
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 参照解析と法令質問応答への適用

Author(s) Tran, Thi Oanh

Citation

Issue Date 2014-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/12109

Rights

Description Supervisor:島津　明, 情報科学研究科, 博士

Reference Resolution and Its Application

to Legal Question Answering

by

Tran Thi Oanh

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Akira Shimazu

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2014

Abstract

Natural languages are highly related by references within them. These references bring
precious information: the sentences of a discourse could not be interpreted without know-
ing who or what entity is being talked about. Resolving resolution, therefore, is a very
important task in natural language processing research. Of all reference phenomena, the
coreference is the most popular phenomenon, and is attracting much research in reference
resolution. In this dissertation, we will concentrate on this challenging task - coreference
resolution in general texts. Moreover, we will also focus on resolving references in a spe-
cific type of texts, i.e. legal texts. The information on reference resolution not only helps
people in understanding texts, but also supports other tasks such as question answering,
text summarization, and machine translation. To illustrate one of these benefits, in this
thesis, we will also investigate an application of reference resolution to the task of question
answering restricted to the legal domain.

Most previous research proposed a pairwise approach to solve the task of coreference
resolution. The drawback of this approach is that it can allow only one or two antecedent
candidates to be considered simultaneously. So, it only determines how good a candidate
is relative to the mention, but not how good a candidate is relative to all candidates.
Our goal is to investigate another approach which can address this drawback. While
coreference resolution in general texts attracts much attention among researchers, the
task in legal texts has received very little attention so far. The main reasons are mostly
the complex and long legal structures and sentences, specific terms, and especially the
lack of language resources (i.e. annotated corpora) in this specific domain. Focusing on
this interesting legal domain, this dissertation also aims at building a system which can
automatically extract referents for references in real time. This is a new interesting task
in the Legal Engineering research. Moreover, the goal of this dissertation also includes
building an application of these reference resolvers to a useful question answering system
restricted to the legal domain. Particularly, the following three problems are targeted in
this research:

• To realize coreference resolution in general texts, we present an empirical study on
a listwise, which can address the drawback of the previous approach. This approach
exploits a listwise learning-to-rank method which considers all antecedent candidates
simultaneously, not only in the resolution phase but also in the training phase.
Experimental results on the corpora of SemEval-2010 shared task 1 show that the
proposed system yields a good performance in multiple languages when compared
to previous participating systems as well as a baseline pairwise system using the
ranking support vector machine as the learning algorithm. In comparison to the best
participating system SUCRE, which uses the Decision Tree algorithm with best-first
clustering strategy, the proposed system achieves comparative performance.

• For the task of reference resolution in legal texts, different from previous work that
only considered the referent at the document targets, this work focuses on resolv-
ing references to the sub-document targets. Referents extracted are the smallest

i

fragments of texts in documents, rather than the entire documents that contain the
referenced texts. Based on the structures of references in legal texts, we propose
a four-step framework to accomplish the task: mention detection, contextual infor-
mation extraction, antecedent candidate generation, and antecedent determination.
We also show how machine learning methods can be exploited in each step. The
final system achieves 80.06% in the F1 score for detecting references, 85.61% accu-
racy for resolving them, and 67.02% in the F1 score on the end-to-end setting task
on the Japanese National Pension Law corpus.

• This dissertation also presents a study aimed at exploiting reference information to
build a question answering system restricted to the legal domain. Most previous
research focuses on answering legal questions whose answers can be found in one
document1 without using reference information. However, there exist many legal
questions, which require answers extracted from connections of more than one doc-
ument. The connections between documents are represented by explicit or implicit
references. To the best of our knowledge, this type of questions is not adequately
considered in previous works. To cope with them, we propose a novel approach
which allows to exploit the reference information between legal documents to find
answers to these legal questions. This approach also uses the requisite-effectuation
structures of legal sentences and some effective similarity measures based on legal
terms to support finding correct answers without training data.

The contribution of this dissertation includes linguistic and computational aspects.
Considering the linguistic viewpoint, our research helps in interpreting the sentences of
any discourse. In the computational viewpoint, our research proposes effective solutions
for linguistic problems using machine learning approaches.

Keywords: reference resolution, coreference resolution, legal texts, question answer-
ing, pairwise approach, listwise approach, learning-to-rank, logical structure, requisite-
effectuation structures, mention detection, JNPL corpus.

1The term ‘documents’ corresponds to articles, paragraphs, items, or sub-items according to the
naming rules used in the legal domain.

ii

Acknowledgments

First of all, I would like to express my special thanks to my great supervisor, Professor
Akira Shimazu of the Natural Language Processing laboratory, at the School of Informa-
tion Science, of JAIST, for the patient guidance, encouragement and advice which he has
offered me throughout my study time. He always gave me more enthusiasm and pushed
me to do better in my research topic. He transmitted to me much invaluable knowledge
in not only the way to formulate a research idea, to write a good paper, etc. but also the
vision and much useful experience in academic life. I feel really lucky and so proud to be
one of his students.

I would also like to express my special thanks to Associate Professor Kiyoaki Shirai
for his useful and valuable discussions and comments during my study period.

I also would like to express my gratitude to Associate Professor Nguyen Le Minh for
many helpful discussions with him on conducting the research. He has given me many
valuable comments, experience and constant support in my study since my early days at
JAIST.

My sincere thanks also go to Professor Ho Tu Bao for his support and encouragement
during my life at JAIST and my research, especially for my sub-theme study.

I would like to thank committee members, consisting of Professor Takenobu Tokunaga
at the Tokyo Institute of Technology, Professor Satoshi Tojo, Professor Ho Tu Bao, and
Associate Professor Kiyoaki Shirai at JAIST, who have been supportive beyond the call of
duty. They have reviewed my dissertation and provided valuable insight. My dissertation
is improved very much through valuable comments.

I would like to express my appreciation to my former supervisor, Associate Professor
Ha Quang Thuy, and my former co-supervisor, Associate Professor Le Anh Cuong, for
their guidance to my master’s thesis and my bachelor thesis. Professor Ha Quang Thuy is
also a leader of a scientific research group at the University of Engineering and Technology,
the Vietnam National University in Hanoi, where I accquired much knowledge through
weekly seminars.

I would like to thank the English Language Education for Science, Technology and
Engineering (CELESTE) for their help in proofreading and correcting errors in my papers.
I have learned a lot from them.

I sincerely thank all my friends and colleagues who always supported me in times of
need. I greatly appreciate all members of the Shimazu and Shirai laboratory for their
help and contributions in building a wonderful and supportive academic environment. I
also would like to thank many Vietnamese friends at JAIST for the good times we spent
together over four years.

I also deeply acknowledge the Monbukagakusho for financial support during my PhD
course at JAIST through a scholarship funded in the form of the Japanese Ministry of
Education, Culture, Sports, Science, and Technology. I also would like to thank the
Grant-in-Aid for Scientific Research, Education and the Research Center for Trustwor-
thy e-Society, JAIST Research Grants, and the JAIST Overseas Training Program for

iii

3D Program Students in supporting me to do the research and attending international
conferences for presenting my work. I also would like to thank all JAIST staff for its kind
support in many official procedures.

Last, but not least, I would like to express my gratitude to my sweet family, which
is really my biggest motivation. They always give me encouragements, care, love, and
support in my daily life. They are endless sources of inspiration for me to move forwards,
so this thesis is dedicated to them.

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Background . 1
1.2 Focus of Research . 4
1.3 Thesis Outline . 5

2 Background: Backgrounds on Statistical Machine Learning Models Ap-
plied in NLP 7
2.1 Sequence Labelling . 7
2.2 Some Robust Classifiers . 8

2.2.1 Maximum Entropy Models . 9
2.2.2 Support Vector Machines . 10

2.3 Learning-to-Rank Methods . 12
2.3.1 Introduction to Learning-to-Rank 12
2.3.2 Major approaches in Learning-to-Rank 13
2.3.3 Algorithms for Learning-to-Rank 14

3 An Empirical Study on a Listwise Approach to Coreference Resolution
using Learning-to-rank 18
3.1 Introduction . 18
3.2 Previous models for the coreference resolution task 20

3.2.1 Mention-pair models . 21
3.2.2 Entity-mention models . 21
3.2.3 Mention-ranking models and cluster-ranking models 22

3.3 A listwise approach to coreference resolution using learning-to-rank 22
3.3.1 Coreference resolution as a learning-to-rank problem 22
3.3.2 Formulating coreference resolution as a Learning-to-rank problem . 23
3.3.3 Comparing this listwise learning-to-rank model to previous models . 26

3.4 Experiments and Results . 27
3.4.1 SemEval 2010 shared task on coreference resolution in multiple lan-

guages . 27
3.4.2 Participating systems . 28
3.4.3 Evaluation metrics . 29
3.4.4 Feature sets . 30
3.4.5 Comparing the listwise approach with previous participating systems 31

v

3.4.6 Comparing the effect of joining discourse-new detection to corefer-
ence resolution . 34

3.4.7 Comparing the proposed models with a pairwise learning-to-rank
baseline model . 35

3.4.8 Comparing two methods of getting training instances 35
3.4.9 Some more results . 36
3.4.10 Discussion . 37

3.5 Conclusion . 39

4 Automated Reference Resolution in Legal Texts 40
4.1 Introduction . 40
4.2 Related work . 43

4.2.1 Studies on resolving a fragment of texts to documents or sub-document
targets . 43

4.2.2 Studies on reference and anaphora resolution in general texts 44
4.2.3 Studies on reference resolution within the legal domain 44

4.3 Characteristics of references in legal texts 45
4.4 A four-step framework to reference resolution in legal texts 47
4.5 Solutions to each step of the framework . 48

4.5.1 Mention detection and mention splitting 48
4.5.2 Mention classification . 50
4.5.3 Position recognition . 51
4.5.4 Antecedent candidate generation 52
4.5.5 Antecedent determination . 55

4.6 Experiments . 56
4.6.1 Corpus . 56
4.6.2 Experimental setup . 57
4.6.3 Experimental results . 58
4.6.4 Analyzing the impact of each step on the final system 61
4.6.5 Improving the performance of the final system 62
4.6.6 A true working example of using the final system 65

4.7 Error analysis . 65
4.8 Discussion . 66

4.8.1 Comparison with previous work . 67
4.8.2 The versioning problem of laws . 67

4.9 Conclusion and future work . 67

5 Answering Legal Questions by Mining Reference Information 69
5.1 Introduction . 69
5.2 Related Work . 71

5.2.1 Question Answering using coreference information in general texts . 71
5.2.2 Question Answering using coreference information in legal texts . . 72

5.3 A Type of Legal Questions Raised from Characteristics of Legal Texts . . . 73
5.3.1 The Characteristics of Legal Texts 73
5.3.2 A type of questions raised from the characteristics of legal texts . . 74

