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Abstract—Feedback data loss can severely degrade the overall 
system performance and as well as it can affect the control and 
computation of the Cyber-physical System (CPS). Therefore, 
incomplete feedback makes a great challenge in any uncertain 
condition to maintain the real-time control of the CPS. In this 
paper, we propose a data recovery scheme, called Efficient 
Spatial Data Recovery (ESDR) scheme for CPS to minimize the 
error estimation and maximize the accuracy of the scheme. In 
this scheme, we also present an algorithm with Pearson 
Correlation Coefficient (PCC) to efficiently solve the long 
consecutive missing data. Numerical results reveal that the 
proposed ESDR scheme outperforms both WP and STI 
algorithms regardless of the increment percentage of missing 
data in terms of the root mean square error, mean absolute error 
and integral of absolute error. 

Keywords—data recovery scheme, spatial correlation, pearson 
correlation coefficient, cyber-physical system 

I. INTRODUCTION 

Cyber-physical system (CPS) is a new generation of 
communication, control, and computation that has received a 
great deal of attention recently [1]. CPS enables the virtual 
world to interact with the physical world in order to monitor 
and control the intended parameter in real-time basis. In CPS, 
technologies such as communication, control, computation,  
cognition and sensing converge to create new technologies for 
smarter society. The area of CPS represents the intersection of 
several systems trends, such as real-time embedded system, 
distributed systems, control system and networked wireless 
system. 

To facilitate communications between cyber and the 
physical world, wireless sensor network (WSN) or more 
appropriate wireless sensor and actuator network (WSAN) is 
an essential ingredient of CPS. Traditional WSN is limited in 
their ability to monitor the physical world [2]. However, CPS 
achieves this requirement by facilitating the system to sense, 
interact and change the physical world in real-time by using 
feedback control loop. Fig. 1 shows the general block diagram 
of CPS. Since CPS uses WSNs to obtain the feedback 
measurement from sensors; it faces the wireless contention 
problem which makes the challenging issue to control in real-
time. Wireless channels have many adverse properties like 
pathloss, fading, adjacent channel interference, node/link 
failure, etc. Besides these, wireless signal can be easily 
affected by noise, physical obstacles, node movement, 

environmental change and so on [3]. Because of this 
unpredictable and dynamic nature, the sensing data loss is a 
common phenomenon, which makes hamper in controlling 
decision. Since, the applicability of CPS is found in numerous 
time-critical applications including smart house to smart grid, 
data loss makes the system unstable. Emerging applications of 
CPS include medical devices and systems, aerospace systems, 
transportation vehicles and intelligent highways, defense 
systems, robotic systems, process control, factory automation, 
building and environmental control, smart spaces, intelligent 
home and so on [4]. In all of these applications, CPS has to 
monitor and control the state of physical phenomenon in real- 
time. In particular, for time critical applications, feedback data 
must have to arrive on time, to make decision. In this case, 
retransmission cannot provide any solution because of delay. 
Thus for uninterrupted control, we need a data recovery 
scheme that can handle insufficient feedback control 
information. In this paper, our aim is to propose an highly 
Efficient Spatial Data Recovery (ESDR) scheme that deals 
with CPS. To do this, we design a framework structure for the 
control view of the CPS with our data recovery scheme. The 
designed framework incorporates the proposed ESDR scheme, 
which is based on the spatial correlation of neighboring 
sensors by using the Pearson correlation coefficient (PCC). 
One of our contributions is that the proposed ESDR scheme 
ensures timely data recovery because of minimum 
computation. Second, our proposed ESDR scheme is used to 
examine the smart home environment with CPS approach in 
order to maintain desired room temperature at different 
locations. Thus, the feedback measured room temperature is 
very important to keep the desired room temperature steadily 
at all the times. 
 

 
Fig. 1. General control view of cyber-physical system. 
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The rest of the paper is organized as follows. Section II 
summarizes some state-of-the-art research works that is related 
to this paper. In Section III, the proposed ESDR scheme with 
its algorithm is presented. We describe the experimental 
scenario and the evaluation parameters in Section IV. 
Simulation results and discussions are presented in Section V. 
Section VI concludes with conclusion and future works. 

II. RELATED WORK 

Missing data recovery is a part of most research and there 
exist several methods to handle this. Although there exists 
several methods, but the recovery of data loss for CPS still 
poses an open problem because of its unique requirement. The 
whole recovery process for CPS must be held in real-time and 
invisible to the outside world. 

