
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title テキスト構造解析法とパラフレーズ識別への適用

Author(s) Ngo, Bach Xuan

Citation

Issue Date 2014-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/12107

Rights

Description Supervisor:島津　明, 情報科学研究科, 博士

Text Structure Analysis Methods and Application

to Paraphrase Identification

by

Ngo Xuan Bach

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Akira Shimazu

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2014

To my family

i

Abstract

Analyzing structures of texts is important to understand natural language, both gen-
eral texts and texts in some specific domains such as the legal domain. For general texts,
discourse structures have been shown to have an important role in many natural language
processing applications, including text summarization, question answering, information
presentation, dialogue generation, and paraphrase extraction. In the legal domain, where
legal texts have their own specific characteristics, recognizing logical structures in legal
texts does not only help people in understanding legal documents, but also to support
other tasks in legal text processing.

In this thesis, we study the structures of texts based on relations between discourse
units. Regarding relations between discourse units, we focus on general semantic relations
and on logical relations, which are appropriate in some cases such as laws. For general
semantic relations, we study a model based on Rhetorical Structure Theory (RST). For
logical relations, we study a model for legal paragraphs. Both models are based on the
same framework, which consists of two steps, Recognizing discourse units of texts and
Building structures of texts from the discourse units.

In our work on learning discourse structures, we propose an Unlabeled Discourse
parsing system in the RST framework (UDRST). UDRST consists of a segmentation
model and a parsing model. Our segmentation model exploits subtree features to rerank
the N-best outputs of a base segmenter, which uses syntactic and lexical features in
a Conditional Random Field (CRF) framework. The advantage of our model is that
subtree features are long distance non-local features which can capture whole discourse
units. In the parsing model, we introduce an incremental algorithm for building discourse
trees. The algorithm builds a discourse tree for each sentence, then for each paragraph,
and finally for the whole text. We also propose a new algorithm that exploits the dual
decomposition method to combine a greedy model and the incremental model. Our system
achieves state-of-the-art results on both the discourse segmentation task and the unlabeled
discourse parsing task on the RST Discourse Treebank corpus.

Concerning our study on analyzing logical structures of legal texts, we propose a two-
phase framework for analyzing logical structures of legal paragraphs. In the first phase, we
model the problem of recognizing logical parts in law sentences as a multi-layer sequence
learning problem, and present a CRF-based model to recognize them. In the second
phase, we propose a graph-based method to group logical parts into logical structures.
We consider the problem of finding a subset of complete subgraphs in a weighted-edge
complete graph, where each node corresponds to a logical part, and a complete subgraph
corresponds to a logical structure. We propose an integer linear programming formulation
for this optimization problem. We also introduce an annotated corpus for the task, the
Japanese National Pension Law corpus, and describe our experiments on that corpus.

We then study how to exploit discourse structures for identifying paraphrases. By
analyzing paraphrase sentences, we found that discourse units are very important for
paraphrasing. In many cases, a paraphrase sentence can be created by applying several
operations to the original sentence. Motivated by the analysis of the relation between

ii

paraphrases and discourse units, we propose a new method to compute the similarity
between two sentences. Unlike conventional methods, which directly compute similarities
based on sentences, our method divides sentences into discourse units and employs them
to compute similarities. We apply our method to the paraphrase identification task.
Experimental results on the PAN corpus, a large corpus for detecting paraphrases, show
the effectiveness of using discourse information for identifying paraphrases.

Keywords: Text Structure Analysis, Legal Text Processing, Discourse Structure,
Rhetorical Structure Theory, Logical Structure, Paraphrase Identification, Discourse Unit,
Text Similarity, Conditional Random Fields, Support Vector Machines.

iii

Acknowledgments

My last six years at the Japan Advanced Institute of Science and Technology (JAIST)
have been an incredible journey, where I have grown tremendously, both academically and
personally. None of this would have been possible without the support of many people.

First and foremost, I would like to sincerely thank my great supervisor, Professor
Akira Shimazu of the School of Information Science at JAIST, who brought me to the
interesting world of natural language processing and supported me during my study.
Without his guidance and encouragement, my work could not have been accomplished.
Professor Shimazu taught me not only how to become a good researcher, but also how to
become a kind person. I am really lucky to be one of his students.

Next, I thank my terrific Committee, consisting of Professor Takenobu Tokunaga
from the Graduate School of Information Science and Engineering at the Tokyo Institute
of Technology, Professor Satoshi Tojo, Professor Ho Tu Bao, and Associate Professor
Kiyoaki Shirai at JAIST, for the time they spent reading my thesis and for their valuable
comments. My thesis is improved very much through their comments.

I wish to express my deep thanks to the Japanese Ministry of Education, Culture,
Sports, Science and Technology (MEXT) and the MEXT Scholarship Program. Without
their financial support, I would not have come to Japan to study.

I would like to thank Associate Professor Kiyoaki Shirai of the School of Information
Science at JAIST, who supported me during my study in the natural language processing
laboratory (Shimazu-Shirai Lab). Professor Shirai also gave me valuable comments during
the seminars of the lab.

I would like to sincerely thank Professor Kunihiko Hiraishi of the School of Information
Science at JAIST, for his guidance and support during my subtheme research on dual
decomposition and its application to part-of-speech tagging.

I also would like to thank Associate Professor Nguyen Le Minh of the School of Infor-
mation Science at JAIST, who always listened to me, discussed with me, and supported
me. I learned a lot from him, not only how to conduct good research, but also how to
solve technical problems.

I also would like to thank Mr. Kenji Takano and Mr. Yoshiko Oyama for analyzing
law sentences and building the Japanese National Pension Law corpus, a very important
part of my research.

I wish to send my deep acknowledgments to “The 21st Century COE program Verifi-
able and Evolvable e-Society”, “The Grant-in-Aid for Scientific Research, Education and
Research Center for Trustworthy e-Society”, “The JAIST Overseas Training Program for
3D Program Students”, “The JAIST Foundation Research Grant”, “The NII Research
Grant”, and “The NEC C&C Foundation Grant”, for supporting me in my research and
in attending international conferences.

I would like to express my deep appreciation to the English Language Education
for Science, Technology & Engineering center (CELESTE) of JAIST for editing this
manuscript and all JAIST staff for their kind and convenient procedures and services.

iv

I am grateful to my colleagues in the natural language processing laboratory (Shimazu-
Shirai Lab) for making JAIST an enjoyable place for my study and life.

Finally, I would like to give special thanks to my family for their sacrifice, love, and
understanding.

v

Contents

Abstract ii

Acknowledgments iv

1 Introduction 1
1.1 Background . 1
1.2 Research Problems and Contributions . 3
1.3 Thesis Outline . 5

2 Background: Statistical Machine Learning Models 7
2.1 Maximum Entropy Models . 7

2.1.1 The Principle . 7
2.1.2 The Models . 7

2.2 Support Vector Machines . 8
2.3 Conditional Random Fields . 11

3 Learning Discourse Structures in the RST Framework 13
3.1 Introduction . 13
3.2 Related Work . 14

3.2.1 Related Work on Discourse Segmentation 14
3.2.2 Related Work on Discourse Parsing 15

3.3 A Reranking Model for Discourse Segmentation using Subtree Features . . 16
3.3.1 Why Reranking? . 16
3.3.2 Discriminative Reranking . 16
3.3.3 Base Model . 17
3.3.4 Subtree Features for Reranking . 18

3.4 An Incremental Algorithm for Building Discourse Trees 20
3.5 Dual Decomposition for Building Discourse Trees 22

3.5.1 Dual Decomposition . 22
3.5.2 A Parsing Algorithm using Dual Decomposition 23

3.6 Experiments . 24
3.6.1 Data and Evaluation Methods . 24
3.6.2 Experiments on Discourse Segmentation 25
3.6.3 Experiments on Discourse Parsing 28

3.7 Conclusions . 29

vi

4 Analyzing Logical Structures of Legal Texts 31
4.1 Introduction . 31

4.1.1 Logical Parts and Logical Structures of Legal Texts 32
4.1.2 Motivation of This Work . 34
4.1.3 Overview of This Chapter . 35

4.2 Related Work . 36
4.2.1 Studies on Legal Text Processing 36
4.2.2 Studies on Analyzing Logical Structures of Japanese Legal Texts . . 38

4.3 Task Formulation . 39
4.3.1 Subtask 1: Recognition of Logical Parts 40
4.3.2 Subtask 2: Recognition of Logical Structures 41

4.4 Framework Architecture . 42
4.5 Multi-layer Sequence Learning for Logical Part Recognition 42
4.6 ILP for Recognizing Logical Structures . 45

4.6.1 ILP Formulation . 45
4.6.2 Learning Binary Classifier . 47

4.7 Experiments . 49
4.7.1 Corpus . 49
4.7.2 Evaluation Methods . 50
4.7.3 Experiments on Subtask 1 . 52
4.7.4 Experiments on Subtask 2 . 55
4.7.5 Limitation & Improvement . 59

4.8 Conclusions . 63

5 Exploiting Discourse Information to Identify Paraphrases 65
5.1 Introduction . 65
5.2 Related Work . 66
5.3 Paraphrases and Discourse Units . 67
5.4 EDU-Based Similarity . 69
5.5 Experiments . 70

5.5.1 Data & Evaluation Method . 70
5.5.2 MT Metrics . 72
5.5.3 Experimental Results with a Single SVM Classifier 73
5.5.4 Revision Learning & Voting . 74
5.5.5 Error Analysis . 76

5.6 Conclusions . 78

6 Conclusions and Future Work 80
6.1 Summary of the Thesis . 80
6.2 Future Directions . 81

A LSDemo: A Demonstration System for Analyzing Logical Structures of
Paragraphs in Legal Articles 83
A.1 Requirements . 83
A.2 Graphical User Interface . 84

References 86

vii

Publications 98

viii

List of Figures

1.1 A general framework for text structure analysis. 2
1.2 Illustration of our work in this thesis. 3

2.1 Large margin and small margin in SVMs. 9
2.2 Calculation of the margin in the SVM framework. 10
2.3 SVM framework in non-separable cases. 10
2.4 Graphical model of a CRF for sequence learning (n is the length of sequence). 11

3.1 A discourse tree [123]. 14
3.2 Examples of segmenting sentences into EDUs. 17
3.3 Partial lexicalized syntactic parse trees. 18
3.4 Subtree features. 19
3.5 An example sentence for illustrating two evaluation methods. 24
3.6 Some errors made by our model. 28

4.1 Examples of law sentences and logical parts (A: antecedent part; C: conse-
quent part; T: topic part). 33

4.2 Four popular cases of legal paragraphs [130]. 34
4.3 An example of Individual type in the JNPL corpus (A means Antecedent

part ; C means Consequent part ; T means Topic part. 34
4.4 Two cases of inputs and outputs of the task. 39
4.5 An example of overlapping and embedded relationships. 40
4.6 Framework architecture. 43
4.7 A law sentence with logical parts in three layers. 44
4.8 An example of labeling in the multi-layer model. 44
4.9 Examples of graphs and their cliques. 45
4.10 The structure of JNPL. 49
4.11 Relationship between a sentence and logical parts. 50
4.12 An annotated sentence in the JNPL corpus. (left: the original text; right:

the translated text.) . 51
4.13 An example of the first case. 56
4.14 An example of the second case. 58
4.15 List of cue phrases. 62

5.1 A paraphrase sentence pair in the PAN corpus [80]. 68
5.2 Another paraphrase sentence pair in the PAN corpus. 68
5.3 A revision learning model for the paraphrase identification task. 75

A.1 Graphical user interface of LSDemo. 84

ix

A.2 A running example with a paragraph consisting of one sentence. 85
A.3 A running example with a paragraph containing multiple sentences. 85

x

List of Tables

3.1 Statistical information of the RST Discourse Treebank corpus 24
3.2 Performance when evaluating on B labels 26
3.3 Performance when evaluating on B and C labels 26
3.4 Top 30 subtree features with the highest weights 27
3.5 Top error words . 28
3.6 Most frequent words that appear before error words 29
3.7 Experimental results of the tree building step (gold segmentation and gold

parse trees) . 29
3.8 Performance of the full system (our segmentation model and Stanford parse

trees) . 30

4.1 Features for learning binary classifier (T2: topic part in case 2; A: an-
tecedent part; C: consequent part) . 48

4.2 Statistics on logical parts of the JNPL corpus 50
4.3 Examples of evaluation method for Subtask 2 51
4.4 Examples of evaluation method for the whole system (PreP = Predicted

logical parts, PreStr = Predicted logical structures, GP = Gold logical
parts, GStr = Gold logical structures) . 52

4.5 Experimental results of the baseline model 54
4.6 Experimental results for Subtask 1 on the JNLP corpus(W:Word; P: POS

tag; B: Bunsetsu tag) . 55
4.7 Experimental results in more details . 55
4.8 Experiments on Subtask 2 (Gold-Input Setting) 58
4.9 Experiments on Subtask 2 (Whole-Task Setting) 59
4.10 Experimental results on Subtask 1 using Joint Decoding Algorithm (W:Word;

P: POS tag; B: Bunsetsu tag). N = 1, 2, 3, 4, 5, 10, 20, 50, 100, and 1000. 60
4.11 Oracle results on Subtask 1 (the feature set consists of words and Bunsetsu

tags) . 61
4.12 Experimental results with context features 62
4.13 Experimental results with heuristic rules for post-processing 63

5.1 An example of computing sentence-based and EDU-based similarities . . . 71
5.2 PAN corpus for paraphrase identification 72
5.3 Experimental results on each individual MT metric 73
5.4 Experimental results on combined MT metrics 74
5.5 Experimental results on long and short sentences 74
5.6 Experimental results of the revision learning model and the voting model . 76
5.7 Statistic information of the experimental results on the test set 77

xi

Chapter 1

Introduction

1.1 Background

Analyzing structures of texts is important to understand natural language, both general
texts and texts in some specific domains such as the legal domain. In many natural
language processing applications such as text summarization, machine translation, and
paraphrase generation, systems should produce an output text that is not only informative
but also coherent and readable. To do that, computers need knowledge about structures
of texts or how information is structured in texts.

Research on text structure analysis has been a focus in natural language processing for
a long time. Several linguistic theories of text structures have been proposed, including
Scripts, the Centering theory, and the Rhetorical Structure Theory (RST).

1. Scripts
The idea of Scripts [1] is that memory is organized as a collection of “scripts”.
A script describes a sequence of events commonly encountered in some particular
situations. Abelson and Schank [1] present an example of script, the restaurant
script: “someone enters a restaurant, finds a table, moves to that table, then orders
food, eats, pays money, and leaves”. Abelson and Schank [1] suggest that such
a sequence of events is frequently encountered and therefore incorporated into our
memory. Such knowledge helps us to recognize related and coherent texts in different
situations. Abelson and Schank [1] also explain that the sentences below are not
meaningful at all because they describe events that do not conform to a common
situation:

“John was walking on the street. He thought of cabbages. He picked up a shoe horn.”

2. Centering theory
The idea of the Centering theory [48] is to use the property of entity repetition
to describe local coherence in texts. According to this theory, adjacent sentences
in a discourse often share entities and therefore focus and topic in the text are
maintained. The Centering theory also states that some specific patterns of entity
sharing are preferred to others in order to achieve coherence. In a coherent text,
the more salient entities in a sentence are assumed to be more likely to appear in
subsequent sentences. Centering proposes that such preferred coreference patterns
make the text coherent for the reader.

1

Figure 1.1: A general framework for text structure analysis.

3. Rhetorical Structure Theory
The Rhetorical Structure Theory or RST [81] is based on theories of rhetorical or
discourse relations in which clauses or sentences in coherent texts are connected by
semantic relations such as cause, evidence, and contrast. The RST assumes that
a text can be divided into several elementary discourse units (EDUs) which are
connected by such semantic relations to form a discourse tree.

Discourse structures have been shown to have an important role in many natural lan-
guage processing applications, including text summarization [79, 82], question answering
[126], information presentation [10], dialogue generation [52], and paraphrase extraction
[110]. In the legal domain, where legal texts have their own specific characteristics, rec-
ognizing logical structures in legal texts does not only help people in understanding legal
documents, but also support other tasks in legal text processing [63].

Text structure analysis, therefore, is an important task in the field of computational
linguistics. From the linguistic point of view, the task contributes to understanding how
information is organized in written texts as well as how coherent texts should be. On the
other hand, from the computational point of view, the task plays a key role in building
robust natural language processing applications.

In this thesis, we study the structures of texts based on relations between discourse
units. Regarding relations between discourse units, we focus on general semantic relations
and on logical relations, which are appropriate in some cases such as laws. For general
semantic relations, we study a model based on Rhetorical Structure Theory (RST). For
logical relations, we study a model for legal paragraphs. Both models are based on the
same framework (illustrated in Figure 1.1), which consists of two steps as follows:

1. Discourse Unit Recognition: Recognizing discourse units of texts, elementary
discourse units (EDUs) in the case of RST discourse structures and logical parts in
the case of logical structures of legal texts

2. Text Structure Building: Building structures of texts from the discourse units,
RST discourse structures and logical structures of legal texts.

We also study how to utilize structures of texts for paraphrase computation. Para-
phrases are phrases, sentences, or longer expressions with the same or very similar mean-
ings. Paraphrases have been shown to play an important role in many natural language
processing applications, including text summarization [9], question answering [39], ma-
chine translation [19], and plagiarism detection [139]. Specifically, we consider the problem
of using RST discourse structures to identify paraphrases, which determines whether two
given sentences have the same meaning. Figure 1.2 illustrates our work in this thesis.

2

Figure 1.2: Illustration of our work in this thesis.

1.2 Research Problems and Contributions

This thesis focuses on the structural analysis of texts based on machine learning and
its application to paraphrase identification. Statistical machine learning models have
been widely applied to various fields in computer science, including computer vision,
bioinformatics, chemical informatics, robotics, computer games, and natural language
processing (NLP). They also have been claimed to have the potential to amplify every
aspect of a working scientist’s progress to understanding [89]. In the NLP field, statistical
machine learning models have been applied successfully to various problems, ranging
from fundamental tasks such as part-of-speech tagging [75, 109], chunking [67, 71, 119],
named entity recognition [14, 118], syntactic and semantic parsing [97, 151], discourse
parsing [54], and paraphrase identification [80] to applications such as machine translation
[25, 101], text summarization [96], and question answering [41, 128].

We concentrate on three problems as follows:

1. Learning Discourse Structures in the RST Framework
Rhetorical Structure Theory (RST) [81] is one of the most widely used theories of
text structures. In the RST framework, a text is first divided into several elementary
discourse units (EDUs). Consecutive EDUs are then put in relation with each other
to build a discourse tree. This is a difficult but very important task in the field of
natural language processing.

Previous studies on learning RST discourse structures reveal two remarkable points.
The first point is that the sets of rhetorical relations in different works are incon-
sistent. The second point is that the performance of a state-of-the-art discourse
parsing system is too low when evaluating in the labeled score. Studies on appli-
cations of RST show that in many text analysis applications, only a few relations

3

are enough [82, 153]. The purpose of our research is to build an unlabeled discourse
parsing system, which produces a discourse structure tree without relation labels.
The number of relations, types of relations, and the process of labeling relations for
the discourse structure tree will be implemented in text analysis applications. Our
contributions are as follows:

• We introduce a new model for segmenting texts into elementary discourse units.
Unlike previous models, which only focus on boundaries of EDUs, our model
employs subtree features in a discriminative re-ranking framework, which can
capture long-distance non-local features which describe whole EDUs.

• We propose a new model for building discourse trees based on the dual decom-
position technique, which allows us to integrate two base models with different
characteristics to yield a more powerful model.

• Our system achieves state-of-the-art results on both the discourse segmentation
task and the unlabeled discourse parsing task on the RST Discourse Treebank
corpus.

2. Analyzing Logical Structures of Legal Texts
Analyzing logical structures of legal texts is an important task in Legal Engineering
[62, 64]. The outputs of this task will be beneficial to people in understanding legal
texts. This task is the preliminary step, which supports other tasks in legal text
processing (translating legal articles into logical and formal representations, legal
text summarization, legal text translation, question answering in legal domains, etc)
and serves legal text verification, an important goal of Legal Engineering.

Analyzing law sentences individually is not sufficient to understand a legal docu-
ment. In most cases, to understand a law sentence, we need to understand related
sentences or its context. To our knowledge, however, no existing research addresses
the task at the paragraph level. Analyzing logical structures of legal paragraphs is
therefore very important in the research of Legal Engineering to achieve its goals:
assisting people in understanding legal texts and making computers able to process
legal texts automatically. Our original idea is to propose a novel learning framework
that can integrate graphical model, linear programming, and machine learning for
understanding legal texts. Our contributions are as follows:

• We introduce a new task for legal text processing, analyzing logical structures
of paragraphs in legal articles.

• We propose a two-phase framework to solve the task: a multi-layer sequence
learning model for recognizing logical parts and a graph-based model with
integer linear programming for recognizing logical structures.

• We introduce an annotated corpus for the task, the Japanese National Pension
Law corpus.

• We evaluate our framework on that corpus.

Our work shows promising results for further research on this interesting task.

4

3. Exploiting Discourse Information to Identify Paraphrases
Previous studies have shown that discourse structures deliver important information
for paraphrase computation. However, such studies only consider some special kinds
of data, for which the discourse structures can be easily extracted. The goal of our
research is to exploit discourse structures for computing paraphrases in general texts.
Our contributions are as follows:

• We show the relation between discourse units and paraphrasing, in which dis-
course units play an important role in paraphrasing. We also show that, in
many cases, paraphrase sentences can be generated from the original sentences
by performing several transformations

• We propose a new method to compute text similarity based on elementary
discourse units. Our method is general and not limited to any kind of text.

• We apply the method to the task of paraphrase identification.

• We achieve state-of-the-art results on the PAN corpus, a large corpus for de-
tecting paraphrase. Experimental results show that discourse information is
effective for the task of identifying paraphrases

To the best of our knowledge, this is the first work that employs discourse units for
computing similarity as well as for identifying paraphrases.

1.3 Thesis Outline

This dissertation is structured as follows. Chapter 2 gives a brief introduction to sev-
eral statistical machine learning methods, including Maximum Entropy Models (MEMs),
Support Vector Machines (SVMs), and Conditional Random Fields (CRFs).

Chapter 3 presents our study on learning discourse structures in the RST framework.
We first describe related work on discourse segmentation and discourse parsing in the RST
framework. We then introduce our discourse parsing system, including a reranking model
for segmenting a text into elementary discourse units and a dual decomposition model for
building discourse trees from discourse units. We also describe our experimental results
on the RST Discourse Treebank corpus and compare them with the results of previous
research.

In Chapter 4, we investigate the task of analyzing logical structures of legal para-
graphs. We first describe related work on legal text processing. We then present how to
formulate the task of analyzing logical structures of legal paragraphs. We next introduce
our proposed two-phase framework for the task, which recognizes logical parts in the first
phase and logical structures in the second phase. We present experimental results on an
annotated corpus, the Japanese National Pension Law corpus. A preliminary study on
exploiting heuristic rules in the post-processing step to improve the performance of the
system is also described.

Chapter 5 presents our study on exploiting discourse information to identify para-
phrases. We first describe related work on paraphrase identification. We next introduce
our findings on the relation between discourse units and paraphrasing. We then present
a new method, EDU-based similarity, for computing text similarity. We also describe

5

our experiments on the PAN corpus to show that EDU-based similarity is effective for
identifying paraphrases.

Finally, Chapter 6 summarizes this thesis and discusses future directions.

6

Chapter 2

Background: Statistical Machine
Learning Models

In this chapter, we give a brief introduction to three common statistical machine learning
models that will be employed in this thesis, including Maximum Entropy Models (Section
2.1), Support Vector Machines (Section 2.2), and Conditional Random Fields (Section
2.3).

2.1 Maximum Entropy Models

2.1.1 The Principle

The principle of Maximum Entropy states that equal probabilities must be assigned to
each competing assertion if there is no positive reason for assigning them different prob-
abilities.

Jaynes [58] summarizes the principle of Maximum Entropy as follows:
“. . . in making inferences on the basic of partial information we must use that prob-

ability distribution which has maximum entropy subject to whatever is known. That is
the only unbiased assignment we can make; to use any other would amount to arbitrary
assumption of information which by hypothesis we do not have.”

2.1.2 The Models

Maximum Entropy Models (MEMs) [12, 109] are a method of estimating the conditional
probability p(y|x) that a model outputs a label y given a context x:

p(y|x) =
1

Z(x)
exp(

∑
i

λifi(x, y))

where fi(x, y) refers to a feature function; λi is a parameter of the model; and Z(x) is
a normalization factor. To capture statistic information, this method requires that the
model accord with some constraints which have the form:

p(f) = p̃(f).

