JAIST Repository

https://dspace.jaist.ac.jp/

Title godooooooodouoooooooouoon
gooooogo
Author(s) a, o0
Citation
Issue Date 2013-12
Type Thesis or Dissertation
Text version ETD
URL http://hdl . handle.net/ 101009/ 11933
Rights
Description Supervisor: Defago Xavier, ooooooo, [

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

K 4 B PR

o oo OB L (ERET)
oA i F 5 HEE 290 5
PR HE AR R4 12 A 20 H

Studies on Architecture Refactoring for Software Product-Line

o X & H Development
(a7 oA VERIIBTLZT—%T 7 Fx)V 77 7 2 T DY)

R G S = = =% A A L e i & Bl =Sy S R s TN S TN S G

WK TE—RE [Hit

HA FIR [HEHIZ

ISR <1 FLfi R Atz

g R [Atz
MXDABTDEE

In recent years, it has become increasingly important to maintain architecture in
product-line development (PLD), mainly because of the rapid changes in market
requirements and technical environments. In PLD, architecture maintenance is a more
complicated and difficult process compared to conventional software development because
architecture is key to achieve large-scale reuse in developing a product family. In
architecture maintenance, we have to consider both the reference and implemented
architectures. Here, reference architecture is a design intention that constraints the
implementation, and implemented architecture is an abstract expression of the existing
implementation.

Architecture maintenance includes both keeping the conformance of implemented
software architecture with the reference architecture and changing the reference
architecture to meet new requirements. These architecture changes are modifications of
software structure without changing the major feature of the product family. Thus, we call
such modifications architecture refactoring.

In PLD, requirements for reference architecture can change during the development of the
product family because the development period lasts longer than that in non-PLD. Moreover,
the implemented architecture can deteriorate over the development of multiple products.
Therefore, we can organize architecture refactoring more efficiently by separately
considering the implemented and reference architectures refactorings. In this study, we
propose a decision taking method for architecture refactoring that considers both the

implemented and reference architectures separately.

The main characteristic of this method is utilizing the portfolio analysis of the problem
factor to organize the architecture maintenance strategy. Furthermore, we verified the
effectiveness of the proposed method by applying actual project data to the proposed method

retroactively.

BXEBEORKREOES

IAERLL L7 -SRI O Y 7 b U = T & R EOE O LR D IRRAY R AR 247 - TBH
W3 H7nL s T A VEBPLD)NEERTHIAEY 2ob D, T 9 LIz KRB 2RI

ZRBWTIE, B 7 "N =TT =X T 7 F v BRET D BRI FHRHEED
BAFECTE H D72 DI & 72 508, FEFORRE & & bITkkx B TT —%7 7 F v 234
NTOLSEENBET ST, ML RS> T\, 29 LERNET —F7 7 F v 2 dET
DFEITHAFERIRIC B L KT L a X IREm< o< d, Ronl Y — 2O H THIE
R EEZITY Z TN TH D, Limd-> THEICITDEM L BEZ D 2 HiEEE 4%
RN FERE T 205, WERZ OHWHIRBRE OW & BRBRICE ST Ry 7t Lty
NHETHHo T,

AWFGEEE D LIEBGEEEL T —X 7 7 Fx DV 77 72V 7 LR 42 R0 7
772V 7HEE (BGEEB) 2@RTH2-00EERETFEZRETHLOTHD, =
CTHEHARERENTHLRNERELTORRT —F T 7 F v &, EEOYT7 U =TH
BHELTWEHLbDODORE L TORETY =T 7 F vy O ZHDIZFERL, 7—F7 7 F

WCHRET AT ey NEE FOMBEEZ DO S0 7 —X%7 7 F v ORIEE LTI L,
ZTOMMER— N7+ VAN TH2 T 77272) THAZBREEMTTHE0D
LR EELZTEN L WD, FEARAFEIEBEN 70 =7 MZBWTHFEICHRZR

TWVWQCD ELORSEET—XT 7 F ¥ V777XV TOEo50F (BW) &L, @ED
TaY el MIBWTER LT WD—KR A N 7 2SN T 272 L, FEBR
THMY S BGTHHALLTWREE LTEH - AR EENTWD, SHICIBEICE
BTCITONIT VENIATOTaL T NTA4 VHBOERT —2 G L, Fik% i
THZLICE ST, FECESSV 7772) o 7HAORPHEC, =2 TlibhTn
HIR— N7+ VAT OZ YL R L TV D,

Pk, K@ik, 7av=2 s EOBRSNLT —F%7 7 F v LORE~NETL—I XD
Y. ENER—= T A VAN TEHETY 77 2 XY VB OBEEMNEIT D 120
DOFHPOERNED & 2 FIEEA BT HH DT, AMCEHRT 2 & ZANRKE N, ko
THL (FWEHE) OGRS E LTHAMEfES 5 60 LR T,