Missing data is a well-studied subject in statistics. Little 
and Rubin provide an introduction to statistical missing data 
imputation techniques, such as Least Squares Estimates, 
Bartlett’s ANCOVA and likelihood-based approaches in [5]. 
Maximum Likelihood (ML), Multiple Imputation (MI) and 
Expectation Maximization (EM) are widely used method for 
missing data imputation. ML [6] calculates the likelihood 
function for given set of data, which is a hypothetical 
probability that uses past event with known outcome. Then, by 
using iterative steps, ML makes the likelihood function 
maximum. EM [7] also uses iterative step to maximize the 
likelihood function but here, model depends on unobserved or 
latent variables. Based on mean and covariance matrix of 
multivariate normal distribution, expectation (E) step initializes 
the expected values for latent variables. Maximization (M) step 
plugs the expected values into the log-likelihood function and 
maximizes the log-likelihood function by repeating the E and 
M steps. However initialization step directly impact the 
performance of EM based imputation. On the other hand, in MI 
[8], missing data are filled by m different times to generate m 
complete data sets. Generated m data sets are analyzed by 
standard procedure and then combined for inference. But these 
well known techniques for missing data imputation are not 
suitable for WSNs, due to their high space and/or time 
complexities. 

Imputation methods based on machine learning are 
sophisticated procedures that use a predictive model to 
estimate values. These approaches model the missing data 
estimation based on information available in the data set. If the 
observed data contain useful information then, imputation 
procedure maintains high precision [9]. Multi-layer Perceptron 
(MLP), Self Organizing Map (SOM), k-Nearest Neighbors (k-
NN) are examples of imputation techniques based on learning. 
MLP is multi-layer computational unit which is connected by 
feed-forward way. It estimates the missing data by training an 
MLP to learn incomplete data by using complete data [10]. On 
the other hand, in SOM, a set of nodes is organized in 2D grid, 
where each node has a specific position and weight. The 
weight is initialized by iterative training steps, and then it is 
used to estimate missing data [11]. Both of this methods 
require all data to trained and estimate the missing value. But 
in k-NN [12], to impute missing data, only k nearest 
neighbor’s data is considered. These techniques are used in 

WSN to impute data but for real time CPS, these are not 
suitable. 

Compressed sensing (CS) [13] is widely used scheme for 
signal processing to acquire and reconstruct a signal, based on 
underdetermined linear systems. This takes advantage of the 
signal’s sparseness or compressibility in some domain, 
allowing the entire signal to be determined from relatively few 
measurements. The main difference between the missing data 
recovery problem and the conventional CS is that in the 
conventional CS, the sampling scheme can be determined by 
the users, and usually random linear projections are preferred, 
while in the missing data recovery problem the sampling 
matrix cannot be controlled by the user since it is determined 
by the missing events, e.g., locations of missing nodes in the 
network which is completely uncertain [14]. 

Guo, et al. [15] design an algorithm considering spatial-
temporal correlations of sensor nodes, which is more suitable 
with WSNs due to nature of WSNs. Their algorithm first 
checks if a neighbor sensor node is within the missing sensor’s 
sensing range. Then the observation from the neighbor is used 
for filling in the missing values. This generates a spatially 
correlated replacement. If there are multiple neighbors within 
the sensor’s range and they do not have the same readings, the 
majority reading is chosen. But in real life, there is no 
guarantee that all the sensors within one hop neighbor are 
spatially and temporally correlated. 

In the existing literature, there are other two ways to 
investigate the spatial correlation for missing data recovery, 
which is inverse distance weighted averaging (IDWA) [16] 
and Kriging [17]. The IDWA, which is relatively fast and easy 
to compute, is one of the most widely used methods for 
computing spatial interpolation [16]. Assuming the spatial 
correlation in adjacent sensors is uniform, IDWA tries to 
estimate the values of missing data in the form of some linear 
combination of neighboring sensor’s data. The weights for the 
linear combination only depend on the distance between the 
sensors. The weight is higher for the sensor which is situated 
in large distance compare to the close one. Thus, IDWA will 
work well if the values of missing sensors are expected to be 
similar to values of the neighboring sensors. However, this 
assumption affects the estimation accuracy in many practical 
situations, where a physical phenomenon varies rather than 
uniformly increasing or decreasing in magnitude. The 
averaging process in IDWA has the tendency to smoothen the 
data, which is not suitable for the situation when data change 
fast in the area of interest. 