In this formula, f is a feature function (or feature for short), which takes a pair (x, y)
as input and outputs a real value. Usually, f is a binary-value indicator function. p(f)

7

and p̃(f) are the expected values of f with respect to the model p(y|x) and the empirical
distribution p̃(x, y), respectively. They are defined as follows:

p(f) ≡
∑
x,y

p̃(x)p(y|x)f(x, y),

p̃(f) ≡
∑
x,y

p̃(x, y)f(x, y),

where p̃(x) is the empirical distribution of x in the training samples.
Suppose that we have n feature functions fi(i = 1, 2, . . . , n) and we want our model

to accord with these statistics. Our model will belong to a subset Q of P (the set of all
conditional probability distributions) defined by

Q ≡ {p ∈ P |p(fi) = p̃(fi), i = 1, 2, . . . , n}.
The maximum entropy method chooses the model p∗ ∈ Q that maximizes the entropy

function H(p):
p∗ = argmaxp∈QH(p)

where the entropy function H(p) is defined as follows:

H(p) ≡ −
∑
x,y

p̃(x)p(y|x) log p(y|x).

To solve the constrained optimization problem, we first convert the primal problem
to a dual optimization problem using the method of Lagrange multipliers [12]. Then the
solution of the dual optimization problem can be found by applying the improved iterative
scaling method [12, 33] or LBFGS method [100].

Maximum entropy model has been applied successfully to many NLP task includ-
ing POS tagging [109], chunking [67], syntactic and semantic dependency parsing [151],
statistical machine translation [12, 40], and so on.

2.2 Support Vector Machines

Support Vector Machines (SVMs) are a statistical machine learning technique proposed
by Vapnik et al. [15, 31, 91, 140]. SVMs have been demonstrated their performance
on a number of problems in areas, including computer vision, handwriting recognition,
pattern recognition, and statistical natural language processing. In the field of natural
language processing, SVMs have been applied to text categorization [59], word sense
disambiguation [77], text chunking [71], syntactic parsing [99], semantic parsing [97],
discourse parsing [54], machine translation [150], topic classification [147], information
extraction [13], sentiment analysis [107, 114], and so on, and achieved very good results.

We start with the binary classification task in linear cases, in which we want to find a
hyperplane that separates positive and negative samples. Suppose that we have a set of
n training samples:

S = {(xi, yi)}ni=1, xi ∈ Rm, yi ∈ {+1,−1},
where xi is the feature vector and yi is the class (or label) of the ith sample. Our goal is
to separate the positive and negative samples by a hyperplane in the form:

8

Figure 2.1: Large margin and small margin in SVMs.

w · x+ b = 0,

where w ∈ Rm and b ∈ R are parameters.
Among the set of all possible hyperplanes, SVMs will find an optimal hyperplane

(correspond to find an optimal parameter set for w and b). In the SVM framework, the
optimal hyperplane is the hyperplane with maximal margin between training samples
and the hyperplane. Figure 2.1 illustrates this strategy. Solid lines show two possible
hyperplanes (or candidates). Each candidate separates correctly the training samples
into two classes. Two dashed lines parallel to a candidate indicate the boundaries in
which the candidate can be moved without any misclassification.

Suppose that the training samples satisfy the following constraints:

w · xi + b ≥ +1 for yi = +1,

w · xi + b ≤ −1 for yi = −1.

These constraints can be combined into the following inequalities:

yi(w · xi + b)− 1 ≥ 0, ∀i = 1, 2, . . . , n.

Figure 2.2 shows how to calculate the margin. We have, the perpendicular distance
from the origin to the solid line (w · x + b = 0) is |b|

‖w‖ , where ‖w‖ is the Euclidean
norm of w. Similarly, the perpendicular distances from the origin to two dashed lines
(w · x+ b = 1 and w · x+ b = −1) are |b−1|

‖w‖ and |b+1|
‖w‖ .

Let d+ and d− be the distances between the solid lines and two dashed lines. We will
have the margin M:

M = d+ = d− =
1

‖w‖
.

To maximize the margin M , we minimize ‖w‖. The task now becomes solving the
following optimization problem:

Minimize:

L(w) =
1

2
‖w‖2

9

Figure 2.2: Calculation of the margin in the SVM framework.

Figure 2.3: SVM framework in non-separable cases.

Subject to:
yi(w · xi + b)− 1 ≥ 0,∀i = 1, 2, . . . , n. (2.1)

The training samples which lie on two dashed lines are called support vectors.
We now move to the non-separable cases, in which the training data are not linearly

separable. In such cases, for any hyperplane w · x+ b = 0, there exists xi ∈ S such that:

yi(w · xi + b)− 1 < 0.

Therefore, the constraints in Equation 2.1 cannot all hold simultaneously. We use a
relaxed version of these constraints by introducing slack variables ξi(1 ≤ i ≤ n) as follows:
For each i ∈ {1, 2, . . . , n}, there exists ξi ≥ 0 such that:

yi(w · xi + b)− 1 + ξi ≥ 0.

The slack variable ξi measures the distance that the vector xi violates the constraint
yi(w · xi + b) − 1 ≥ 0. The SVM framework in the non-separable cases is illustrated in
Figure 2.3.

We want to find a hyperplane that:

1. Limits the total amount of slack, i.e.,
∑m

i=1 ξ
p
i , here p ≥ 1 is a constant, and

10

Figure 2.4: Graphical model of a CRF for sequence learning (n is the length of sequence).

2. Has a large margin.

The task now becomes solving the new optimization problem as follows:
Minimize:

1

2
‖w‖2 + C

m∑
i=1

ξpi

Subject to:

yi(w · xi + b)− 1 + ξi ≥ 0 and ξi ≥ 0,∀i = 1, 2, . . . , n.

Here, C ≥ 0 is a parameter which determines the trade-off between the maximization of
the margin and the minimization of the slack penalty.

2.3 Conditional Random Fields

Conditional Random Fields (CRFs) [75, 129] are undirected graphical models (see Figure
2.4), which define the probability of a label sequence y given an observation sequence x
as a normalized product of potential functions. Each potential function has the following
form:

exp(
∑
j

λjtj(yi−1, yi, x, i) +
∑
k

µksk(yi, x, i))

where tj(yi−1, yi, x, i) is a transition feature function (or edge feature), which is defined
on the entire observation sequence x and the labels at positions i and i − 1 in the label
sequence y; sk(yi, x, i) is a state feature function (or node feature), which is defined on
the entire observation sequence x and the label at position i in the label sequence y; and
λj and µk are parameters of the model, which are estimated in the training process. Each
feature function (edge feature and node feature) takes a real value.

The probability of a label sequence y given an observation sequence x then can be
defined as follows:

p(y|x, λ, µ) =
1

Z(x)
exp(

∑
j

λjtj(yi−1, yi, x, i) +
∑
k

µksk(yi, x, i))

where Z(x) is a normalization factor,

11

Z(x) =
∑
y

exp(
∑
j

λjtj(yi−1, yi, x, i) +
∑
k

µksk(yi, x, i)).

Training CRFs is commonly performed by maximizing the likelihood function with
respect to the training data using advanced convex optimization techniques like L-BFGS
[18]. And inference in CRFs, i.e., searching the most likely output label sequence of an
input observation sequence, can be done by using Viterbi algorithm [45].

CRFs have been shown to be an efficient and powerful framework for sequence learning
tasks. CRFs have all the advantages of Maximum Entropy Markov Models (MEMMs) [85]
but do not suffer from the label bias problem [75]. CRFs have been applied successfully
to many NLP tasks such as POS tagging, chunking, named entity recognition, syntax
parsing, information retrieval, information extraction, analyzing logical structures of legal
texts at the sentence level, and so on [4, 73, 75, 106, 119].

12

Chapter 3

Learning Discourse Structures in the
RST Framework

This chapter presents our study on learning discourse structures in the RST framework,
one of the most widely used theories of text structures. We first give an introduction to
the discourse parsing task and motivation of our work (Section 3.1). We then describe
related work on discourse parsing (Section 3.2). We next present our reranking model
for discourse segmentation (Section 3.3) and two algorithms for building discourse trees,
including an incremental algorithm (Section 3.4) and a dual decomposition algorithm
(Section 3.5). Finally, we describe our experiments on the RST Discourse Treebank
corpus (Section 3.6) and conclude this chapter (Section 3.7).

3.1 Introduction

Discourse structures have been shown to have an important role in many natural language
processing applications, such as text summarization [79, 82], information presentation [10],
question answering [126], and dialogue generation [52]. To produce such kinds of discourse
structures, several attempts have been made to build discourse parsers in the framework
of Rhetorical Structure Theory (RST) [81], one of the most widely used theories of text
structures.

The discourse parsing task in the RST framework consists of two steps: discourse
segmentation and discourse tree building. In the discourse segmentation step, an input
text is divided into several elementary discourse units (EDUs). Each EDU may be a
simple sentence or a clause in a complex sentence. In the tree building step, consecutive
EDUs are put in relation with each other to create a discourse tree. Figure 3.1 shows an
example of a discourse tree with three EDUs.

The quality of the discourse segmenter contributes a significant part to the overall
accuracy of every discourse parsing system. If a text is wrongly segmented, no discourse
parsing algorithm can build a correct discourse tree. Existing discourse segmenters usually
exploit lexical and syntactic features to label each word in a sentence with one of two
labels, boundary or no-boundary. The limitation of this approach is that it only focuses
on the boundaries of EDUs. It cannot capture features that describe whole EDUs.

Recently, discriminative reranking has been used successfully in some NLP tasks such
as part-of-speech (POS) tagging, chunking, and statistical parsing [29, 46, 57, 74]. The

13

Figure 3.1: A discourse tree [123].

advantage of the reranking method is that it can exploit the output of a base model to
learn. Based on that output, we can extract long-distance non-local features to rerank.

The first purpose of our study is to build a discourse segmentation system, which
can capture non-local features describing whole EDUs. Our discourse segmenter exploits
subtree features to rerank the N-best outputs of a base segmenter, which uses syntactic
and lexical features in a CRF framework. Experimental results on the RST Discourse
Treebank corpus show that our model outperforms existing discourse segmenters in both
settings that use gold standard Penn Treebank parse trees [83] and Stanford parse trees
[66].

Previous studies on discourse parsing reveal two remarkable points. The first point is
that the sets of rhetorical relations in different works are inconsistent. For instance, Marcu
[82] and Thanh et al. [135] use 15 relations and 14 relations respectively, while Sagae [116]
and Hernault et al. [54] use 18 relations. We also note that in RST Discourse Treebank
(RST-DT) [21], 78 rhetorical relations are used. The second point is that the performance
of a state-of-the-art discourse parsing system is too low when evaluating in the labeled
score (both structure and relations). HILDA [54], a state-of-the-art discourse parsing
system, achieves only 47.3% in the labeled score on RST-DT. Studies on applications
of RST show that in many text analysis applications, only a few relations are enough
[82, 153]. Furthermore, from a machine learning perspective, working with a small set of
relations can improve the performance of a discourse parsing system.

The second purpose of our study is to build an unlabeled discourse parsing system,
which produces a discourse structure tree without relation labels. The number of relations,
types of relations, and the process of labeling relations for the discourse structure tree
will be implemented in text analysis applications, which use this discourse parser. Our
discourse parsing system, UDRST, consists of a reranking-based segmentation model and
a parsing model using dual decomposition. Our system achieves 77.3% in the unlabeled
score on the standard test set of the RST Discourse Treebank corpus, which improves
5.0% compared to HILDA [54], a state-of-the-art discourse parsing system.

3.2 Related Work

3.2.1 Related Work on Discourse Segmentation

Several methods have been proposed to deal with the discourse segmentation task. Thanh
et al. [134] present a rule-based discourse segmenter with two steps. In the first step,
segmentation is done by using syntactic relations between words. The segmentation algo-
rithm is based on some principles, which have been presented in [30] and [20], as follows:

14

1. The clause that is attached to a noun phrase can be recognised as an embedded unit.
If the clause is a subordinate clause, it must contain more than one word.

2. Coordinate clauses and coordinate sentences of a complex sentence are EDUs.

3. Coordinate clauses and coordinate elliptical clauses of verb phrases (VPs) are EDUs.
Coordinate VPs that share a direct object with the main VP are not considered as a
separate discourse segment.

4. Clausal complements of reported verbs and cognitive verbs are EDUs.

The segmenter then uses cue phrases to correct the output of the first step.
Tofiloski et al. [137] describe another rule-based discourse segmenter. The core of this

segmenter consists of 12 syntactic segmentation rules and some rules concerning a list
of stop phrases, discourse cue phrases, and part-of-speech tags. They also use a list of
phrasal discourse cues to insert boundaries not derivable from the parser’s output.

Soricut and Marcu [123] introduce a statistical discourse segmenter, which is trained
on RST-DT to label words with boundary or no-boundary labels. They use lexical
and syntactic features to determine the probabilities of discourse boundaries P (bi|wi, t),
where wi is the ith word of the input sentence s, t is the syntactic parse tree of s, and
bi ∈ {boundary, no-boundary}. Given a syntactic parse tree t, their algorithm inserts a
discourse boundary after each word w for which P (boundary|w, t) > 0.5.

Another statistical discourse segmenter using artificial neural networks is presented in
Subba and Di Eugenio [125]. Like Soricut and Marcu [123], they formulate the discourse
segmentation task as a binary classification problem of deciding whether a word is the
boundary or no-boundary of EDUs. Their segmenter exploits a multilayer perceptron
model with back-propagation algorithm and is also trained on RST-DT.

Hernault et al. [53] propose a sequential model for the discourse segmentation task,
which considers the segmentation task as a sequence labeling problem rather than a clas-
sification problem. They exploit Conditional Random Fields (CRFs) [75] as the learning
method and get state-of-the-art results on RST-DT.

In our work, like Hernault et al. [53], we also consider the discourse segmentation
task as a sequence labeling problem. The final segmentation result is selected among the
N-best outputs of a CRF-based model by using a reranking method with subtree features.

3.2.2 Related Work on Discourse Parsing

Several methods have been proposed to deal with the discourse parsing task. In this
section, we present the most related studies, which describe a discourse parsing system in
the RST framework.

Soricut and Marcu [123] present a sentence level discourse parser. Two probabilistic
models are built to segment and to parse texts. Both models exploit syntactic and lexical
information. For discourse segmentation, authors report an F-score of 84.7%. For building
sentence level discourse trees, they achieve 70.5% in the unlabeled score, and 49.0% and
45.6% in the labeled score when using 18 labels and 110 labels respectively. However, this
discourse parser only processes individual sentences.

Sagae [116] proposes a shift-reduced discourse parser. The parser includes a discourse
segmenter based on a binary classifier trained on lexico-syntactic features and a parsing

15

model which employs transition algorithms for dependency and constituent trees. Com-
pared to Soricut and Marcu [123], the proposed parser is able to create text level discourse
trees. The author reports an F-score of 86.7% for discourse segmentation and 44.5% in
the labeled score for building text level discourse trees when using 18 labels.

Hernault et al. [54] describe HILDA, a discourse parser using Support Vector Machine
(SVM) classification. The parser exploits following kinds of features: textual organization,
lexical features, ‘dominance sets’ [123], and structural features. They use 18 relations like
relations in the work of Sagae [116]. HILDA is considered as the first fully implemented
text level discourse parser with state-of-the-art performance. It achieves 72.3% in the
unlabeled score and 47.3% in the labeled score on RST-DT.

3.3 A Reranking Model for Discourse Segmentation

using Subtree Features

3.3.1 Why Reranking?

Discriminative reranking with linear models has been used successfully in some NLP
tasks such as POS tagging, chunking, and statistical parsing [29]. The advantage of the
reranking method is that it can exploit the output of a base model to learn. Based on
the output of a base model, we can extract long-distance non-local features, which are
impossible in sequence learning markov models such as the Hidden markov model, the
Maximum entropy markov model, and CRFs. In the discourse segmentation task, we
use the reranking method to utilize subtree features extracted from the output of a base
model which is learned using CRFs.

3.3.2 Discriminative Reranking

In the discriminative reranking method [29], first, a set of candidates is generated using a
base model (GEN). GEN can be any model for the task. For example, in the POS tagging
problem, GEN may be a model that generates all possible POS tags for a word based on
a dictionary. Then, candidates are reranked using a linear score function:

score(y) = Φ(y) ·W

where y is a candidate, Φ(y) is the feature vector of candidate y, and W is a parameter
vector. The final output is the candidate with the highest score:

F (x) = argmaxy∈GEN(x)score(y)

= argmaxy∈GEN(x)Φ(y) ·W.

To learn the parameter W we use the average perceptron algorithm, which is presented
as Algorithm 1.

In the next sections we will describe our base model and features that we use to rerank
candidates.

16

Algorithm 1 Average perceptron algorithm for reranking [29]

1: Inputs: Training set {(xi, yi)|xi ∈ Rn, yi ∈ C, ∀i = 1, 2, . . . ,m}
2: Initialize: W ← 0,Wavg ← 0
3: Define: F (x) = argmaxy∈GEN(x)Φ(y) ·W
4: for t = 1, 2, . . . , T do
5: for i = 1, 2, . . . ,m do
6: zi ← F (xi)
7: if zi 6= yi then
8: W ← W + Φ(yi)− Φ(zi)
9: end if

10: Wavg ← Wavg +W
11: end for
12: end for
13: Wavg ← Wavg/(mT)
14: Output: Parameter vector Wavg.

Figure 3.2: Examples of segmenting sentences into EDUs.

3.3.3 Base Model

Similar to the work of Hernault et al. [53], our base model uses Conditional Random
Fields1 to learn a sequence labeling model. Each label is either beginning of EDU (B)
or continuation of EDU (C). Soricut and Marcu [123] and Subba and Di Eugenio [125]
use boundary labels, which are assigned to words at the end of EDUs. Like Hernault
et al. [53], we use beginning labels, which are assigned to words at the beginning of
EDUs. However, we can convert an output with boundary, no-boundary labels to an
output with beginning, continuation labels and vice versa. Figure 3.2 shows two examples
of segmenting a sentence into EDUs and their correct label sequences.

We use the following lexical and syntactic information as features:

• Words,

• POS tags,

• Nodes in parse trees, and

1We use the implementation of Kudo [70].

17

Figure 3.3: Partial lexicalized syntactic parse trees.

• Lexical heads and POS heads of the nodes in parse trees2.

When extracting features for word w, let r be the word on the right-hand side of w
and Np be the deepest node that belongs to both paths from the root to w and r. Nw

and Nr are child nodes of Np that belong to two paths, respectively. Figure 3.3 shows
two partial lexicalized syntactic parse trees. In the first tree, if w = says then r = it,
Np = V P (says), Nw = V BZ(says), and Nr = SBAR(will). We also consider the parent
and the right-sibling of Np if any. The final feature set for w consists of not only features
extracted from w but also features extracted from two words on the left-hand side and
two words on the right-hand side of w.

Our feature extraction method is different from the method in previous works [53, 123].
They define Nw as the highest ancestor of w that has lexical head w and has a right-sibling.
Then Np and Nr are defined as the parent and right-sibling of Nw. In the first example,
our method gives the same results as the previous one. In the second example, however,
there is no node with lexical head “done” and having a right-sibling. The previous method
cannot extract Nw, Np, and Nr in such cases. We also use some new features such as the
head node and the right-sibling node of Np.

3.3.4 Subtree Features for Reranking

We need to decide which kinds of subtrees are useful to represent a candidate, a way to
segment the input sentence into EDUs. In our work, we consider two kinds of subtrees:
bound trees and splitting trees.

The bound tree of an EDU, which spans from word u to word w, is a subtree which
satisfies two conditions:

1. its root is the deepest node in the parse tree which belongs to both paths from the
root of the parse tree to u and w, and

2. it only contains nodes in two those paths.

The splitting tree between two consecutive EDUs, from word u to word w and from
word r to word v, is a subtree which is similar to a bound tree, but contains two paths

2Lexical heads are extracted using Collins’ rules [28].

18

Figure 3.4: Subtree features.

from the root of the parse tree to w and r. Hence, a splitting tree between two consecutive
EDUs is a bound tree that only covers two words: the last word of the first EDU and
the first word of the second EDU. Bound trees will cover the whole EDUs, while splitting
trees will concentrate on the boundaries of EDUs.

From a bound tree (similar to a splitting tree), we extract three kinds of subtrees:
subtrees on the left path (left tree), subtrees on the right path (right tree), and subtrees
consisting of a subtree on the left path and a subtree on the right path (full tree). In the
third case, if both subtrees on the left and right paths do not contain the root node, we
add a pseudo root node. Figure 3.4 shows the bound tree of EDU “nothing was done” of
the second example in Figure 3.3, and some examples of extracted subtrees.

Each subtree feature is then represented by a string as follows:

• A left tree (or a right tree) is represented by concatenating its nodes with hyphens
between nodes. For example, subtrees (b) and (e) in Figure 3.4 can be represented
as follows:

S-NP-NN-nothing, and

S-VP-VP-VBN-done.

• A full tree is represented by concatenating its left tree and right tree with string
in the middle. For example, subtrees (g) and (h) in Figure 3.4 can be repre-
sented as follows:

S-NP-NN###S-VP-VP-VBN, and

NP-NN-nothing###VP-VP-VBN.

The feature set of a candidate is the set of all subtrees extracted from bound trees of
all EDUs and splitting trees between two consecutive EDUs.

Among two kinds of subtrees, splitting trees can be computed between any two adja-
cent words and therefore can be incorporated into the base model. However, if we do so,
the feature space will be very large and contains a lot of noisy features. Because many
words are not a boundary of any EDU, many subtrees extracted by this method will never
become a real splitting tree (tree that splits two EDUs). Splitting trees extracted in the
reranking model will focus on a small but compact and useful set of subtrees.

19

3.4 An Incremental Algorithm for Building Discourse

Trees

There have been two major approaches building a discourse tree given a segmented text.
The first approach uses a greedy strategy [54]. The method gradually combines two
consecutive spans (EDUs or subtrees of EDUs), which are most probably connected by
a rhetorical relation, until all EDUs are merged into a single discourse tree. The tree
construction algorithm is presented as Algorithm 2, where li denotes the ith element of
list L. The algorithm needs a score function (used in lines 4,9, and 10), which evaluates
how likely two consecutive spans should be connected. To calculate this score, we first
learn a binary classifier StructClassifier that takes two consecutive spans as the input,
and returns +1 in the case two spans should be connected and −1 otherwise. Then we
define the score function as follows:

StructScore(li, li+1) = Prob(StructClassifier(li, li+1) = +1).

Algorithm 2 A greedy algorithm for building discourse trees [54].

1: Input: List of EDUs, E = (e1, e2, . . . , en)
2: Initialize: L← E
3: for (li, li+1) in L do
4: Scores[i]← StructScore(li, li+1) [Calculate score]
5: end for
6: while |L| > 1 do
7: i← argmax(Scores)
8: NewSubTree← CreatTree(li, li+1) [Create a new subtree]
9: Scores[i− 1]← StructScore(li−1, NewSubTree) [Calculate score]

10: Scores[i+ 1]← StructScore(NewSubTree, li+2) [Calculate score]
11: delete(Scores[i]) [Update Scores]
12: L← [l1, . . . , li−1, NewSubTree, li+2, . . .] [Update L]
13: end while
14: FinalTree← l1
15: Output: FinalTree.

Note that if we want to build a labeled tree, in addition to StructClassifier, we
need a multi-class classifier LabelClassifier that also takes two consecutive spans as the
input, and returns the most probable relation label holding between the two spans. In
Algorithm 2, we use this classifier to find the relation label before creating a new subtree
(line 8 in the algorithm).

The second approach for building discourse tress is based on a dynamic programming
technique (CYK parsing) [123]. We maintain a two-dimension array t[i][j] storing the
most probable structure tree covering from the ith EDU to the jth EDU, and an array
Score[i][j] storing the score of t[i][j]. The final structure tree is t[1][n], where n is the
number of EDUs. Score[i][j] and structure tree t[i][j] can be calculated as follows:

Score[i][j] = maxi≤k<j(Score[i][k]+Score[k+1][j]+StructScore(t[i][k], t[k+1][j])) (3.1)

and
t[i][j]← CreateTree(t[i][k∗], t[k∗ + 1][j]),

20

where k∗ is the index that maximizes the score function in Equation (3.1).
Although the first method gives an approximate solution, it is more suitable in practice

because it runs much faster than the second method (O(n) compared to O(n3), where n is
the number of EDUs). In fact, the second method is only used in sentence level discourse
parsing [123], where the number of EDUs is small.

In the tree building step, the goal is to build a discourse tree given a text which has
been segmented into EDUs. Usually, the text consists of several paragraphs, and each
paragraph consists of some sentences. We note that EDUs within one sentence tend
to be connected to make a subtree before connecting to EDUs in other sentences. The
same thing also takes place at the paragraph level. EDUs within one paragraph tend
to be connected to make a subtree before connecting to EDUs in other paragraphs. It
is because of the coherence of a well-written text. A sentence expresses a statement,
question, exclamation, request, command, or suggestion, and sentences in a paragraph
should focus on a topic. Paragraphs help separate ideas and indicate the change of topics.

Motivated by this property, we propose an incremental algorithm (our first algorithm)
for building a discourse tree. The algorithm is presented as Algorithm 3. When we
build a subtree for a sentence, the input consists of EDUs in that sentence. When we
build a subtree for a paragraph, the input consists of several subtrees, and each subtree
corresponds to a sentence. When we build the final discourse tree for whole text, the input
consists of several subtrees, and each subtree corresponds to a paragraph. In all three
cases, the number of spans (EDUs or subtrees) in the input is very small in comparison
with the total EDUs of whole text. So we can use a dynamic programing technique like
the method presented in Soricut and Marcu [123] to solve it.

