral, especially in the case of mutually stochastic independence among targets. Hence, we propose using

discrete fuzzy measure and Choquet integral to model non-additive MATO decision analysis. Moreover, in

order to reduce the difficulty of collecting information λ fuzzy measure is applied via a designed bisection

search algorithm.

4.1. Formulation of multi-attribute target-oriented function

The consequences in decision making often involve multiple attributes. Suppose a set of N attributes

X = {X1, . . . , Xn, . . . , XN} are of interest and the arbitrary specific levels of a decision d for that attributes

set X are represented by x = (x1, . . . , xn, . . . , xN ), denoted as outcome vector. The targets for the attributes
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set X are represented by T = (T1, . . . , Tn, . . . , TN). Then the target achievement function for a decision

with an outcome vector x is defined as follows:

V (d) = Pr(x � T). (31)

If the DM cares only about meeting targets, his utility function should reflect that. Following Bordley and

Kirkwood [8], we say a DM is defined to be target oriented if his utility for a decision d with an outcome

x = (x1, . . . , xn, . . . , xN ) depends only on which targets are met by that outcome (i.e., for which xn � Tn).

The utility function for a target-oriented DM is completely specified by 2N constants where these constants

are the utilities of achieving specific combinations of the various targets.

Although Bordley and Kirkwood [8] give a general form of MATO function, there is no detailed general

representation. For notational convenience, we formulate the general expression of MATO based on Tsetlin

and Winkler [36, 37]. Formally, let I = (I1, . . . , In, . . . , IN ) be a vector of indicator variables, where

In =







1, if xn � Tn;

0, otherwise.

Then a target-oriented DM has a function UI(I) assigning utilities to the 2N possible values of I. Let

UI(I) = µA, where A is the set of indices {n|In = 1} corresponding to the attributes in I for which the

targets are met. Without possibility of confusion, the set of indices is used to represent a set of attributes.

For example, UI(1, 0, . . . , 0) = µ1, UI(0, 1, 1, . . . , 0) = µ2,3 and so on. If A1 ⊆ A2, then µA1 ≤ µA2 ; utility

can never be reduced by meeting additional targets. We also know that 0 ≤ µA ≤ 1 for all A, with

µ∅ = UI(0, . . . , 0, . . . , 0) and µ1,...,n,...,N = UI(1, . . . , 1, . . . , 1) = 1, leaving 2N − 2 utilities µA to be assessed.

Consider a simple example with N = 2, we know

Pr(x � T) = UI(I)

= µ∅I∅ + µ1I1 + µ2I2 + (1− µ1 − µ2)I1I2.

Recall that In depends on whether xn � Tn and µ∅ = 0, thus by integrating out the uncertainty about

targets T, we can get

Pr(x � T) = µ1Pr1 + µ2Pr2 + (1 − µ1 − µ2)Pr1,2, (32)

where Pr1,2 is the joint target-oriented utility (joint probability of meeting targets T1 and T2), Pr1 and Pr2

are the target-oriented utilities of meeting targets T1 and T2, respectively. Extending this to N targets, the

target-oriented function for a decision d with the outcome x = (x1, . . . , xn, . . . , xN ) is as follows

Pr(x � T) =
∑

A⊆X

ωA · Pr{n|n∈A}, (33)

where
∑

A ωA = 1. The weight ωA is a linear combination of µB terms (B ⊆ A), with ωA = µA as a special

case. In Eq. (32), for example, ωn = µn for n = 1, 2, but ω1,2 = µ1,2 − µ1 − µ2.
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Assessment of 2N possible µA is usually time-consuming and the mutual dependence among targets

will lead to complexity and inconvenience in real applications. Thus, Bordley and Kirkwood [8] have

applied multi-additive value function to a new product development problem while assuming the mutual

independence and additive preference among targets such that

Pr(x � T) =

N
∑

n=1

µn · Prn. (34)

Since positive or negative dependence among targets could occur in the excellent sample, Tsetlin and

Winkler [37] have considered the interdependence in multi-attribute target-oriented decision model by means

of statistics analysis. They assume targets have some predefined probability distributions (e.g., normal

distribution), and then model the interaction among targets using a function of correlations through an

example. However, even if, in an objective sense the targets are mutually independent (probabilistically

mutually independent), the attributes (targets) are not necessarily considered to be independent from the

DM’s subjective viewpoint. In this regard, traditional analytic methods are inadequate and not applicable

for modeling such complex situations.

4.2. Modeling subjective interdependence among attributes based on fuzzy measure and Choquet integral

The fuzzy measure and Choquet integral (see the appendix part) have been widely applied in MADM

problems. One natural question is that whether we can apply them in MATO decision problems. In the

sequel, we shall provide an axiomatic approach to interdependent MATO decision model.

Proposition 4.1. The DM’s utility function µ in MATO decision model is a fuzzy measure.