5.4 A Proposed Framework for a Legal Question Answering System 75
5.4.1 Question Processing . 76

vi

5.4.2 Article Retrieval . 77
5.4.3 Passage Pairing . 78
5.4.4 Paired-Passages Ranking . 78
5.4.5 Answer Extraction . 79

5.5 Experimental Results of the QA system . 80
5.5.1 Experimental Setups . 80
5.5.2 Experimental results using the traditional QA system and the pro-

posed system . 81
5.6 Conclusion and Future Work . 84

6 Conclusion and Future Work 86
6.1 Conclusion . 86
6.2 Future Work . 87

A Questions and Answers List 89

References 94

Publications 104

vii

List of Figures

1.1 Reference operations and relationships with respect to the discourse model. 1
1.2 An example of reference phenomena in legal texts. In this figure, references

are bounded by red angle brackets (〈〉) while their referents are bounded
by green square brackets ([]). 2

1.3 An overall framework of the thesis. 4

2.1 Graphical structure of a chain-structured CRFs for sequences. 8
2.2 Small margin and large margin. 11
2.3 Calculation of the margin in SVMs framework. 11
2.4 Learning-to-rank framework (cited from Liu [59]). 13

3.1 A motivating example of coreference resolution using a listwise approach. . 19
3.2 An example of a permutation probability distribution over three candidates

named A, B, and C. 25
3.3 Sum of four metrics on listwise learning-to-rank methods (On the left:

ListNet; On the right: ListMLE). 36
3.4 P-R curves on four evaluation metrics of four languages. 37
3.5 This example shows that our method correctly determined the antecedent

for the mention the town. While the baseline pairwise method cannot find
this antecedent and therefore determined this mention is non-anaphoric. . . 38

3.6 This case shows two examples in which the listwise method correctly deter-
mines the antecedent for each mention while the baseline pairwise method
could not. 38

4.1 Examples of reference phenomena in legal texts (In this figure, references
are bounded in red angle brackets (〈〉) while their referents are bounded
in green square brackets ([]).). Expressions start after a colon (:) or a
semicolon (;) in the bounded texts are the identification expressions (ID)
of these texts (i.e. A12P1-1). A reference and its referent have the same ID 41

4.2 The structure of mentions in legal texts. 46
4.3 Some examples of different types of position parts of mentions in legal texts. 47
4.4 A four-step framework for resolving references in legal texts. 47
4.5 Mention Detection: A law sentence in the IOB, IOE and FIL notations. . . 49
4.6 Mention Splitting: A law mention in the IOB notation. 50
4.7 Some examples of mentions of two classes. 50
4.8 Some examples of the output of the position recognition step. 51
4.9 An example of generating candidates using strategy 1(a)(nhead = 17). . . . 52
4.10 An example of parsing the sentence in the document of Article 12, Para-

graph 1. 53

viii

4.11 Candidates generated by using the first strategy to generate candidates for
the reference ‘the notification in the provision of para 1’. 54

4.12 The architecture of the JNPL corpus on reference resolution. 57
4.13 The accuracy of the ListNet method depends on the number of iterations

(the learning rate is fixed at 0.01). 61
4.14 The accuracy of the ListMLE method depends on the tolerance rates (the

learning rate is fixed at 0.01). 61
4.15 An example of Brown word-cluster hierarchy. 63
4.16 Semi-supervised learning framework. 64
4.17 An output example of our system. 66
4.18 Some error examples of the mention detection step. 67

5.1 A question is solved in this chapter. In this figure, references are bounded
in angle brackets (〈〉) while their referents are bounded in square brackets
([]).). 70

5.2 An example of law sentences and their logical parts (A: Antecedent part;
C: Consequent part; T: Topic part). 74

5.3 A framework to extract answers for a type of legal questions. 75
5.4 A true example of the proposed system. 76
5.5 An example of the question processing step (A: Antecedent part; C: con-

sequent part; T: Topic part). 77
5.6 An example of the answer extraction step (A: Antecedent part; C: conse-

quent part; T: Topic part). 80
5.7 The framework of the traditional QA system. 81
5.8 Some typical examples of the systems. 84

A.1 This is a list of questions with their gold answers and the proposed system’s
answers. 89

ix

List of Tables

3.1 The main characteristics of all approaches. 26
3.2 Parameter sets of ListNet and ListMLE algorithms 27
3.3 The feature sets used for all four languages). Non-relational features take

on a value of YES or NO. Relational features indicate whether they are
COMPATIBLE, INCOMPATIBLE or NOT APPLICABLE. 31

3.4 Experimental results of the proposed models on English (P: precision; R:
recall; F1: F-score) . 32

3.5 Experimental results of the proposed models on Catalan (P: precision; R:
recall; F1: F-score) . 33

3.6 Experimental results of the proposed models on Spanish (P: precision; R:
recall; F1: F-score). 33

3.7 Experimental results of the proposed models on German (P: precision; R:
recall; F1: F-score). 34

3.8 Model names and their properties. 35

4.1 Feature sets extracted for the training instance i(mi, cj) (positionhead: the
position of the mention head in the antecedent sentence; nmeeting: the meet-
ing node where the concatenation of all of its descendants covers the can-
didate cj). 56

4.2 Experimental results for the mention detection task (%). 58
4.3 Experimental results for the mention splitting sub-step (Accuracy (%)). . . 59
4.4 Experimental results of the mention classification task (Accuracy (%)). . . 59
4.5 Experimental results of the antecedent determination step. 60
4.6 Experimental results of the antecedent determination step using two ap-

proaches: the pairwise and the listwise. 60
4.7 Experimental results of the effect of each step on the final system (MD, MS,

MC, and PR stand for the Mention Detection, Mention Splitting, Mention
Classification and Position Recognition steps respectively). 62

4.8 Mention Detection: Experimental results when integrating extra word fea-
tures using Brown Clustering information (- means that we did not use
extra word features, + means that we used extra word features). 64

4.9 Mention Classification: Experimental results when integrating extra word
features using Brown Clustering information. 65

5.1 Experimental results of two QA systems using the traditional method and
the proposed method on 51 legal questions. 82

5.2 Accuracy of the QA system using two methods on 51 questions. 83

x

Chapter 1

Introduction

1.1 Background

Reference resolution is a task which consists of determining which entities are referred to
by which linguistic expressions. Of all reference phenomena, the coreference phenomenon
is the most popular one and is attracting much research on reference resolution. When a
referent is first mentioned in a discourse, we say that a representation for it is evoked into
the model. Upon a subsequent mention, this representation is accessed from the model.
Figure 1.1 illustrates the operations and the relationships between them.

Figure 1.1: Reference operations and relationships with respect to the discourse model.

Coreference resolution has been a core research topic in NLP. In order to derive the
correct interpretation of texts, or even to estimate the relative importance of various
mentioned subjects, pronouns and other referring expressions need to be connected to the
right individuals. In an example sentence ‘Lan told me that she would come to the party ’,
‘she’ and ‘Lan’ are most likely referring to the same person, in which case they are coref-
erent. This type of reference is very typical in the sense that we usually first introduce
a person, a location, or a discussion topic by using a relatively long or detailed descrip-
tion, such as a definite description. However, later mentions are briefer, and frequently
ambiguous. In the above example, the mention ‘she’ may refer to another person rather
than ‘Lan’ depending on a given context. The resolution of these references, therefore, is
very important to the correct understanding of texts. Besides, it also has important appli-
cations in areas such as question answering [38, 70], machine translation [87], automatic
summarization [4, 121] and named entity extraction [40].

1

Coreference resolution has a long research history. Algorithms for the problem of pro-
noun resolution have been developed since the seventies, such as the Hobbs algorithm
[42] and the Centering algorithm [14]. They were primarily based on linguistics informa-
tion. While the early methods incorporated a lot of domain and linguistic knowledge,
the newer methods have shown an inclination towards applications of machine learning-
based approaches since the mid-to-late 90s. For example, a method uses simple statistic
naive bayes-based model [34], methods using decision trees [104] and conditional ran-
dom fields [66]. Generally speaking, learning-based coreference resolution approaches can
be classified into three important classes, namely, the mention-pair model [77, 91], the
entity-mention model [62, 126], and ranking models [25, 74]. In the first two classes,
each antecedent candidate is resolved independently from the other candidates. So the
models could not determine the best candidate in the relation with the other candidates.
To address this drawback, ranking models were proved to be useful solutions [25, 74].
However, this weakness is not fully solved to the extent that these models cannot exam-
ine all antecedent candidates at the same time. By default, it is strongly assumed that
candidates or pairs of candidates are generated independently and identically distributed,
and the trained models will be biased towards mentions with more candidates. Another
problem is that the objective of learning is formalized as minimizing classification errors
of candidates or pairs of candidates, rather than minimizing ranking errors of candidates
globally.

Figure 1.2: An example of reference phenomena in legal texts. In this figure, references
are bounded by red angle brackets (〈〉) while their referents are bounded by green square
brackets ([]).

The reference phenomenon is not only popular in general texts but also in legal texts.
At the discourse level, legal texts contain many reference phenomena. These references
usually bring precious information. The law will be difficult to comprehend if we cannot
read the referenced items within it. Resolving the reference phenomena, therefore, is

2

an important task in the Legal Engineering[50, 51] research. However, in comparison to
general domains, little research has concentrated on reference resolution in legal texts.
The main reasons are the complex and long legal sentences, specific terms, etc.

Figure 1.2 shows excerpts from two documents1 named A12P1, and A12P4. These
excerpts contains one reference (the red texts bounded by red angle brackets), i.e. ‘the
notification in the provision of para 1 ’ in the document A12P4. To comprehend the
content of the document A12P4, it is important to know the referenced items. In other
words, we need to know to which part of texts (the green texts bounded by green square
brackets) this reference refers. This kind of references is very popular in legal documents
because lawmakers usually import pieces of available information which have already been
introduced in other documents by using briefer expressions. This, as a result, helps to
guarantee the soundness as well as the consistency in a law system. We name these briefer
expressions ‘references ’, and their referenced items ‘referents ’.

Previous work in this field mostly focuses on detecting and resolving so-called norma-
tive references to distinguish them from the above references. Normative references are
slightly different from the above references. In the above examples, normative references
would appear in the forms of ‘para 1 ’. In resolving these normative references, authors
limit resolvers to identify only the referred documents but not to which parts of texts in
these documents. With this output, users/lawmakers need to read over the referenced
document to find which part of texts is actually referred to. This is somewhat redundant
because that document may contain unnecessary information for the comprehension of
the input sentence.

To avoid over-reading these unnecessary texts in the referenced document, in this
thesis, we go a step further. Our reference resolver tries to extract the smallest fragments
of texts that are actually referred to by references (the texts in green square brackets).
Resolving this type of references is more difficult because it requires syntactic and semantic
understanding of references and their context information as well as of the referenced
document that contains the referenced texts. In particular, in the example sentence in
Figure 1.2, we extract the full phrase and resolve it to the smallest fragment of texts that
describes the type of the notification in Paragraph 1, i.e. ‘notification of matters relating
to the change of name, address, as well as matters relating to change of type and loss and
acquisition of the qualification’.