Algorithm 3 An incremental algorithm for building discourse trees.
1: Input: a text T
2: for each sentence s in T do
3: Create a subtree for s
4: end for
5: for each paragraph p in T do
6: Create a subtree for p based on subtrees of sentences
7: end for
8: Create a discourse tree for T based on subtrees of paragraphs
9: Output: Discourse tree

Compared to the greedy algorithm (Algorithm 2) presented in Hernault et al. [54],
this algorithm has two advantages. It supports the coherence property we described
before. The algorithm employs a dynamic programming technique, so it can find an
extract solution in each step. However, the algorithm gives a hard constraint on the order
in which EDUs are connected. So it makes the search process biased. Our solution is
creating a parsing model by integrating two above algorithms. To achieve this, in the
next section, we will present a dual decomposition algorithm for building discourse trees.

21

3.5 Dual Decomposition for Building Discourse Trees

3.5.1 Dual Decomposition

Dual decomposition is a method to solve complex optimization problems that can be
decomposed into two or more subproblems, together with linear constraints that enforce
the agreement on solutions of the subproblems [112]. The subproblems are chosen such
that they can be solved efficiently. The constraints are incorporated using Lagrange
multipliers, and an iterative algorithm is used to minimize the optimization problem.

We consider the following optimization problem:

argmaxy∈Y,z∈Z(f(y) + g(z))

subject to:
y(i) = z(i), for all i ∈ {1 . . . n}.

Each constraint y(i) = z(i) describes an agreement on the solutions of two subprob-
lems. We introduce Lagrange multipliers u(i), i ∈ {1 . . . n}, and assume that for any
value u(i) ∈ R, we can efficiently solve:

argmaxy∈Y (f(y) +
n∑

i=1

u(i)y(i)), and

argmaxz∈Z(g(z)−
n∑

i=1

u(i)z(i)).

The dual decomposition algorithm can be expressed as Algorithm 4, where δk is the step
size at the kth iteration.

Algorithm 4 The dual decomposition algorithm [112].

1: Initialize: u(0)(i) = 0, for all i ∈ {1 . . . n}
2: for k = 1 to K do
3: y(k) ← argmaxy∈Y (f(y) +

∑n
i=1 u

(k−1)(i)y(i)) [Subproblem 1]
4: z(k) ← argmaxz∈Z(g(z)−

∑n
i=1 u

(k−1)(i)z(i)) [Subproblem 2]
5: if y(k)(i) = z(k)(i) for all i ∈ {1 . . . n} then
6: return (y(k), z(k))
7: else
8: u(k)(i)← u(k−1)(i)− δk(y(k)(i)− z(k)(i))
9: end if

10: end for
11: return (y(K), z(K))

As shown by Rush and Collins [112], in the cases that the solutions of two subproblems
are agreement, the returned solution will be an optimal solution of the original problem.

Dual decomposition has been applied successfully to several NLP tasks such as parsing
[113], dependency parsing [68], and coordination disambiguation [51].

22

3.5.2 A Parsing Algorithm using Dual Decomposition

Recall that the parsing problem is to find:

argmaxy∈Y h(y)

where Y is the space of all possible discourse trees, and h(y) is a score function defined on
Y . In our method, the score function consists of two factors h(y) = f(y)+g(y), where f(y)
is the score returned by our base model1 using the incremental algorithm (Algorithm 3),
and g(y) is the score returned by our base model2 using the greedy algorithm (Algorithm
2).

For each discourse tree y, we define variables y(i, j) as follows:

y(i, j) =

{
1 if exists a subtree that covers from the ith EDU to the jth EDU
0 otherwise.

The problem now becomes:

argmaxy∈Y,z∈Z(f(y) + g(z))

subjects to:
y(i, j) = z(i, j) for all 1 ≤ i < j ≤ n,

where n is the number of EDUs and Z = Y .
We solve this problem by using dual decomposition. The proposed algorithm (our

second algorithm) is presented as Algorithm 5, where u(i, j) are Lagrange multipliers.

Algorithm 5 A dual decomposition algorithm for building discourse trees.

1: Initialize: u(0)(i, j) = 0, for all 1 ≤ i < j ≤ n.
2: for k = 1 to K do
3: y(k) ← argmaxy∈Y (f(y) +

∑
1≤i<j≤n u

(k−1)(i, j)y(i, j)) [Base Model1]

4: z(k) ← argmaxz∈Z(g(z)−
∑

1≤i<j≤n u
(k−1)(i, j)z(i, j)) [Base Model2]

5: if y(k)(i, j) = z(k)(i, j) for all 1 ≤ i < j ≤ n then
6: return y(k)

7: else
8: u(k)(i, j)← u(k−1)(i, j)− δk(y(k)(i, j)− z(k)(i, j))
9: end if

10: end for
11: return y(K)

Note that when solving two subproblems (lines 3 and 4 in Algorithm 5) using two base
algorithms (Algorithms 2 and 3), we need to modify score functions as follows:

Score[i][j] = maxi≤k<j(Score[i][k]+Score[k+1][j]+StructScore(t[i][k], t[k+1][j]))+u(i,j)),

in Base Model1, and

Score[i][j] = maxi≤k<j(Score[i][k]+Score[k+1][j]+StructScore(t[i][k], t[k+1][j]))−u(i,j)),

in Base Model2.

23

Table 3.1: Statistical information of the RST Discourse Treebank corpus
Dataset Number of articles Number of sentences

Training 347 6132
Test 38 991

Figure 3.5: An example sentence for illustrating two evaluation methods.

To learn the binary classifier StructClassifier, which is used to compute StructScore,
like Hernault et al. [54], we use lexical and syntactic features including textual organi-
zation features, lexical features, ‘dominance sets’ [123], and structural features. We also
employ Support Vector Machines3 as the learning method.

3.6 Experiments

3.6.1 Data and Evaluation Methods

We tested our system on the RST Discourse Treebank (RST-DT) corpus [21]. Table 3.1
shows statistical information of RST-DT. This corpus consists of 385 articles from the
Penn Treebank [83], which are divided into a Training set and a Test set. The Training
set consists of 347 articles (6132 sentences), and the Test set consists of 38 articles (991
sentences).

For the discourse segmentation task, there are two evaluation methods that have
been used in previous work. The first method measures only beginning labels (B labels)
[123, 125]. The second method [53] measures both beginning and continuation labels (B
and C labels)4. This method first calculates scores on B labels and scores on C labels,
and then produces the average of them.

Figure 3.5 shows an example of a sentence in the sequence model and a predicted
output. In this example, the output contains a mistake, which is the C label of the word
it. Now we will compute precision, recall, and the F1 score under the two evaluation
schemes.

• The first evaluation method uses only B labels.

Precision = 1/1 = 100%, Recall = 1/2 = 50.0%, F1 = 66.7%.

Note that we do not count the first B label, which is a sentence boundary.

• The second method uses both B and C labels.

For B labels: Precision = 1/1 = 100%, Recall = 1/2 = 50.0%, F1 = 66.7%.

For C labels: Precision = 9/10 = 90.0%, Recall = 9/9 = 100%, F1 = 94.7%.

3In our experiments, we used Libsvm: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
4Neither evaluation method counts sentence boundaries.

24

Average: Precision = 95.0%, Recall = 75.0%, F1 = 80.7%.

Note that we do not count the last C label, which is a sentence boundary.

Due to the number of C labels being much higher than the number of B labels, the
second evaluation method yields much higher results. In Hernault et al. [53], the authors
compare their systems with previous work despite using different evaluation methods.
Such comparisons are not valid. In our work, we measure the performance of the proposed
model using both methods.

For the discourse parsing task, we measure the performance of the proposed system
using the unlabeled score, which is the same as the unlabeled score described in previous
work [54, 82, 123].

3.6.2 Experiments on Discourse Segmentation

We learned the base model on the Training set and tested on the Test set to get the
N-best outputs to rerank. To learn parameters of the reranking model, we conducted
5-fold cross-validation tests on the Training set. In all experiments, we set N to 20. To
choose the number of iterations, we used a development set, which is about 20 percent of
the Training set.

Table 3.2 shows experimental results when evaluating only beginning (B) labels, in
which SPADE is the work of Soricut and Marcu[123], NNDS is a segmenter that uses
neural networks [125], and CRFSeg is a CRF-based segmenter [53]. When using gold
parse trees, our base model got 92.5% in the F1 score, which improves 1.3% compared
to the state-of-the-art segmenter (CRFSeg). When using Stanford parse trees [66], our
base model improved 1.7% compared to CRFSeg. It demonstrates the effectiveness of
our feature extraction method in the base model. As expected, our reranking model got
better results compared to the base model in both settings. The reranking model got
93.7% and 91.0% in two settings, which improves 2.5% and 2.0% compared to CRFSeg.
Also note that, when using Stanford parse trees, our reranking model got competitive
results with CRFSeg when using gold parse trees (91.0% compared to 91.2%).

Table 3.3 shows experimental results when evaluating on both beginning and contin-
uation labels. Our models also outperformed CRFSeg in both settings, using gold parse
trees and using Stanford parse trees (96.6% compared to 95.3% in the first setting, and
95.1% compared to 94.1% in the second setting).

Both evaluation methods have a weak point in that they do not measure the abil-
ity to find EDUs exactly. We suggest that the discourse segmentation task should be
measured on EDUs rather than boundaries of EDUs. Under this evaluation scheme, our
model achieved 90.0% and 86.2% when using gold parse trees and Stanford parse trees,
respectively.

A direct comparison with systems described in [134] and [137] is not possible due to
the difference of datasets. Thanh et al. [134] evaluated their system on only 8 texts of
RST-DT with gold standard parse trees. They achieved 81.4% and 79.2% in the precision
and recall scores, respectively. Tofiloski et al. [137] tested their system on only 3 texts of
RST-DT and used different segmentation guidelines. They reported a precision of 82.0%
and recall of 86.0% when using Stanford parse trees.

An important question is which subtree features were useful for the reranking model.
This question can be answered by looking at the weights of subtree features (the parameter

25

Table 3.2: Performance when evaluating on B labels
Model Trees Precision(%) Recall(%) F1(%)

SPADE Penn 84.1 85.4 84.7
NNDS Penn 85.5 86.6 86.0

CRFSeg Penn 92.7 89.7 91.2
Base Penn 92.5 92.5 92.5

Reranking Penn 93.1 94.2 93.7

CRFSeg Stanford 91.0 87.2 89.0
Base Stanford 91.4 90.1 90.7

Reranking Stanford 91.5 90.4 91.0

Human - 98.5 98.2 98.3

Table 3.3: Performance when evaluating on B and C labels
Model Trees Precision(%) Recall(%) F1(%)

CRFSeg Penn 96.0 94.6 95.3
Base Penn 96.0 96.0 96.0

Reranking Penn 96.3 96.9 96.6

CRFSeg Stanford 95.0 93.2 94.1
Base Stanford 95.3 94.7 95.0

Reranking Stanford 95.4 94.9 95.1

vector learned by the average perceptron algorithm). Table 3.4 shows 30 subtree features
with the highest weights in absolute value. These features are thus useful for reranking
candidates in the reranking model. We can see that most subtree features at the top
are splitting trees, so splitting trees have a more important role than bound trees in our
model. Among three types of subtrees (left tree, right tree, and full tree), full tree is the
most important type. It is understandable because subtrees in this type convey much
information; and therefore describe splitting trees and bound trees more precise than
subtrees in other types.

Now we discuss the cases in which our model fails to segment discourses. Note that all
errors belong to one of two types, over-segmentation type (i.e., words that are not EDU
boundaries are mistaken for boundaries) and miss-segmentation type (i.e., words that are
EDU boundaries are mistaken for not boundaries).

Tabel 3.5 shows 15 most frequent words for which our model usually makes a mis-
take and their percentage among all segmentation errors. Most errors are related to
coordinating conjunctions and subordinators (and, that, as, if, when), personal pronouns
(he, it, they), determiners (the, a), prepositions (of, without), punctuations (quotes and
hyphens), and the word to.

Figure 3.6 shows some errors made by our model. In these examples, gold (correct)
EDU boundaries are marked by bracket squares ([]), while predicted boundaries made
by our model are indicated by arrows (↓ or ↑). A down arrow (↓) shows a boundary
which is predicted correctly, while an up arrow (↑) indicates an over-segmentation error.
A boundary with no arrow means a miss-segmentation error. For example, in Sentence
1, we have a correct boundary and an over-segmentation error. Sentences 2 and 3 show
two over-segmentation errors, and sentences 4 and 6 show two miss-segmentation errors.

26

Table 3.4: Top 30 subtree features with the highest weights
Type of tree Type of subtree Subtree feature Weight

Splitting tree Full tree NP###NP-VP 23.0125
Splitting tree Full tree VP###S-VP 19.3044
Splitting tree Full tree NP###VBN 18.3862
Splitting tree Right tree VP -18.3723
Splitting tree Full tree NP###SBAR 17.7119
Splitting tree Full tree NP###NP-SBAR 17.0678
Splitting tree Full tree NP###, -16.6763
Splitting tree Full tree NP###VP 15.9934
Splitting tree Left tree NP-VP 15.2849
Splitting tree Full tree NP###NP 15.1657
Splitting tree Right tree SBAR 14.6778
Splitting tree Full tree NP###S-NP 14.4962
Splitting tree Full tree NP###S 13.1656
Bound tree Full tree S-PP###, 12.7428

Splitting tree Full tree NP###NP-VP-VBN 12.5210
Bound tree Full tree NP###NP -12.4723
Bound tree Full tree VP###VP -12.1918

Splitting tree Full tree NP-VP###S 12.1367
Splitting tree Right tree NP-VP 12.0929
Splitting tree Full tree NP-SBAR###VP 12.0858
Splitting tree Full tree NP-SBAR-S###VP 12.0858
Splitting tree Full tree VP###VP-VP -12.0338
Bound tree Full tree VBG###. 11.9067
Bound tree Right tree : 11.8833
Bound tree Full tree VP###S -11.7624
Bound tree Full tree S###VP -11.7596
Bound tree Full tree “###” 11.5524
Bound tree Full tree S###, 11.5274

Splitting tree Full tree NP###VP-VBN 11.3342
Bound tree Left tree 0 11.2878

27

Table 3.5: Top error words
Word Percentage among all errors (%)

to 14.5
and 5.8
that 4.6
the 4.6
“ 3.5
he 2.3
it 2.3
of 2.3

without 2.3
– 1.7
as 1.7
if 1.7

they 1.7
when 1.7

a 1.2

Figure 3.6: Some errors made by our model.

We also note that many errors occur right after punctuations (commas, quotes, hy-
phens, brackets, and so on). We analyzed statistics on words that appear before error
words. Table 3.6 shows 10 most frequent words and their percentage among all errors.
Overall, more than 35% errors occur right after punctuations.

3.6.3 Experiments on Discourse Parsing

We tested our system on the Test set of RST-DT in two settings. In the first setting,
we used gold segmentation and Peen Treebank parse trees. The purpose of this setting
is to test the performance of the proposed parsing model. In the second setting, we used
segmentation produced by our discourse segmenter and Stanford parse trees. The purpose
of this setting is to test the performance of the full system. In all experiments, the step
size δk was chosen as the guidance in Rush and Collins [112], and the number of iterations

28

Table 3.6: Most frequent words that appear before error words
Word Percentage among all errors (%)

, 24.9
“ 5.2
– 2.3

time 1.7
) 1.2

assets 1.2
investors 1.2
month 1.2
plan 1.2
was 1.2

Table 3.7: Experimental results of the tree building step (gold segmentation and gold
parse trees)

System Algorithm Precision(%) Recall(%) F1(%) Improvement(%)

HILDA Greedy 83.0 83.0 83.0 -

UDRST
Incremental 84.3 84.3 84.3 1.3

Dual 84.6 84.6 84.6 1.6

K was set to 10.
Table 3.7 shows experimental results of the tree building step in the unlabeled score.

When using the incremental algorithm, UDRST achieved 84.3% in the F1 score, which
improves 1.3% compared to HILDA. As expected, UDRST with the dual decomposition
algorithm got the better result than UDRST with the incremental algorithm (84.6%
compared to 84.3%).

Table 3.8 shows the performance of the full system in the unlabeled score. UDRST
outperformed HILDA in both algorithms, the incremental algorithm and the dual decom-
position algorithm. It achieved 77.0% and 77.3% in two algorithms, which improve 4.7%
and 5.0% compared to HILDA.

We do not compare our system to systems described in Sagae [116] and in Soricut and
Marcu [123]. Sagae [116] does not report the performance of his system in the unlabeled
score. Soricut and Marcu [123] evaluate their system only on sentence level discourse
parsing. They achieves 70.5% in the unlabeled score.

3.7 Conclusions

In this chapter, we have presented our study on learning discourse structures in the RST
framework. We first introduced a reranking model for the discourse segmentation task.
Our model exploits subtree features to rerank the N-best outputs of a base model, which
uses CRFs to learn. We then presented a novel model for unlabeled discourse parsing
which employs dual decomposition. The basic idea of the parsing model is that EDUs
in a sentence (a paragraph) tend to be connected to form a subtree before connecting to
EDUs in other sentences (paragraphs). This idea is put into our model by integrating an
incremental model and a greedy model using dual decomposition. Experiments on the

29

Table 3.8: Performance of the full system (our segmentation model and Stanford parse
trees)

System Algorithm Precision(%) Recall(%) F1(%) Improvement(%)

HILDA Greedy 73.0 71.7 72.3 -

UDRST
Incremental 77.2 76.7 77.0 4.7

Dual 77.5 77.0 77.3 5.0

RST Discourse Treebank corpus show that our models achieved the best results on both
the discourse segmentation task and the unlabeled discourse parsing task.

30

Chapter 4

Analyzing Logical Structures of
Legal Texts

4.1 Introduction

In recent years, a new research field called Legal Engineering has been proposed in the 21st
Century COE Program, Verifiable and Evolvable e-Society[62, 63, 64]. Legal Engineering
serves to exam and verify whether a law has been established appropriately according
to its purpose, whether a law contains contradictions, whether the law is consistent with
related laws, and whether the law has been modified, added, and deleted consistently.
There are two important goals of Legal Engineering. The first goal is to help experts
make complete and consistent laws, and the other is to design an information system
which works based on laws.

Legal Engineering regards that laws are a kind of software for our society. Specifically,
laws such as pension law are specifications for information systems such as pension sys-
tems. To achieve a trustworthy society, laws need to be verified about their consistency
and contradiction.

Legal texts have some specific characteristics that make them different from other
daily-use documents. Legal texts are usually long and complicated. They are composed
by experts who spent a lot of time to write and check carefully.

One of the most important characteristics is that legal texts usually have some specific
structures at both sentence and paragraph levels. At the sentence level, a law sentence can
roughly be divided into two logical parts: requisite part and effectuation part [4, 6, 132].
At the paragraph level, a paragraph usually contains a main sentence1 and one or more
subordinate sentences [130]. In this chapter, we will consider the task of analyzing logical
structures of legal texts, in which we first recognize logical parts in legal articles and then
group related logical parts into logical structures.

In the remainder of this section, we first explain about logical parts and logical struc-
tures2. We next describe the motivation of this work, and the overview of this chapter.

1Usually, the first sentence is the main sentence.
2The formal definitions of them will be presented in Section 4.3

31

4.1.1 Logical Parts and Logical Structures of Legal Texts

A logical part is a clause or phrase in law sentences that conveys a part of the meaning of
legal texts. Each logical part contains a specific kind of information according to its type.
Three main types of logical parts are antecedent part, consequent part, and topic part3.
A logical part in consequent type describes a law provision; a logical part in antecedent
type indicates cases (or the context) the law provision can be applied; and a logical part
in topic type describes subjects related to the law provision.

A logical structure is a pair of two high-level logical parts, a requisite part and an
effectuation part in the form:

requisite part ⇒ effectuation part .

Note that the implication mark is used to connect the requisite part and the effectuation
part. It is not exactly the same as the logical implication.

Each requisite part or effectuation part consists of several logical parts. This is the
reason why we call them high-level logical parts. In a simple case, the requisite part only
consists of one antecedent part ; and the effectuation part only consists of one consequent
part. Now, we will consider main cases of logical structures of legal texts.

Single Sentence Case

Figure 4.1 shows four popular cases of law sentences and their logical parts. Usually, a
law sentence consists of a topic part (T), an antecedent part (A), and a consequent part
(C). Four cases are divided depending on the relationships between the topic part and
the antecedent part and the consequent part.

• Case 0: There is no topic part. The requisite part only consists of the antecedent
part, and the effectuation part only consists of the consequent part.

• Case 1: The topic part depends on the antecedent part. The requisite part is
composed from the topic part and the antecedent part, while the effectuation part
only consists of the consequent part.

• Case 2: The topic part depends on the consequent part. The requisite part consists
of the antecedent part, while the effectuation part is composed from the topic part
and the consequent part.

• Case 3: The topic part depends on both the antecedent part and the consequent
part. The requisite part is composed from the topic part and the antecedent part,
while the effectuation part is composed from the topic part and the consequent part.

Multiple Sentences Case

Figure 4.2 shows four popular cases of legal paragraphs consisting of multiple sentences
and their logical structures defined by Takano et al. [130]. Usually, a legal paragraph
consists of a main sentence and a subordinate sentence. The main sentence is the first
sentence in the paragraph, while the subordinate sentence can be the second sentence or
an embedded sentence in parentheses within the main sentence.

3In our corpus, three main types of logical parts make up 82% of all types.

32

Figure 4.1: Examples of law sentences and logical parts (A: antecedent part; C: consequent
part; T: topic part).

• Case 1 (Individual type): The main and subordinate sentences are represented in
two logical structures. The first logical structure corresponds to the main sentence.
The second logical structure corresponds to the subordinate sentence and some part
of the main sentence.

• Case 2 (Embedded type): The main and subordinate sentences are represented in
one logical structure.

• Case 3 (Mixed type): The main sentence and some part of the subordinate sentence
are represented in the first logical structure, and the subordinate and some part of
the main sentence are represented in the second logical structure.

• Case 4 (Independent type): The main sentence is represented in the first logical
structure and the subordinate sentence is represented in the second logical structure.

33

Figure 4.2: Four popular cases of legal paragraphs [130].

Figure 4.3: An example of Individual type in the JNPL corpus (A means Antecedent part ;
C means Consequent part ; T means Topic part.

Figure 4.3 shows an example of Individual type (Case 1) in the JNPL corpus. In this
example, the main sentence consists of a topic part (T), an antecedent part (A1), and
a consequent part (C1). The subordinate sentence consists of an antecedent part (A2)
and a consequent part (C2). The first logical structure corresponds to the main sentence
(means T, A1, and C1). The second logical structure corresponds to the subordinate
sentence (means A2 and C2) and some part of the main sentence (means T).

In our work, we first recognize logical parts, then group logical parts into logical
structures. We do not recognize the relations between logical parts. In this sense, a
logical structure can be seen as a group of some logical parts.

4.1.2 Motivation of This Work

Analyzing logical structures of legal texts is an important task in Legal Engineering. The
outputs of this task will be beneficial to people in understanding legal texts. They can
help understanding:

1. What does a law sentence say? (The consequent part of a logical structure is the
answer for this question.)

34

2. What cases the law sentence can be applied? (The antecedent part is the answer for
this question.)

3. What subjects are related to the provision described in the law sentence? (The topic
part is the answer for this question.)

This task is the preliminary step, which supports other tasks in legal text processing
(translating legal articles into logical and formal representations, legal text summariza-
tion, legal text translation, question answering in legal domains, etc) and serves legal
text verification, an important goal of Legal Engineering. For example, in the task of
translating legal articles into logical and formal representations, we can do as follows:

1. Recognizing logical parts and logical structures in the legal articles

2. Translating each logical part into a formal representation

3. Combining formal representations of logical parts in the same logical structures into
a single one.

Until now, most researches have focused on analyzing logical structures of legal texts
at the sentence level. Analyzing law sentences individually is not enough to understand
a legal document. In most cases, to understand a law sentence, we need to understand
related sentences or its context. To the best of our knowledge, however, no existing
research addresses the task at the paragraph level. Analyzing logical structures of legal
paragraphs is therefore a next step in the research of Legal Engineering to achieve its
goals: helping people in understanding legal texts and making computers able to process
legal texts automatically.

4.1.3 Overview of This Chapter

In this chapter, we address the task of analyzing logical structures of legal articles at the
paragraph level. We propose a two-phase framework to complete the task, in which we
recognize logical parts in the first phase and logical structures in the second phase. We also
describe experimental results on legal data. Our main contributions can be summarized
in the following points.

1. Introducing a new task to legal text processing, analyzing logical structures of para-
graphs in legal articles.

2. Presenting an annotated corpus for the task, the Japanese National Pension Law
corpus.

3. Proposing a two-phase framework and providing solutions to solve the task.

4. Evaluating our framework on a real annotated corpus.

The rest of this chapter is organized as follows. We first describe related work in
Section 4.2. We next present our task and its two subtasks: recognition of logical parts and
recognition of logical structures in Section 4.3. Section 4.4 presents the overall architecture
of our framework. In Section 4.5, we present our solution for the first subtask: multi-layer

35

sequence learning model for recognizing logical parts. Section 4.6 describes our solution
for the second subtask: integer linear programming for recognizing logical structures.
Experimental results on legal articles are described in Section 4.7. This section also
presents limitation and methods for improving the performance of our system. Finally,
conclusions and directions for further research are presented in Section 4.8.