Proof. The DM’s utility function µ in MATO decision function in Eq. (33) satisfies the following axioms

of fuzzy measure:

1. boundary, µ∅ = 0 (∅ is the empty set) and µ1,2,...,N = 1;

2. and monotonic, if A1 ⊆ A2, then µA1 ≤ µA2 .

Here, A1 and A2 are two sets of indices {n|In = 1} corresponding to the attributes in I for which the targets

are met. Thus, we can model a DM’s utility function µA over A via the fuzzy measure. 2

Proposition 4.2. The weight information ωA in Eq. (33) acts as the interaction among targets.

Proof. Following Eq. (33), we know that ωn = µn(n = 1, 2) and ω1,2 = 1−µ1−µ2. With three attributes,

Eq. (33) becomes

Pr(x � T) =µ1Pr1 + µ2Pr2 + µ3Pr3+

(µ1,2 − µ1 − µ2)Pr1,2 + (µ1,3 − µ1 − µ3)Pr1,3 + (µ2,3 − µ2 − µ3)Pr2,3+

(1− µ1,2 − µ1,3 − µ2,3 + µ1 + µ2 + µ3)Pr1,2,3
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which implies that

ωn = µn(n = 1, 2, 3),

ωn,l = µn,l − µn − µl(n 6= l, n, l = 1, 2, 3),

ω1,2,3 = 1− µ1,2 − µ1,3 − µ2,3 + µ1 + µ2 + µ3.

Recursively extending this to N attributes, we can have

ωA =
∑

B⊆A

(−1)|A|−|B| · µB , A ⊆ X . (35)

Since µ is a fuzzy measure and Eq. (35) is equivalent to Möbius transform of µ, ωA can be viewed as the

interaction index among targets. 2

Proposition 4.3. The MATO decision function in Eq. (33) is linear with respect to the DM’s utility func-

tion µ.

Proof. Following Propositions 4.1-4.2, the DM’s utility function µ can be expressed in a unique way as

µA =
∑

B⊆A

ωB, A ⊆ X ,

which is equivalent to Eq. (.2) in the appendix. The function Pr(x � T) is linear with respect to the

weight information ωA [36]. Since conversion formulas between µ and ω are linear, we can obtain another

formulation of Eq. (33) as

Pr(x � T) =
∑

A⊆X

µA · fA,

where there exist 2N functions fA. Therefore, multi-attribute target-oriented function Pr(x � T) is linear

with respect to the DM’s utility function µ. 2

As we want to model the mutual dependence among targets from the DM’s subjective viewpoint, we

assume the set of targets are stochastically mutually independent, but mutually dependent from the DM’s

subjective viewpoint. Then, the general target-oriented function, Eq. (33), reduces to the following function:

Pr(x � T) =
∑

A⊆X

ωA ·
∏

n∈A
Prn. (36)

Proposition 4.4. Non-additive MATO decision function can be modeled by the Choquet integral while as-

suming mutually stochastic independence among targets.

Proof. Propositions 4.1-4.3 are necessary conditions for the Choquet integral, but not sufficient conditions.

In fact, the Choquet integral using the Möbius transform in our research context can be expressed by

Pr(x � T) =
∑

A

ωA · infn∈APrn. (37)
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In general, the operation inf can be the minimum operation or product operation, see [30]. Since Eq. (36)

is a special case of Eq. (33), Eq. (36) satisfies Propositions 4.1-4.3. The function in Eq. (36) is nothing else

than the Choquet integral, Eq. (.1), expressed in terms of the Möbius transform. 2

Due to the above propositions, for an outcome vector x = (x1, . . . , xN ) with its associated partial target

achievements Pr = (Pr1, . . . ,PrN ), we are now able to model the interdependence among attributes by

means of fuzzy measure and Choquet integral as follows:

Pr(x � T) =

N
∑

n=1

[Pr(n) − Pr(n−1)] · µA(n)
, (38)

where (·) indicates a permutation of X such that Pr(1) ≤ · · · ≤ Pr(n) ≤ · · · ≤ Pr(N), Pr(0) = 0, and

A(n) = {X(n), . . . , X(N)}.

4.3. Using λ-measure to induce utility values µ

The use of fuzzy measures requires the values for all subsets in X , which is rather unrealistic to assume

that the 2N−2 coefficients can be provided by the DM. Therefore, Sugeno and Terano [34] have incorporated

the λ-additive axiom to reduce the difficulty of collecting information. Such a fuzzy measure is referred to

as λ-measure, which is a special case of fuzzy measures defined iteratively such that

µA∪B = µA + µB + λµA · µB, (39)

where ∀A,B ⊆ X , A ∩B = ∅. The λ-measure has the following properties.

• If λ < 0, then µA∪B < µA + µB, which represents the substitutive effect between A and B.

• If λ = 0, then µA∪B = µA + µB, which represents the additive effect between A and B.

• If λ > 0, then µA∪B > µA + µB, which represents the multiplicative effect between A and B.