Reference information has many benefits not only in supporting the understanding of
texts, but also in the development of a better performance for many high-level tasks in
NLP. Instead of studying applications of reference resolution in general texts, which have
been implemented in much previous work, in this thesis, we investigate an application of
reference resolution to a question answering (QA) system restricted to legal documents.
In the legal domain, QAs could be applied to help citizens and lawmakers more easily
access legal information. Previous work [2, 28, 85, 111] showed that a common problem
is that traditional QAs are not adequate to find the correct answers to legal questions.
Until now, however, there has been no research on QA using this advantage of references
to help finding the correct answers. Much works dedicated to QAs in the legal domains
[2, 28, 85, 111] has mostly focused on legal questions whose answers can be found in
only one document. However, the fact is that there exist many legal questions requiring
answers that combined from two documents which are linked based on references. This

1The term ‘documents’ corresponds to articles, paragraphs, items, or sub-items according to the
naming rules used in the legal domain.

3

type of questions is not adequately considered in previous research.

1.2 Focus of Research

Figure 1.3 illustrates the overall framework of this thesis. In this research, we focus on
solving the reference resolution task in general texts and also in a restricted domain -
the legal domain. Moreover, our research also aims at analyzing the effects of applying
reference resolution to a QA system in the legal domain. The main contributions of our
thesis are listed as follows:

Figure 1.3: An overall framework of the thesis.

• Coreference resolution in general texts: In this research, we present an empir-
ical study on a listwise approach to the CoRe task. This approach exploits a listwise
learning-to-rank method which considers all antecedent candidates simultaneously,
not only in the resolution phase but also in the training phase. In the training phase,
a listwise algorithm is selected to train a co-reference resolution model which mini-
mizes a listwise loss function and captures the ranking problems more naturally. In
the resolution phase, the model assigns each candidate with a score that expresses
the degree to which the candidate is co-referent with a given mention. Experimen-
tal results on the corpora of SemEval-2010 shared task 1 (the task of Co-reference
resolution in multiple languages) show that our proposed system yields a good per-
formance in multiple languages when compared to previous participating systems
as well as a baseline pairwise system using the ranking support vector machine as
the learning algorithm.

• Reference resolution in legal texts: This thesis also investigates the task of
reference resolution in the legal domain. The aim is to create a system which can
automatically extract referents for references in real time. This is a new interesting
task in Legal Engineering research. Based on the structures of references in legal

4

texts, we propose a four-step framework to accomplish the task. We also show
how machine learning approaches can be exploited on each step rather than using
previous rule-based approaches. The final system achieves 80.06% in the F1 score
for detecting references, 85.61% accuracy for resolving them, and 67.02% in the F1
score on the end-to-end setting task on the Japanese National Pension Law corpus.

• Question Answering in legal texts: Finally, in this thesis, we investigate an
application of reference resolution to a QA system restricted to legal documents.
We focus on one type of questions which can be of much benefit from the reference
information. Based on the characteristics of the law sentences and the reference
information between them, we propose a five-step framework to help extracting
the answer to this type of question. Experimental results show that the proposed
method is quite effective and outperforms a baseline, which does not utilize reference
information.

1.3 Thesis Outline

This thesis consists of six chapters. The thesis is structured as follows:
Chapter 2 - In this chapter, we present some statistical machine learning methods

used in this thesis. In the first section, we describe sequence labeling problems and then
present a typical and effective algorithm to perform the task, i.e. Conditional Random
Fields [54] (CRFs). Next, we introduce two strong classifiers to perform classification
tasks, namely Maximum Entropy Models [97] (MEMs) and Support Vector Machines
[21, 115] (SVMs). Finally, we describe in this thesis the task of learning-to-rank [57, 59]
applied in candidate rankings of several sub-tasks.

Chapter 3 - This chapter presents an empirical study on a listwise approach to coref-
erence resolution. This method allows us to consider all antecedent candidates simulta-
neously not only in the training phase but also in the resolution phase. First, we review
traditional models which were previously proposed for the coreference resolution task.
Then, we describe a listwise approach to this task. We begin this section by motivating
the use of a ranker for coreference resolution. After that, we present the learning-to-rank
task as well as two common and effective listwise approaches. We also show how to model
this listwise approach for the coreference resolution task. Next, we describe experimental
setups and the performance of the proposed listwise approach in comparison to previous
approaches.

Chapter 4 - This chapter presents a study on resolving references in legal texts.
First, we review some related work. Then, we describe some characteristics of references
in legal texts. Based on these characteristics, we propose a four-step framework to solve
this task. We also present solutions for each step in the proposed framework. Finally,
we describe experiments. In this section, we also analyze the impact of each step on
the whole system and illustrate an output example of the final system. In addition, we
propose a semi-supervised technique to improve the performance of the final system.

Chapter 5 - This chapter presents a study on exploiting reference information to
build a QA system restricted to the legal domain. We focus on answering a type of
questions whose answers cannot be extracted from merely one document. To the best of
our knowledge, this type of questions is not adequately considered in previous research.
To cope with these, we propose a novel approach which allows exploiting the reference

5

information between legal documents to find answers to this type of legal questions. This
approach also uses the requisite-effectuation structures of legal sentences and some effec-
tive similarity measures based on legal terms to support finding correct answers without
training data.

Chapter 6 - In this final chapter, we first summarize the three main tasks of our
thesis including the main achievement and contributions, as well as remaining problems.
Next, we consider possible future research direction by mentioning open problems that
would be interesting to address.

6

Chapter 2

Background: Backgrounds on
Statistical Machine Learning Models
Applied in NLP

2.1 Sequence Labelling

The need to segment and label sequences arises in many different problems in several
scientific fields, especially in natural language processing (NLP) (i.e. named entity recog-
nition [31, 118], POS tagging [113, 124], text chunking [56], etc.). There are many models
proposed to solve this problem such as Hidden Markov Model (HMM) [9, 93], maximum
entropy Markov models (MEMMs) [11, 67, 112], etc. Among them, Conditional random
fields (CRFs) [54, 107, 108] offer several advantages over HMMs and stochastic grammars
for such tasks, including the ability to relax strong independence assumptions made in
those models. CRFs also avoid a fundamental limitation of MEMMs and other discrimi-
native Markov models based on directed graphical models, which can be biased towards
states with few successor states. CRFs outperform both MEMMs and HMMs on a number
of real-world sequence labeling tasks [54, 89, 103].

CRFs are a class of statistical modeling method often applied in pattern recognition
and machine learning, where they are used for structured prediction. A CRF can take
context into account, whereas an ordinary classifier predicts a label for a single sam-
ple without regard to ‘neighboring’ samples. The linear chain CRF popular in natural
language processing predicts sequences of labels for sequences of input samples.

Lafferty et al. [54] define a CRF on observation X and random variable Y as follows:
Definition: Let G = 〈V,E〉 be a graph such that Y = (Yv)v∈V , so that Y is indexed

by the vertices of G. Then (X, Y) is a conditional random field in case, when conditioned
on X, the random variables Yv obey the Markov property with respect to the graph:
p(Yv|X, Yw, w 6= v) = p(Yv|X, Yw, w ∼ v), where w ∼ v means that w and v are neighbors
in G.

What this means is that a CRF is an undirected graphical model whose nodes can
be divided into exactly two disjoint sets X and Y , the observed and output variables,
respectively; the conditional distribution p(Y |X) is then modeled. Figure 2.1 illustrates
the simplest and most common graph structure in which the nodes corresponding to
elements of Y from a simple first-order chain. The probability of a label sequence y given
an observation sequence x can be written as:

7

Figure 2.1: Graphical structure of a chain-structured CRFs for sequences.

p(y|x, λ) =
1

Z(x)
exp(

∑
j

λjFj(y, x)) (2.1)

where Z(x) is a normalization factor, and

Fj(y, x) =
n∑
i=1

fj(yi−1, yi, x, i)

where fj(yi−1, yi, x, i) is either a state function or a transition function.
Assuming the training data {(x(k), y(k))} are independenly and identically distributed,

the product of (2.1) overall training sequences, as the function of the parameters λ, is
known as the likelihood. Maximum likelihood training chooses parameter values such that
the logarithm of the likelihood, known as the log-likelihood, is maximized. For a CRF,
the log-likelihood is given by:

L(λ) =
∑
k

[
log 1

Z(x(k))
+
∑

j λjFj(y
(k), x(k))

]
.

This function is concave, guaranteeing convergence to the global maximum.
Differentiating the log-likelihood with respect to parameter λj gives:

∂L(λ)

∂λj
= Ep̃(Y,X) [Fj(Y,X)]−

∑
k

Ep(Y |xk,λ)

[
Fj(Y, x

(k))
]
,

where p̃(Y,X) is the empirical distribution of training data and Ep[.] denotes expec-
tation with respect to distribution p. Note that setting this derivative to zero yields the
maximum entropy model constraint: The expectation of each feature with respect to the
model distribution is equal to the expected value under the empirical distribution of the
training data.

It is not possible to analytically determine the parameter values that maximize the log-
likelihood setting the gradient to zero and solving for λ does not always yield a closed form
solution. Instead, maximum likelihood parameters must be identified using an iterative
technique such as iterative scaling [24, 88] or gradient-based methods [103, 117].

2.2 Some Robust Classifiers

Many problems in NLP can be viewed as linguistic classification problems, in which
linguistic contexts are used to predict linguistic classes. This section presents two robust

8

classifiers, i.e. Maximum Entropy Models (MEMs) and Support Vector Machines (SVMs),
which are successfully used in many applications in NLP such as morphological analysis,
text chunking, named entity recognition, etc.

2.2.1 Maximum Entropy Models

Maximum Entropy Models (MEM) [97] are a method of estimating the conditional prob-
ability p(y|x) that a model outputs a label y given a context x:

p(y|x) =
1

Z(x)
exp(

∑
i

λifi(x, y))

where fi(x, y) refers to a feature function; λi is a parameter of the model; and Z(x) is
a normalization factor. For example, in part-of-speech (POS) tagging problem, y is a
POS tag and x is the context of a word (the word itself and its surrounding words) in a
sentence. To capture statistic information, this method requires that the model accord
with some constraints which have the form:

p(f) = p̃(f).

In this formula, f is a feature function (or feature for short), which takes a pair (x, y)
as input and outputs a real value. Usually, f is a binary-value indicator function. For
example, in POS tagging task, a feature function can be expressed as follows:

f(x, y) =

{
1 if y = Noun and the current word in x is book,

0 otherwise.

p(f) and p̃(f) are the expected values of f with respect to the model p(y|x) and the
empirical distribution p̃(x, y), respectively. They are defined as follows:

p(f) ≡
∑
x,y

p̃(x)p(y|x)f(x, y),

p̃(f) ≡
∑
x,y

p̃(x, y)f(x, y),

where p̃(x) is the empirical distribution of x in the training samples.
Suppose that we have n feature functions fi(i = 1, 2, . . . , n) and want our model to

accord with these statistics. Our model will belong to a subset Q of P (the set of all
conditional probability distributions) defined by

Q ≡ {p ∈ P |p(fi) = p̃(fi), i = 1, 2, . . . , n}.

The maximum entropy method chooses the model p∗ ∈ Q that maximizes the entropy
function H(p):

p∗ = argmaxp∈QH(p)

where the entropy function H(p) is defined as follows:

H(p) ≡ −
∑
x,y

p̃(x)p(y|x) log p(y|x).

9

To solve the constrained optimization problem, we first convert the primal problem
to a dual optimization problem using the method of Lagrange multipliers [11]. Then the
solution of the dual optimization problem can be found by applying the improved iterative
scaling method [11, 24] or LBFGS method [79].