4.2 Related Work

This section presents related work and places our work in the scope of the legal text
processing field. First, we present studies on legal text processing in general. Then, we
focus on studies on analyzing logical structures of Japanese legal texts, which are closest
to our work.

4.2.1 Studies on Legal Text Processing

Studies on legal text processing can be categorized into several topics including Legal On-
tology Learning, Legal Information Extraction, Legal Semantic Annotation, Automatic
Identification of Legal Terms, Legal Knowledge Modeling, Legal Argumentation, Legal
Automatic Summarization, and Fundamental NLP Tasks for Legal Texts4. In the follow-
ing, we describe a short summary of previous studies according to each topic5.

• Legal Ontology Learning : Lame [76] presents a general method using NLP tech-
niques for recognizing legal concepts and semantic relations among them, the main
components of an ontology. Using this method, the author built an ontology of
French laws, which is dedicated to information retrieval. Saias and Quaresma [117]
present a methodology to automatically create an OWL (Ontology Web Language)
ontology from a set of legal documents in five steps: 1) Definition of an initial
top-level ontology; 2) Identification of concepts referred in the legal documents and
extraction of its properties; 3) Identification of relations between the identified con-
cepts; 4) Creation of an ontology using the identified concepts and relations; 5)
Mergence of the created ontology with the initial ontology. Both Lame [76] and
Saias and Quaresma [117] identify components of legal ontologies from the analysis
of legal texts. The method of Saias and Quaresma [117], however, can exploit ini-
tial documents which are enriched with instances to build the final ontology. The
authors claim that this process allows the definition of semantic web agents able to
query the semantic content of these documents.

A rule-based method for extracting and analyzing definitions from parsed texts is
presented in Walter and Pinkal [145]. They evaluated this method on a corpus of
about 6000 German court decisions and reported an experiment exploring the use
of extraction results to improve the quality of text-based ontology learning. Völker
et al. [143] describe the open-source software Text2Onto2, a framework for ontology
learning from open-domain unstructured text.

4First seven topics are chosen from [141]. The last topic is added by ourselves.
5We do not have ambitions to present all the previous work. We only try to provide a full picture

about research into legal text processing field.

36

• Legal Information Extraction: Walter [144] presents a rule-based method, which
uses dependency parse trees, to extract definitions from German court decisions.
McCarty [86] presents a method to compute semantic interpretations of legal texts
from the output of a syntactic parser. The author introduced an initial legal corpus
consisting of federal civil cases in the appellate courts in the United States. However
neither experiment nor evaluation was described.

• Legal Semantic Annotation: Brighi et al. [16] present an approach for the automatic
annotation of modificatory provisions of Italian laws. They adopted a rule-based
algorithm to fill the semantic roles of the semantic frame associated with the mod-
ificatory provision. However this work is still in a prototypal stage.

Spinosa et al. [124] present a system for the automatic consolidation of Italian
legislative texts. The goal of the system is to be used as a support of an editorial
consolidating activity. The proposed approach to consolidation is metadata-oriented
(XML-based) and based on NLP techniques. The system was implemented and
evaluated on Italian textual amendments.

• Automatic Identification of Legal Terms : Pala et al. [103] describe a project on iden-
tification of legal terms. The goal of this project is to build an electronic dictionary
of Czech law terms. They also presented a legal database including approximate
50,000 Czech law documents.

• Legal Knowledge Modeling : Nakamura et al. [95] describe a rule-based system
which translates legal texts into logical forms. Their logical formalization conforms
to Davidsonian Style, which is suitable for languages allowing expressions with zero-
pronouns such as Japanese. The system achieved 78% accuracy in terms of deriving
predicates with bound variables.

• Legal Argumentation: Moens et al. [90] describe an investigation on the detection
of arguments in legal texts. They considered the detection task as a classification
problem and built a classifier using a set of annotated arguments. Various kinds of
features were evaluated including lexical, syntactic, semantic, and discourse prop-
erties of texts.

Wyner et al. [149] present recent approaches to automatic identification of legal
arguments, which use Context Free Grammar, ontologies, and NLP techniques

• Legal Automatic Summarization: Grover et al. [49] present a method for automatic
summarization of legal documents in two steps: 1) sentences in the legal documents
are classified according to their rhetorical role; 2) sentences are selected to form a
summary based on their rhetorical role.

• Fundamental NLP Tasks for Legal Texts : These studies investigate fundamental
NLP tasks (such as morphology, syntactic parsing, chunking and so on) on legal
domains. Pala et al. [102] explore the morphology of the Czech law texts on a
corpus of approximate 50,000 Czech law documents including Constitution, acts,
public notices, and court judgements. Venturi [141] describes an investigation on
syntactic and lexical characteristics of legal language (Italian and English laws)
with respect to ordinary language. According to the author, understanding these

37

characteristics of specialized languages has practical importance in the development
of domain-specific applications.

4.2.2 Studies on Analyzing Logical Structures of Japanese Legal
Texts

Analyzing logical structures of legal texts can be considered as a subtopic of legal knowl-
edge modeling, in which we try to model knowledge conveyed in legal documents.

There have been some studies analyzing logical structures of Japanese legal texts.
Tanaka et al [132] describe the standard structure of legal provisions based on the principle
of legal condition-effect. Tanaka [131] analyzes semantic functions of the legal-effect’s
restrictive part and its semantic restriction to the provision.

Muramatsu et al. [92] describe a tool that displays logical structure of legal sentence
from tagged legal sentences. This tool consists of two functions: 1) tagging support
function, which labels automatically for gross structure, and displays tag candidates for
logical structure; 2) logical structure display function, which shows a logical structure of
a legal sentence based on the tag information.

Recently, a new research field called Legal Engineering has been proposed in the 21st
Century COE Program, Verifiable and Evolvable e-Society [62, 63, 64]. Several works
have been conducted in this program. Bach et al. [6] present the RRE task6, which
analyzes logical structures of legal texts at the sentence level. In the RRE task, the
goal is to recognize logical parts given an input law sentence. This task considers two
types of sentences (implication type7 and equivalence type) and seven kinds of logical parts
(three kinds of topic parts, antecedent part, consequent part, left equivalent part, and right
equivalent part).

Compared to the RRE task, which analyzes logical structures of legal texts at the
sentence level, our task is more difficult in some points:

• In the RRE task, we only consider a single sentence. We assume that all logical
parts in a sentence belong to the same logical structure. In this task, we consider
multiple sentences. A logical structure consists of several logical parts in different
sentences. A logical part also can belong to multiple logical structures.

• In this task, we also consider cases that a logical part contains other logical parts
(embedded relationship is possible).

Several machine learning models have been proposed to deal with the RRE task [6], in
which the task is modeled as a sequence learning problem. Experimental results showed
that Conditional random files (CRFs) [75] can solve the task relatively well. They achieved
nearly 90% in F1 score on the Japanese National Pension Law corpus.

Bach et al. [5] describe an investigation on contributions of words to the RRE task.
Authors presented a method to evaluate the importance of words in the task and found
that words that have strong relations to the logical structure of law sentences are very
important for machine learning models. Kimura et al. [65] focus on dealing with legal
sentences including itemized and referential expressions. They presented a rule-based

6The task of Recognition of Requisite part and Effectuation part in law sentences.
7Most sentences (98.6%) belong to implication type.

38

Figure 4.4: Two cases of inputs and outputs of the task.

method for substituting referent phrases. These works, however, only analyze logical
structures of legal texts at the sentence level.

At the paragraph level, Takano et al. [130] classify a legal paragraph into one of six
predefined categories: A, B, C, D, E, and F . Among six types, Type A, B, and C
correspond to cases in which the main sentence is the first sentence, and subordinate
sentences are other sentences. In paragraphs of Type D, E, and F , the main sentence is
the first or the second sentence, and a subordinate sentence is an embedded sentence in
parentheses within the main sentence.

4.3 Task Formulation

Analyzing logical structures of paragraphs in legal articles is the task of recognition of
logical structures between logical parts in law sentences. A logical structure is formed
from a pair of a requisite part and an effectuation part. These two parts are built from
other kinds of logical parts such as topic parts, antecedent parts, consequent parts, and so
on [4, 6]8. Usually, consequent parts describe a law provision, antecedent parts describe
cases in which the law provision can be applied, and topic parts describe subjects which
are related to the law provision. In our work, a logical structure can be defined as a set
of some related logical parts.

Figure 4.4 shows two cases of the inputs and outputs of the task. In the first case (a),
the input is a paragraph of two sentences, and the outputs are four logical parts, which
are grouped into two logical structures. In the second case (b), the input is a paragraph
consisting of four sentences, and the outputs are four logical parts, which are grouped
into three logical structures. We have two remarks:

1. A logical part may contain other logical parts. For example, in case (a), logical part
2 contains logical part 3.

2. A logical part can belong to multiple logical structures. For example, in case (b),
logical part 1 belongs to three logical structures.

8We only recognize logical structures (a set of related logical parts). The task of translating legal
articles into logical and formal representations is not covered in our work.

39

Figure 4.5: An example of overlapping and embedded relationships.

4.3.1 Subtask 1: Recognition of Logical Parts

Let s be a law sentence9 in the space of law sentences S, then s can be represented by
a sequence of words s = [w1w2 . . . wn]. A legal paragraph x in the legal paragraph space
X is a sequence of law sentences x = [s1s2 . . . sl], where si ∈ S,∀i = 1, 2, . . . , l. For each
paragraph x, we denote a logical part p by a quad-tuple p = (b, e, k, c) where b, e, and
k are three integers which indicate position of the beginning word, position of the end
word, and sentence position of p, and c is a logical part category in the set of predefined
categories C. Formally, the set P of all possible logical parts defined in a paragraph x
can be described as follows:

P = {(b, e, k, c)|1 ≤ k ≤ l, 1 ≤ b ≤ e ≤ len(k), c ∈ C}.

In the above definition, l is the number of sentences in the paragraph x, and len(k) is the
length of the kth sentence.

In this subtask, we want to recognize some non-overlapping (but possibly embedded)
logical parts in an input paragraph. A solution for this task is a subset y ⊆ P which
does not violate the overlapping relationship. We say that two logical parts p1 and p2 are
overlapping if and only if they are in the same sentence (k1 = k2) and b1 < b2 ≤ e1 < e2

or b2 < b1 ≤ e2 < e1. We denote the overlapping relationship by ∼. We also say that p1 is
embedded in p2 if and only if they are in the same sentence (k1 = k2) and b2 ≤ b1 ≤ e1 ≤ e2,
and denote the embedded relationship by ≺.

Figure 4.5 illustrates an example of overlapping and embedded relationships. In this
example, the law sentence consists of nine words w1, . . . , w9, and three logical parts p1

(from 2 to 5), p2 (from 1 to 7), and p3 (from 7 to 9). Among three logical parts, p2 and
p3 are overlapping, and p1 is embedded in p2.

Formally, the solution space can be described as follows:

Y = {y ⊆ P |∀u, v ∈ y, u 6∼ v}.

The learning problem in this subtask is to learn a function R : X → Y from a set of m
training samples {(xi, yi)|xi ∈ X, yi ∈ Y, ∀i = 1, 2, . . . ,m}.

In our task, we consider the following types of logical parts:

1. An antecedent part is denoted by A

2. A consequent part is denoted by C

3. A topic part which depends on the antecedent part is denoted by T1

4. A topic part which depends on the consequent part is denoted by T2

9s may be a complete or non-complete sentence (clause or phrase).

40

5. A topic part which depends on both the antecedent part and the consequent part
is denoted by T3

6. The left part of an equivalent statement is denoted by EL

7. The right part of an equivalent statement is denoted by ER

8. An object part, whose meaning is defined differently in different cases, is denoted
by Ob

9. An original replacement part, which will be replaced by other replacement parts
(denoted by RepR) in specific cases, is denoted by RepO.

4.3.2 Subtask 2: Recognition of Logical Structures

In the second subtask, the goal is to recognize a set of logical structures given a set of
logical parts. We recall that a logical structure is a set of some related logical parts.

Let G =< V,E > be a complete undirected graph with the vertex set V and the edge
set E. A real value function f is defined on E as follows:

f : E → R, e ∈ E 7→ f(e) ∈ R.
In this subtask, each vertex of the graph corresponds to a logical part, and a complete

subgraph corresponds to a logical structure. The value on an edge connecting two vertices
expresses the degree that the two vertices belong to one logical structure. The positive
(negative) value means that two vertices are likely (not likely) to belong to one logical
structure.

Let Gs be a complete subgraph of G, then v(Gs) and e(Gs) are the set of vertices and
the set of edges of Gs, respectively. We define the total value of a subgraph as follows:

f(Gs) = f(e(Gs)) =
∑

e∈e(Gs)

f(e).

Let Ω be the set of all complete subgraphs of G. The problem becomes determining a
subset Ψ ⊆ Ω that satisfies the following constraints:

1. ∀g ∈ Ψ, |v(g)| ≥ 2,

2. ∪g∈Ψv(g) = V ,

3. ∀g1, g2 ∈ Ψ|v(g1) ⊆ v(g2)⇒ v(g1) = v(g2),

4. ∀g ∈ Ψ,∪h∈Ψ,h6=gv(h) 6= V , and

5.
∑

g∈Ψ f(g)→ maximize.

Constraint 1), minimal constraint, says that each logical structure must contain at
least two logical parts. There is a case that a logical structure contains only a consequent
part. Due to the characteristics of Japanese law sentences, however, our corpus does not
contain such cases. A logical structure which contains a consequent part will also contain
a topic part or an antecedent part or both of them. So a logical structure contains at
least two logical parts. Constraint 2), complete constraint, says that each logical part
must belong to at least one logical structure. Constraint 3), maximal constraint, says

41

that we cannot have two different logical structures such that the set of logical parts
in one logical structure contains the set of logical parts in the other logical structure.
Constraint 4), significant constraint, says that if we remove any logical structure from
the solution, Constraint 2) will be violated. Although Constraint 3) is guaranteed by
Constraint 4), we introduce it because of its importance.

4.4 Framework Architecture

Figure 4.6 shows the framework architecture of our whole system. In learning process, the
goal is to learn a multi-layer sequence model and a binary classifier. First, information
about logical parts and logical structures is extracted from annotated Japanese National
Pension Law (JNPL) corpus10. Then we conduct preprocessing using CaboCha tool [72].
The output of this process is then inputted into two feature extraction modules. Features
extracted from sequence feature extraction module are used to learn multi-layer sequence
model. To learn this model, we exploited Conditional random fields with CRF++ tool
[70]. Features extracted from relation feature extraction module are inputted into a
machine learning model to learn the binary classifier. We present experimental results
with two learning methods: Maximum Entropy model with maxent tool [138] and Support
vector machines with LIBSVM tool [26, 56].

In testing process, the goal is to produce logical parts and logical structures given a
new legal paragraph. First we conduct preprocessing on the input legal paragraph. It
is then inputted into the sequence feature extraction module and multi-layer sequence
learning model to produce logical parts. Logical parts are inputted into the relation
feature extraction module and binary classifier to generate a weighted graph. From the
weighted graph, an ILP formulation is then created. The solution of this ILP formulation
produces a subgraph, from which logical structures are extracted using Bron-Kerbosch
algorithm.

4.5 Multi-layer Sequence Learning for Logical Part

Recognition

First, we give some related notions. Let s be a law sentence, and P be the set of logical
parts of s, P = {p1, p2, . . . , pm}. Layer1(s) (outermost layer) is defined as a set of logical
parts in P , which are not embedded in any other part. Layeri(s) is defined as a set
of logical parts in P\ ∪i−1

k=1 Layer
k(s), which are not embedded in any other part in

P\ ∪i−1
k=1 Layer

k(s). Formally, we have:

Layer1(s) = {p|p ∈ P, p 6≺ q,∀q ∈ P, q 6= p}.

Layeri(s) = {p|p ∈ Qi, p 6≺ q,∀q ∈ Qi, q 6= p},

where

Qi = P\ ∪i−1
k=1 Layer

k(s)

10We will introduce JNPL corpus in Section 4.7.

42

Figure 4.6: Framework architecture.

43

Figure 4.7: A law sentence with logical parts in three layers.

Figure 4.8: An example of labeling in the multi-layer model.

Figure 4.7 illustrates a law sentence with four logical parts in three layers: Part 1 and
Part 2 in Layer1, Part 3 in Layer2, and Part 4 in Layer3.

Let K be the number of layers in a law sentence s, our model will recognize logical
parts in K steps. In the kth step we recognize logical parts in Layerk. In each layer,
we model the recognition problem as a sequence labeling task in which each word is an
element. Logical parts in Layeri−1 will be used as input sequence in the ith step (in the
first step, we use original sentence as input).

Figure 4.8 gives an example of labeling for an input sentence. The sentence consists of
three logical parts in two layers. In our model, we use IOE tag setting: the last element
of a part is tagged with E, the other elements of a part are tagged with I, and an element
not included in any part is tagged with O. According to [6], IOE tag setting is the most
suitable setting for recognizing logical parts in Japanese law sentences. There are two
reasons which may explain why the IOE setting is suitable for recognizing logical parts.
First, in Japanese, important words usually occur at the end of a phrase, and important
Bunsetsu usually occur at the end of a sentence. A Bunsetsu always depends on another
Bunsetsu which stands to its right. Second, a logical part tends to finish at a punctuation
mark (comma or period). So a punctuation mark has a high probability of being the last
element of a logical part.

Let K∗ be the maximum number of layers in all law sentences in training data. We
learn K∗ models, in which the kth model is learned from logical parts in the Layerk of
training data, using Conditional random fields [70, 75]. In the testing phase, we first
apply the first model to the input law sentence, and then apply the ith model to the
predicted logical parts in Layeri−1.

In our multi-layer sequence learning model, we choose CRFs as the learning method.
There are some reasons why we choose CRFs. The first reason comes from the nature
of the first subtask. This subtask is modeled as a multi-layer sequence learning problem,
in which we learn a sequence learning model for each layer, and CRFs is a suitable

44

Figure 4.9: Examples of graphs and their cliques.

framework for sequence learning tasks. The second reason comes from the advantages of
CRFs. CRFs is a discriminative method, it has all the advantages of Maximum Entropy
Markov models (MEMMs) [85] but does not suffer from the label bias problem [75].
The last reason is that CRFs has been applied successfully to many NLP tasks such as
POS tagging, chunking, named entity recognition, syntax parsing, information retrieval,
information extraction, analyzing logical structures of legal texts at the sentence level,
and so on [6, 73, 75, 106, 119].

4.6 ILP for Recognizing Logical Structures

This section describes our method for recognizing logical structures using integer linear
programming (ILP).

4.6.1 ILP Formulation

Suppose that G′ is a subgraph of G such that G′ contains all the vertices of G and the
degree of each vertex in G′ is greater than zero, then the set of all the maximal complete
subgraphs (or cliques) of G′ will satisfy the minimal, complete, and maximal constraints,
and also the significant constraint in most cases. We also note that, a set of cliques
that satisfies all these four constraints will form a subgraph that has two properties like
properties of G′.

Let Λ be the set of all such subgraphs G′ of G, the subtask now consists of two steps:

1. Finding G′ = argmaxG′∈Λf(G′), and

2. Finding all cliques of G′.

Each clique found in the second step will correspond to a logical structure. Figure
4.9 illustrates two examples of graphs and their cliques. The graph on the left hand side
consists of three nodes 1, 2, and 3, and two cliques {1, 2} and {1, 3}. The graph on the
right hand side consists of five nodes 1, 2, 3, 4, and 5, and two cliques {1, 2, 3, 4} and
{4, 5}.

Recently, some researches have shown that integer linear programming (ILP) formu-
lations is an effective way to solve many NLP problems such as semantic role labeling
[108], coreference resolution [36], summarization [27], dependency parsing [84], and so on.
The advantage of ILP formulations is that we can incorporate non-local features or global
constraints easily, which are difficult in traditional algorithms. Although solving an ILP

45

is NP-hard in general, some fast algorithms and tools11 are now available. So we can
apply ILP to many NLP problems [84].

In this work, we exploit ILP to solve the first step. Let N be the number of vertices
of G, we introduce a set of integer variables {xij}1≤i<j≤N . For a subgraph G′ of G, the
values of {xij} are set as follows:

xij =

{
1 if (i, j) ∈ e(G′),
0 otherwise.

ILP formulations for the first step can be described:
Maximize: ∑

1≤i<j≤N

f(i, j) ∗ xij

Subject to:
Integer : {xij}1≤i<j≤N .

0 ≤ xij ≤ 1, (1 ≤ i < j ≤ N).

j−1∑
i=1

xij +
N∑

k=j+1

xjk ≥ 1, (1 ≤ j ≤ N).

The last constraint guarantees that there is at least one edge connecting to each vertex
in G′.

The second step, finding all cliques of an undirected graph, is a famous problem in
graph theory. Many algorithms have been proposed to solve this problem efficiently.
In this work, we exploit the Bron-Kerbosch algorithm, a backtracking algorithm. The
main idea of the Bron-Kerbosch algorithm is using a branch-and-bound technique to stop
searching on branches that cannot lead to a clique [17]. Although Bron-Kerbosch is a
famous algorithm, we present it here for clarity.

First, we describe three sets, which play an important role in the algorithm12.

1. The set compsub: contains the nodes already defined as a part of the clique.

2. The set candidates: contains all the nodes which serve as an extension to compsub
(candidates is the set of nodes connected to all the nodes in compsub).

3. The set not: contains all the nodes that have already processed at an earlier stage,
which lead to an extension of compsub, and are now excluded.

The pseudo code of the Bron-Kerbosch algorithm is presented as Algorithm 6. If there
is an element in not connecting to all nodes in candidates, we cannot get a maximal clique
from the present compsub (because we always miss that element in not). So the algorithm
will terminate as early as possible.

The remaining problem is how to define the value function f . Our solution is that, first
we learn a binary classifier C. This classifier takes a pair of logical parts as the input, and

11We used lp-solve from http://lpsolve.sourceforge.net/
12We use notations exactly the same as presented in Bron and Kerbosch [17].

46

Algorithm 6 Bron-Kerbosch Algorithm [17]

Input: An undirected graph G =< V,E >.
Output: Set of all cliques C.
Initialize: compsub := ∅, candidates := V , not := ∅, C := ∅;
Do the following recursive procedure until candidates is empty or there is an element
in not connecting to all nodes in candidates:

1. Select a candidate v in candidates

2. Add v to compsub:
compsub := compsub ∪ {v};

3. Compute new candidates and new not for the next recursion step
NewCandidates := {u ∈ candidates|e(u, v) = 1};
NewNot := {u ∈ not|e(u, v) = 1};

4. Start the next recursion step (from (1)) with NewCandidates and NewNot

5. Back from recursive with old sets of candidates and not, and make v as processed
(add v to not): not := not ∪ {v};

If candidates and not are both empty, we have a clique which is a subgraph with the
set of nodes compsub
(add compsub to C): C := C ∪ {compsub};

outputs +1 if two logical parts belong to one logical structure, otherwise it will output
−1. Then, we define the value function f for two logical parts pi and pj (correspond to
node i and node j in the graph) as follows:

f(pi, pj) = Prob(C(pi, pj) = +1)− 0.5.

Function f will receive a value from −0.5 to +0.5.

4.6.2 Learning Binary Classifier

This section presents machine learning models and features that we use to learn the bi-
nary classifier C. Many classification methods have been proposed including traditional
methods, such as k-NN [32], decision tree [115], naive Bayes [88], and more recent ad-
vanced models, like Maximum Entropy Models (MEMs) [12] and Support Vector Machines
(SVMs) [140]. All of them can be used in our framework. Among these, we chose two
classification methods to complete our framework: MEMs and SVMs. Both of them have
been applied successfully to many NLP tasks. While SVMs is chosen because it is a very
powerful method, MEMs is another good choice. It does not only performs better than
SVMs in some particular cases, but also is very fast in both training and inference.

Features for Learning Binary Classifier

With a pair of logical parts, we extracted the following features (and combinations of
them):

47

• Categories of two parts.

• Layers of two parts.

• The positions of the sentences that contain two parts (the first sentence or not).

• Categories of other parts in the input paragraph.

Table 4.1 shows features in details. Note that, in line number 22, we consider other
logical parts in the input paragraph. Each such logical part will correspond to one feature.
It is similar to line numbers 23, 24, and 25.

Table 4.1: Features for learning binary classifier (T2: topic part in case 2; A: antecedent
part; C: consequent part)

Feature Example

1 Category of the first logical part A
2 Category of the second logical part C
3 Categories of two logical parts A-C
4 Layer of the first logical part 1
5 Layer of the second logical part 2
6 Layers of two logical parts 1-2
7 ID of the sentence (sentID) containing the first logical part 1
8 ID of the sentence (sentID) containing the second logical part 1
9 IDs of the sentences containing two logical parts 1-1
10 Category and layer of the first logical part A-1
11 Category and layer of the second logical part C-2
12 Categories and layers of two logical parts A-C-1-2
13 Category and sentID of the first logical part A-1
14 Category and sentID of the second logical part C-1
15 Categories and sentIDs of two logical parts A-C-1-1
16 Layer and sentID of the first logical part 1-1
17 Layer and sentID of the second logical part 2-1
18 Layers and sentIDs of two logical parts 1-2-1-1
19 Category, layer, and sentID of the first logical part A-1-1
20 Category, layer, and sentID of the second logical part C-2-1
21 Categories, layers, and sentIDs of two logical parts A-C-1-2-1-1
22 Categories of other logical parts in the input T2
23 Categories of the 1st logical part and other logical parts in the input A-T2
24 Categories of the 2nd logical part and other logical parts in the input C-T2
25 Categories of two logical parts and other logical parts in the input A-C-T2

48

Figure 4.10: The structure of JNPL.