Extending this to N attributes, the lambda fuzzy measure can be formulated as follows [28]:

µX =

N
∑

n=1

µn + λ

N−1
∑

n=1

N
∑

l=n+1

µn · µl + · · ·+ λn−1
N
∏

n=1

µn +
1

λ

[

N
∏

n=1

(1 + λµn)− 1

]

,

which can also be denoted as

G(λ) =

N
∏

n=1

(1 + λ · µn)− λ− 1,

where −1 ≤ λ < ∞ and µn is used to denote the fuzzy measure with respect to a singleton attribute set

{Xn}. Since the boundary conditions µX = 1, the parameter λ can be uniquely determined by

λ+ 1 =

N
∏

n=1

(1 + λ · µn) .
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Particularly, we assume the importance weights for the attributes set are given byW = (W1, . . . ,Wn, . . . ,WN )

such that
∑N

n=1 Wn = 1 and Wn ≥ 0. The DM can also provide a λ-value to represent his subjective view-

point. Since
∏N

n=1 (1 + λ · µn) is a convex function of λ, G(λ) is also a convex function [28]. Thus, given a

set of fuzzy measures µn(n = 1, . . . , N) with respect to singleton attribute sets {Xn}(n = 1, . . . , N), there

exists only one λ value.

With the λ-value and original weight vector W, we have proposed a bisection search method to find

µ(X ) = 1, the pseudocode is shown in Fig. 4. This method is used to identify the fuzzy measures with respect

to singleton attribute sets while satisfying µX = 1. Due to the boundary condition of fuzzy measure, we

first normalize the importance weight in order to derive the initial fuzzy measures with respect to singleton

attribute sets such that

µn =
Wn

maxn=1,··· ,N{Wn}
. (40)

Moreover, we define a variable κ ∈ (0, 1] to adjust the derived fuzzy measures µ proportionally. If we can

find a κ value satisfying µX = 1, then the new fuzzy measure with respect to a singleton attribute set is

κ · µn. At the initial step, κ is initialized to be 0.5, the lower and upper variables are set to be lower = 0

and upper = 1, respectively. Using the new fuzzy measures µn ← κ · µn, we then proceed as follows:

• if µX = 1, then κ is the final adjustment parameter;

• if µX > 1, we set upper← κ, κ← (lower+ κ)/2, respectively;

• if µX < 1, we set lower← κ and κ← (κ+ upper)/2, respectively.

The algorithm will proceed iteratively until a parameter κ exists while satisfying µ(X ) = 1. Note that

normalizing the original weight vector in Eq. (40) makes κ ∈ (0, 1]. The case where κ = 1 only exists when

λ = −1. By Eq. (40) we know that there is a fuzzy measure µn∗ = 1 with respect to a singleton attribute

set {Xn∗}. Therefore we have

µX = µn∗ + µA + λµn∗ · µA,

where A ∪Xn∗ = X and A ∩ {Xn∗} = ∅. Since µX = 1, µ > 0, µn∗ = 1, it is easily seen that λ = −1. Also,

the main idea of our algorithm is based on the single solution of λ identification. Fig. 4 shows the binary

search method with a complexity of O(logK).

Example 1. Assume a set of four attributes X = {X1, X2, X3, X4} are of interest, the weigh vector for

that attributes set is W = (0.2, 0.3, 0.1, 0.4), and λ is set to be 1.5, which represents multiplicative effect

among the four attributes. First, we normalize the original weight vector as (0.5, 0.75, 0.25, 1). Second, by

means of the algorithm in Fig. 4, we found it takes 12 iterations to find a κ satisfying µX = 1, as shown in

Table 1. Note that, the parameter κ and µX are after rounding operation in our computer programming.
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Input: Importance weights W and λ value.

Output: A set of fuzzy measures µn(n = 1, . . . , N) with respect to singleton attribute sets {Xn}(n =

1, . . . , N).

1: Normalize weights such that µn = Wn

maxn=1,··· ,N{Wn}
.

2: Initialize lower = 0, κ = 0.5, upper = 1

3: Specify µn ← κ · µn

4: for 2 ≤ n ≤ N do

5: µAn
← µAn−1 + µn + λµAn−1 · µn(n = 2, · · · , N), where An = {X1, X2, · · · , Xn}

6: if µAn
> 1 then

7: upper← κ

8: κ← (lower+ κ)/2

9: go to 3

10: else

11: continue

12: end if

13: end for

14: if µAN
< 1 then

15: lower← κ

16: κ← (κ+ upper)/2

17: go to 3

18: else if µAN
= 1 then

19: µn ← κ · µn

20: end if

21: return µn(n = 1, · · · , N)

Figure 4: A bisection search method to find µX = 1

In summary, with N attributes and N targets, for the partial target achievements Pr = (Pr1, . . . ,PrN )

of an outcome x = (x1, . . . , xN ), we proceed as follows:

• Use λ-fuzzy measure to express the fuzzy measures of each individual attributes group.

1. Specify a λ value.

2. Identify the fuzzy measures of individual attributes group with a given λ value according to the

algorithm in Fig. 4.