Kriging is another way to estimate the missing samples 
using the combination of available measurements. It defines a 
semi-variogram by calculating the spatial correlation between 
sensors. From the semi variogram, the weight for the linear 
combination is determined. As a result, these weights vary 
spatially and depend on the correlation [17]. Assuming the 
historical variogram is known and can approximately 
represent the current variogram, missing samples are 
estimated based on the historical variogram function. However, 
the spatial interpolation may not be right if the semi-variogram 
varies a lot in the temporal dimension [14]. 



Besides these, many researchers combine Genetic 
Algorithm (GA) with Artificial Neural Network (ANN) [18], 
GA with Bayes algorithm [9] and many more to estimate the 
missing value. 

Xia, et al. [19] first propose a solution for CPS over 
WSANs to cope with packet loss. They illustrate three 
prediction algorithms and show a comparison between them. 
First algorithm based on the assumption that the state of the 
physical system does not change during the last sampling 
period. So, previous sample is used to replace the missing 
value. The second algorithm computes a moving average of 
the previous m samples to restore the lost data. Thus it treats 
every previous measurement equally. In third algorithm 
weighted average of all previous samples is taken to replace 
the missing one. Simulation result shows that third algorithm 
works well compared with others. 

Choi, et al. [20] exploit an Exponentially Weighted 
Moving Average (EWMA) based value estimation algorithm 
to reduce the impact of packet. When some packets are 
randomly dropped in wireless network environment, the 
EWMA algorithm filters an abrupt increase or decrease by 
exponentially smoothing commands or data based on the past 
value profile. 

III. EFFICIENT SPATIAL DATA RECOVERY SCHEME 

In this section, we propose a data recovery scheme for CPS, 
called efficient spatial data recovery (ESDR) scheme. Before 
we propose this scheme, we identify the nature of missing data. 
There are three types of missing data [7]; missing not at 
random (MNAR), missing at random (MAR), and missing 
completely at random (MCAR). In MNAR, the data are 
missing because of its own observation data. In MAR, the data 
are missing because of the data is depending on other variables. 
In MCAR, the data are missing because of unpredictable 
circumstances, e.g., the sending packet of a sensor is loss due 
to the radio link quality is poor. In this research, we design that 
our ESDR scheme is to mitigate the problem of MCAR. Fig. 2 
shows that the control view of CPS with our proposed ESDR 
scheme. 

 
Fig. 2. Proposed data recovery scheme for control view of CPS. 

 

To deploy our proposed ESDR scheme, we propose a 
flowchart with the ESDR scheme for CPS as depicted in Fig. 3. 
The following assumptions have been considered. First, the 
estimated data can be computed in a short time. Second, the 
historical dataset is available to perform the ESDR scheme. 
Third, the error offset of the measured data and estimated data 
is initially computed and known. Fourth, the maximum number 

of consecutive missing data (C) is fixed at initialization stage. 
prior set. The parameter C is also used for terminating the 
entire system to indicate the estimated data cannot be produced 
anymore because of the long consecutive missing data. 

In the flowchart, the ESDR scheme will compute the 
estimated data when there is an input measured data from the 
sensors. When there is no missing data, the data offset error is 
computed and the measured data is used as a feedback data. 
When there is a missing data, the consecutive missing data is 
evaluated and the estimated data is used as a feedback data. 

 

 
Fig. 3. Proposed flowchart with ESDR scheme for CPS. 

 

As far as we are concerned, most of the spatial correlation 
for data recovery scheme is focusing on the data correlation 
that based on the difference between the nearest neighbor. In 
our ESDR scheme, we consider the most spatial correlation 
among the neighboring sensors based on the Pearson 
correlation coefficient (PCC) [22]. In PCC, if an environment 
is highly correlated in space, then the spatial information can 
be used to estimate missing data and the estimation function 
can achieve a high accuracy. PCC is a common measure of the 
linear correlation between two random variables i and j. It 
reflects the degree of association between two variables. 
Therefore, the PCC (ρ) in between two random variables i and j 
can be computed as follows 
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where W is the window size of the sample dataset. 