Maximum entropy model has been applied successfully to many NLP task including
POS tagging [97], statistical machine translation [11, 29], etc.

2.2.2 Support Vector Machines

Support Vector Machines (SVMs) [16, 17, 18, 21] is a statistical machine learning tech-
nique proposed by Vapnik et al. It is not only well motivated in the theoretical aspect,
but also yields good performance in the empirical aspect (including computer vision,
handwriting recognition, pattern recognition, and statistical natural language process-
ing). Let’s take the simplest case to study on how SVMs work. This is called 2-class
classification: x ∈ Rn is some objects and y ∈ {−1, 1} is a class label. SVMs choose a
hyperplane separating samples in a classification task. In the field of natural language
processing, SVMs have been applied to text categorization, word sense disambiguation,
text chunking, syntactic parsing, semantic parsing, discourse parsing, etc., and achieved
very good results.

In linear case, we assume that we want to find a hyperplane that separates positive
and negative samples. Suppose that we have n training samples:

{(xi, yi)}ni=1, xi ∈ R
m, yi ∈ {+1,−1},

where xi is the feature vector and yi is the class (or label) of the ith sample.
The goal is to separate the positive and negative samples by a hyperplane in the form:

w.x+ b = 0,

where w ∈ Rm and b ∈ R are parameters.
Among the set of all possible hyperplanes, SVMs will find an optimal hyperplane

(correspond to find an optimal parameter set for w and b). In the SVMs framework, the
optimal hyperplane is the hyperplane with maximal margin between two classes. Figure
2.2 illustrates this strategy. Solid lines show two possible hyperplanes (or candidates).
Each candidate separates correctly the training samples into two classes. Two dashed
lines parallel to the candidate indicate the boundaries in which the candidate can be
moved without any misclassication. The distance between those parallel dashed lines is
called by margin.

Suppose that the training samples satisfy the following constraints:

w.xi + b ≥ +1for yi = +1

w.xi + b ≤ −1for yi = −1

These constraints can be combined into the following inequalities:

yi(w.xi + b)− 1 ≥ 0, ∀i

Figure 2.3 shows how to calculate the margin. We have, the perpendicular distance
from the origin to the solid line w.x+b = 0 is |b|

||w|| , where ||w|| is the Euclidean norm of w.

10

Figure 2.2: Small margin and large margin.

Figure 2.3: Calculation of the margin in SVMs framework.

Similarly, the perpendicular distances from the origin to two dashed lines (w.x+b = 1 and

w.x+b = −1 are |b−1|
||w|| and |b+1|

||w|| . Let d+ and d− be the distances between the solid lines and

two dashed lines. We will have d+ = d− = 1
||w|| . Hence, the margin M = d+ + d− = 2

||w|| .

To maximize the margin M , we minimize ||w||. The task now becomes solving the
following optimization problem:

Minimize:

L(w) =
1

2
||w||2

Subject to:
yi(w.xi + b)− 1 ≥ 0,∀i = 1, 2, ..., n.

The training samples which lie on two dashed lines are called support vectors. In
the cases where we cannot separate training samples linearly (because of some noise in
the training data, for example) we can build the separating hyperplane by allowing some
misclassications. In those cases, we can build an optimal hyperplane by introducing a soft
margin parameter, which trades off between the training error and the magnitude of the
margin.

SVMs also can deal with non-linear classification problems. First, the optimization
problem is rewritten into a dual form, in which feature vectors only appear in the form

11

of their dot products. By introducing a kernel function K(xi, xj) to substitute the dot
product of xi and xj in the dual form, SVMs can solve non-linear cases.

2.3 Learning-to-Rank Methods

2.3.1 Introduction to Learning-to-Rank

Learning to rank [44, 57, 59, 94] is a type of supervised or semi-supervised machine learn-
ing problem, in which the goal is to automatically construct a ranking model from training
data. This section focuses on this strong machine learning technique and its applications
to the field of natural language processing (NLP). Specifically, we first introduce the rank-
ing problem and distinguish it from other popular tasks such as classification, regression,
and ordinal classification. Second, we present three major approaches to learning to rank
which are the pointwise approach, the pairwise approach, and the listwise approach.

Learning to rank has been recently emerged in the past decade. Its purpose is to
rank, i.e. produce a permutation of items in new, unseen lists in a way, which is ‘similar’
to rankings in the training data in some senses. Learning to rank algorithms have been
applied in areas other than information retrieval, i.e. machine translation [119], recom-
mender system [48], etc. To understand more about it, in this section, we would like to
make a comparison to other traditional tasks such as classification and regression in the
terms of the input, the output and the learning goals as follows:

Classification

The input is a feature vector x ∈ Rd, the output is a label y ∈ Y , and the goal is to learn
a classifier f(x) which can determine a class label y of a given feature vector x.

Regression

The input is a feature vector x ∈ Rd, the output is a real number y ∈ R, and the goal is
to learn a function f(x) which can determine a real number y of a given feature vector x.

Oridinal classification or ordinal regression

This is close to ranking, but is also different. The input is a feature vector x ∈ Rd, the
output is a label y ∈ Y , representing a grade where Y is a set of grade labels. The goal of
learning is to learn a model f(x) which can determine the grade label y of a given feature
vector x. The model first calculates the score f(x), and then it decides the grade label y
using a number of thresholds. Specifically, the model segments the real number axis into
a number of intervals and assigns to each interval a grade. It then takes the grade of the
interval which f(x) falls into as the grade of x.

Learning to Rank

In ranking, one cares more about accurate ordering of objects, while in ordinal classifi-
cation, one cares more about accurate ordered-categorization of objects. As will be seen
later, ranking can be approximated by classification, regression, and ordinal classification.

12

Figure 2.4: Learning-to-rank framework (cited from Liu [59]).

2.3.2 Major approaches in Learning-to-Rank

To give an overview of learning to rank, we choose information retrieval as an example
as in [59]. Figure 2.4 shows the typical ‘learning-to-rank’ framework. The framework
includes a training set which consists of n training queries qi(i = 1, 2, ..., n). Each query

is associated with documents represented by feature vectors x(i) = x
(
ji)(j = 1tomi) where

mi is the number of documents associated with query qi, and the corresponding relevance
judgments. From this training data, a ranking model h is built by using a specific learning
algorithm. This model is optimized so that the output of the model can predict the gold
label in the training set as accurately as possible, in terms of a loss function. In the
testing phase, the model h will be used to sort documents of a new query q and return
the corresponding ranked list to the user as the response. According to Liu [59], existing
algorithms for learning to rank problems can be categorized into three main groups by
their input representation and the loss functions.

The pointwise approach

In this case it is assumed that each query-document pair in the training data has a
numerical or ordinal score. Then learning-to-rank problem can be approximated by a
regression problem given a single query-document pair, predict its score.

The pairwise approach

In this case learning-to-rank problem is approximated by a classification problem learning
a binary classifier that can tell which document is better in a given pair of documents.
The goal is to minimize average number of inversions in ranking.

The listwise approach

These algorithms try to directly optimize the value of one of the above evaluation mea-
sures, averaged over all queries in the training data. This is difficult because most evalu-

13

ation measures are not continuous functions with respect to ranking model’s parameters,
and so continuous approximations or bounds on evaluation measures have to be used.

2.3.3 Algorithms for Learning-to-Rank

In this section, we will present some representative algorithms for each approach above.
For the poitwise approach, we present the one-class SVM. For the pairwise approach, we
present the Ranking SVM algorithm. For the listwise approach, we present two common
algorithms which are ListNet and ListMLE. These algorithms will be used later in this
thesis.

One-Class Support Vector Machine - OCSVMs

We have already presented the SVMs algorithm in the previous section.

Ranking SVMs

This is one of the first learning to rank methods, proposed by Herbrich et al. [41]. The
idea is to transform ranking into pairwise classification and employ the SVM technique
[21] to perform the learning task.

Assume that X ∈ Rd is the feature space and x ∈ X is an element in the space (feature
vector). Further suppose that f is a scoring function f : X −→ R. Then one can rank
feature vectors (objects) in X with f(x). That is to say, given any two feature vectors
xi, xj ∈ X , if f(xi) > f(xj), then xi should be ranked ahead of xj, and vice versa.

f(x) can be arbitrary, however, to simplify we suppose that f(x) is a linear function
in that:

f(x) = 〈w, x〉 ,
where w denotes a weight vector and 〈.〉 denotes inner product.
We can transform the ranking problem into a binary classification problem if the

scoring function is a linear function because of the reasons as follows:

• First, the following relation holds for any two feature vectors xi and xj, when f(x)
is a linear function.

f(xi) > f(xj)↔ 〈w, xi − xj〉 > 0.

• Next, for any two feature vectors xi and xj, we can consider a binary classification
problem on the difference of the feature vectors xi − xj. Specifically, we assign a
label y to it.

y =

{
+1 if xi - xj > 0
−1 if xi - xj < 0

Hence, 〈w, xi − xj〉 > 0↔ y = +1

Therefore, the following relation holds. That is to say, if xi is ranked ahead of xj,
then y is +1, otherwise, y is −1.

xi > xj ↔ y = +1

14

RankingSVM applies the SVM technology to perform pairwise classification. Given n
training queries {qi}ni=1, their associated document pairs x

(i)
u , x

(i)
v and the corresponding

gold label y
(i)
u,v, the mathematical formulation of Ranking SVM is as shown below, where

a linear scoring function is used f(x) = wTx,

min
1

2
||w||2 + λ

i=1∑
n

∑
u,v:y

(i)
u,v

ξ(i)
u,v

s.t.wT (x(i)
u − x(i)

v) ≥ 1− ξ(i)
u,v, if y

(i)
u,v = 1

ξ(i)
u,v ≥ 0, i = 1, ..., n

This objective function in Ranking SVM is very similar to that in SVM, where the
term 1

2
||w||2 controls the complexity of the model w. The difference with SVM lies in

the constraints, which are constructed from document pairs. The loss function in Rank-
ingSVM is a hinge loss defined on document pairs. For example, for a training query q, if
document xu is labeled as being more relevant than document xv(yu,v = 1), then if wTxu
is larger than wTxv by a margin of 1, there is no loss. Otherwise, the loss will be ξu,v.
Such a hinge loss is an upper bound of the pairwise 0− 1 loss.

This RankingSVM can inherit nice properties of SVM such as the ability to handle
complete non-linear problems, etc.

ListNet

This sub-section describes the general setting for a learning-to-rank task. In a learning-to-
rank task, a set of m samples S = {s(1), s(2), . . . , s(m)} is given. Each sample s(i) consists of

an object list o(i) = {o(i)
1 , o

(i)
2 , . . . , o

(i)

n(i)}, where o
(i)
j denotes the jth object and n(i) denotes

the number of objects in ith sample. Furthermore, each object list o(i) is associated with
a list of scores y(i) = {y(i)

1 , y
(i)
2 , . . . , y

(i)

n(i)}, where y
(i)
j , a real number, is the score of the

object o
(i)
j . In coreference resolution task, a sample s(i) is associated with a mention m(i)to

be resolved, each object o
(i)
j corresponds to an antecedent candidate c

(i)
j , and score y

(i)
j

denotes the judgment on an antecedent candidate c
(i)
j with respect to the mention m(i)

(the value of y
(i)
j expresses how relevant coreference an antecedent candidate c

(i)
j is with

a mention m(i) to be resolved).