• Use Eq. (38) to obtain the overall target achievements by fuzzy measure and Choquet integral.
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Table 1: Iteration list of finding κ while satisfying µX = 1

Iteration times κ µX Iteration times κ µX

Loop 1 0.5 2.3098 Loop 7 0.2734 0.9666

Loop 2 0.25 0.8588 Loop 8 0.2773 0.9851

Loop 3 0.375 1.4979 Loop 9 0.2793 0.9944

Loop 4 0.3125 1.1583 Loop 10 0.2803 0.9991

Loop 5 0.2813 1.0038 Loop 11 0.2808 1.001

Loop 6 0.2656 0.9301 Loop 12 0.2805 1.0

5. An illustrative example–New product development

5.1. Problem descriptions

Over the past decades, the integrated circuit industry has gone through a cycle of birth, explosive growth,

and currently, has moved into a phase of severe competition. A well-known Silicon Valley company, with an

established reputation for producing high quality manufacturing, test, and control equipment, had developed

a technical breakthrough that, they felt, would give them a significant cost advantage in manufacturing test

equipment for very large scale integrated circuits. The company wanted to assess how prospective customers

would evaluate a proposed new tester for very large-scale integrated circuits. To do so, following a review

of the technical literature and several meetings with technical and marketing staff in the company, they

identified four categories of evaluation criteria (technical, economic, software, and vendor support) with a

total of 17 evaluation attributes, as shown in Column 1 of Table 2. Both the within-category weights and

the category weights (which are 0.52, 0.14, 0.32, and 0.02) are showed in the third column of the table, given

by Keeney and Lilien [23] 3. The preference monotonicity for each evaluation attribute is shown in Column

3 of the table, and the performance scores the evaluation attributes are shown in Columns 4− 6 of the table

for the proposed new tester OR 9000 and its two competitors: the J941 and the Sentry 50.

5.2. Previous research

Keeney and Lilien [23] assessed the measurable value function for a lead user at a primary customer

company for this testing equipment. This lead user first assessed a minimum acceptability level and a

maximum desirability level for each evaluation attribute. Keeney and Lilien then confirmed that the user’s

preferences were describable by a weighted additive measurable value function, and they assessed a single

3Instead of using the absolute within-category weights given by Keeney and Lilien [23], we use the relative within-category

weights. However, this does not change the evaluation ranking results since it is a proportional transformation. For example,

the weight of evaluation attribute X11 used by Keeney and Lilien is 15, we use 15/100 to represent the weight information of

attribute X11.
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Table 2: New Product Development: Data

Evaluation attribute Weight Monotonicity
Tester ratings

OR 9000 J941 Sentry 50

Technical X1 0.52

Pin capacity X11 0.15 Increasing 160 96 256

Vector depth X12 0.20 Increasing 0.128 0.256 0.064

Data rate X13 0.10 Increasing 50 20 50

Timing accuracy X14 0.35 Decreasing 1,000 1,000 600

Pin capacitance X15 0.10 Decreasing 55 50 40

Programmable measurement units X16 0.10 Increasing 8 2 4

Economic X2 0.14

Price X21 0.50 Decreasing 1.4 1 2.8

Uptime X22 0.20 Increasing 98 95 95

Delivery time X23 0.30 Decreasing 3 6 6

Software X3 0.32

Software translator X31 0.15 Increasing 90 90 90

Networking: Communications X32 0.20 Increasing 1 1 1

Networking: Open X33 0.20 Increasing 1 0 0

Development time X34 0.30 Decreasing 3 4 4

Data analysis software X35 0.15 Increasing 1 1 1

Vendor support X4 0.02

Vendor service X41 0.30 Decreasing 2 4.75 6

Vendor performance X42 0.30 Decreasing 4 4 4

Customer applications X43 0.40 Increasing 1 1 1

dimensional value function except for the attributes X32, X33, X35, X43, as shown in the third column of

Table 3. For example, the mathematically measurable value function for the evaluation attribute X16

was finally expressed as 1.309[1 − exp(0.1203(4 − x))]. With the weights of attributes in Table 2, the

assessed weighted additive measurable value function was then used to evaluate the OR 9000 against its two

competitors (the J941 and Sentry 50), the results were obtained as

V (Sentry 50) = 0.154 > V (OR 9000) = 0.133 > V (J941) = −0.180,

and served as input to determine that the OR 9000 was competitive enough to J941, but not competitive to

Sentry 50.
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Table 3: New product development: Existing research

Attribute

Keeney and Lilien [23] Bordley and Kirkwood [8]