4.7 Experiments

4.7.1 Corpus

We have built a corpus, Japanese National Pension Law (JNPL) corpus, which consists
of 83 legal articles13 of Japanese national pension law. The structure of JNPL is shown
in Figure 4.10. The law consists of articles, articles consist of paragraphs, and para-
graphs contain sentences. A sentence may belong to items, subitems, or subsubitems of
a paragraph.

Figure 4.11 shows the relationship between a law sentence and logical parts. A law
sentence may contain some logical parts, and a logical part may be embedded in another
one.

In our corpus, a logical part is annotated with information about its type (kind of
part) and formula-id (logical parts with the same id will belong to one logical structure).
An example of annotated sentence in the JNPL corpus is shown in Figure 4.12.

We employed two people14 in a data-making company, who analyzed and annotated
our corpus. The corpus consists of 83 legal articles, which contain 119 paragraphs with

13We annotate a main part of JNPL due to the resource limitation.
14A student and a graduated student of a law school.

49

Figure 4.11: Relationship between a sentence and logical parts.

Table 4.2: Statistics on logical parts of the JNPL corpus
Logical Part C A T1 T2 T3 EL ER Ob RepO RepR

Number 248 286 0 114 12 55 57 9 12 14

426 sentences. On average, each paragraph consists of 3.6 sentences. The total number
of logical parts is 807, and the number of logical structures is 351. On average, each
paragraph consists of 6.8 logical parts and 3 logical structures.

We focus on paragraphs in Type A, B, and C defined in [130]. In those types, the
first sentence of each paragraph is the main sentence, which usually contains more logical
parts than other sentences. The other sentences often have a few logical parts, and in
most cases these logical parts only appear in one layer. The first sentences usually contain
logical parts in two layers.

Table 4.2 shows some statistics on the number of logical parts of each type. Main
types of parts are A(35.4%), C(30.7%), T2(14.1%), ER(7.1%), and EL(6.8%). Five main
types of parts make up more than 94% of all types.

4.7.2 Evaluation Methods

We divided the JNLP corpus into 10 sets, and conducted 10-fold cross-validation tests for
all experiments in this chapter. For the first subtask, we evaluated the performance of
our system by precision, recall, and F1 scores as follows:

precision =
number of correct logical parts

number of predicted logical parts
,

recall =
number of correct logical parts

number of actual logical parts
,

F1 =
2 ∗ precision ∗ recall
precision+ recall

.

For the second subtask, we used MUC precision, recall, and F1 scores as described in
[142]. We summarize them here for clarity.

50

Figure 4.12: An annotated sentence in the JNPL corpus. (left: the original text; right:
the translated text.)

Table 4.3: Examples of evaluation method for Subtask 2
Input Predict Gold Recall Precision F1

1,2,3,4,5
{1,2,3} {1,2,3,4} (4−2)+(2−2)

(4−1)+(2−1)
= 0.50 (3−1)+(2−1)+(2−2)

(3−1)+(2−1)+(2−1)
= 0.75 0.60{1,4} {1,5}

{2,5}

1,2,3,4,5
{1,2,3} {1,2,3} (3−1)+(2−2)+(2−2)

(3−1)+(2−1)+(2−1)
= 0.50 (3−1)+(2−2)+(2−2)

(3−1)+(2−1)+(2−1)
= 0.50 0.50{1,4} {1,5}

{2,5} {2,4}

Let P1, P2, . . . , Pn be n predicted logical structures, and G1, G2, . . . , Gm be the correct
answers or gold logical structures. To calculate the recall, for each gold logical structure
Gi(i = 1, 2, . . . ,m), let k(Gi) be the smallest number such that there exist k(Gi) predicted

structures P i
1, P

i
2, . . . , P

i
k(Gi)

which satisfy Gi ⊆ ∪k(Gi)
j=1 P i

j :

recall =

∑m
i=1 (|Gi| − k(Gi))∑m

i=1 (|Gi| − 1)
.

To calculate the precision, we switch the roles of predicted structures and gold struc-
tures. Finally, F1 score is computed in a similar manner as in the first subtask.

Table 4.3 shows two examples of the evaluation method for Subtask 2. In two examples,
we have five input logical parts numbered 1, 2, 3, 4, and 5, and the system predicts three
logical structures {1, 2, 3}, {1, 4}, and {2, 5}. In the first case, the correct answer (gold)
consists of two logical structures {1, 2, 3, 4} and {1, 5}, while in the second case, the
correct answer consists of three logical structures {1, 2, 3}, {1, 5}, and {2, 4}.

To score the whole system, due to the predicted logical parts may differ from the
correct logical parts, we need to modify the MUC scores. Let P1, P2, . . . , Pn be n predicted
logical structures, and G1, G2, . . . , Gm be the gold logical structures. For each gold logical

51

Table 4.4: Examples of evaluation method for the whole system (PreP = Predicted logical
parts, PreStr = Predicted logical structures, GP = Gold logical parts, GStr = Gold logical
structures)

PreP PreStr GP GStr Recall Precision F1

1,2,3
{1,2}

1,2,3,4
{1,2,4} (3−1−1)+(2−1−1)

(3−1)+(2−1)
=0.33 (2−0−1)+(2−0−2)

(2−1)+(2−1)
= 0.50

0.40
{1,3} {3,4}

1,2,3
{1,3}

1,2,4
{1,4} (2−1−1)+(2−1−1)

(2−1)+(2−1)
=0.00 (2−1−1)+(2−1−1)

(2−1)+(2−1)
= 0.00

0.00
{2,3} {2,4}

structure Gi(i = 1, 2, . . . ,m), let Di be the set of logical parts in Gi which are not included
in the set of predicted logical parts. Di = {p ∈ Gi|p /∈ ∪nj=1Pj}. Let k(Gi) be the smallest
number such that there exist k(Gi) predicted structures P i

1, P
i
2, . . . , P

i
k(Gi)

which satisfy

Gi ⊆ (∪k(Gi)
j=1 P i

j) ∪Di.

recall =

∑m
i=1 (|Gi| − |Di| − k(Gi))∑m

i=1 (|Gi| − 1)
.

To calculate the precision, we switch the roles of predicted structures and gold structures.
Two examples of the evaluation method for the whole system are shown in Table 4.4.

In the first case, the set of predicted logical parts (output predicted by our system in
Subtask 1) consists of three logical parts 1, 2, and 3, while the correct logical parts are 1,
2, 3, and 4. Logical part 4 is not included in the set of predicted logical parts. Therefore,
when calculating recall, we need to subtract 1 from each factor in the numerator. In the
second case, the set of predicted logical parts is unchanged, while the correct logical parts
are 1, 2, and 4. The set of predicted logical parts does not contain logical part 4, and
the set of gold logical parts does not contain logical part 3. Hence, we need to subtract 1
from each factor in the numerator when calculating both recall and precision.

4.7.3 Experiments on Subtask 1

Baseline: Filter-Ranking Perceptron Algorithm

We chose the Filter-Ranking (FR) Perceptron algorithm proposed by Carreras et al.,[22,
23] as our baseline model because of its effectiveness on phrase recognition problems,
especially on problems that accept the embedded relationship15. We use FR-perceptron
algorithm to recognize logical parts in law sentences one by one in an input paragraph.

The idea of the FR-perceptron algorithm is to build a recognition model with two
components. The first component, operating at word level, is a filtering function F ,
which identifies a set of candidate logical parts for an input law sentence s, F (s) ⊆ P (P
is the set of all possible logical parts). The second one, operating at part level, is a score
function which produces a real value score for a logical part. The recognizer will use the
score function to search an optimal coherent subset from the candidate set F (s).

R(s) = argmaxy⊆F (s)|y∈Y
∑
u∈y

score(u, s, y).

15We re-implement the FR-perceptron algorithm by ourselves.

52

The filtering component F is only used to reduce the search space. Instead of searching
in the space P , the R function only searches in a subset F (s) of P . The setting for function
F is a begin-end classification for each logical part category: a word is considered as c-
begin if it is likely to begin a category-c logical part, and as c-end if it is likely to end a
category-c logical part. Each pair of c-begin word wb and c-end word we forms a logical
part candidate (b, e, k, c), where k is the index of the sentence s in its paragraph. Suppose
that hcb and hce are begin and end classification functions for each category c, the filtering
function F can be described as follows:

F (s) = {(b, e, k, c)|hcb(wb, s, k) = +1 ∧ hce(we, s, k) = +1}.

FR-perceptron algorithm uses linear functions for the begin and end classification
functions in the filtering component, and the score function in the recognition compo-
nent. To learn parameter vectors for these functions, a perceptron-like algorithm was
introduced [22, 23]. The main advantage of FR-perceptron algorithm is that it can learn
parameters for both classification functions and score function simultaneously. Moreover,
using dynamic programming for inference is a guarantee for finding the best solution.

For begin/end predictors, we got features of words, POS tags, and Bunsetsu tags. In
Japanese, a sentence is divided into some chunks called Bunsetsu. Each Bunsetsu includes
one or more content words (noun, verb, adjective, etc) and may include some function
words (case-marker, punctuation, etc) [93]. The Bunsetsu tag of a word indicates whether
the word appears at the beginning of a Bunsetsu or not. We obtained following features
in a window size 2:

• f [−2], f [−1], f [0], f [+1], f [+2] (for words, POS tags, and Bunsetsu tags),

• f [−2]f [−1], f [−1]f [0], f [0]f [+1], f [+1]f [+2], f [−2]f [−1]f [0], f [−1]f [0]f [+1],
f [0]f [+1]f [+2] (for words and POS tags).

For example, if f is word feature then f [0] is the current word, f [−1] is the preceding
word, and f [−1]f [0] is the co-occurrence of them. Moreover, with begin predictor, we
use a feature for checking whether this position is the beginning of the sentence or not.
Similarly, with end predictor, we use a feature for checking whether this position is the
end of the sentence or not.

With each logical part candidate, we extract following kinds of features:

1. Length of the logical part,

2. Internal structure: this feature is the concatenation of the top logical parts, punc-
tuation marks, parenthesis, and quotes inside the candidate. An example about
internal structure may be (A+,+C + .) (plus is used to concatenate items). This
means that the candidate consists of an antecedent part, a comma, a consequent
part, and a period at the end.

3. Uni-gram of words and part-of-speech tags,

4. Bi-gram of words and part-of-speech tags, and

5. Tri-gram of words and part-of-speech tags.

53

Table 4.5: Experimental results of the baseline model
Logical Part Prec(%) Recall(%) F1(%)

C 80.10 61.69 69.70
EL 82.35 50.91 62.92
ER 66.67 21.05 32.00
Ob 0.00 0.00 0.00
A 79.10 55.59 65.30

RepO 100 16.67 28.57
RepR 0.00 0.00 0.00
T2 82.14 60.53 69.70
T3 50.00 8.33 14.29

Overall 79.70 52.54 63.33

Exeperimental results of the baseline model are shown in Table 4.5. The baseline
model achieved pretty good results in three main types of parts: C(69.70%), A(65.30%),
and T2(69.70%). In all types of parts, the precision score was better than the recall score
(80.10% and 61.69% in type C; 82.35% and 50.91% in type EL; 66.67% and 21.05% in
type ER; 79.19% and 55.59% in type A; 100% and 16.67% in type RepO; 82.14% and
60.53% in type T2; and 50.00% and 8.33% in type T3). Overall, the model achieved 79.70%
in the precision score, but only 52.54% in the recall score. These results led to a low F1

score (63.33%).

Experimental Results of Multi-Layer Sequence Learning Model

We focused on paragraphs in Type A, B, and C defined in [130], where the first sentences
of paragraphs usually contain logical parts in two layers, and other sentences contain
logical parts in one layer. We divided sentences into two groups. The first group consists
of the first sentences in paragraphs, and the second group consists of other sentences. We
set the number of layers k to 2 for sentences in the first group, and to 1 for sentences in
the second group. To learn sequence labeling models, we used CRFs [70, 75].

Experimental results on the JNPL corpus are described in Table 4.6. We conducted
experiments with four feature sets: words; words and POS tags; words and Bunsetsu tags;
and words, POS tags, and Bunsetsu tags. To extract features from source sentences, we
used the CaboCha tool [72], a Japanese morphological and syntactic analyzer. The best
model (the model used word and Bunsetsu tag features) achieved 74.37%in the F1 score.
It improves 11.04% in the F1 score (30.11% in error rate) compared with the baseline
model.

Table 4.7 shows experimental results of our best model in more detail. Our model got
good results on most main parts: C(78.98%), A(80.42%), and T2(82.14%). The model got
low results on the other types of parts. It is understandable because three types of logical
parts C, A, and T2 make up more than 80%, while six other types only make up 20% of
all types. Similar to the baseline model, the precision score was better than the recall
score in all types of parts. However, the recall score was improved significantly (69.76%
compared with 52.52%).

The high precision in some types of logical parts (RepO and RepR) does not mean
that the system recognized well these types. Due to the number of logical parts of these

54

Table 4.6: Experimental results for Subtask 1 on the JNLP corpus(W:Word; P: POS tag;
B: Bunsetsu tag)

Model Prec(%) Recall(%) F1(%) Improvement(%)

Baseline 79.70 52.54 63.33 -
W 79.18 69.27 73.89 10.56

W+P 77.62 68.77 72.93 9.60
W+B 79.63 69.76 74.37 11.04

W+P+B 77.89 69.39 73.39 10.06

Table 4.7: Experimental results in more details
Logical Part Prec(%) Recall(%) F1(%)

C 83.41 75.00 78.98
EL 76.74 60.00 67.35
ER 41.94 22.81 29.55
Ob 0.00 0.00 0.00
A 80.42 80.42 80.42

RepO 100 16.67 28.57
RepR 100 28.57 44.44
T2 83.64 80.70 82.14
T3 60.00 25.00 35.29

Overall 79.63 69.76 74.37

types is very small, in the test phase the system only predicted a few logical parts of such
types. In the case it predicted correctly, the precision was very high but the recall was
very low.

4.7.4 Experiments on Subtask 2

Baseline: a Heuristic Algorithm

Our baseline is a heuristic algorithm to solve this subtask on graphs. This is an approxi-
mate algorithm which satisfies the minimal, complete, maximal, and significant constraints
(described in Section 4.3). The main idea of our algorithm is picking up as many positive
edges as possible, and as few negative edges as possible. We consider two cases:

1. There is no positive value edge on the input graph, and

2. There are some positive value edges on the input graph.

The heuristic algorithm in the first case is presented as Algorithm 7. In this case,
because all the edges have negative values, we build logical structures with as few logical
parts as possible. In this case, each logical structure contains exactly two logical parts.
So we gradually choose two nodes in the graph with the maximum value on the edge
connecting them.

An example of the first case is illustrated in Figure 4.13. The maximum value on an
edge is −0.1, so the first logical structure will contain node 1 and node 3. The second

55

Algorithm 7 Heuristic Algorithm in the First Case

1: Input: An undirected graph G =< V,E >.
2: Output: Set of logical structures L.
3: Initialize: L := ∅, V1 := V ;
4: while V1 6= ∅ do
5: if |V1| ≥ 2 then
6: (u, v) := argmaxu6=v∈V1f(u, v);
7: else
8: Let v be the element in V1.
9: u := argmaxu∈V f(u, v);

10: end if
11: Add {u, v} to L: L := L ∪ {{u, v}};
12: Update V1: V1 := V1\{u, v};
13: end while
14: Return L;

Figure 4.13: An example of the first case.

logical structure contains node 2 and node 416.
The main idea of the heuristic algorithm in the second case is described as Algorithm

8. Note that, e(G) represents the set of edges and v(G) represents the set of nodes in a
graph G. In this case, we first consider the subgraph which only contains non-negative
value edges. In this subgraph, we repeatedly build logical structures with as many logical
parts as possible. After building successfully a logical structure, we remove all the nodes
and the edges constituting the logical structure. When we have no positive edge, we will
build logical structures with exactly two logical parts.

An example of the second case is illustrated in Figure 4.14. First, we consider the
subgraph with positive edges (graph G1 in the algorithm). This subgraph consists of
five nodes {1, 2, 3, 4, 5} and four edges {(1, 2), (1, 3), (2, 3), (2, 4)}. First, we have a logical
structure with three nodes {1, 2, 3}. We remove these nodes and the positive edges con-
necting to these nodes. We have two nodes {4, 5} with no positive edges. Now we build
logical structures with exactly two nodes.

The set V ′ consists of nodes that do no appear in the logical parts. In this case,
V ′ = {4, 5}. We divide V ′ into two sets V1 and V2. The set V1 contains nodes that
have one positive edge connecting to them, and the set V2 contains nodes that all edges

16If the number of nodes is odd, the final logical structure will consist of the final node and another
node, so that the edge connecting them has the maximal value.

56

Algorithm 8 Heuristic Algorithm in the Second Case

1: Input: An undirected graph G =< V,E >.
2: Output: Set of logical structures L.
3: Initialize: L := ∅;
4: Let G1 =< V,E+ > be the subgraph of G that only contains edges with non-negative

values.
5: while e(G1) 6= ∅ do
6: Let g be the complete subgraph of G1 that maximizes f(g).
7: Add g to L: L := L ∪ {g};
8: Remove g and edges connecting to a vertex in g from G1;
9: end while

10: Let V ′ be the set of nodes which do not appear in any logical part in L:
11: V ′ := {v ∈ V |v /∈

⋃
g∈L v(g)};

12: Let V1 be the set of nodes in V ′ that have at least one non-negative edge connecting
to them:

13: V1 := {v ∈ V ′|∃u ∈ G, f(u, v) ≥ 0};
14: Let V2 be the set of nodes in V ′ such that all edges connecting to them have negative

scores:
15: V2 := V ′\V1;
16: while V1 6= ∅ do
17: (u, v) := argmaxu∈V,v∈V1f(u, v);
18: Add {u, v} to L: L := L ∪ {{u, v}};
19: Update V1: V1 := V1\{u, v};
20: end while
21: while V2 6= ∅ do
22: if |V2| ≥ 2 then
23: (u, v) := argmaxu6=v∈V2f(u, v);
24: else
25: Let v be the element in V2.
26: u := argmaxu∈V f(u, v);
27: end if
28: Add {u, v} to L: L := L ∪ {{u, v}};
29: Update V2: V2 := V2\{u, v};
30: end while
31: Return L;

57

Figure 4.14: An example of the second case.

Table 4.8: Experiments on Subtask 2 (Gold-Input Setting)
Model Precision(%) Recall(%) F1(%) Improvement(%)

MEMs
Heuristic 81.24 71.19 75.89 -

ILP 76.56 82.87 79.59 3.70

SVMs (RBF Kernel)
Heuristic 83.04 68.15 74.86 -

ILP 78.97 81.22 80.08 5.22

connecting to them have negative scores. In this case, V1 = {4} and V2 = {5}. We
consider node 4. Among edges connecting to node 4, the edge (2, 4) has maximal value.
So we have the second logical structure with two nodes {2, 4}. Next, we consider node 5,
and we have the third logical structure with two nodes {1, 5}.

Experimental Results

We conducted experiments on this subtask in two settings. In the first setting (gold-input
setting), we used annotated logical parts as the inputs to the system. The purpose of
this experiment is to evaluate the performance of the graph-based method on Subtask
2. We used MUC precision, recall, and F1 scores to evaluate results in this setting. In
the second setting (whole-task setting), predicted logical parts outputted by the Subtask
1 were used as the inputs to the system. The purpose of this experiment is to evaluate
the performance of our framework on the whole task. We used a modification version of
MUC precision, recall, and F1 scores (presented in Section 4.7.2) to evaluate results in
this setting.

Table 4.8 shows experimental results on the second subtask in the first setting (gold-
input setting). The proposed method using ILP formulation outperformed the baseline
(heuristic) algorithm in both experiments with MEMs and SVMs. When using MEMs as
the classification method, our proposed model achieved 79.59% in the F1 score while the
baseline model only achieved 75.89% (improved 3.70% in the F1 score, 15.35% in error
rate). When using SVMs with the RBF kernel as classification method, the proposed
model achieved 80.08% in the F1 score comparing with 74.86% of the baseline model
(improved 5.22% in the F1 score, 20.76% in error rate).

Table 4.9 shows experimental results on the second subtask in the second setting
(whole-task setting). Once again, the proposed model using ILP formulation outper-
formed the baseline model in both experiments with MEMs and SVMs. When using

58

Table 4.9: Experiments on Subtask 2 (Whole-Task Setting)
Model Precision(%) Recall(%) F1(%) Improvement(%)

MEMs
Heuristic 54.88 47.84 51.12 -

ILP 57.51 54.06 55.73 4.61

SVMs (RBF Kernel)
Heuristic 55.81 46.07 50.47 -

ILP 62.73 54.57 58.36 7.89

MEMs as the classification method, our proposed model achieved 55.73% in the F1 score
while the baseline model only achieved 51.12% (improved 4.61% in the F1 score, 9.43%
in error rate). When using SVMs with the RBF kernel as classification method, the
proposed model achieved 58.36% in the F1 score comparing with 50.47% of the baseline
model (improved 7.89% in the F1 score, 15.93% in error rate).

4.7.5 Limitation & Improvement

This section discusses about our framework, the limitation of the system, and introduces
simple methods to improve the performance of the system.

A Joint Decoding Algorithm for Logical Part Recognition

We proposed a pipeline framework, where the output of the first subtask will be used
as the input of the second subtask. Specifically, logical parts outputted from the first
subtask are inputted to the second subtask to build logical structures. The first step will
affect to the second step, and therefore contribute significantly to the quality of the whole
system. Experimental results showed that, our system achieved 80.08% in F1 score when
using correct logical parts, while only achieved 58.36% in F1 score when using logical
parts recognized in the first subtask. Hence, in this section we focus on the first subtask,
Recognition of logical parts.

We take into account the question: How to improve the first subtask, and therefore
improve the quality of the whole system?

In our multi-layer sequence learning model, logical parts recognized in the first layer
will be used as the input sequence to recognize logical parts in the second layer. The
limitation of this method is that, logical parts in different layers are recognized indepen-
dently. When we recognize logical parts in the second layer, we can access information
about logical parts in the first layer. When recognizing logical parts in the first layer,
however, we have no information from logical parts in the second layer. Information is
transmitted only in one direction.

A possible solution for this problem is follows. When recognizing logical parts in
the first layer, we store the N-best outputs (we call them candidates) and use them to
recognize logical parts in the second layer. The candidate that produces the best result
(considering outputs in both layers) will be selected. By doing this, we can indirectly
access information from logical parts in the second layer when recognizing logical parts in
the first layer. A simple version of this method is the joint decoding algorithm for multi-
layer sequence learning model, which is presented as Algorithm 9. In this algorithm, the

59

Table 4.10: Experimental results on Subtask 1 using Joint Decoding Algorithm (W:Word;
P: POS tag; B: Bunsetsu tag). N = 1, 2, 3, 4, 5, 10, 20, 50, 100, and 1000.

Features N Precision(%) Recall(%) F1(%) Improvement(%)

W
1 79.18 69.27 73.89 -
> 1 79.07 69.27 73.84 -0.05

W+P
1 77.62 68.77 72.93 -
> 1 77.98 69.76 73.64 +0.71

W+B
1 79.63 69.76 74.37 -
2 80.39 70.63 75.20 +0.83
> 2 80.23 70.38 74.98 +0.61

W+P+B
1 77.89 69.39 73.39 -
> 1 77.62 69.64 73.42 +0.03

condition to select the best candidate is maximizing the joint probability, which is the
product of probabilities outputted by recognition models when recognizing logical parts
in two layers.

Algorithm 9 Joint Decoding Algorithm for Multi-layer Sequence Learning Model

1: Input: A legal paragraph p and a number of candidates N .
2: Output: Set of logical parts L.
3: Initialize: L := ∅.
4: for each sentence s in paragraph p do
5: Recognize logical parts in the first layer of s.
6: Store the N-best outputs (candidates) and their probabilities.
7: for each candidate c in the N-best candidates do
8: Recognize logical parts in the second layer of c.
9: Calculate the joint probability of c (the product of probabilities in two layers).

10: end for
11: Select candidate c∗ with the maximum joint probability.
12: Add logical parts in c∗ (in both layers) to L.
13: end for
14: Return L.

We conducted experiments on Subtask 1 using the joint decoding algorithm with
different values of N (1, 2, 3, 4, 5, 10, 20, 50, 100, and 1000). Experimental results are
shown in Table 4.10. When N equals to 1, it becomes the separately decoding algorithm.
When N equals to 2, the joint decoding algorithm improved a little bit (0.71% when using
word and POS tag features, 0.83% when using word and Bunsetsu tag features, and 0.03%
when using word, POS tag, and Bunsetsu tag features). However, there is no difference
when we continue to increase the value of N .