A feature function φ will produce a real-value feature vector for each object x
(i)
j =

φ(o
(i)
j) (i = 1, 2, . . . ,m; j = 1, 2, . . . , n(i)). A list of feature vectors x(i) = {x(i)

1 , x
(i)
2 , . . . , x

(i)

n(i)}
and the corresponding list of scores y(i) = {y(i)

1 , y
(i)
2 , . . . , y

(i)

n(i)} will form a training instance

(x(i), y(i)). The training set can be represented by the following set: D = {(x(i), y(i))}mi=1.
In training phase, we want to learn a ranking function f , that produces a real-valued

score f(x
(i)
j) for each feature vector x

(i)
j .

Suppose that z(i) =
(
f(x

(i)
1), f(x

(i)
2), . . . , f(x

(i)

n(i))
)

is the list of scores produced by f

on a list of feature vectors x(i) = {x(i)
1 , x

(i)
2 , . . . , x

(i)

n(i)}, and L is a loss function defined on

two lists of scores y(i) and z(i). We want to minimize the total losses on the training data.

15

In ranking phase, given a new sample s′ (a list of new objects o′), we first construct
a list of feature vectors x′ using feature function φ, and then produce a list of scores y′

using ranking function f . Finally, objects are ranked in descending order of the scores.
Next, we will give a brief introduction to two listwise learning-to-rank methods,

i.e ListNet [19] and ListMLE [122] (next sub-section). ListNet is a listwise method for
learning-to-rank, which uses Cross Entropy metric as loss function, Neural Network as
model, and Gradient Descent as learning algorithm. If we use a linear Neural Network
model, the score of a feature vector can be calculated as follows:

fω(x
(i)
j) =

〈
ω, x

(i)
j

〉
where 〈., .〉 denotes an inner product.

The learning algorithm of ListNet method is presented as Algorithm 1, where T is the
number of iterations and η is the learning rate. The core of the algorithm consists of two
main steps doing on each training sample:

1. Compute the score list for the sample using the current value of parameter vector
ω.

2. Update the parameter vector ω using gradient ∆ω.

Algorithm 1 Learning Algorithm of ListNet method (cited from Cao et al. 2007)

Input: Set of training instances: (x(i), y(i))
m

i=1

Parameter: iteration number T and learning rate η
Initialize parameter ω

for t = 1→ T do
for i = 1→ m do

Input x(i) to Neural Network and Compute score list z(i)(fω) with current value of
ω
z(i)(fω) =

(
fω(x

(i)
1), . . . , fω(x

(i)

n(i))
)

Compute gradient ∆ω using equation (2.2)
Update ω = ω − η ×∆ω

end for
end for

Output: Neural Network model ω

The gradient ∆ω is computed using the loss function L as follows1:

∆ω =
∂L(y(i), z(i)(fω))

∂ω

= − 1∑n(i)

j=1 exp(y
(i)
j)

n(i)∑
j=1

exp(y
(i)
j)

∂fω(x
(i)
j)

∂ω

+
1∑n(i)

j=1 exp(fω(x
(i)
j))

n(i)∑
j=1

exp(fω(x
(i)
j))

∂fω(x
(i)
j)

∂ω

(2.2)

1In Algorithm 1, it is not necessary to compute the loss function L. The gradient ∆ω can be computed
directly based on the derivation of L (see Cao et al., [19] for more details).

16

ListMLE

ListMLE [122] is a listwise method which uses the likelihood loss as the loss function.
Like ListNet method, it also uses Neural Network as model. The score of a feature vector
is computed in the similar way:

fω(x
(i)
j) =

〈
ω, x

(i)
j

〉
The learning algorithm of ListMLE method is presented as Algorithm 2, where ε is

the tolerance rate and η is the learning rate. The core of the ListMLE algorithm also
consists of two main steps which compute the score list for the sample using the current
value of parameter vector ω, and then update the parameter vector ω using gradient ∆ω.

Algorithm 2 Learning Algorithm of ListMLE method (cited from Xia et al. 2008)

Input: Set of training instances: (x(i), y(i))
m

i=1

Parameter: Tolerance rate ε and learning rate η
Initialize parameter ω

repeat
for i = 1→ m do

Input x(i) to Neural Network and compute score list z(i)(fω) with current value of
ω
z(i)(fω) =

(
fω(x

(i)
1), . . . , fω(x

(i)

n(i))
)

Compute gradient ∆ω using equation (2.3)
Update ω = ω − η ×∆ω

end for
Compute likelihood loss L using equation (2.4)

until change of likelihood loss is below ε

Output: Neural Network model ω

In ListMLE method, the gradient ∆ω is computed using the following formula:

∆ω =

∑n(i)
t=1 x

(i)

π−1(t)exp(fω(x
(i)

(πi)−1(t)
))∑n(i)

t=1 exp
(
fω(x

(i)

(πi)−1(t)
)
) − x(i)

(π(i))−1(1)
(2.3)

and likelihood loss L is computed using the following formula:

L = −
m∑
i=1

log
exp

(
fω(x

(i)

(π(i))−1(1)
)
)

∑n(i)
t=1 exp

(
fω(x

(i)

(π(i))−1(t)
)
) (2.4)

In that: π(i) is the perfect (gold) ranking by y(i), π(i)(k) returns the ranking place of the
kth element, (π(i))−1 is the inverted mapping of (π(i)), and (π(i))−1(t) returns the position
of the element which is ranked at the tth place.

17

Chapter 3

An Empirical Study on a Listwise
Approach to Coreference Resolution
using Learning-to-rank

To realize coreference resolution, this chapter presents a listwise approach, which exploits
a listwise learning-to-rank method. This approach allows to consider all antecedent can-
didates simultaneously not only in the resolution phase but also in the training phase.

3.1 Introduction

Reference resolution [47] (Chapter 21, Section 21.4) is the task of determining which enti-
ties are referred to by which linguistic expressions. This task plays an important role in a
large number of natural language processing (NLP) applications such as Text Sumariza-
tion [105], Question Answering [106], and Machine Translation [80, 84]. Therefore, it has
attracted much attention within the NLP community. Among all types of reference phe-
nomena, coreference is the most popular and is the focus of most researches on reference
resolution. Many works on various aspects (such as linguistic features [37, 75], machine
learning models [76, 104], multiple languages [99], and so on) of the coreference resolution
task have been published.

To solve the coreference resolution task, a lot of models have been proposed. In
mention-pair models [77, 91, 104], authors train a model to determine whether an an-
tecedent candidate is coreferent with an anaphoric mention or not, and the antecedent
will be chosen among candidates that are classified coreferent with an anaphoric mention.
In entity-mention models [62, 126], authors consider a preceding cluster of mentions in-
stead of single antecedent candidates. A model is trained to classify whether a mention
and a preceding cluster are coreferent. These models suffer from an important weakness,
which makes them unable to completely solve the problem. In these models, each can-
didate is resolved independently with the other candidates. Therefore, the probability
assigned to each candidate merely encodes the likelihood of that particular candidate
being coreferential with a given mention.

Mention-ranking models [25, 26, 74, 125] have been proposed to overcome the limi-
tation of mention-pair models and entity-mention models. In this method, authors train
a ranker which ranks candidates and the candidate with the highest rank will be chosen
as the correct antecedent. The ranker can be trained using the limited memory variable

18

Figure 3.1: A motivating example of coreference resolution using a listwise approach.

metric algorithm [26] or using support vector machines [96]. Cluster-ranking model [95]
is a method which combines the strength of entity-mention models and mention-ranking
models. This method ranks the preceding clusters and chooses the best cluster which the
anaphoric mention will belong to. Although mention-ranking models and cluster-ranking
models allow all candidates to be evaluated together when deciding which candidate is the
antecedent of a mention, they do not consider all candidates simultaneously when training
the rankers. Most authors use tournament by [43] and twin-candidate model by [95, 125].
So, they only directly compare pairs of antecedent candidates by building a preference
classifier based on the triple including two candidates and an anaphoric mention. This
extension provides important benefits, however, the above weakness is not fully resolved.

Figure 3.1 shows an example dialog. In this dialog, if we only look at the context
of one sentence ‘Mary said that she would come to the party ’, the most likely reading is
that she refers to Mary. However, if we look at the broader context, she could instead
refer to someone else (most likely someone introduced earlier in the dialog, i.e. Ana or
Mary’s sister). Therefore, a good reference resolver should have the ability to capture
the whole context of each mention. In other words, it should estimate how good a candi-
date is in relation to other candidates, instead of only considering one or two candidates
independently.

Moreover, by default, previous approach is strongly assumed that candidates or pairs
of candidates are generated i.i.d1 and the trained models will be biased towards mentions
with more candidates. Another problem is that the objective of learning is formalized
as minimizing errors in classification of candidates or pairs of candidates, rather than
minimizing errors in ranking of candidates globally. Motivated from these drawbacks, we
investigate a listwise approach, which is a more straightforward way to allow direct com-
parison of different candidate antecedents for an anaphoric mention. This idea used to be
preliminarily referred to in the literature of anaphora resolution (i.e., Centering algorithm
[14]). This is suitable with the fact that all antecedent candidates are closely related to
each other in a given context of a document and should be considered simultaneously. In
this study, we employ the listwise learning-to-rank method which is originally proposed for
the learning-to-rank task in information retrieval [19], to solve the coreference resolution
task. This listwise approach has been successfully applied to the information retrieval
task [19] [122], question answering [1], etc. It has been shown to be more effective in com-
parison with other learning-to-rank methods such as pointwise and pairwise approaches
which do not use lists of objects 2 as instances in learning [19].

Exploiting the listwise learning-to-rank method allows us to operate on the entire list
of candidates in the training phase as well as the resolution phase. Specifically, lists of

1independent and identically distributed.
2In the coreference resolution task, objects means antecedent candidates; in information retrieval task,

objects means document candidates; in question answering systems, objects means answer candidates.

19

candidates are used as ‘instances’ in learning. In the training phase, we train a ranking
model which minimizes a listwise loss function and captures the ranking problem in a
conceptually more natural way than previous ranking approaches [25, 26, 74, 125]. In the
resolution phase, the model will assign each candidate antecedent with a score indicating
how likely the candidate antecedent and the mention to be resolved are coreferent, and
the candidate with the highest score will be selected as a correct antecedent.

In experiments, we implement two effective listwise algorithms which are ListNet[19]
and ListMLE[122]. Experimental results on the corpora of SemEval-2010 shared task 1
(the task of coreference resolution in multiple languages) [99] show that when applied
to coreference resolution, this listwise approach mostly yields better performance than
previous approaches. In comparison to the best system SUCRE, we achieved comparative
performance.

Our main contributions can be summarized in the following points:

1. Proposing a listwise approach to coreference resolution using listwise learning-to-
rank methods.

2. Conducting experiments on multiple languages to show the performance of the list-
wise approach.

3. Investigating two common and effective listwise learning-to-rank methods and com-
paring listwise and pairwise approaches in the coreference resolution task.