Value function
Scaled values

Target
Target achievements

OR 9000 J941 Sentry 50 OR 9000 J941 Sentry 50

X1

X11 1.929[1− exp(0.0065(144− x))] 0.191 -0.706 0.998 256 0 0 1

X12 −0.9736E− 09 ∗ [1− exp(6.917(x− 1))] 0.0 0.0 0.0 0.256 0 1 0

X13 −0.3091[1− exp(0.02406(x− 40))] 0.084 -0.118 0.084 50 1 0 1

X14 (500− x)/250 -2.0 -2.0 -0.4 600 0 0 1

X15 (100− x)/70 0.643 0.714 0.85 40 0 0 1

X16 1.309[1− exp(0.1203(4− x))] 0.5 -0.356 0.0 4 1 0 1

X2

X21 2.5− x 1.1 1.5 -0.3 1 0 1 0

X22 (x− 98)/2 0.0 -1.5 -1.5 95 1 1 1

X23 (6− x)/2 1.5 0.0 0.0 6 1 1 1

X3

X31 2.768[1− exp(0.00498(10− x)) 0.91 0.91 0.91 90 1 1 1

X32 Use the original data 1.0 1.0 1.0 1 1 1 1

X33 Use the original data 1.0 0.0 0.0 0 1 1 1

X34 (4− x)/2 0.5 0.0 0.0 4 1 1 1

X35 Use the original data 1.0 1.0 1.0 1 1 1 1

X4

X41 −0.3091[1− exp(0.4811(4− x))] 0.5 -0.094 -0.191 4.75 1 1 0

X42 −0.3091[1− exp(0.4811(4− x))] 0.0 0.0 0.0 4 1 1 1

X43 Use the original data 1.0 1.0 1.0 1 1 1 1

0.133 -0.180 0.154 0.514 0.584 0.820

Overall Value Overall Value

Keeney and Lilien’s approach is a bit complex in practice since users have to build mathematically

rigorous value functions based on attributes. For this decision, it is natural to think in terms of performance

targets because the explicit purpose of the analysis was to determine whether the OR 9000 was attractive

against its two competitors (the J941 and the Sentry 50) or not. Thus, the performance of these two testers
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(the J941 and the Sentry 50) sets targets against which the OR 9000 is judged. Bordley and Kirkwood [8]

used the performance targets to valuate the multi-attribute analysis by specifying a crisp target for each

evaluation attribute with the following functions

Tn = max {xn(J941), xn(Sentry 50)} , for benefit attributes;

Tn = min {xn(J941), xn(Sentry 50)} , for cost attributes.

where xn(·) is used to denote the performance value of a tester (decision alternative) on the evaluation

attribute Xn. The targets of different evaluation attributes are showed in the sixth column of Table 3. The

target achievement function for an attribute with an increasing preference is then defined as

Prn(·) =







1, if xn(·) ≥ Tn;

0, otherwise.

i.e., the more the better; whereas the target achievement function with respect to an attribute with a

decreasing preference has a contrary function, i.e., the less the better. With the performance scores, we

can only obtain binary partial target achievements (0 or 1) of those three testers, as shown in Columns 7-9

of Table 3. For the sake of simplicity, Bordley and Kirkwood also used the weighted additive function to

obtain the overall values without further considering the interdependence among targets. The results were

obtained as

V (Sentry 50) = 0.820 > V (J941) = 0.584 > V (OR 9000) = 0.514,

it is obvious that OR 9000 was not competitive at all against its two competitors (the J941 and the

Sentry 50). Also, the ranking result generated by Bordley and Kirkwood’s approach is inconsistent with

the one by Keeney and Lilien’s approach. However, it may be natural to use Bordley and Kirkwood’s ap-

proach in practice, since it is quite natural for people to consider targets of the testers. Moreover, Bordley

and Kirkwood’s approach is easy of use in practice since users do not need to define/specify the complex

value functions based on attributes.

Target-oriented decision model assumes there exists some uncertainty of the target. In our example,

there is no random uncertainty about the performance targets, therefore Bordley and Kirkwood have de-

fined a crisp target for each evaluation attribute. However, there exists some fuzzy uncertainty about the

performance targets. For example, the performance scores of J941 and Sentry 50 with respect to the

attribute X11 (Pin capacity) are x11(J941) = 96 and x11(Sentry 50) = 256, respectively. Since X11 is a

benefit attribute, Bordley and Kirkwood set 256 as the performance target for attribute X11. Recall that

the performance of these two testers sets targets against which the OR 9000 is judged. If 256 is set to be the

target for X11, how about 96 or other possible values in (96, 256)? This observation leads us to use fuzzy

targets in our illustrative example. In addition, the above two approaches have used the weighted additive

function to obtain a global value function for each tester. As discussed in Section 4, even if, in an objective
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sense the targets are mutually independent (probabilistically mutually independent), the attributes (targets)

are not necessarily considered to be independent from the DM’s subjective viewpoint. In this sense, it may

be natural and convenient to use our model to capture the non-additive behaviors among targets.

5.3. Non-additive multi-attribute fuzzy target-oriented decision analysis

In this section, we shall show how to use our non-additive multi-attribute fuzzy target-oriented deci-

sion model to assess how prospective customers would evaluate a proposed new tester for very large-scale

integrated circuits.