Table I shows the association degree of the ρ. The range 
from -1.0 to 1.0 shows that the ρ has a degree of correlation. 
The negative value of ρ indicates the negative linear 
relationship, whereas the positive value of ρ indicates the 
positive linear relationship. 
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TABLE I.  CORRELATION DEGREE OF PEARSON CORRELATION COEFFICIENT 

No Correlation 
0.1 > ρ > -0.1 and 

1.0 > ρ and ρ < -1.0 

Correlation 
Degree 

Small 
0.1 ≤ ρ < 0.3 and  
-0.1 ≥ ρ > -0.3 

Medium 
0.3 ≤ ρ ≤ 0.5 and  

-0.3 ≥ ρ ≥ -0.5 

Large 
0.5 < ρ ≤ 1.0 and 

-0.5 > ρ ≥ -1.0 
Note: ρ is a correlation coefficient value. 

 

Fig. 4 describes the ESDR algorithm, which is used to 
produce an estimated data from time to time. In this algorithm, 
we assume that the threshold value of estimation counter (cth) is 
used to optimize the estimation function of the algorithm. Once 
the ESDR algorithm cannot use the PCC, we recommend that 
the estimated data is produced based on the nearest neighbor 
data. When the number of estimation counter for the 
corresponding of sensor k (ck) is above the threshold value, the 
new corresponding of sensor will be computed again. To 
maintain high accuracy in estimation, we select the value of ρ 
is in between 0.5 to 1.0. 

Algorithm: Efficient Spatial Data Recovery (ESDR) 

1: if ck = 0 then 
2:  for each input sensor di do 
3:  for all sensors dj within one-hop neighbor of di do
4:  Compute ρij with the specified window size, W
5:  if 0.5 < |ρij| ≤ 1.0 then 
6:  k ← argmax{|ρij|}; ck ← 1 
7:  end if 
8:  end for 
9:  end for 
10: else if ck > cth then 
11:  ck ← 0 
12: else 
13:  Compute ρik with the specified window size, W 
14:  if 0.5 < |ρik| ≤ 1.0 then 
15:  de(t) ← di(t) = dk(t) + [di(t‒1) ‒ dk(t‒1)] 
16:  else 
17:  k ← argmin{distanceij} 
18:  de(t) ← di(t) = dk(t) + [di(t‒1) ‒ dk(t‒1)] 
19:  ck ← ck + 1 
20:  end if 
21: end if 
 
Fig. 4. Pseudo code for ESDR algorithm. 

 

IV. NUMERICAL STUDIES 

In this section, we conduct the simulation studies to 
evaluate our proposed ESDR scheme compared to the 
weighted prediction (WP) algorithm [19] and the spatial 
temporal imputation (STI) approach [15]. First, we conduct an 
experiment of WSN with four sensors and one base station as 
illustrated in Fig. 5. In this experiment, all the sensors forward 
their data to reach the base station in single radio hop through 
the simplest spanning tree topology routing protocol. We 

assign that all the sensors transmit their sensed temperature in 
every five seconds. We collect the information for one hour. 
We also ensure that all the sensors and the base station are 
located at the same height without any obstacle or object is 
placed in between them when the experiment is conducted in 
the indoor environment. 

Based on the collected information from the experiment, 
we investigate the performance of our proposed scheme using a 
MATLAB. In this simulation, we assume that the Sensor_2 
produces a missing sensed data when it transmits its packet to 
the base station. We randomly delete the data according to the 
percentage of missing data from the original set and recover 
them using the aforementioned data recovery algorithms. We 
use the Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE) and Integral of Absolute Error (IAE) to evaluate 
the performance of the said algorithms. 

 
Fig. 5. Network topology of the WSN experiment for room temperature 
control in the smart home environment. 

 

The RMSE is a frequently used measure of the difference 
between values estimated by an algorithm and the values 
actually measured from the real environment. The RMSE of 
an algorithm estimation with respect to the estimated value, de 
is defined as the square root of the mean squared error as 
written as 
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where dm is original measured value. 

The MAE is another statistical measurement that used to 
measure how close the estimated values are to the measured 
values. The MAE is given by 
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The MAE measures the average magnitude of the errors in a 
data set, without considering their direction. It is also an 
average of the absolute error, e = |de − dm|. In other words, it 
measures the accuracy for the continuous variables. The MAE 
and the RMSE can be used together to analyze the variation in 
the errors of the dataset. The RMSE will always be larger or 
equal to the MAE. The greater difference between them, the 
greater the variance in the individual errors in the sample [23]. 
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If the RMSE is equal to the MAE, then all the errors are the 
same magnitude. In [23], Wilmott, et al. indicate that the MAE 
is the most natural and unambiguous measure of average error 
magnitude. 