The rest of this chapter is organized as follows. Section 3.2 presents traditional mod-
els which was previously proposed for coreference resolution. Section 3.3 describes our
listwise approach to this task. We begin this section by motivating the use of a ranker
for coreference resolution. We also show how to model this listwise approach to coref-
erence resolution. Section 3.4 presents the corpora of this SemEval-2010 shared task 1,
participating systems, and four evaluation metrics. In this section, we also present ex-
perimental results to compare the listwise approach to previous participating systems as
well as a pairwise ranking baseline model. In addition, we report experimental results
using two different methods of generating training instances. This section also illustrates
P-R curves to give a more informative picture of the systems’s performance. We also add
some discussion about the listwise approach. Finally, Section 3.5 concludes the chapter.

3.2 Previous models for the coreference resolution

task

In this section, we review previous models for the coreference resolution task including
mention-pair models (Section 2.1), entity-mention models (Section 2.2), and mention-
ranking and cluster-ranking models (Section 2.3). Among these models, mention-pair
and entity-mention models only consider one candidate (or one cluster) at a time in both
the resolution and the training phases. Both mention-ranking and cluster-ranking models
only consider a pair of candidates (or a pair of clusters) in the training phase.

We begin this section by giving an example used to investigate coreference resolution
models.

Captain Farragut was a good seaman, worthy of the frigate he commanded. His vessel
and he were one. He was the soul of it.

20

In this example, we assume there are two entities which are the good seaman named
Captain Farragut and his vessel. Each entity is referred by its own referring expressions
- the former are blue texts and the later are red texts.

3.2.1 Mention-pair models

In the mention-pair models [77, 91, 104], the models have to build a classifier which
can classify whether a candidate is coreferent with an anaphoric mention. Each training
instance is created between the mention and each of its antecedent candidates. In this
case, each candidate is considered independently of the others.

In the above example, if we consider the mention it, we have to determine the correct
antecedent among its candidates which are (Captain Farragut, the frigate, he, His ves-
sel, he and He). This method generates three training instances correspondingly. Each
training instance is represented by a feature vector built from each candidate and the
anaphoric mention it. The built models will classify each of the pair between the men-
tion it and its candidate antecedent are coreferent or not. The models’s antecedent will
be chosen among candidates that are classified coreferent with the mention by using the
closest-first or the best-first strategies. In the closest-first strategy, the closest candidate
that is classified as coreferent with the mention will be selected, while in the best-first
strategy, the most probable preceding candidate that is classified as coreferent with the
mention will be selected. If no such antecedent exists, the mention is considered as a
non-anaphoric mention.

The mention-pair models have two weaknesses. First, the models only consider each
candidate independently. So, they only determine how good a candidate is relative to the
mention, but not how good a candidate is relative to other candidates. Second, they have
limitations in their expressiveness. The information extracted from a candidate and the
mention alone may not be enough for making a coreference decision [76].

3.2.2 Entity-mention models

In the entity-mention models [62, 126], the models classify whether a mention to be
resolved and each of preceding clusters are coreferent or not. Training instances are created
between the mention and a preceding cluster. These models improve the expressiveness
problem by allowing the computation of the cluster-level features. They use cluster-level
features which are computed from a feature employed by the mention-pair model by
applying a logical predicate. Testing phase is like in mention-pair models except that
we resolve the mention to the closest or the best preceding cluster that is classified as
coreferent.

In the above example, if we consider the mention it, we have to determine the correct
cluster to which it belongs. Here there are two clusters (Captain Farragut, he, he and
he) and (the frigate and his vessel). Each referring expression in the cluster refers to the
same real-world entity. In this case, the mention it belongs to the second cluster.

However, they still have their own weakness that is each cluster candidate is considered
independently of the others.

21

3.2.3 Mention-ranking models and cluster-ranking models

In mention-pair and entity-mention models, each candidate for a mention to be resolved
is estimated independently. Therefore, models cannot determine the most probable an-
tecedent. In the later researches, there are also efforts to address this problem. Let’s
list out some works belonging to mention-ranking models [25, 26, 74, 125]. In mention-
ranking models, they learn a ranker that can rank a set of candidates for each mention
in a pairwise manner. Training examples build based on triple of two candidates and the
anaphoric mention. This model has an additional constraint on the creation of instances:
exactly only one of the two candidates can be coreferential with the anaphoric mention.
In the resolution phase, the ranker will rank all the candidates (usually by assigning a
score to each candidate), and the candidate with the highest rank will be chosen as a
correct antecedent.

There is also another model which combines the strength of entity-mention model
and mention-ranking model - the cluster-ranking model [95]. In that model, it ranks all
preceding clusters for each mention to be resolved. Training examples are comprised of
features between a mention to be resolved and its preceding cluster. The way of creating
instances is same to the entity-mention model.

Although mention-ranking models and cluster-ranking models allow all candidates to
be evaluated in a pairwise manner, they do not consider all candidates simultaneously
especially when training the ranker. Therefore, the above weakness is not fully solved.

It should be noted that the number of training instances generated by these four models
are quite large if we consider all mentions preceding an anaphoric mention as candidates.
So, the model learned is easily biased to the anaphoric mention with a large number of
training instances. Moreover, negative training instances can overwhelm positive training
instances. To handle these problems, authors suggest using only a subset of preceding
mentions as candidates.

3.3 A listwise approach to coreference resolution us-

ing learning-to-rank

In this section, we first discuss on why coreference resolution should be considered as a
learning-to-rank problem. Then, we describe how to formulate coreference resolution in
the view of a learning-to-rank problem. To solve this learning-to-rank task, we present
two common and effective methods using listwise approaches which are ListNet [19] and
ListMLE [122]. Lastly, we compare our model using a listwise learning-to-rank approach
to previous models in terms of input, output, and loss function.

3.3.1 Coreference resolution as a learning-to-rank problem

References are frequently ambiguous and depend on the context. For example, in the
sentence ‘Mary said she would help me,’ she and Mary most likely refer to the same
person or group, in which case they are coreferent. Though the most likely reading is
that she refers to Mary, she could instead refer to someone else (most likely someone
introduced earlier in a dialog). Hence, in this case, it is necessary to estimate how good
the antecedent candidate Mary is in comparison to all available antecedent candidates of

22

the mention she. In other words, a coreference resolver should have the ability to examine
all possible candidates at the same time. This is suitable with the fact that all antecedent
candidates are closely related to each other in a given context of a document and should
be considered together simultaneously. To perform this, learning-to-rank is a reasonable
choice.

The idea that considers reference resolution as a ranking problem is actually pre-
sented in the literature of anaphora resolution [47]. A typical representative is Centering
algorithm [14] in which when resolving anaphora, different analyses may correspond to
different transition types that determine the final reference assignments. These transition
types are ranked based on the criterion that an analysis involving least change is pre-
ferred. Another example is the method proposed by Lapping and Leass [55] in which the
antecedent is selected on the basis of salience ranking and proximity.

In the aspect of the machine learning approaches, some authors performed the ranking
idea for the co-reference resolution task such as the mention-ranking model [25, 26],
cluster-ranking model [95], twin-candidates model [125], tournament model [43], etc. In
these models, instead of only considering one candidate at a time, they consider two
candidates at a time. They somehow address the drawback of previous models using
classification approaches such as mention-pair or entity-mention models. However, these
methods do not fully solve the problem in the aspect that it is only possible to utilize two
candidates rather than the whole set of candidates in the training phase as well as the
resolution phase. In other words, they forces different candidates for the same mention
to be considered independently. This means that the strong independence assumptions
hold during training phases. In fact, however, each candidate or candidate pair does not
exist independently but it exists in a given context in relation with other candidates.
Coreference resolution, therefore, is more appropriate to be resolved using all candidates
instead of using only one or two candidates. To perform this, ranking approaches provides
a more natural fit to the task than classification approaches. In this chapter, we investigate
an approach using a listwise learning-to-rank method to solve the coreference resolution
task. This listwise approach directly captures the competition among potential antecedent
candidates, instead of considering each of them or pair of them independently. In training,
it also learns a model using a ranking loss function rather than a classification loss function.

3.3.2 Formulating coreference resolution as a Learning-to-rank
problem

We formulate the coreference resolution task as a learning-to-rank problem. This prob-
lem formulation has been used in Information Retrieval [19]. In the learning-to-rank
framework, training data consists of a number of queries; each query is associated with
a correctly-ranked list of document. For the coreference resolution task, each mention to
be resolved plays the role as a query, and each of its antecedent candidates corresponds
to a document in the information retrieval task. In the following section, we will describe
the way of creating training instances, the training phase, and the resolution phase of this
approach.

Formally, in training, a set of m samples S = {s(1), s(2), . . . , s(m)} is given. Each
sample s(i) is associated with a mention. Each s(i) consists of an antecedent candidate
list c(i) = {c(i)

1 , c
(i)
2 , . . . , c

(i)

n(i)}, where c
(i)
j denotes the jth antecedent candidate and n(i)

denotes the number of antecedent candidates for ith sample. Furthermore, each antecedent

23

candidate list c(i) is associated with a list of scores y(i) = {y(i)
1 , y

(i)
2 , . . . , y

(i)

n(i)}, where y
(i)
j ,

a real number, is the score of the antecedent candidate c
(i)
j . In coreference resolution

task, the score y
(i)
j denotes the judgment on an antecedent candidate c

(i)
j with respect to

the mention s(i) (the value of y
(i)
j expresses how relevant an antecedent candidate c

(i)
j is

coreferent with a mention s(i)). Similar to the information retrieval task 3, in our task we

define the score y
(i)
j as one element in the set of {1, 0.5, 0} with the meanings as follows:

y
(i)
j =

0 if c

(i)
j is not coreferent with mention s(i)

1 if c
(i)
j is coreferent with mention s(i) and closest to s(i)

0.5 if c
(i)
j is coreferent with mention s(i) and not closest to s(i)

In training, there maybe more than one antecedent candidate which is judged to be
the correct antecedent of the current mention s(i). In this chapter, we propose a method
for assigning scores to antecedent candidates using the coreferent criterion [76, 77] and
the closest-first clustering strategy [104]. In our framework, we assign the highest score
to the antecedent candidate which is coreferent with and is closest to the current mention
s(i). The other candidates, which are correferent with s(i), are assigned the lower scores.
The remaining candidates, which are not correferent with s(i), are assigned the score 0.

A feature function φ will produce a real-value feature vector x
(i)
j = φ(c

(i)
j) for each

antecedent candidate c
(i)
j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n(i)). A list of feature vectors x(i) =

{x(i)
1 , x

(i)
2 , . . . , x

(i)

n(i)} and the corresponding list of scores y(i) = {y(i)
1 , y

(i)
2 , . . . , y

(i)

n(i)} will form

a training instance (x(i), y(i)). The training set can be represented by the following set:
D = {(x(i), y(i))}mi=1.

Training phase

In training phase, we want to learn a ranking function f , that produces a real-valued
score f(x

(i)
j) for each feature vector x

(i)
j . With the usage of a linear Neural Network model,

the score of a feature vector can be calculated as follows:

fω(x
(i)
j) =

〈
ω, x

(i)
j

〉
,

where 〈., .〉 denotes an inner product, ω is a vector of parameters of the model.