5.3.1. Inclusion of fuzzy targets into the new product development

We first obtain the minimal and maximal values for each attribute according to performance scores of

J941 and Sentry 50 as

tmin
n = min {xn(J941), xn(Sentry 50)} ,

tmax
n = max {xn(J941), xn(Sentry 50)} .

Such functions are based on the idea that the performance of these two testers (the J941 and the Sentry 50)

sets targets against which the OR 9000 is judged. As discussed in Section 3, we can build three types of

possibility distributions for benefit and cost attributes. By assuming that the company is optimism oriented,

we can induce the following fuzzy targets

T optim
n =

(

tmin
n , tmax

n , tmax
n , tmax

n

)

, for benefit attributes;

T optim
n =

(

tmin
n , tmin

n , tmin
n , tmax

n

)

, for cost attributes.

where (·, ·, ·, ·) is used to represent a trapezoidal fuzzy number. Note that if tmin
n = tmax

n , we can only

obtain a crisp target for attribute Xn. In this case, our approach is equivalent to Bordley and Kirkwood’s

approach. The derived fuzzy optimistic targets with respect to the 17 attributes are showed in Column

3 of Table 4. With the performance data of the three testers, we can obtain partial target achievements

for benefit and cost attributes via Eqs. (17)-(18), as shown in Columns 4-6 of Table 4, respectively. There

are three different partial values between our approach and Bordley and Kirkwood’s approach. Taking the

attribute X11 as an example, the crisp target defined by Bordley and Kirkwood is 256. It is clearly that

x11(J941) < x11(OR 9000) < x11(Sentry 50) = 256, thus OR 9000 performs better than J941, but worse

than Sentry 50 regarding X11. However, according to Bordley and Kirkwood’s approach (Table 3), we

know that there is no difference between OR 9000 and J941 regarding the attribute X11.

If the company is neutral or pessimism oriented, we can also build its fuzzy targets as follows:

Benefit attribute Cost attribute

Fuzzy neutral: T neut
n

(

tmin
n , tmin

n , tmax
n , tmax

n

) (

tmin
n , tmin

n , tmax
n , tmax

n

)

Fuzzy pessimistic: T pess
n

(

tmin
n , tmin

n , tmin
n , tmax

n

) (

tmin
n , tmax

n , tmax
n , tmax

n

)
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Table 4: New product development: Fuzzy target-oriented decision analysis

Criteria Attribute Fuzzy optimistic target: T optim
n

Target achievements

OR 9000 J941 Sentry 50

X1

X11 (96, 256, 256) 0.16 0 1

X12 (0.064, 0.256, 0.256) 0.1111 1 0

X13 (20, 50, 50) 1 0 1

X14 (600, 600, 1000) 0 0 1

X15 (40, 40, 50) 0 0 1

X16 (2, 4, 4) 1 0 1

X2

X21 (1, 1, 2.8) 0.6049 1 0

X22 95 1 1 1

X23 6 1 1 1

X3

X31 90 1 1 1

X32 1 1 1 1

X33 0 1 1 1

X34 4 1 1 1

X35 1 1 1 1

X4

X41 (4.75, 4.75, 6) 1 1 0

X42 4 1 1 1

X43 1 1 1 1

Since the partial target achievements of J941 and Sentry 50 are either 1 or 0, we only consider OR 9000.

Also, the performance scores of the OR 9000 are either outside the target range or the targets are crisp

values except for the three attributes X11, X12, X21, thus for the fuzzy neutral and fuzzy pessimistic targets

we only list the target achievements of OR 9000 with respect to these three attributes as follows:

Prneut11 (OR 9000) = 0.40, Prneut12 (OR 9000) = 0.3333, Prneut21 (OR 9000) = 0.7778;

Prpess11 (OR 9000) = 0.64, Prpess12 (OR 9000) = 0.5556, Prpess21 (OR 9000) = 0.9506.

It is obvious that different attitudes will lead to different target achievements with respect to X11, X12, X21.

5.3.2. Non-additive aggregation

We now consider the non-additive aggregation by means of fuzzy measure and Choquet integral. The

weight vector for the 17 attributes in Column 2 of Table 2 is first normalized into initial fuzzy measures

with respect to singleton attribute sets via Eq. (40). Given a λ value, we can find the adjustment parameter
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Figure 5: Values of the adjustment parameter κ with respect to different λ values

κ satisfying µX = 1 and derive the fuzzy measures with respect to singleton attribute sets under λ. The

λ-additive axiom in Eq. (39) is then used to induce the fuzzy measures with respect to different attribute

sets. The research sets the λ value ranging from -1 to 20. Also we know that

• if −1 ≤ λ < 0, there are substitutive effects among the attributes (targets);

• if λ = 0, there is no interdependence among the attributes (targets);

• if 0 < λ ≤ 20, there is multiplicative effects among the attributes (targets).

Fig. 5 shows the values of the adjustment parameter κ with respect to different lambda values ranging from

-1 to 20.