A natural question is that whether or not the list of the N-best outputs (the N-best
list) contains the correct output? If the answer is No, we cannot find the correct result
by this method. To answer this question, we conducted experiments in oracle setting. In
this setting, if the N-best list contains the correct output, we assume that the system can
find the output. Otherwise, the system returns the output with the highest probability.

Experimental results in oracle setting are presented in Table 4.11. When we used

60

Table 4.11: Oracle results on Subtask 1 (the feature set consists of words and Bunsetsu
tags)

N Precision(%) Recall(%) F1(%) Improvement(%)

1 79.63 69.76 74.37 -
10 83.26 73.36 78.00 3.63
50 83.50 73.36 78.10 3.73
100 84.20 73.98 78.76 4.39
1000 84.81 74.72 79.45 5.08
10000 84.81 74.72 79.45 5.08

1000-best list, we got 79.45% in F1 score (improved 5.08% compared with 1-best list).
However, the result was the same for 10000-best list. From experimental results, we have
some conclusions as follows:

• The upper bound of the multi-layer sequence learning model is about 80% in F1

score.

• In most cases, the 1000-best list will contain the correct answer. If the correct
answer is out of the 1000-best list, we have very little chance to find it.

Cue Phrases as Context Features

In our framework, to assign weights for the edges connecting two logical parts, we learned
a binary classifier that predicts whether the two logical parts belong to the same logical
structure or not. The features used in that classifier includes categories and layers of the
two logical parts, the positions of the sentences that contain two logical parts, categories
of other logical parts in the input paragraph, and the combination of them.

In this section, we investigate the problem of using context features, the lexical features
extracted from words inside or surrounding logical parts, to improve the performance of
the recognition system. Based on our analysis of legal texts, we build a list of phrases
which usually appear together with logical parts, and use them as context features for
learning the binary classifier. Figure 4.15 shows the list of cue phrases and their meanings
in English. These cue phrases can be divided into three types based on the positions they
appear (corresponding to three types of context features):

1. Cue phrases that appear at the end of a logical part (Type 1),

2. Cue phrases that appear right before a logical part (Type 2), and

3. Cue phrases that appear right after a logical part (Type 3).

We conducted experiments with context features in two settings: using gold logical
parts and using our recognized logical parts (full system). Experimental results are shown
in Table 4.12. We can see that using context features improved the performance of the
system in both settings (2.23% and 0.73% in the F1 scores, respectively).

61

Figure 4.15: List of cue phrases.

Table 4.12: Experimental results with context features
Setting 1: Gold logical parts

System Precision(%) Recall(%) F1(%)
Previous model (ILP+SVMs) 78.97 81.22 80.08
+Context features 80.79 83.88 82.31(+2.23)

Setting 2: Full system

System Precision(%) Recall(%) F1(%)
Previous model (ILP+SVMs) 62.73 54.57 58.36
+Context features 63.57 55.20 59.09(+0.73)

Heuristic Rules for Post-Processing

Our framework for analyzing logical structures is totally based on statistical machine
learning models. By analyzing the output of our system, we saw that in some cases, sta-
tistical models produced unreasonable results. However, these results could be corrected
by applying some heuristic rules.

In this section, we investigate the problem of using heuristic rules to improve the
performance of the system through a post-processing step. The main purpose is to show
that using heuristic rules combined with statistical models can get better results than using
only statistical models. We illustrate this claim by showing experiments with two simple
heuristic rules as bellow. The problem of building such heuristic rules (automatically or
manually) is still an open question for further research.

Heuristic rule 1: If two logical structures have the same requisite part, so they should
be combined into one logical structure.

For example, logical structure A⇒ T and logical structure A⇒ C should be combined
into a new logical structure whose requisite part consists of A and effectuation part consists
of both T and C.

In this example, A means antecedent part, T means topic part, and C means conse-

62

Table 4.13: Experimental results with heuristic rules for post-processing
Setting 1: Gold logical parts

System Precision(%) Recall(%) F1(%)
Previous model (ILP+SVMs) 78.97 81.22 80.08
+Context features 80.79 83.88 82.31(+2.23)
+Post-Processing 80.77 86.17 83.38(+3.30)

Setting 2: Full system

System Precision(%) Recall(%) F1(%)
Previous model (ILP+SVMs) 62.73 54.57 58.36
+Context features 63.57 55.20 59.09(+0.73)
+Post-Processing 63.68 56.98 60.14(+1.78)

quent part.
Heuristic rule 2: If one logical structure has all logical parts in A type, and another

logical structure has logical parts in both A type and another type, then the logical structure
with all logical parts in A type should be split into new logical structures, each logical
structure contains one logical part in A type.

For example, suppose that we have a logical structure consisting of A1 and A2 and
logical structure A3 ⇒ C, then the first logical structure should be split into two new
logical structures as follows:

1. A1 ⇒ C, and

2. A2 ⇒ C

In this example, A1, A2, and A3 are antecedent parts, and C means consequent part.
We also conducted experiments with heuristic rules for post-processing in two settings:

using gold logical parts and using our recognized logical parts (full system). Experimental
results are shown in Table 4.13. We can see that using heuristic rules through a post-
processing step improved the performance of the system in both settings. We achieved
83.38% in the F1 score when using gold logical parts and 60.14% in the F1 score for the
whole recognition task.

4.8 Conclusions

We have introduced the task of analyzing logical structures of paragraphs in legal articles,
a new task which has been studied in research on Legal Engineering. There are two main
goals of this task: 1) to help people in understanding legal documents; 2) to support other
tasks in legal text processing, and therefore make computers be able to process legal texts
automatically. We presented the Japanese National Pension Law corpus, an annotated
corpus of real legal articles for the task. We also described a two-phase framework to
complete the task. In the first phase, we presented a multi-layer sequence learning model
for recognizing logical parts that uses CRFs as the learning method. In the second phase,
we proposed a graph-based method for recognizing logical structures and exploited ILP
formulation to solve the optimization problem on the graph. To learn weights of graphs,
we chose MEMs and SVMs as our learning methods.

63

We conducted 10-fold cross-validation tests on the Japanese National Pension Law
corpus. Experimental results showed that our proposed model outperformed a baseline
model in both subtasks: recognition of logical parts and recognition of logical structures.
For the first subtask, our model achieved 74.37% in the F1 score, compared with 63.33%
of the baseline model. For the second subtask, when using gold logical parts as the input,
our model achieved 83.38% in the F1 score, compared with 75.89% of the baseline model.
When using the output of the first subtask as the input, our model achieved 60.14% in
the F1 score, compared with 51.12% of the baseline model. Our results provide a baseline
for further research on this interesting task.

In future work, we will continue to focus on the first subtask: Recognition of logical
parts. A direction is to investigate methods that can train recognition models in different
layers simultaneously. The advantage of such joint learning models is that they can exploit
information of logical parts in several layers at the same time.

Another direction is to study how to formulate the problem of Analyzing Logical Struc-
tures of Paragraphs in Legal Articles as a single task, in which we can recognize logical
parts and logical structures simultaneously.

We also investigate how to exploit the results of this task to support other tasks in
legal text processing.

64

Chapter 5

Exploiting Discourse Information to
Identify Paraphrases

In this chapter, we present our study on exploiting discourse information to identify
paraphrases. We first introduce the paraphrase identification task and our motivation in
Section 5.1. We then present related work on paraphrase identification in Section 5.2.
Section 5.3 describes the relation between paraphrases and discourse units. Section 5.4
presents our method for computing text similarity based on elementary discourse units,
EDU-based similarity. Experiments on the paraphrase identification task are described
in Section 5.5. Finally, Section 5.6 concludes the chapter and discusses future work.

5.1 Introduction

Paraphrase identification is the task of determining whether two sentences have essentially
the same meaning. This task has been shown to play an important role in many natural
language processing applications, including text summarization [9], question answering
[39], machine translation [19], natural language generation [47], and plagiarism detection
[139]. For example, detecting paraphrase sentences would help a text summarization
system to avoid adding redundant information.

Paraphrase identification is not an easy task. Considering the two following sentence
pairs, the first sentence pair is a paraphrase although the two sentences only share a few
words, while the second one is not a paraphrase even though the two sentences contain
almost all the same words.

• “That would indeed be a great blessing.” and
“The Lord had indeed fulfilled his hopes, and answered his prayers.”

• “Peter usually goes to the cinema with his girlfriend.” and
“Peter never goes to the cinema with his girlfriend.”

Although the paraphrase identification task is defined in the term of semantics, it
is usually modeled as a binary classification problem, which can be solved by training
a statistical classifier. Many methods have been proposed for identifying paraphrases.
These methods usually employ the similarity between two sentences as features, which are
computed based on words [42, 69, 87], n-grams [34, 69], syntactic parse trees [34, 111, 122],

65

WordNet [69, 87], and MT metrics, the automated metrics for evaluation of translation
quality [80].

Recently, several studies have shown that discourse structures deliver important in-
formation for paraphrase computation. For example, to extract paraphrases, Deléger and
Zweigenbaum [35] match similar paragraphs in comparable texts. Regneri and Wang [110]
extend the distributional hypothesis that entities are similar if they share similar contexts
at the discourse level. According to them, sentences that play the same role in a certain
discourse and have a similar discourse context can be paraphrases, even if a semantic
similarity model does not consider them very similar. Using this assumption, Regneri
and Wang [110] introduce a method for collecting paraphrases based on the sequential
event order in discourse. However, both Deléger and Zweigenbaum [35] and Regneri and
Wang [110] only consider some special kinds of data, where the discourse structures can
be easily extracted.

Complete discourse structures such as discourse trees in the RST Discourse Treebank
(RST-DT) [21] are difficult to extract though they can be very useful for paraphrase
computation [110]. In order to produce such complete discourse structures for a text, we
first segment the text into several elementary discourse units (EDUs). Each EDU may be
a simple sentence or a clause in a complex sentence. Consecutive EDUs are then put in
relation with each other to create a discourse tree [81]. Existing full automatic discourse
parsing systems are neither robust nor very precise [8, 61, 110]. In recent years, however,
several discourse segmenters with high performance have been introduced [7, 53, 60].
The discourse segmenter1 described in Bach et al. [7] gives 91.0% in the F1 score on the
RST-DT corpus when using Stanford parse trees [66].

In this chapter, we present a new method to compute the similarity between two
sentences based on elementary discourse units (EDU-based similarity). We first segment
two sentences into several EDUs using a discourse segmenter, which is trained on the
RST-DT corpus. These EDUs are then employed for computing the similarity between
two sentences. The key idea is that for each EDU in one sentence, we try to find the
most similar EDU in the other sentence and compute the similarity between them. We
show how our method can be applied to the paraphrase identification task. Experimental
results on the PAN corpus [80] show that our method is effective for this task. To our
knowledge, this is the first work that employs discourse units for computing similarity as
well as for identifying paraphrases.

5.2 Related Work

There have been many studies on the paraphrase identification task. Finch et al. [43]
use some MT metrics, including BLEU [104], NIST [38], WER [98], and PER [78] as
features for a SVM classifier. Wan et al. [146] combine BLEU features with some others
extracted from dependency relations and tree edit-distance, and also take SVMs as the
learning method to train a binary classifier. Mihalcea et al. [87] use pointwise mutual
information, latent semantic analysis, and WordNet to compute an arbitrary text-to-text
similarity metric. Kozareva and Montoyo [69] employ features based on longest common
subsequence (LSC), skip n-grams, and WordNet. They use a meta-classifier composed of
SVMs, k-nearest neighbor, and maximum entropy models. Rus et al. [111] adapt a graph-

1Note that this is our own segmenter, which has been presented in Chapter 3.

66

based approach (originally developed for recognizing textual entailment) for paraphrase
identification. Fernando and Stevenson [42] build a matrix of word similarities between
all pairs of words in both sentences. Das and Smith [34] introduce a probabilistic model
which incorporates both syntax and lexical semantics using quasi-synchronous dependency
grammars for identifying paraphrases. Socher et al. [122] describe a joint model that uses
the features extracted from both single words and phrases in the parse trees of the two
sentences.

Most recently, Madnani et al. [80] present an investigation of the impact of MT metrics
on the paraphrase identification task. They examine 8 different MT metrics, including
BLEU [104], NIST [38], TER [120], TERP [121], METEOR [37], SEPIA [50], BADGER
[105], and MAXSIM [24], and show that a system using nothing but some MT metrics
can achieve state-of-the-art results on this task.

Compared with previous work, our work makes some contributions to the advancement
of paraphrase identification as follows:

• We present the first work on relations between discourse units and paraphrasing,
in which discourse units play an important role in paraphrasing. We also show
that many paraphrase sentences can be generated from the original sentences by
conducting several transformations on discourse units.

• We present EDU-based similarity, a new method for computing the similarity be-
tween two sentences based on elementary discourse units. As shown in the experi-
mental section, our method is effective for identifying paraphrases.

Discourse structures have only marginally been considered for paraphrase computa-
tion. Regneri and Wang [110] introduce a method for collecting paraphrases using dis-
course information on a special type of data, TV show episodes. With such kind of data,
they assume that discourse structures can be achieved by taking sentence sequences of
recaps. Our work employs the recent advances in discourse segmentation. Hernault et al.
[53] introduce a sequence model for segmenting texts into discourse units using Condi-
tional Random Fields. Joty et al. [60] present a discourse segmentation system exploiting
a Logistic Regression model with l2 regularization. They learn the model parameters us-
ing the L-BFGS algorithm [152]. Bach et al. [7] introduce a reranking model for discourse
segmentation using subtree features. These segmenters achieve relatively high results on
the RST-DT corpus (89.0% in Hernault et al. [53], 90.1% in Joty et al. [60], and 91.0%
in Bach et al. [7]).

Unlike previous studies that exploit discourse structure of specific data for paraphrase
computation, our work introduce a general method that is not limited to any specific
kind of text. To our knowledge, this is the first work that exploits discourse units for
computing text similarity as well as for identifying paraphrases.

5.3 Paraphrases and Discourse Units

In this section, we describe the relation between paraphrases and discourse units. We will
show that discourse units are blocks which play an important role in paraphrasing.

Figure 5.1 shows an example of a paraphrase sentence pair. In this example, the
first sentence can be divided into three elementary discourse units (EDUs), 1A, 1B, and

67

Figure 5.1: A paraphrase sentence pair in the PAN corpus [80].

Figure 5.2: Another paraphrase sentence pair in the PAN corpus.

1C, and the second sentence can also be segmented into three EDUs, 2A, 2B, and 2C.
Comparing these six EDUs, we can see that they make three aligned pairs of paraphrases:
1A with 2A, 1B with 2B, and 1C with 2C. Therefore, if we consider the first sentence is
the original sentence, the second sentence can be created by paraphrasing each discourse
unit in the original sentence.

Figure 5.2 shows a more complex case. The first sentence consists of four EDUs, 3A,
3B, 3C, and 3D; and the second sentence includes four EDUs, 4A, 4B, 4C, and 4D. In
this case, if we consider the first sentence is the original one, we have some remarks:

• The discourse unit 4A is a paraphrase of the discourse unit 3B,

• The unit 4B is a paraphrase of the combination of two units, 3A and 3C, and

• The combination of two units 4C and 4D is a paraphrase of the unit 3D.

By analyzing paraphrase sentences, we found that discourse units are very important
to paraphrasing. In many cases, a paraphrase sentence can be created by applying the
following operations to the original sentence:

68

1. Reordering two discourse units,

2. Combining two discourse units into one unit,

3. Dividing one discourse unit into two units, and

4. Paraphrasing a discourse unit.

An example of Operation 1 and Operation 2 is the case of units 3A, 3B, and 3C in
Figure 5.2 (reordering 3A and 3B, and then combining 3A and 3C). Unit 3D illustrates
an example for Operation 3. The last operation is the most important operation, which
is applied to almost all of discourse units.

5.4 EDU-Based Similarity

Motivated by the analysis of the relation between paraphrases and discourse units, we
propose a method to compute the similarity between two sentences. In this section, we
assume that each sentence can be represented as a sequence of elementary discourse units
(EDUs). The method of segmenting sentences into EDUs was presented in Chapter 3.

First, we present the notion of ordered similarity functions. Given two arbitrary texts
t1 and t2, an ordered similarity function Simordered(t1, t2) will return a score in real number,
which measures how t1 is similar to t2. Note that in this function, the roles of t1 and t2
are different, in which t2 can be seen as a gold standard and we want to evaluate t1 based
on t2. Examples of ordered similarity functions are MT metrics, which evaluate how a
hypothesis text (t1) is similar to a reference text (t2).

Given an ordered similarity function Simordered, we can define the similarity between
two arbitrary texts t1 and t2 as follows:

Sim(t1, t2) =
Simordered(t1, t2) + Simordered(t2, t1)

2
. (5.1)

Let (s1, s2) be a sentence pair, then s1 and s2 can be represented as sequences of
elementary discourse units: s1 = (e1, e2, . . . , em) and s2 = (f1, f2, . . . , fn), where m and
n are the numbers of discourse units in s1 and s2, respectively. We define an ordered
similarity function between s1 and s2 as follows:

Simordered(s1, s2) =
m∑
i=1

Imp(ei, s1) ∗ Simordered(ei, s2) (5.2)

where Imp(ei, s1) is the importance of the discourse unit ei in the sentence s1, and
Simordered(ei, s2) is the ordered similarity between the discourse unit ei and the sentence
s2.

In this work, we simply assume that all words contribute equally to the meaning of
the sentence. Therefore, the importance function can be computed as follows:

Imp(ei, s1) =
|ei|
|s1|

(5.3)

where |ei| and |s1| are the lengths (in words) of the discourse unit ei and the sentence s1,
respectively.

69

The ordered similarity Simordered(ei, s2) is computed based on the discourse unit fj in
the sentence s2, which is the most similar to ei:

Simordered(ei, s2) = Maxnj=1Simordered(ei, fj). (5.4)

Substituting (5.3) and (5.4) into (5.2) we have:

Simordered(s1, s2) =
m∑
i=1

|ei|
|s1|

Maxnj=1Simordered(ei, fj). (5.5)

Finally, from (5.5) and (5.1) we have the formula for computing the similarity between
two sentences based on their discourse units (EDU-based similarity), where the ordered
similarity between two units is computed directly using the definition of the ordered
similarity function, as follows:

Sim(s1, s2) =
Simordered(s1, s2) + Simordered(s2, s1)

2

=
1

2
∗

m∑
i=1

|ei|
|s1|
∗Maxnj=1Simordered(ei, fj)

+
1

2
∗

n∑
j=1

|fj|
|s2|
∗Maxmi=1Simordered(fj, ei).

(5.6)

We now present an example of computing the EDU-based similarity between two
sentences in Figure 5.1 using the BLEU score. Table 5.1 shows the basic information of
the calculation step by step. Line 1 and line 2 present two tokenized sentences and their
lengths in words. Lines 3 through 5 compute the similarity between two sentences directly
based on sentences. By using this method, the similarity is 0.5332. Elementary discourse
units of two sentences are shown in lines 6 through 11. The computation of EDU-based
similarity is described in lines 12 through 20. By using this method, the similarity is
0.5369, which is slightly higher than the similarity computed directly using sentences.

5.5 Experiments

This section describes our experiments on the paraphrase identification task using EDU-
based similarities as features for statistical classifiers. Like the work of Madnani et al.
[80], we employed MT metrics as the ordered similarity functions. However, we computed
the MT metrics based on EDUs in addition to MT metrics based on sentences. In all
experiments, parse trees were obtained by using the Stanford parser [66].

5.5.1 Data & Evaluation Method

We conducted experiments on the PAN corpus2, a corpus for paraphrase identification
task created from a plagiarism detection corpus [80]. Table 5.2 shows the statistics on
the corpus. The corpus includes a training set of 10, 000 sentence pairs and a test set of

2The corpus can be downloaded at the address: http://bit.ly/mt-para.

70

Table 5.1: An example of computing sentence-based and EDU-based similarities
Line Computation

1
s1: Or his needful holiday has come , and he is

Length=27staying at a friend ’s house , or is thrown into
new intercourse at some health-resort .

2
s2: Or need a holiday has come , and he

Length=29stayed in the house of a friend , or disposed
of in a new relationship to a health resort .

Sentence-based Similarity

3 BLEU(s1, s2) = 0.5333
4 BLEU(s2, s1) = 0.5330

5 Sim(s1, s2) = BLEU(s1,s2)+BLEU(s2,s1)
2

= 0.5332

Discourse Units

6 e1: Or his needful holiday has come , Length=7
7 e2: and he is staying at a friend ’s house , Length=10

8
e3: or is thrown into new intercourse at some

Length=10
health-resort .

9 f1: Or need a holiday has come , Length=7
10 f2: and he stayed in the house of a friend , Length= 10

11
f3: or disposed of in a new relationship to a

Length=12
health resort .

EDU-based Similarity

12 BLEU(e1, f1) = 0.7143 BLEU(e1, f2) = 0.0931 BLEU(e1, f3) = 0.0699
13 BLEU(e2, f1) = 0.1818 BLEU(e2, f2) = 0.5455 BLEU(e2, f3) = 0.0830
14 BLEU(e3, f1) = 0.0833 BLEU(e3, f2) = 0 BLEU(e3, f3) = 0.4167
15 EDU BLEU(s1, s2) = 7

27
∗ 0.7143 + 10

27
∗ 0.5455 + 10

27
∗ 0.4167 = 0.5416

16 BLEU(f1, e1) = 0.7143 BLEU(f1, e2) = 0.1613 BLEU(f1, e3) = 0.0699
17 BLEU(f2, e1) = 0.1000 BLEU(f2, e2) = 0.5429 BLEU(f2, e3) = 0
18 BLEU(f3, e1) = 0.0833 BLEU(f3, e2) = 0.0833 BLEU(f3, e3) = 0.4167
19 EDU BLEU(s2, s1) = 7

29
∗ 0.7143 + 10

29
∗ 0.5429 + 12

29
∗ 0.4167 = 0.5321

20 EDU Sim(s1, s2) = EDU BLEU(s1,s2)+EDU BLEU(s2,s1)
2

= 0.5369

71

Table 5.2: PAN corpus for paraphrase identification
Training Set Test Set

Number of sentence pairs 10,000 3,000
Number of EDUs per sentence 4.31 4.33
Number of words per sentence 40.07 41.12

3, 000 sentence pairs3. On average, each sentence contains about 4.3 discourse units, and
about 40.1 words in the training set, 41.1 words in the test set. We chose this corpus
for the following reasons. First, it is a large corpus for detecting paraphrases. Second,
it contains many long sentences. Our method computes similarities based on discourse
units. It is suitable for long sentences with several EDUs. Lastly, according to Madnani
et al. [80], the PAN corpus contains many realistic examples of paraphrases.

We evaluated the performance of our paraphrase identification system, which exploited
the EDU-based similarities as features, by accuracy and the F1 score. The accuracy was
the percentage of correct predictions over all the test set, while the F1 score was computed
only based on the paraphrase sentence pairs4.

5.5.2 MT Metrics

We investigated our method with six different MT metrics (six types of ordered similarity
functions). These metrics have been shown to be effective for the task of paraphrase
identification [80].

1. BLEU [104] is the most commonly used MT metric. It computes the amount of
n-gram overlap between a hypothesis text (the output of a translation system) and
a reference text.

2. NIST [38] is a variant of BLEU using the arithmetic mean of n-gram overlaps.
Both BLEU and NIST use exact matching. They have no concept of synonymy or
paraphrasing.

3. TER [120] computes the number of edits needed to “fix” the hypothesis text so that
it matches the reference text.

4. TERP [121] or TER-Plus is an extension of TER, that utilizes phrasal substitutions,
stemming, synonyms, and other improvements.

5. METEOR [37] is based on the harmonic mean of unigram precision and recall. It
also incorporates stemming, synonymy, and paraphrase.

6. BADGER [105], a language independent metric, computes a compression distance
between two sentences using the Burrows Wheeler Transformation (BWT).

Among the six MT metrics, TER and TERP compute a translation error rate between
a hypothesis text and a reference text. Therefore, the smaller these MT metrics are, the

3The training set and the test set were divided exactly the same as in the work of Madnani et al. [80].
4If we consider each sentence pair as an instance with label +1 for paraphrase and label -1 for non-

paraphrase, the reported F1 score was the F1 score on label +1.

72

Table 5.3: Experimental results on each individual MT metric
Sentence-based similarities + EDU-based similarities

MT Metric Accuracy(%) F1(%) Accuracy(%) F1(%)

BLEU(1-4) 89.0 88.4 89.6(+0.6) 89.1(+0.7)
NIST(1-5) 84.6 82.7 87.6(+3.0) 86.8(+4.1)
TER 88.2 87.3 88.5(+0.3) 87.7(+0.4)
TERP 91.0 90.6 91.1(+0.1) 90.8(+0.2)
METEOR 90.0 89.6 89.8(-0.2) 89.4(-0.2)
BADGER 88.1 87.8 88.2(+0.1) 87.8(-)

more similar the two texts are. When using these metrics in computing EDU-based
similarities, we replaced the max function in Equation (5.6) by a min function.

Sim(s1, s2) =
Simordered(s1, s2) + Simordered(s2, s1)

2

=
1

2
∗

m∑
i=1

|ei|
|s1|
∗Minn

j=1Simordered(ei, fj)

+
1

2
∗

n∑
j=1

|fj|
|s2|
∗Minm

i=1Simordered(fj, ei).