Suppose that z(i) =
(
f(x

(i)
1), f(x

(i)
2), . . . , f(x

(i)

n(i))
)

is the list of scores produced by f

on a list of feature vectors x(i) = {x(i)
1 , x

(i)
2 , . . . , x

(i)

n(i)}, and L is a loss function defined on

two lists of scores y(i) and z(i). We want to minimize the total losses on the training data:

m∑
i=1

L(y(i), z(i))

From a score list, the listwise approach defines a probability distribution for a rank
ordering over the list of candidates [19, 122]. In fact, each rank ordering corresponds to a

3In the information retrieval task, a score indicates the degree of relevance of a document to the
corresponding query. It can be one element in the ordinal set, {perfect, excellent, good, fair, bad} or {5,
4, 3, 2, 1} in a numerical representation; or a score can also be a binary judgment in the set {relevant,
not relevant} or {1, 0} in a numerical representation.

24

Figure 3.2: An example of a permutation probability distribution over three candidates
named A, B, and C.

permutation of the list candidates. The probability of each permutation can be computed
from its list of scores (in some ways). For example, the probability of permutation Π
given the list of scores s can be defined as:

Ps(Π) =
n∏
j=1

φ(sΠ(j))∑n
k=j φ(sΠ(k))

where n is the number of antecedent candidates, φ(.) is an increasing and strictly positive
function, and sΠ(j) denotes the score of the candidate at position j of permutation Π . In
the ListNet method [19], the authors define φ(.) as an exponential function. An example
of probability distribution defined by a ranking function f over three candidates named
A,B, and C is given in Figure 3.2. In this example, the ranking function f assigns scores
to candidates A, B, and C as 0.5, 0, and 1 respectively.

The loss function L measures the information loss on probability distributions calcu-
lated from the estimated scores z(i) and probability distributions calculated from the gold
scores y(i). The purpose of the listwise approach is to minimize the total losses on the
training data to learn the parameters of the model ω. With the use of top one probability,
given two lists of scores we can view any metric between probability distributions as the
listwise loss function. The ListNet method uses Cross Entropy as metric, then the listwise
loss function becomes:

L(y(i), z(i)) = −
n∑
j=1

Py(i)(j)log(Pz(i)(j))

This listwise approach, therefore, allows us to examine all candidates at the same time.

Resolution phase

In ranking phase, given a new sample s(′) (a list of new antecedent candidate c(′)), we
first construct a list of feature vectors x(′) using feature function φ, and then produce
a list of scores y(′) using ranking function f . Finally, objects are ranked in descending
order of the scores. The candidate with a higher score will have higher probability to be
coreferent with s(′).

To determine the anaphoricity of a mention, usually a discourse status classifier is
adopted to assist the identification of anaphoric mentions. This method requires the

25

Table 3.1: The main characteristics of all approaches.

Mention-Pair
Entity-Mention

Mention-Ranking
Cluster-Ranking

Listwise Approach
(ListNet, ListMLE)

Input
A single candidate presented

by a feature vector xi

A pair of candidates represented
by feature vectors xi, xj

A set of candidates associated
with a mention X = (xi)

n
i=1

Output classification yi pairwise classification yi,j Ranking list πy
Model classifier classifier Ranking model

Loss Function Classification loss Pairwise classification loss Listwise ranking loss

understanding of characteristics of each language to determine which mention should be
anaphoric. For example, [78] use a pool of feature sets including 37 features grouped in 6
types for a English anaphoricity determination system. They include lexical, grammatical
(NP type), grammatical (NP property/relationship), Grammatical (Syntactic Pattern),
Semantic and Positional feature types. These feature sets are not identical to all languages.
This approach, therefore, is not convenient to implement for multiple languages. Another
approach is the work of [95] in which they proposed an approach to joint discourse-new
detection and coreference resolution for ranking model. This seems to be appropriate to
conduct in multiple languages. However, experimental results (will be presented in Sub-
section 4.6) showed that this method did not yield better performance than the method
that considers the ranker as an additional filter for detecting anaphora.

Like in mention-pair models, our model learns the degree that a candidate is corefer-
ent with a given mention. Training instances for each mention also include negative and
positive candidates. The only difference is that in training we optimize the parameters
based on how good a candidate is in relation to remaining candidates, instead of con-
sidering each candidate independently. Therefore, information about the anaphoricity of
a mention is also covered in the coreference relation between a mention and a list of its
candidates. In our model, the output score is not the exact probability that a candidate
is coreferent with a given mention. The score merely indicates the degree that a candi-
date is coreferent with a given mention in relation to other candidates. The higher the
score of a candidate is, the higher the coreferent probability with a given mention is. In
testing, to determine anaphoricity, we set up a threshold theta. If the given mention is
non-anaphoric, it means that the score that it is coreferent with any candidate is below a
threshold theta.

3.3.3 Comparing this listwise learning-to-rank model to previ-
ous models

Table 3.1 summarizes the main characteristics of the listwise approach in comparison
with previous approaches in terms of input, output, loss function and model. With these
characteristics, it should be noted that the first models (in the first column) consider only
one antecedent candidate at a time; the second models (in the second column) consider
only two antecedent candidates at a time. While, the proposed listwise approaches allow
all antecedent candidates to be examined simultaneously.

26

Table 3.2: Parameter sets of ListNet and ListMLE algorithms

Model Name Parameters Languages Values

ListNet T - η - θ
English 2 - 0.005 - 0.12
Catalan 2 - 0.001 - 0.15
Spanish 5 - 0.01 - 0.25
German 2 - 0.005 - 0.08

ListMLE ε - η - θ
English 0.2 - 0.01 - 2
Catalan 0.5 - 0.005 - 0.5
Spanish 0.5 - 0.001 - 1.5
German 0.5 - 0.005 - 0.36

3.4 Experiments and Results

This section presents our experiments on the coreference resolution task using our listwise
approach. All experiments were conducted on the copora of the SemEval 2010 shared task
1 [99], which was organized to evaluate learning-based coreference resolution systems in
multiple languages. To conduct experiments, we implemented ListNet [19] and ListMLE
[122] methods by ourself. They are available for download now.

When using ListNet method, our system had to choose the set of three parameters
which are (1) number of iteration T ; (2) learning rate η; and (3) the threshold θ to
determine a candidate is coreferent with a given mention or not. When using ListMLE
method, our system had to choose the set of three parameters which are (1) tolerance
rate ε; (2) learning rate η; and (3) the threshold θ to determine whether a candidate is
coreferent with a given mention. To determine the best parameter set, we varied their
values and selected parameters that yield the best coreference resolution system. Scoring
coreference resolvers seems to be a continuing issue, with very little correlation between
various methods. Each metric has its own advantages and disadvantages and there is no
standard criterion which can estimate which one is better. In this research, therefore,
we would like to use a popular method based summing up four metrics on F1 scores.
Depending on real applications, if people wants to focus on a specific metric, they can
set a higher weight to that metric and so on. The parameter sets for these two methods
are listed in Table 3.2. After that, we used these parameters to evaluate our proposed
systems on the test sets.

Next, we describe the SemEval-2010 shared task 1 (Sub-section 3.4.1), participating
systems in the shared task (Sub-section 3.4.2), evaluation metrics (Sub-section 3.4.3),
and feature sets which we used to learn coreference resolution models (Sub-section 3.4.4).
Then, we present experimental results.

3.4.1 SemEval 2010 shared task on coreference resolution in
multiple languages

Until the release of the SemEval-2010 shared task 1 [99], there has no competition or
public corpus that allow us to evaluate different coreference resolution systems in multiple
languages. Most published systems only focus on a specific language and use the same
data sets such as ACE and MUC corpora to train and test the systems. This makes the
systems easy to unintentionally adapt themselves to the corpus but not to the problem

27

in general. Therefore, the SemEval-2010 task 1 [99] made it possible to evaluate and
compare various automatic coreference resolution systems in the following aspects:

• The portability of systems across languages.

• The relevance of different levels of linguistic information.

• The behavior of scoring metrics.

This shared task attracted lots of researchers’ attentions, but finally only six teams
submitted their final results. The participating systems differed in terms of architecture,
machine learning methods, etc. These systems mostly based on the pairwise models.
Unfortunately, these models suffered from an important weakness as discussed in the
previous sections.

3.4.2 Participating systems

In this section, we preview previous approaches of the systems participating in the
SemEval-2010 shared task which have the same experimental settings as in our exper-
iments. The experimental results of those systems are also used to make an experimental
comparison with our proposed approach’s results. Here, we preview four systems: (1)
RelaxCor system [102]; (2) SUCRE system [52]; (3) TANL-1 system [3]; and (4) UBIU
system [128].

RelaxCor system

RelaxCor [102] is a constraint-based graph partitioning approach to coreference resolution
solved by relaxation labeling. The approach combines the strengths of groupwise classifiers
and chain formation methods in one global method. This system includes three phases:

Phase 1 - Graph representation
Let G = G(V,E) be an undirected graph. Each mention mi in a document is presented

as a vertex vi ∈ V in G. An edge eij ∈ E is added to the graph for pairs of vertices (vi, vj)
representing the possibility that both mentions corefer. A subset of constraints Cij ∈ C
is used to compute the weight value wij of the edge connecting vi and vj.

Phase 2 - Training process
Each mention pair (mi,mj) in training document is evaluated by the set of feature

functions which form a positive example if the mention pair corefers, and a negative
otherwise. For each type of mention mj (for example: pronoun, named entity or nominal),
a decision tree is generated and a set of rules is extracted with C4.5 [92] rule-learning
algorithm.

Given the training corpus, the weight of a constraint Ck is related with the number of
examples where the constraint applies and how many of them corefer.

Phase 3 - Resolution
The resolution algorithm solves the weighted constraint satisfaction problem dealing

with the edge weights wij. In this manner, each vertex is assigned to a partition satisfying
as many constraints as possible. The algorithm assigns a probability for each possible label
of each variable (corresponding to each vertex in G). The process updates the weights of
the labels in each step until convergence. Finally, the assigned label for a variable is the
one with the highest weight.

28

SUCRE system

SUCRE [52] developed a feature engineering which can help reducing the implementation
effort for feature extraction. It has a novel approach to model an unstructured text corpus
in a structured framework by using a relational database model and a regular feature
definition language to define and extract the features.

In learning, there are four classifiers integrated in SUCRE: Decision tree, Naive bayes,
Support vector machine and maximum entropy. However, finally the best reported results
were achieved with Decision tree. In decoding,the coreference chains are created. The
system uses best-first clustering. It searches for the best predicted antecedent from right-
to-left starting from the end of the document.

TANL-1 system

TANL-1 [3] was built based on highest entity-mention similarity. The authors applied
Maximum Entropy classifier to determine whether two mentions refer to the same entity.
The classifier is trained using the features extracted for each pair of mentions. If the
pairwise classifier assigns a probability greater than a given threshold to the fact that a
new mention belongs to a previously identified entity, it is assigned to that entity. In the
case that more than one entity has a probability greater than the threshold; the mention
is assigned to the one with the highest probability by using best-first clustering strategy.