For example, we assume λ is set to be -0.5, which means that the company prefers substitutive effect

among the attributes. According to the algorithm in Fig. 4, the adjustment parameter is κ = 0.2447, and

the final fuzzy measures with respect to the singleton attribute sets are shown as follows:

X1 : µ11 = 0.1049, µ12 = 0.1398, µ13 = 0.0699, µ14 = 0.2447, µ15 = 0.0699, µ16 = 0.0699

X2 : µ21 = 0.0941, µ22 = 0.0376, µ23 = 0.0565

X3 : µ31 = 0.0645, µ32 = 0.086, µ33 = 0.086, µ34 = 0.1291, µ35 = 0.0645

X4 : µ41 = 0.0081, µ42 = 0.0081, µ43 = 0.0108.
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The fuzzy measure on attributes set {X11, X12} is induced as

µ{X11,X12} = µ11 + µ12 − 0.5µ11µ12 = 0.2374.

Recursively using the λ-additive axiom, we are able to induce the fuzzy measures on different attributes

set. If the company is fuzzy optimism oriented, we can obtain the global target achievements via Choquet

integral as

V (Sentry 50) = 0.8672 > V (J941) = 0.6621 > V (OR 9000) = 0.6553,

which is consistent with Bordley and Kirkwood’s result that OR 9000 was not competitive at all against its

two competitors (the J941 and the Sentry 50).

Since individual target achievements of J941 and Sentry 50 are either 1 or 0 regardless of the company’s

attitude, we plot the global target achievements of OR 9000 with different attitude targets (fuzzy optimistic,

fuzzy neutral, and fuzzy pessimistic targets) and the ones of J941 and Sentry 50 in one figure. Also, since

the λ value is not symmetric, we divide λ values into two domains: [−1, 0] and [0, 20]. Fig. 6 shows the

non-additive aggregation results with respect to fuzzy optimistic, fuzzy neutral, and fuzzy pessimist targets,

with λ values ranging from -1 to 20. Looking at Fig. 6, it is known that the global target achievements of

Sentry 50 and J941 remain the same regardless of the company’s attitudes, under a given lambda value.

In addition, when the compony is optimism oriented, the global target achievement of OR 9000 is indexed

by OR 9000 (Optimistic target), in which the ranking of the three testers has three cases:

• when −1 ≤ λ < λ1 ≈ 0.9, the ranking is Sentry 50 ≻ J941 ≻ OR 9000;

• when λ = 0.9, the ranking is Sentry 50 ≻ J941 ∼ OR 9000;

• when 0.9 < λ ≤ 20, the ranking is Sentry 50 ≻ OR 9000 ≻ J941.

which indicates that OR 9000 is not competitive enough to the market. In addition, when the company is

neutral or pessimism oriented, we always obtain the ranking as Sentry 50 ≻ OR 9000 ≻ J941, which is

consistent with Keeney and Lilien’s ranking.

5.3.3. Changing performance score of OR 9000 on attribute X14

The original performance scores on X14 of the three testers are x14(OR 9000) = 1000, x14(J941) =

1000, x14(Sentry 50) = 600, respectively. We now consider a variation by replacing the performance score

1000 of OR 9000 on X14 with 850. Using Keeney and Lilien’s approach, the final ranking is

V (OR 9000) = 0.243 > V (Sentry 50) = 0.154 > V (J941) = −0.180,

which indicates that OR 9000 is competitive enough to its two competitors. The main reason is that the

varied score of x14(OR 9000) has a higher scaled value and X14 is the most important attribute among the

17 ones.
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Figure 6: Aggregation values of three testers with different targets and λ values

However, by using Bordley and Kirkwood’s approach, the final ranking is still V (Sentry 50) = 0.820 >

V (J941) = 0.584 > V (OR 9000) = 0.514, which is quite inconsistent with Keeney and Lilien’s approach. The

main reason is that the evaluation attribute X14 is a cost attribute and 850 > 600, the target achievement

of OR 9000 on X14 is 0 by Bordley and Kirkwood’s approach, which is the same as the result by the original

performance score.

Using our model, if we assume the company is pessimism oriented, we will obtain target achievement

as Prpess14 (OR 9000) = 0.609. Since x14(Sentry 50) < 850 < x14(J941), and Sentry 50, J941 set the

performance targets, OR 9000 should be better than J941 but worse than Sentry 50 regarding X14. The

non-additive aggregation results with respect to different λ values are shown in Fig. 6, indexed by OR 9000

(x14(OR 9000) = 850 and pessimistic target). It is clearly seen that

• when −1 ≤ λ < 2.5, Sentry 50 ≻ OR 9000 ≻ J941;

• when λ = 2.5, the ranking is Sentry 50 ∼ OR 9000 ≻ J941;

• when λ > 2.5, the ranking is OR 9000 ≻ Sentry 50 ≻ J941.