On the other hand, the IAE is a widely used performance 
metric in control community, which is recorded to measure the 
performance of the control application. The IAE is calculated 
as follows 

  
t

me dttdtdIAE
0

)()(  (4)

where, t denotes total simulation time. In general, the larger 
the IAE values imply the worse the performance of the control 
algorithm. 

 

V. SIMULATION RESULTS AND DISCUSSIONS 

In this section, we present our simulation results and make 
some discussions on the performance of algorithms. The aim of 
this simulation is to examine the potential of the proposed 
ESDR scheme in coping with the data missing for the CPS 
application. In our ESDR scheme, we measure the PCC in 
between the sensors from time to time by specified the window 
size (W) is ten data samples. We use the most correlated value 
of ρ to recover the missing data of Sensor_2. We realize that 
not all the sensors within one-hop neighbor are spatially 
correlated with each other. In our simulation, we investigate the 
impact of increasing percentage of missing data on the data 
recovery algorithm performance. The percentage of missing 
data is varied from 30% to 60% in steps of 10%. 

Fig. 6 depicts the RMSE comparison among three data 
recovery algorithms. As the percentage of data missing 
increases, the proposed algorithm always shows better 
performance that is compared to the existing two algorithms. 
At the 40% data missing, the proposed ESDR scheme 
performs slightly better than the WP algorithm. At the 60% 
data missing, the proposed ESDR scheme reduces almost half 
of the RMSE than the WP algorithm. The reason for this 
dramatic improvement is because the WP algorithm cannot 
cope with the long consecutive missing data. Through this 
simulation, we can observe that this problem also can be found 
at the STI algorithm. 

 
Fig. 6. The comparison of RMSE of all the data recovery algorithms as the 
percentage of missing data changes from 30% to 60%. 

 

The MAE comparison among three data recovery 
algorithms is shown in Fig. 7. We can see that the proposed 
ESDR scheme outperforms the WP algorithm and the STI 
algorithm. Besides that, the proposed ESDR scheme can 
steadily maintain a small value of MAE regardless of the 
increment of missing data. This also means that the distance 
between the real measured data and estimated data of the 
proposed ESDR scheme is always stable. As a result, the 
proposed ESDR scheme can estimate a better value to recover 
the missing data. Simulation results reveal that the average 
MAE of the proposed ESDR scheme is about two times 
smaller than the WP algorithm and the STI algorithm. 

 
Fig. 7. The comparison of MAE of all the data recovery algorithms as the 
percentage of missing data changes from 30% to 60%. 

 

In Fig. 8, the accumulated IAE comparison of all the data 
recovery algorithms is plotted. The simulation results 
demonstrate that the proposed ESDR scheme outperforms the 
WP algorithm and the STI algorithm. This is because of the 
error of the estimation function in the proposed ESDR scheme 
is minimized by using the PCC approach. The IAE values of 
the proposed ESDR scheme are 2.4 and 5.3 at the 30% and the 
60% data missing, respectively. The average IAE of the WP 
and STI algorithms is about 3.5 times larger than the proposed 
ESDR scheme. 

 
Fig. 8. The accumulated IAE comparison of all the data recovery algorithms as 
the percentage of missing data changes from 30% to 60%. 
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VI. CONCLUSION 

In this paper, we have presented new data recovery scheme, 
called ESDR scheme to ensure a very low error in estimating 
the missing data. In this research work, we also identified that 
the nearest one-hop neighbor sensor is not always spatially 
correlated with the missing input sensor. Our simulation results 
reveals that the proposed ESDR scheme is very beneficial and 
outperforms the WP and STI algorithms regardless of the 
increment of missing data. At the preliminary stage, our 
research works are very encouraging and we will focus on 
finding the fine-tuned of window size (W). Further research is 
required to investigate a proper estimator with a good 
estimation algorithm and develop an refinement scheme for the 
offset error to improve the accuracy of the proposed ESDR 
scheme. Besides that, a future work will focus on examining 
the real-time missing data using the proposed ESDR scheme. 
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