5.5.3 Experimental Results with a Single SVM Classifier

In all experiments presented in this section, we chose SVMs [140] as the learning method
to train a single binary classifier5. SVMs have been demonstrated their performance on a
number of problems in areas, including computer vision, handwriting recognition, pattern
recognition, and statistical natural language processing. In the field of natural language
processing, SVMs have been applied to many tasks, including machine translation [150],
topic classification [147], information extraction [13], sentiment analysis [107, 114], dis-
course parsing [54], and achieved very good results. In fact, SVMs have been also exploited
successfully to identify paraphrases [43, 80, 87, 146]

First, we investigated each individual MT metric. To see the contributions of EDU-
based similarities, we conducted experiments in two settings. In the first setting, we
directly applied the MT metric to pairs of sentences to get the similarities (sentence-based
similarities). In the second setting, we computed EDU-based similarities in addition to
the sentence-based similarities. Like Madnani et al. [80], in our experiments, we used
BLEU1 through BLEU4 as 4 different features and NIST1 through NIST5 as 5 different
features6. Table 5.3 shows experimental results in two settings on the PAN corpus. We
can see that, adding EDU-based similarities improved the performance of the paraphrase
identification system with most of the MT metrics, especially with NIST(3.0%), BLEU
(0.6%), and TER (0.3%).

Table 5.4 shows experimental results with multiple MT metrics on the PAN corpus.
With each MT metric, we computed the similarities in both methods, based directly on

5We conducted experiments on LIBSVM tool [26] with the RBF kernel.
6BLEUn and NISTn use n-grams.

73

Table 5.4: Experimental results on combined MT metrics
MT Metrics Accuracy(%) F1(%)

BLEU 89.6 89.1
BLEU+NIST 91.2 90.9
BLEU+NIST+TER 91.8 91.6
BLEU+NIST+TER+TERP 93.1 93.0

Madnani-4 91.5 91.2
Madnani-6 92.3 92.1

Table 5.5: Experimental results on long and short sentences

Subset #sent pairs #EDUs/sent #words/sent Acc.(%) F1(%)

Subset1 1317 6.5 56.6 96.6 94.8
Subset2 1683 2.6 27.2 90.4 92.3

sentences and based on discourse units. We gradually added MT metrics one by one to
the system. After adding the TERP metric, we achieved 93.1% accuracy and 93.0% in
the F1 score. Adding two more MT metrics, METEOR and BADGER, the performance
was not improved.

Two last rows of Table 5.4 shows the results of Madnani et al. [80] when using 4 MT
metrics, including BLEU, NIST, TER, and TERP (Madnani-4) and when using all 6 MT
metrics (Madnani-6)7. Compared with the best previous results, our method improves
0.8% accuracy and 0.9% in the F1 score. It yields a 10.4% error rate reduction. Note that
we used the same training and test datasets as the datasets in previous work [80].

We also investigated our method on long and short sentences. We divided sentence
pairs in the test set into two subsets: Subset1 (long sentences) contains sentence pairs that
both sentences have at least 4 discourse units8, and Subset2 (short sentences) contains
the other sentence pairs. Table 5.5 shows the information and experimental results on
two subsets. Subset1 consists of 1,317 sentence pairs (on average, 6.5 EDUs and 56.6
words per sentence), while Subset2 consists of 1,683 sentence pairs (on average, 2.6 EDUs
and 27.2 words per sentence). We can see that, our method was effective for the long
sentences, which we achieved 96.6% accuracy and 94.8% in the F1 score compared with
90.4% accuracy and 92.3% in the F1 score of the short sentences.

5.5.4 Revision Learning & Voting

We presented experiments that combine several MT metrics into a single SVM classifier.
In this section, we investigate the combination of several SVM classifiers (ensemble mod-
els) building on individual MT metrics, for the paraphrase identification task. We present
experiments with a revision learning model and a maximal voting model. Revision learn-
ing and voting are popular and simple, but also powerful methods to produce ensemble
models. They have been shown to be effective in a number of NLP problems, including
word sense disambiguation [44, 55], part-of-speech tagging [94], word alignment [148],

7Madnani et al. [80] show that adding more MT metrics does not improve the performance of the
paraphrase identification system.

8Number 4 was chosen because on average each sentence contains about 4 EDUs (see Table 5.2).

74

Figure 5.3: A revision learning model for the paraphrase identification task.

dependency parsing [3, 127], named entity translation [133], and information extraction
[136].

The main idea of two models can be expressed as follows.

1. We first build several classifiers (base models) to identify paraphrases using normal
features (MT metrics).

2. We then build a final classifier (revision model or voting model) to judge paraphrase
relation based on the outputs of the base models in the first step.

In our experiments, we built seven base models using SVMs. The first six models
employed six MT metrics (BLEU, NIST, TER, TERP, METOER, and BADGER) as
features, respectively. The last model used the best combination of MT metrics, includ-
ing BLEU, NIST, TER, and TERP. For each MT metric, we computed two types of
similarities, sentence-based similarity and EDU-based similarity.

Our revision learning model is illustrated in Figure 5.3. The revision learning model
was also trained by using SVMs with features as the probabilities that base models judge
the sentence pair is a paraphrase or not. Each base model contributes two features
(probability of paraphrase and probability of non-paraphrase) that yield totally fourteen
features. To create training data for the revision model, we used a development set, which
is about 20% of the training set.

Algorithm 10 describes our voting model. The voting model first picks the model that
produces the highest probability among seven base models. If that probability is higher
than a threshold9 (confident score), the output of that model is selected as the output of
the voting model, otherwise the voting model selects the output of the best base model
(the seventh base model with combined MT metrics) as output. The intuitive meaning is
that if none of the base models gives a confident result, the best base model is a reasonable
choice.

Table 5.6 shows experimental results of the revision learning model and the voting
model on the PAN corpus. Our revision learning model achieved 93.2% accuracy and
93.1% in the F1 score, which slightly improved the best base model with combined MT
metrics. The voting model achieved the best results with 93.4% accuracy and 93.3% in
the F1 score, which improved 0.3% (both accuracy and in the F1 score) compared with

9The threshold was set by using a development set, which is about 20% of the training set. It was
0.95 in our experiments.

75

Algorithm 10 A voting algorithm for the paraphrase identification task.
1: Input:

• A sentence pair

• Seven base models

• A threshold T

2: Output: Yes (in the case of paraphrase), No (in the case of non-paraphrase)
3: Predict label for the sentence pair using the base models
4: Select the base model (called BM) producing the highest probability (prob)
5: if prob ≥ T then
6: Return the output of BM
7: else
8: Return the output of the best base model (using combined MT metrics)
9: end if

Table 5.6: Experimental results of the revision learning model and the voting model
Model Accuracy(%) F1(%)

Madnani et al. [80] 92.3 92.1

The best base model (combined MT metric) 93.1(+0.8) 93.0(+0.9)
Revision learning 93.2(+0.9) 93.1(+1.0)
Voting 93.4(+1.1) 93.3(+1.2)

the best base model, and 1.1% accuracy and 1.2% in the F1 score compared with the
previous work of Madnani et al. [80].

5.5.5 Error Analysis

This section identifies the cause of the errors that our method made on the test data of the
PAN corpus, which includes 3,000 sentence pairs. Firstly, we wanted to know the statistic
information of the experimental results on the test data. We considered the following
questions:

1. With each sentence pair in the test set, how many models among seven base models
produced a correct output?

2. How many sentence pairs were predicted correctly by at least one base model? And
therefore, how many sentence pairs were unable to be predicted correctly by base
models?

Table 5.7 shows statistic information of the experimental results on the test set. Among
3,000 sentence pairs, 2,344 sentence pairs (78.1%) were predicted correctly by all seven
base models, 226 sentence pairs (7.5%) were predicted correctly by six base models, and
only 89 sentence pairs (3.0%) were unable to be predicted correctly by base models.
There are 2,911 sentence pairs (97%) that that were predicted correctly by at least one
base model. The upper bound of our method can therefore be considered as 97%.

76

Table 5.7: Statistic information of the experimental results on the test set

#Base model(s) predicted correctly #Sentence pairs Percentage

7 2344 78.1
6 226 7.5
5 89 3.0
4 85 2.8
3 42 1.4
2 66 2.2
1 59 2.0

0 89 3.0

Paraphrases (predicted as non-paraphrases)

This section shows three main types of errors in which paraphrase sentence pairs were
predicted as non-paraphrases (or false negative):

1. Complex Sentential Paraphrases
These sentence pairs are real world paraphrases, where the paraphrase sentences are
produced by making several complex transformations and using a lot of new words.
Considering two following sentence pairs, in the first case the paraphrase sentence
is even totally rewritten.

• ““Sukey will be good to him,” said Mrs. Lawton, in tones more gentle than
usual.” and
“Was it her imagination, or did Mrs. Lawton’s eyes look shifty?”

• “A rich man named Fintan was childless, for his wife was barren for many
years.” and
“Wealthy fellow, Fintan, had an infertile wife, so their marriage was a childless
one.”

2. Idioms
These sentence pairs use idioms that make the meaning very difficult to understand
and therefore difficult to judge the paraphrase relation. Below is such an example.

• “Such an artist, by the very nature of his endeavors, must needs stand above
all public-clapper -clawing, pro or con.” and
“A true artist must never try to please patrons, clients, or colleagues but must
work on his own inspiration and stand apart from the public’s praise or con-
tempt.”

3. Typographical and Spelling Errors
The PAN corpus includes sentence pairs containing typos and spelling errors that
make the system cannot judge correctly. Below is such an example.

• “If I could only git him to move I’d be happier jest ter foller him.” and
“But still, I would follow him if he ever chose to move on.”

77

Non-paraphrases (predicted as paraphrases)

This section shows two main types of errors in which non-paraphrase sentence pairs were
predicted as paraphrases (or false positive):

1. Misleading Lexical Overlap
These sentence pairs consist of two sentences which have large lexical overlap. They
share a lot of words and contain only a few different words. However, these few
different words make the meaning change. Here are some examples.

• “For catching doves, and other current game, they had ingenious little traps.”
and
“For catching doves, and other small game, they had ingenious romantic jour-
neyings.”

• “Drawn by Boudier, from a photograph by M. de Morgan.” and
“Drawn by Boudier, from a photograph by M. Binder.”

2. Containing
These sentence pairs consist of two sentences in which one of them contains the
other one but has additional parts. Here is such an example.

• “His dinner had been put back half an hour!” and
“The end of all things was at hand; his dinner had been put back half an hour!”

5.6 Conclusions

In this chapter, we have showed that discourse information, specifically elementary dis-
course units, can be exploited to identify paraphrases. We proposed a new method to
compute the similarity between two sentences based on elementary discourse units, EDU-
based similarity. This method was motivated by the analysis of the relation between
paraphrases and discourse units. By analyzing examples of paraphrases, we found that
discourse units play an important role in paraphrasing. We applied EDU-based simi-
larity to the task of paraphrase identification. Experimental results on the PAN corpus
showed the effectiveness of the proposed method. To the best of our knowledge, this is
the first work to employ discourse units for computing similarity as well as for identifying
paraphrases. Although our method is proposed for computing the similarity between two
sentences, it can be also used to compute the similarity between two arbitrary texts.

Our work will be beneficial to building many natural language processing applications,
including paraphrase generation, text summarization, question answering, and machine
translation. A general method for paraphrase generation is using machine translation
systems to generate a set of paraphrase sentence pairs. After that, a paraphrase iden-
tification system is exploited to select the best paraphrases. Paraphrase generation can
be used to rewrite the question in a question answering system, or to generate reference
sentences for evaluating translation quality. Paraphrase identification can also help a text
summarization system avoid adding redundant information to a summary. In a multi-
document summarization system, similar sentences in different documents are grouped
into a cluster. Important sentences in clusters will be extracted to form a summary. Each

78

cluster may contain several sentences which convey the same information. A paraphrase
identification system can be exploited to remove such redundant sentences. Because our
method exploits RST discourse structures, it is not limited to any specific kind of text.
It is also language-independent and requires only MT metric tools.

There are several ways to extend the current work. First, we would like to investigate
our method on other datasets for the paraphrase identification task as well as to other
related tasks such as recognizing textual entailment [11] and semantic textual similarity
[2]. Second, we plan to exploit the roles of discourse units to improve the method of
computing text similarity. In this work, the importance of discourse units is calculated
based on only their length (i.e., number of words). However, the importance of a discourse
unit also depends on its role in the text and the relations with other units. Exploiting the
relations between discourse units for computing similarity may be an interesting direction
for further research.

79

Chapter 6

Conclusions and Future Work

6.1 Summary of the Thesis

In this thesis, we have presented a general framework for the structural analysis of texts.
Our framework consists of two steps, i.e., recognizing discourse units of texts and build-
ing structures of texts from the discourse units. Under this framework, we proposed a
model for learning RST discourse structures of general texts and a model for analyzing
logical structures of legal paragraphs. We also described our study on applications of text
structures to paraphrase identification. We proposed a new method for computing text
similarity based on elementary discourse units and conducted experiments to show that
our method is effective to identify paraphrases. We have made the following contributions
in the previous chapters:

1. We proposed a new system for unlabeled discourse parsing in the RST framework
(Chapter 3), which consists of a model for segmenting texts into elementary dis-
course units using the reranking method and a model for building discourse trees
using dual decomposition. Unlike previous discourse segmenters, which only focus
on the boundary of discourse units, our segmenter can capture the whole discourse
units by exploiting subtree features. For the discourse tree building step, our model
exploits dual decomposition to combine the advantages of two base models which
use a heuristic algorithm and an incremental algorithm.

2. We then proposed a two-phase framework for analyzing logical structures of legal
paragraphs (Chapter 4), which consists of a multi-layer sequence model for recog-
nizing logical parts and a graph-based model for recognizing logical structures. We
introduced an integer linear programming formulation for recognizing logical struc-
tures on graphs. We also presented the Japanese National Pension Law corpus, an
annotated corpus for learning logical structures of legal paragraphs.

3. We finally proposed a new method for computing text similarity, EDU-based simi-
larity (Chapter 5), which exploits elementary discourse units to compute text sim-
ilarity. Our method is language-independent and not limited to any kind of text.
We also conducted experiments to show that discourse information is an important
source for identifying paraphrases.

80

6.2 Future Directions

In future work, we plan to pursue the following directions:

1. Studying applications of RST discourse structures to natural language
processing applications.
In Chapter 3, we presented a discourse parsing system in the RST framework. In
future work, we intend to study applications of RST discourse structures to natural
language processing applications, such as machine translation, text summarization,
and question answering.

2. Studying joint models for analyzing logical structures of legal texts.
In Chapter 4, we presented a two-phase framework for analyzing logical structures
of legal paragraphs, in which we recognized logical parts in the first phase and
recognized logical structures in the second phase. In this pipeline framework, the
output of the first phase will be used as the input of the second phase, which leads
to the problem of error propagation. Joint models for recognizing logical parts and
logical structures simultaneously may be a solution for such problem.

3. Exploiting discourse relations to compute text similarity.
EDU-based similarity, the method for computing text similarity presented in Chap-
ter 5 calculates the importance of discourse units based on only their length (i.e.,
the number of words). However, the importance of a discourse unit also depends on
its role in the text and the relations with other units. Exploiting the relations be-
tween discourse units for computing text similarity may be an interesting direction
for further research.

4. Studying legal text paraphrasing using logical structures.
Legal text paraphrasing is an important task whose aim is to produce a new rep-
resentation for legal documents that could be easier to understand. We intend to
study machine learning models for paraphrasing legal texts based on their logical
structures.

5. Studying less supervised models with natural annotations for analyzing
structures of different kinds of texts.
We plan to continue and extend the current research on analyzing the structures of
texts and exploiting the structures of texts to solve other natural language processing
tasks.

Our future research, however, will aim to deal with various kinds of texts and try
to loosen the dependence on annotated data. Nowadays, with the appearance of
the Internet and personal computers, the Web becomes one of the most important
vehicles to convey information. There are many new forms of information on the
Web, including web sites, Internet forums, blogs, wikis, and social networks. By
analyzing different kinds of information on the Web, we see that:

• The Web contains huge and various types of data in a lot of domains.

• Each kind of information on the Web uses a different type of text which has
its own structures.

81

• Analyzing structures of Web texts will be beneficial to deal with many natural
language processing applications.

However, most Web texts are plain texts, which can be seen as unannotated data in
natural language processing. In our future research, therefore, we will focus on less
supervised methods, which try to exploit plain texts, unannotated data, to build
learning models.

82

Appendix A

LSDemo: A Demonstration System
for Analyzing Logical Structures of
Paragraphs in Legal Articles

This appendix describes LSDemo, a demonstration system for analyzing logical structures
of paragraphs in legal articles. The system was built based on the framework presented
in Chapter 4.

LSDemo was trained on Japanese National Pension Law (JNPL) corpus. The corpus
consists of 83 legal articles, which contain 119 paragraphs with 426 sentences. In the first
step, recognizing logical parts, we also exploited the training data for the RRE task [6],
which consists of 764 annotated sentences.

LSDemo consists of two main modules: the processing module and the GUI module.
The processing module, the core of the system, was implemented using C++. The GUI
module, the graphical interface for users, was implemented using C#. The system runs
on the Microsoft Windows operating system with Microsoft Visual Studio development
toolkit.

A.1 Requirements

LSDemo needs the following software and tools to run correctly:

1. Microsoft Windows operating system (Windows XP or Windows 7)

2. Microsoft Visual Studio development toolkit (Version 2010 or higher)

3. Cabocha, a Japanese dependency structure analyzer [72]
Available at http://code.google.com/p/cabocha/

4. CRF++, an implementation of Conditional Random Fields [70]
Available at http://crfpp.sourceforge.net/

5. LIBSVM, a library for Support Vector Machines [26]
Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

6. lp solve, a mixed Integer Linear Programming solver
Available at http://lpsolve.sourceforge.net/

83

Figure A.1: Graphical user interface of LSDemo.

A.2 Graphical User Interface

Figure A.1 shows graphical user interface (GUI) of LSDemo. The GUI consists of two
main text boxes. The left text box serves as the input space, where the input paragraph
will be inputted. The right text box is the output space, which displays results.

There are two ways to input a legal paragraph:

1. Type directly into the left text box.

2. Open a file through the Open File item on the File menu. The file should contain
a legal paragraph with one sentence on each line. Note that sentences should be in
Japanese Shift-JIS code.

The main menu contains the following functions:

1. To do recognizing logical structures, click on the Recognize button.

2. To save the input paragraph, click on the Save Input item on the File menu.

3. To save the results, click on the Save Result item on the File menu.

4. To see the information about authors, click on the About item on the Help menu.

Figure A.2 demonstrates an example, where the input paragraph consists of one sen-
tence. In this case, the output contains one logical structure with three logical parts.
Figure A.3 shows another example, where the input paragraph contains multiple sen-
tences. In this case, the output contains four logical parts, which are grouped into two
logical structures.

84

Figure A.2: A running example with a paragraph consisting of one sentence.

Figure A.3: A running example with a paragraph containing multiple sentences.

85

Bibliography

[1] R.P. Abelson and R.C. Schank. Scripts, Plans, Goals, and Understanding: An
Inquiry Into Human Knowledge Structures. Psychology Press, 1977.

[2] E. Agirre, D. Cer, M. Diab, and A. Gonzalez-Agirre. Semeval-2012 task 6: A pilot
on semantic textual similarity. In Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval), pages 385–393, 2012.

[3] G. Attardi and M. Ciaramita. Tree revision learning for dependency parsing. In
Proceedings of the Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL), pages 388–395, 2007.

[4] N.X. Bach. A study on recognition of requisite part and effectuation part in law
sentences. Master’s thesis, School of Information Science, Japan Advanced Institute
of Science and Technology, 2011.

[5] N.X. Bach, N.L. Minh, and A. Shimazu. Exploring contributions of words to recog-
nition of requisite part and effectuation part in law sentences. In Proceedings of the
4th International Workshop on Juris-Informatics (JURISIN), pages 121–132, 2010.

[6] N.X. Bach, N.L. Minh, and A. Shimazu. RRE task: The task of recognition of requi-
site part and effectuation part in law sentences. International Journal of Computer
Processing Of Languages (IJCPOL), 23(2):109–130, 2011.

[7] N.X. Bach, N.L. Minh, and A. Shimazu. A reranking model for discourse segmenta-
tion using subtree features. In Proceedings of the 13th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (SIGDIAL), pages 160–168, 2012.

[8] N.X. Bach, N.L. Minh, and A. Shimazu. UDRST: A novel system for unlabeled
discourse parsing in the RST framework. In Proceedings of the 8th International
Conference on Natural Language Processing (JapTAL), pages 250–261, 2012.

[9] R. Barzilay, K.R. McKeown, and M. Elhadad. Information fusion in the context of
multi-document summarization. In Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 550–557, 1999.

[10] J. Bateman, J. Kleinz, T. Kamps, and K. Reichenberger. Towards constructive
text, diagram, and layout generation for information presentation. Computational
Linguistics, 27(3):409–449, 2001.

[11] L. Bentivogli, I. Dagan, H.T. Dang, D. Giampiccolo, and B. Magnini. The fifth
pascal recognizing textual entailment challenge. In Proceedings of Text Analysis
Conference (TAC), 2009.

86

[12] A.L. Berger, V.J.D. Pietra, and S.A.D. Pietra. A maximum entropy approach to
natural language processing. Computational Linguistics, 22(1):39–71, 1996.

[13] G. Boella and L Di Caro. Extracting definitions and hypernym relations relying
on syntactic dependencies and support vector machines. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (ACL), pages 532–
537, 2013.

[14] A. Borthwick. A Maximum Entropy Approach to Named Entity Recognition. PhD
thesis, Computer Science Department, New York University, 1999.

[15] B.E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory (COLT), pages 144–152, 1992.

[16] R. Brighi, L. Lesmo, A. Mazzei, M. Palmirani, and D.P. Radicioni. Towards se-
mantic interpretation of legal modifications through deep syntactic analysis. In
Proceedings of the 21st International Conference on Legal Knowledge and Informa-
tion Systems (JURIX), pages 202–206, 2008.

[17] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973.

[18] R.H. Byrd, J. Nocedal, and R.B. Schnabel. Representations of quasi-newton matri-
ces and their use in limited memory methods. Mathematical Programming, 63(4):
129–156, 1994.

[19] C. Callison-Burch, P. Koehn, and M. Osborne. Improved statistical machine trans-
lation using paraphrases. In Proceedings of the Human Language Technology Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics (HLT-NAACL), pages 17–24, 2006.

[20] L. Carlson and D. Marcu. Discourse tagging manual. Technical Report ISI-TR-545,
ISI, 2001.

[21] L. Carlson, D. Marcu, and M.E. Okurowski. RST discourse treebank, 2002.

[22] X. Carreras and L. Marquez. Filtering-ranking perceptron learning for partial pars-
ing. Machine Learning, 60(1-3):41–71, 2005.

[23] X. Carreras, L. Marquez, V. Punyakanok, and D. Roth. Learning and inference for
clause identification. In Proceedings of the 13th European Conference on Machine
Learning (ECML), pages 35–47, 2002.

[24] Y.S. Chan and H.T. Ng. Maxsim: A maximum similarity metric for machine trans-
lation evaluation. In Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics: Human Language Technology (ACL-HLT), pages 55–62,
2008.

[25] D. Chiang. Hierarchical phrase-based translation. Computational Linguistics, 33
(2):201–228, 2007.

87

[26] C. Chih-Chung and L. Chih-Jen. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Soft-
ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[27] J. Clarke and M. Lapata. Global inference for sentence compression: An integer
linear programming approach. Journal of Artificial Intelligence Research (JAIR),
31:399–429, 2008.

[28] M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania, 1999.

[29] M. Collins and T. Koo. Discriminative reranking for natural language parsing.
Computational Linguistics, 31(1):25–70, 2005.

[30] S. Corston-Oliver. Computing Representations of the Structure of Written Dis-
course. PhD thesis, University of California, Santa Barbara, 1998.

[31] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, 1995.

[32] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13(1):21–27, 1967.

[33] J.N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.
The Annals of Mathematical Statistics, 43(5):1470–1480, 1972.

[34] D. Das and N.A. Smith. Paraphrase identification as probabilistic quasi-synchronous
recognition. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP (ACL-IJCNLP), pages 468–476, 2009.

[35] L. Deléger and P Zweigenbaum. Extracting lay paraphrases of specialized expres-
sions from monolingual comparable medical corpora. In Proceedings of the 2nd
Workshop on Building and Using Comparable Corpora: from Parallel to Non-parallel
Corpora, pages 2–10, 2009.

[36] P. Denis and J. Baldridge. Joint determination of anaphoricity and corefer-
ence resolution using integer programming. In Proceedings of North Ameri-
can Chapter of the Association for Computational Linguistics - Human Language
Technologies(NAACL-HLT), pages 236–243, 2007.

[37] M. Denkowski and M. Lavie. Extending the meteor machine translation metric to
the phrase level. In Proceedings of the 2010 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics (NAACL), pages
250–253, 2010.