Thus, if the company prefers strong multiplicative effects among targets, OR 9000 is competitive enough

against the market.
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5.4. Summary

Keeney and Lilien’s multi-attribute value analysis is a bit complex is practice since the users have to

build their mathematically rigorous value functions based on attributes, which is a quite difficult task. Such

a task may create an obstacle for users in company to use multi-attribute analysis in the new product

development problem. Since the explicit purpose of the analysis was to determine whether the OR 9000

was attractive against its two competitors (the J941 and the Sentry 50) or not, the performance of these

two testers (the J941 and the Sentry 50) sets targets against which the OR 9000 is judged. It becomes

natural to think of targets in this example. There is no random uncertainty about the performance targets,

therefore Bordley and Kirkwood have defined a crisp target for each evaluation attribute. However, there

exists some fuzzy uncertainty about the performance targets, which is a critical drawback of Bordley and

Kirkwood’s approach. As illustrated in Section 5.3, on one hand, our model can reduce the burden of

defining mathematically rigorous value functions based on attributes; on the other hand, it can capture the

fuzzy uncertainties of targets as well as represent different decision attitudes of the company.

Furthermore, both Keeney and Lilien [23] and Bordley and Kirkwood [8] used the multi-additive value

function without further considering the mutual dependence among targets. However, they are not neces-

sarily considered to be independent from the company’s subjective viewpoint. The λ-fuzzy measure and

Choquet integral are used to model non-additive multi-attribute target-oriented function in our research.

As illustrated in Section 5.3, our model provides a way to model the mutually dependence among target-

s/attributes from company’s subjective viewpoint.

6. Concluding remarks and future work

In this paper, we have first extended the basic (random) target-oriented decision model to involve three

types of targets. In order to allow the DM to specify imprecise aspiration levels, fuzzy target-oriented

decision analysis has been then formulated to model three types of fuzzy targets: fuzzy min, fuzzy max,

and fuzzy equal. Also, different attitudes have been used to derive target achievement functions. Our fuzzy

target-oriented model also provides some relationships with the GP and FGP models such that the derived

target achievement functions can be viewed as a support for “probability as psychological distance” proposed

by [35]. The Bellman-Zadeh paradigm [5] based fuzzy decision making utilizes the membership function as

“a kind of utilities”, in which the rules governing operations are fairly specific. Our approach allows the

DM to model the target achievements with virtually no constraints (other than monotonicity), in which

the membership functions of fuzzy sets are interpreted as possibility distributions. Finally, we have shown

a similar structure between MATO decision model and non-additive Choquet integral. Thus, the fuzzy

measure can be used to induce the possible combinations of indices of meeting targets and fuzzy integral
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is used to model the non-additive multi-attribute target-oriented model. Particularly, λ fuzzy measure is

applied to reduce the difficulty of collecting information via a designed bisection search algorithm.
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Discrete fuzzy measure and Choquet integral

Given a finite attributes set X , the power set P(X ) is a class of all of the subsets of X . The discrete

fuzzy measure4 is defined as follows [33]:

Definition 1. A discrete fuzzy measure on X is a set function µ : P(X ) → [0, 1] satisfying the following

conditions:

• Axiom 1: boundary conditions, µ∅ = 0 (∅ is the empty set) and µX = 1;

• Axiom 2: monotonic, if A ⊆ B, then µA ≤ µB, ∀A,B ∈ P(X ).

For each subset of the attributes A ⊆ X , µA can then be interpreted as the weight or the importance of

the coalition A. The monotonicity of µ means that the weight of a subset of the attributes can only increase

when one adds new attributes to it. For all A,B ⊆ X , A ∩B = ∅, the discrete fuzzy measure is further said

to be [30]:

1. additive whenever µA∪B = µA + µB;

2. multiplicative whenever µA∪B > µA + µB ;

3. substitutive whenever µA∪B < µA + µB.

When using a fuzzy measure to model the importance of each subset of attributes, a suitable aggregation

operator is the discrete Choquet integral [16], which is defined as follows [30]:

4Fuzzy measure can be continuous and discrete.
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Definition 2. Let µ be a discrete fuzzy measure on X and h be a positive real-valued function from X to

[0, 1], where X is a finite attributes set. The Choquet integral Cµ of h with respect to µ (in the discrete

case), is defined by

Cµ(h) =

N
∑

n=1

h(X(n)) ·
[

µA(n)
− µA(n+1)

]

=
N
∑

n=1

µA(n)
·
[

h(X(n))− h(X(n−1))
]

,

(.1)

where (·) indicates a permutation of X such that h(X(1)) ≤ · · · ≤ h(X(n)) ≤ · · · ≤ h(X(N)). Also A(n+1) = ∅,

h(X(0)) = 0, and A(n) = {X(n), . . . , X(N)}.

Any fuzzy measure µ on X can uniquely be expressed in terms of its Möbius representation [30] by

µ(A) =
∑

B⊆A

aµ(B), ∀A ⊆ X , (.2)

where the set function aµ is called the Möbius transform or Möbius representation of µ and is given by

aµ(A) =
∑

B⊆A

(−1)|A|−|B|µ(B), ∀A ⊆ X . (.3)

aµ(A) can be interpreted as the interaction index of the attributes in the subset A [30].
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