[38] G. Doddington. Automatic evaluation of machine translation quality using n-gram
co-occurrence statistics. In Proceedings of the 2nd International Conference on
Human Language Technology Research (HLT), pages 138–145, 2002.

88

[39] P.A. Duboue and J. Chu-Carroll. Answering the question you wish they had asked:
The impact of paraphrasing for question answering. In Proceedings of the Human
Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics (HLT-NAACL), pages 33–36, 2006.

[40] C. Dyer. Using a maximum entropy model to build segmentation lattices for MT.
In Proceedings of North American Chapter of the Association for Computational
Linguistics - Human Language Technologies(NAACL-HLT), pages 406–414, 2009.

[41] A. Echihabi and D. Marcu. A noisy-channel approach to question answering. In Pro-
ceedings of the 41st Annual Meeting on Association for Computational Linguistics
(ACL), pages 16–23, 2003.

[42] S. Fernando and M. Stevenson. A semantic similarity approach to paraphrase de-
tection. In Proceedings of the Computational Linguistics UK (CLUK), 2008.

[43] A. Finch, Y.S. Hwang, and E. Sumita. Using machine translation evaluation tech-
niques to determine sentence-level semantic equivalence. In Proceedings of the 3rd
International Workshop on Paraphrasing, pages 17–24, 2005.

[44] R. Florian and D. Yarowsky. Modeling consensus: Classifier combination for word
sense disambiguation. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 25–32, 2002.

[45] G.D.Jr. Forney. The viterbi algorithm. IEEE, 61:268–278, 1973.

[46] A. Fraser, R. Wang, and H. Schütze. Rich bitext projection features for parse
reranking. In Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics (EACL), pages 282–290, 2009.

[47] J. Ganitkevitch, C. Callison-Burch, C. Napoles, and B Van Durme. Learning sen-
tential paraphrases from bilingual parallel corpora for text-to-text generation. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1168–1179, 2011.

[48] B.J. Grosz, A.K. Joshi, and S. Weinstein. Centering: A framework for modeling
the local coherence of discourse. Computational Linguistics, 21(2):203–225, 1995.

[49] C. Grover, B. Hachey, I. Hughson, and C. Korycinski. Automatic summarisation of
legal documents. In Proceedings of the 9th International Conference on Artificial-
Intelligence and Law (ICAIL), pages 243–251, 2003.

[50] N. Habash and A.E. Kholy. SEPIA: Surface span extension to syntactic dependency
precision-based MT evaluation. In Proceedings of the Workshop on Metrics for
Machine Translation at AMTA, 2008.

[51] A. Hanamoto, T. Matsuzaki, and J. Tsujii. Coordination structure analysis using
dual decomposition. In Proceedings of the 13th Conference of the European Chapter
of the Association for Computational Linguistics (EACL), pages 430–438, 2012.

89

[52] H. Hernault, P. Piwek, H. Prendinger, and M. Ishizuka. Generating dialogues for
virtual agents using nested textual coherence relations. In Proceedings of IVA, pages
139–145, 2008.

[53] H. Hernault, D. Bollegala, and M. Ishizuka. A sequential model for discourse seg-
mentation. In Proceedings of the 11th International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing), pages 315–326, 2010.

[54] H. Hernault, H. Prendinger, D.A. duVerle, and M. Ishizuka. HILDA: A discourse
parser using support vector machine classification. Dialogue & Discourse, 1(3):1–33,
2010.

[55] V. Hoste, I. Hendrickx, W. Daelemans, and A. Van Den Bosch. Parameter op-
timization for machine-learning of word sense disambiguation. Natural Language
Engineering, 8(3), 2002.

[56] C.W. Hsu, C.C. Chang, and C.J. Lin. A practical guide to support vector classifi-
cation, 2010. www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

[57] L. Huang. Forest reranking: Discriminative parsing with non-local features. In
Proceedings of the 46th Annual Meeting of the Association for Computational Lin-
guistics (ACL), pages 586–594, 2008.

[58] E.T. Jaynes. Information theory and statistical mechanics. Physical Review, 106
(4):620–630, 1957.

[59] T. Joachims. Text categorization with support vector machines: learning with
many relevant features. In Proceedings of the 10th European Conference on Machine
Learning (ECML), 1998.

[60] S. Joty, G. Carenini, and Raymond T. Ng. A novel discriminative framework for
sentence-level discourse analysis. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 904–915, 2012.

[61] S. Joty, G. Carenini, R. Ng, and Y. Mehdad. Combining intra- and multi-sentential
rhetorical parsing for document-level discourse analysis. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (ACL), pages 486–
496, 2013.

[62] T. Katayama. The current status of the art of the 21st COE programs in the infor-
mation sciences field. verifiable and evolvable e-society - realization of trustworthy
e-society by computer science - (in Japanese). Information Processing Society of
Japan, 46(5):515–521, 2005.

[63] T. Katayama. Legal engineering - an engineering approach to laws in e-society age.
In Proceedings of the 1st International Workshop on Juris-Informatics (JURISIN),
2007.

[64] T. Katayama, A. Shimazu, S. Tojo, K. Futatsugi, and K. Ochimizu. E-society
and legal engineering (in Japanese). Journal of the Japanese Society for Artificial
Intelligence, 23(4):529–536, 2008.

90

[65] Y. Kimura, M. Nakamura, and A. Shimazu. Treatment of legal sentences including
itemized and referential expressions - towards translation into logical forms. New
Frontiers in Artificial Intelligence, 5447 of LNAI:242–253, 2009.

[66] D. Klein and C. Manning. Accurate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics (ACL), pages
423–430, 2003.

[67] R. Koeling. Chunking with maximum entropy models. In Proceedings of Conference
on Computational Natural Language Learning (CoNLL), pages 139–141, 2000.

[68] T. Koo, A.M. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition
for parsing with non-projective head automata. In Proceedings of Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1288–1298,
2010.

[69] Z. Kozareva and A. Montoyo. Paraphrase identification on the basis of supervised
machine learning techniques. In Proceedings of the 5th International Conference on
Natural Language Processing (FinTAL), pages 524–533, 2006.

[70] T. Kudo. CRF++: Yet another CRF toolkit, 2010. Software available at http:

//crfpp.sourceforge.net/.

[71] T. Kudo and Y. Matsumoto. Chunking with support vector machines. In Proceed-
ings of North American Chapter of the Association for Computational Linguistics
(NAACL), 2001.

[72] T. Kudo and Y. Matsumoto. Japanese dependency analysis using cascaded chunk-
ing. In Proceedings of Conference on Computational Natural Language Learning
(CoNLL), pages 63–69, 2002. Software available at http://code.google.com/p/

cabocha/.

[73] T. Kudo, K. Yamamoto, and Y. Matsumoto. Applying conditional random fields to
japanese morphological analysis. In Proceedings of Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 230–237, 2004.

[74] T. Kudo, J. Suzuki, and H. Isozaki. Boosting-based parse reranking with subtree
features. In Proceedings of the 43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 189–196, 2005.

[75] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. In Proceedings of the 18th
International Conference on Machine Learning (ICML), pages 282–289, 2001.

[76] G. Lame. Using NLP techniques to identify legal ontology components: concepts
and relations. Artificial Intelligence and Law, 12(4):379–396, 2004.

[77] Y.K. Lee and H.T. Ng. An empirical evaluation of knowledge sources and learn-
ing algorithms for word sense disambiguation. In Proceedings of Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 41–48, 2002.

91

[78] G. Leusch, N. Ueffing, and H. Ney. A novel string-to-string distance measure with
applications to machine translation evaluation. In Proceedings of the Ninth Machine
Translation Summit (MT Summit IX), 2003.

[79] A. Louis, A. Joshi, and A. Nenkova. Discourse indicators for content selection in
summarization. In Proceedings of the 11th annual SIGdial Meeting on Discourse
and Dialogue (SIGDIAL), pages 147–156, 2010.

[80] N. Madnani, J. Tetreault, and M. Chodorow. Re-examining machine translation
metrics for paraphrase identification. In Proceedings of the 2012 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 182–190, 2012.

[81] W.C. Mann and S.A. Thompson. Rhetorical structure theory. toward a functional
theory of text organization. Text, 8:243–281, 1988.

[82] D. Marcu. The Theory and Practice of Discourse Parsing and Summarization. MIT
Press, Cambridge, 2000.

[83] M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz. Building a large annotated
corpus of english: The peen treebank. Computational Linguistics, 19(2):313–330,
1993.

[84] A.F.T. Martins, N.A. Smith, and E.P. Xing. Concise integer linear programming
formulations for dependency parsing. In Proceedings of Joint Conference of the
47th Annual Meeting of the Association for Computational Linguistics and the 4th
International Joint Conference on Natural Language Processing (ACL-IJCNLP),
pages 342–350, 2009.

[85] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy markov models for
information extraction and segmentation. In Proceedings of the 17th International
Conference on Machine Learning (ICML), pages 591–598, 2000.

[86] L.T. McCarty. Deep semantic interpretations of legal texts. In Proceedings of the
11th international conference on Artificial intelligence and law (ICAIL), pages 217–
224, 2007.

[87] R. Mihalcea, C. Corley, and C. Strapparava. Corpus-based and knowledge-based
measures of text semantic similarity. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence (AAAI), pages 775–780, 2006.

[88] T.M. Mitchell. Machine Learning. MIT Press and McGraw Hill, 1997.

[89] E. Mjolsness and D. DeCoste. Machine learning for science: State of the art and
future prospects. Science, 293(5537):2051–2055, 2001.

[90] M-F. Moens, E. Boiy, R.M. Palau, and C. Reed. Automatic detection of arguments
in legal texts. In Proceedings of the 11th International Conference on Artificial
Intelligence and Law (ICAIL), pages 225–230, 2007.

[91] M. Mohri, A. Rostamizadeh, and A Talwalkar. Foundations of Machine Learning.
MIT Press, 2012.

92

[92] M. Muramatsu, Y. Yasumura, and K. Nitta. A tagging tool for logical structure of
legal sentences. Technical report of ieice, 2002.

[93] M. Murata, K. Uchimoto, Q. Ma, and H. Isahara. Bunsetsu identification using
category-exclusive rules. In Proceedings of the 18th International Conference on
Computational Linguistics (COLING), pages 565–571, 2000.

[94] T. Nakagawa, T. Kudo, and Y. Matsumoto. Revision learning and its application
to part-of-speech tagging. In Proceedings of 40th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 497–504, 2002.

[95] M. Nakamura, S. Nobuoka, and A. Shimazu. Towards translation of legal sen-
tences into logical forms. In Proceedings of the 1st International Workshop on
Juris-Informatics (JURISIN), 2007.

[96] A. Nenkova and K. McKeown. Automatic summarization. Foundations and Trends
in Information Retrieval, 5(2-3):103–233, 2011.

[97] L.M. Nguyen, A. Shimazu, and H.X. Phan. Semantic parsing with structured svm
ensemble classification models. In Proceedings of Joint 21st International Conference
on Computational Linguistics and the 44th Annual Meeting of the Association for
Computational Linguistics (COLING/ACL), pages 619–626, 2006.

[98] S. Niessen, F.J. Och, G. Leusch, and H. Ney. An evaluation tool for machine trans-
lation: Fast evaluation for mt research. In Proceedings of the Second International
Conference on Language Resources and Evaluation (LREC), 2000.

[99] J. Nivre, J. Hall, J. Nilsson, G. Eryiǧit, and S. Marinov. Labeled pseudo-projective
dependency parsing with support vector machines. In Proceedings of Conference on
Computational Natural Language Learning (CoNLL), pages 221–225, 2006.

[100] J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of
Computation, 35(151):773–782, 1980.

[101] F.J. Och and H.Ney. Discriminative training and maximum entropy models for
statistical machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 295–302, 2002.

[102] K. Pala, P. Rychly, and P. Smerk. Morphological analysis of law texts. In Pro-
ceedings of the First Workshop on Recent Advances in Slavonic Natural Language
Processing(RASLAN), pages 21–26, 2007.

[103] K. Pala, P. Rychly, and P. Smerk. Automatic identification of legal terms in czech
legal texts. Semantic Processing of Legal Texts, pages 83–94, 2010.

[104] K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 311–318, 2002.

[105] S. Parker. BADGER: A new machine translation metric. In Proceedings of the
Workshop on Metrics for Machine Translation at AMTA, 2008.

93

[106] F. Peng and A. McCallum. Information extraction from research papers using
conditional random fields. Information Proceesing and Management, 42(4):963–979,
2006.

[107] T. Proisl, P. Greiner, S. Evert, and B Kabashi. KLUE: Simple and robust methods
for polarity classification. In Proceedings of the Seventh International Workshop on
Semantic Evaluation (SemEval 2013), pages 395–401, 2013.

[108] V. Punyakanok, D. Roth, W. Yih, and D. Zimak. Semantic role labeling via integer
linear programming inference. In Proceedings of the 20th International Conference
on Computational Linguistics (COLING), pages 1346–1352, 2004.

[109] A. Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In
Proceedings of Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 133–142, 1996.

[110] M. Regneri and R. Wang. Using discourse information for paraphrase extraction. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages
916–927, 2012.

[111] V. Rus, P.M. McCarthy, M.C. Lintean, D.S. McNamara, and A.C. Graesser. Para-
phrase identification with lexico-syntactic graph subsumption. In Proceedings of the
Twenty-First International Florida Artificial Intelligence Research Society Confer-
ence (FLAIRS), pages 201–206, 2008.

[112] A.M. Rush and M. Collins. A tutorial on dual decomposition and lagrangian relax-
ation for inference in natural language processing. Journal of Artificial Intelligence
Research (JAIR), 45(1):305–362, 2012.

[113] A.M. Rush, D. Sontag, M. Collins, and J. Tommi. On dual decomposition and
linear programming relaxations for natural language processing. In Proceedings of
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1–11, 2010.

[114] M. Rushdi Saleh, M. T. Mart́ın-Valdivia, A. Montejo-Ráez, and L. A. Ureña López.
Experiments with SVM to classify opinions in different domains. Expert Systems
with Applications, 38(12):14799–14804, 2011.

[115] S.R. Safavian and D. Landgrebe. A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man and Cybernetics, 21(3):660–674, 1991.

[116] K. Sagae. Analysis of discourse structure with syntactic dependencies and data-
driven shift-reduce parsing. In Proceedings of the 11th International Workshop on
Parsing Technologies (IWPT), pages 81–84, 2009.

[117] J. Saias and P. Quaresma. A methodology to create legal ontologies in a logic
programming based web information retrieval system. Law and the Semantic Web,
pages 185–200, 2005.

94

[118] E.F. Tjong Kim Sang and F.D. Meulder. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In Proceedings of the seventh
Conference on Natural Language Learning (CoNLL), pages 142–147, 2003.

[119] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceed-
ings of North American Chapter of the Association for Computational Linguistics
(NAACL), pages 213–220, 2003.

[120] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul. A study of trans-
lation edit rate with targeted human annotation. In Proceedings of the Conference
of the Association for Machine Translation in the Americas (AMTA), 2006.

[121] M. Snover, N. Madnani, B. Dorr, and R. Schwartz. TER-Plus: Paraphrase, seman-
tic, and alignment enhancements to translation edit rate. Machine Translation, 23
(23):117–127, 2009.

[122] R. Socher, E.H. Huang, J. Pennington, A.Y. Ng, and C.D. Manning. Dynamic
pooling and unfolding recursive autoencoders for paraphrase detection. In Advances
in Neural Information Processing Systems 24 (NIPS), pages 801–809, 2011.

[123] R. Soricut and D. Marcu. Sentence level discourse parsing using syntactic and lexical
information. In Proceedings of the North American Chapter of the Association for
Computational Linguistics (NAACL), pages 149–156, 2003.

[124] P. Spinosa, G. Giardiello, M. Cherubini, S. Marchi, G. Venturi, and S. Montemagni.
NLP-based metadata extraction for legal text consolidation. In Proceedings of the
12th International Conference on Artificial Intelligence and Law (ICAIL), pages
40–49, 2009.

[125] R. Subba and B. Di Eugenio. Automatic discourse segmentation using neural net-
works. In Proceedings of the Workshop on the Semantics and Pragmatics of Dialogue
(SemDial), pages 189–190, 2007.

[126] M. Sun and J.Y. Chai. Discourse processing for context question answering based
on linguistic knowledge. Knowledge-Based Systems, 20(6):511–526, 2007.

[127] M. Surdeanu and C.D. Manning. Ensemble models for dependency parsing: Cheap
and good? In Proceedings of the 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), pages 649–652,
2010.

[128] M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to rank answers to non-
factoid questions from web collections. Computational Linguistics, 37(2):351–383,
2011.

[129] C. Sutton and A. McCallum. An Introduction to Conditional Random Fields for
Relational Learning. MIT Press, 2006.

[130] K. Takano, M. Nakamura, Y. Oyama, and A. Shimazu. Semantic analysis of para-
graphs consisting of multiple sentences - towards development of a logical formula-
tion system. In Proceedings of the 23rd International Conference on Legal Knowledge
and Information Systems (JURIX), pages 117–126, 2010.

95

[131] K. Tanaka. About semantic function of the legal-effect’s restrictive part. Natural
Language, 98(21):1–8, 1998.

[132] K. Tanaka, I. Kawazoe, and H. Narita. Standard structure of legal provisions -
for the legal knowledge processing by natural language - (in Japanese). In IPSJ
Research Report on Natural Language Processing, pages 79–86, 1993.

[133] L.X. Tang, S. Geva, A. Trotman, and Y. Xu. A voting mechanism for named
entity translation in englishchinese question answering. In Proceedings of the 4th
International Workshop on Cross Lingual Information Access at COLING 2010,
pages 43–51, 2010.

[134] H.L. Thanh, G. Abeysinghe, and C. Huyck. Automated discourse segmentation by
syntactic information and cue phrases. In Proceedings of IASTED, 2004.

[135] H.L. Thanh, G. Abeysinghe, and C. Huyck. Generating discourse structures for
written texts. In Proceedings of the 20th International Conference on Computational
Linguistics (COLING), pages 329–335, 2004.

[136] P. Thomas, M. Neves, T. Rocktäschel, and U Leser. WBI-DDI: Drug-drug interac-
tion extraction using majority voting. In Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013), pages 628–635, 2013.

[137] M. Tofiloski, J. Brooke, and M. Taboada. A syntactic and lexical-based discourse
segmenter. In Proceedings of the Joint conference of the 47th Annual Meeting of the
Association for Computational Linguistics and the 4th International Joint Confer-
ence on Natural Language Processing (ACL-IJCNLP), pages 77–80, 2009.

[138] Y. Tsuruoka. A simple C++ library for maximum entropy classification, 2006. Soft-
ware available at http://www-tsujii.is.s.u-tokyo.ac.jp/~tsuruoka/maxent/.

[139] O. Uzuner, B. Katz, and T. Nahnsen. Using syntactic information to identify pla-
giarism. In Proceedings of the 2nd Workshop on Building Educational Applications
using Natural Language Processing, pages 37–44, 2005.

[140] V.N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[141] G. Venturi. Legal language and legal knowledge management applications. Semantic
Processing of Legal Texts, pages 3–26, 2010.

[142] M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and L. Hirschman. A model-
theoretic coreference scoring scheme. In Proceedings of MUC-6, pages 45–52, 1995.

[143] J. Völker, S.F. Langa, and Y. Sure. Supporting the construction of spanish legal
ontologies with Text2Onto. Computable Models of the Law, pages 105–112, 2008.

[144] S. Walter. Linguistic description and automatic extraction of definitions from ger-
man court decisions. In Proceedings of the Sixth International Language Resources
and Evaluation (LREC), 2008.

96

[145] S. Walter and M. Pinkal. Automatic extraction of definitions from german court
decisions. In Proceedings of the COLING 2006 Workshop on Information Extraction
Beyond The Document, pages 20–28, 2006.

[146] S. Wan, R. Dras, M. Dale, and C. Paris. Using dependency-based features to take
the para-farce out of paraphrase. In Proceedings of the 2006 Australasian Language
Technology Workshop (ALTA), pages 131–138, 2006.

[147] S. Wang and C Manning. Baselines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 90–94, 2012.

[148] H. Wu and H. Wang. Improving statistical word alignment with ensemble methods.
In Proceedings of the International Joint Conference on Natural Language Process-
ing (IJCNLP), pages 462–473, 2005.

[149] A. Wyner, R.M. Palau, M.F. Moens, and D. Milward. Approaches to text mining
arguments from legal cases. Semantic Processing of Legal Texts, pages 60–79, 2010.

[150] M. Zhang and H Li. Tree kernel-based SVM with structured syntactic knowledge
for BTG-based phrase reordering. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 698–707, 2009.

[151] H. Zhao and C. Kit. Parsing syntactic and semantic dependencies with two single-
stage maximum entropy models. In Proceedings of Conference on Computational
Natural Language Learning (CoNLL), pages 203–207, 2008.

[152] C. Zhu, R.H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on
Mathematical Software (TOMS), 23(4):550–560, 1997.

[153] C. Zirn, M. Niepert, H. Stuckenschmidt, and M. Strube. Fine-grained sentiment
analysis with structural features. In Proceedings of the 5th International Joint Con-
ference on Natural Language Processing (IJCNLP), pages 336–344, 2011.

97

Publications

Book Chapter

[1] Ngo Xuan Bach, Kunihiko Hiraishi, Nguyen Le Minh, Akira Shimazu. A Joint
Model for Vietnamese Part-of-Speech Tagging Using Dual Decomposition. Knowledge-
based Information Systems in Practice, Springer (Accepted).

Journal Articles

[2] Ngo Xuan Bach, Nguyen Le Minh, Akira Shimazu. Exploiting Discourse Informa-
tion to Identify Paraphrases. Expert Systems with Applications, 41(6):2832–2841,
2014.

[3] Ngo Xuan Bach, Nguyen Le Minh, Tran Thi Oanh, Akira Shimazu. A Two-Phase
Framework for Learning Logical Structures of Paragraphs in Legal Articles. ACM
Transactions on Asian Language Information Processing (ACM TALIP), 12(1), ar-
ticle 3, 2013.

[4] Ngo Xuan Bach, Nguyen Le Minh, Akira Shimazu. RRE Task: The Task of
Recognition of Requisite Part and Effectuation Part in Law Sentences. International
Journal of Computer Processing Of Languages (IJCPOL), 23(2):109–130, 2011

[5] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. Automated
reference resolution in legal texts. Artificial Intelligence and Law, 22(1):29–60, 2014.

[6] Minh Quang Nhat Pham, Minh Le Nguyen, Bach Xuan Ngo, Akira Shimazu.
A learning-to-rank method for information updating task. Applied Intelligence,
37(4):499–510, 2012.

[7] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. A List-
wise Approach to Coreference Resolution Using Learning-to-rank. Submitted to
Knowledge-Based Systems.

Referred Conference Papers

[8] Ngo Xuan Bach, Kunihiko Hiraishi, Nguyen Le Minh, Akira Shimazu. Dual
Decomposition for Vietnamese Part-of-Speech Tagging. In Proceedings of the 17th
International Conference on Knowledge-Based and Intelligent Information & Engi-
neering Systems (KES), Procedia Computer Science, pages 123–131, 2013.

98

[9] Ngo Xuan Bach, Nguyen Le Minh, Akira Shimazu. EDU-Based Similarity for
Paraphrase Identification. In Proceedings of the 18th International Conference on
Applications of Natural Language to Information Systems (NLDB), LNCS 7934,
pages 65–76, 2013 (Received Outstanding Paper Award for Young Re-
searchers in Computer & Communications 2013, awarded by NEC C&C
Foundation).

[10] Ngo Xuan Bach, Nguyen Le Minh, Akira Shimazu. UDRST: A Novel System
for Unlabeled Discourse Parsing in the RST Framework. In Proceedings of the 8th
International Conference on Natural Language Processing (JapTAL), LNCS/LNAI
7614, pages 250–261, 2012.

[11] Ngo Xuan Bach, Nguyen Le Minh, Akira Shimazu. A Reranking Model for
Discourse Segmentation using Subtree Features. In Proceedings of the 13th Annual
Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2012
Conference), pages 160–168, 2012.

[12] Ngo Xuan Bach, Nguyen Le Minh, Tran Thi Oanh, Akira Shimazu. Learning
Logical Structures of Paragraphs in Legal Articles. In Proceedings of the 5th Inter-
national Joint Conference on Natural Language Processing (IJCNLP), pages 20–28,
2011.

[13] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. Answer-
ing Legal Questions by Mining Reference Information. In Proceedings of the 7th
International Workshop on Juris-informatics (JURISIN), 2013.

[14] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. Reference
Resolution in Japanese Legal Texts at Passage Levels. In Proceedings of the 5th
International Conference on Knowledge and Systems Engineering (KSE), Springer-
Verlag, pages 237–249, 2013.

[15] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. A List-
wise Approach to Coreference Resolution in Multiple Languages. In Proceedings
of the 25th Pacific Asia Conference on Language, Information and Computation
(PACLIC), pages 400–409, 2011.

[16] Le Minh Nguyen, Ngo Xuan Bach, Akira Shimazu. Supervised and Semi-Supervised
Sequence Learning for Recognition of Requisite Part and Effectuation Part in Law
Sentences. In Proceedings of the 9th International Workshop on Finite-State Meth-
ods and Natural Language Processing (FSMNLP), pages 21–29, 2011.

99