UBIU system

Classification in UBUI [128] was based on mention pairs. UBIU used a combination of
machine learning, in the form of memory-based learning (MBL) in the implementation
of TiMBL [23], and language independent features. MBL uses a similarity metric to find
the k nearest neighbors in the training data in order to classify a new example.

Despite of the difference in feature engineering, learning methods and some processing
techniques, it can be seen that three later systems - SUCRE, TANL-1, and UBIU - belong
to the approach called pairwise approach. The typical machine learning approach of these
three systems includes two steps:

• Classification: systems evaluate whether each pair of mentions is coreferent with
each other.

• Formation of coreference chain: Given the previous classification, the systems form
coreference chain (mostly based on best-first clustering).

The approach presented in UBIU system joined classification and chain formation into
the same step. In this manner, decisions are taken considering the whole set of mentions,
ensuring consistency and avoiding that classification decisions are independently taken.

3.4.3 Evaluation metrics

In all experiments, we evaluated our system using closed gold-standard setting. It means
that we used the gold-standard columns with true mention boundaries and our system
was built strictly with the information provided in the task datasets. This is because our

29

system focuses on evaluating various approaches of previous participating systems versus
our proposed listwise approach.

To evaluate our system, we also relied on four metrics which are MUC [116], BCUB [8],
CEAF [61] and BLANC scores [98] provided by this shared task. The first three measures
have been widely used, while BLANC is a proposal of a new measure interesting to test.

MUC-6/7 ([116])

This is the oldest and most widely-used metric which is based on coreference links. First,
we count the number of common links between the reference (or ”truth”) and the system
output (or ”response”). The link precision is the number of common links divided by the
number of links in the system output, and the link recall is the number of common links
divided by the number of links in the reference.

BCUB ([8])

The MUC metric yields unintuitive results because of two main shortcomings. First, it
does not give any credit for single-mention entities since no link can be found in these
entities. Second, all errors are considered to be equal because in some tasks, some corefer-
ence errors do more damage than others. These drawbacks lead to the proposal of BCUB
metric. This metric first computes a precision and recall for each individual mention, and
then takes the weighted sum of these individual precisions and recalls as the final metric.
The choice of the weighting scheme is determined by the task for which the algorithm is
going to be used.

CEAF ([61])

The BCUB metrics still has its own problems: for example, the mention precision/recall
is computed by comparing entities containing the mention and therefore an entity can
be used more than once. Thus, they proposed Constrained Entity-Aligned F-measure
or CEAF metric. It finds the best one-to-one mapping entities between the subsets of
reference and system entities. They are aligned by maximizing the total entity similarity
under the constraint that a reference entity is aligned with at most one system entity, and
vice verse. After that, it computes the recall, precision and F-measure.

BLANC ([98])

BLANC is a measure obtained by applying the Rand index (Rand 1971) to coreference
resolution and taking into account the shortcomings of the above previous metrics. The
Rand index seems to be especially adequate for evaluating coreference since it allows us
to measure ‘non-coreference’ as well as coreference links. Despite its shortcomings, it
addresses to some degree the drawbacks of the previous metrics.

3.4.4 Feature sets

In this task, the feature sets were selected from the feature pool presented in [95]. We
selected 22 features which are divided into three groups as described in more detail in
Table 3.3.

30

Table 3.3: The feature sets used for all four languages). Non-relational features take on
a value of YES or NO. Relational features indicate whether they are COMPATIBLE,
INCOMPATIBLE or NOT APPLICABLE.

Features describing mj , a candidate antecedent
1. PRONOUN 1 Y if mj is a pronoun; else N
2. SUBJECT 1 Y if mj is a subject; else N
3. NESTED 1 Y if mj is a nested NP; else N
Features describing mk, the mention to be resolved
4. NUMBER 2 SINGULAR or PLURAL, determined using a lexicon
5. GENDER 2 MALE, FEMALE or UNKNOWN, determined using a list of common first names
6. PRONOUN 2 Y if mk is a pronoun; else N
7. NESTED 2 Y if mk is a nested NP; else N
8. SEMCLASS 2 The semantic class of mk

Features describing the relationship between mj and mk

9. HEAD MATCH C if the mentions have the same head noun; else I
10. STR MATCH C if the mentions are the same string; else I
11. SUBSTR MATCH C if one mention is a substring of the other; else I
12. NUMBER C if the mentions agree in number; I if disagree;

NA if numbers for one or both mentions cannot be determined
13. GENDER C if the mentions agree in gender; I if disagree;

NA if genders for one or both mentions cannot be determined
14. AGREEMENT C if the mentions agree in both gender and number;

I if they disagree in both number and gender; else NA
15. BOTH PRONOUNS C if both mentions are pronouns;

I if neither are pronouns; else NA
16. SEMCLASS C if the mentions have the same semantic class; I if they don’t;

NA if the semantic class information for one or both mentions cannot be determined
17. DISTANCE Binned values for sentence distance between the mentions
Additional features describing the relationship between mj ,mk

18. NUMBER’ The concatenation of the NUMBER 2 feature values of mj and mk

19. GENDER’ The concatenation of the GENDER 2 feature values of mj and mk

20. PRONOUNS’ The concatenation of the PRONOUN 2 feature values of mj and mk

21. NESTED’ The concatenation of the NESTED 2 feature values of mj and mk

22. SEMCLASS’ The concatenation of the SEMCLASS 2 feature values of mj and mk

The first feature group encodes an antecedent candidate mj. These features represent
whether mj is a pronoun, a subject of a sentence, or a nested noun phrase or not. The
second group encodes the mention to be resolved mk. These include the gender, number
and semantic class of mk, whether mk is a pronoun and a nest noun phrase or not.
This group also encodes the relationship between mj and mk. For example, whether
two mentions have the same head noun, the same string, the same gender, the same
number and so on. The third group encodes the additional relationship between the pair
of an antecedent candidate and the mention to be resolved. These are the concatenation
of the number, the gender, the pronoun information, the nested noun phrase and the
semantic class feature values of mj and mk. These features are popular and available in
all languages of the SemEval-2010 shared task 1 except for the semantic class of German
language.

3.4.5 Comparing the listwise approach with previous participat-
ing systems

In this sub-section, we compare the performance of the listwise approach to participat-
ing systems of the SemEval-2010 shared task 1 including (1) RelaxCor system [102]; (2)
SUCRE system [52]; (3) TANL-1 system [3]; and (4) UBIU system [128]. These are four
systems that have the same experimental setting as in this work. We conducted exper-
iments on four languages: English, Catalan, Spanish, and German. On each language,

31

Table 3.4: Experimental results of the proposed models on English (P: precision; R: recall;
F1: F-score)

Types Systems
MUC BCUB CEAF BLANC

R P F1 R P F1 R P F1 R P F1

Participating
Systems

RelaxCor 21.9 72.4 33.7 74.8 97.0 84.5 75.6 75.6 75.6 57.0 83.4 61.3
SUCRE 68.1 54.9 60.8 86.7 78.5 82.4 74.3 74.3 74.3 77.3 67.0 70.8
TANL-1 23.7 24.4 24.0 74.6 72.1 73.4 75.0 61.4 67.6 51.8 68.8 52.1
UBIU 17.2 25.5 20.5 67.8 83.5 74.8 63.4 68.2 65.7 52.6 60.8 54.0

RankingSVM
Joint MD CR 40.6 63.4 49.5 79.2 89.8 84.2 77.4 77.9 77.7 69.8 70.2 70.0
Threshold θ 45.8 57.4 51.0 80.6 87.7 84.0 76.7 77.4 77.0 73.9 75.7 74.8

Proposed
Systems

ListNet 48.6 62.4 54.7 81.3 89.2 85.1 78.2 79.0 78.6 73.8 77.9 75.7
ListMLE 64.3 49.9 56.2 86.2 77.3 81.5 73.4 83.3 78.0 84.0 73.6 77.8

we measured the performance of all systems in four evaluation metrics. In all tables pre-
senting the experimental results, we make the F-score bold if it got the highest result in
the same evaluation metrics. For ease of observation, we also make the F-score bold if
our proposed systems got the higher result than results of participated systems (or the
baseline model) in the same evaluation metrics.

Tables 3.4-3.7 show experimental results of four languages using four evaluation met-
rics. For each language, we provide results in three system types which are participating
systems, RankingSVM systems, and our proposed systems. This subsection uses the first
and the third types to analyze the effectiveness of the listwise approach over participating
systems. The next Sub-section uses the second types to show the effectiveness of join-
ing discourse-new detection to coreference resolution using threshold θ. Sub-section 4.7
uses the second and the third types to compare the proposed systems with a pairwise
learning-to-rank baseline (RankingSVM).

English

Experimental results on English language are presented in Table 3.4. When using ListNet
method, our system got the best results on three F-scores of BCUB, CEAF, and BLANC,
and got the second best on MUC F-score. When using ListMLE method, our system got
the best results on two F-scores of CEAF and BLANC and got the second best on MUC
F-score. In that, CEAF and BLANC F-scores increased significantly from the previous
highest scores: 75.6 to 78.6 (of ListNet) and 78.0 (of ListMLE) in the case of CEAF, and
from 70.8 to 75.7 (of ListNet) and 77.8 (of ListMLE) in the case of BLANC. Our system
also outperformed two systems of TANL-1 and UBIU in all four metrics. In comparison
to SUCRE system, we achieved the comparative performance.

Catalan

Experimental results on Catalan are presented in Table 3.5. When using ListMLE
method, our system got the best results on BLANC and MUC F-scores. It beats SU-
CRE, TANL-1 and UBIU systems in all four F-scores. In comparison with RelaxCor
system, MUC and BLANC F-score increased significantly from 42.5 to 57.4 and from 59.7
to 70.5; CEAF and BCUB F-score decreased from 70.5 to 70.4, and from 79.9 to 77.1.
This decrease is not remarkable in comparison with the increase of the MUC and BLANC
metrics.

32

Table 3.5: Experimental results of the proposed models on Catalan (P: precision; R:
recall; F1: F-score)

Types Systems
MUC BCUB CEAF BLANC

R P F1 R P F1 R P F1 R P F1

Participating
Systems

RelaxCor 29.3 77.3 42.5 68.6 95.8 79.9 70.5 70.5 70.5 56.0 81.8 59.7
SUCRE 51.4 58.4 56.2 76.6 77.4 77.0 68.7 68.7 68.7 72.4 60.2 63.6
TANL-1 17.2 57.7 26.5 64.4 93.3 76.2 66.0 63.9 64.9 52.8 79.8 54.4
UBIU 8.8 17.1 11.7 47.8 76.3 58.8 46.6 59.6 52.3 51.6 57.9 52.2

RankingSVM
Joint MD CR 35.7 46.7 40.5 70.6 78.5 74.3 65.2 65.2 65.2 66.7 61.8 63.8
Threshold θ 40.2 55.7 46.7 71.8 84.0 77.4 67.8 67.9 67.8 66.6 71.1 68.5

Proposed
Systems

ListNet 55.3 55.6 55.4 77.1 75.6 76.4 67.1 67.2 67.2 70.8 64.7 67.2
ListMLE 58.7 56.1 57.4 78.5 75.8 77.1 70.4 70.5 70.4 73.4 68.3 70.5

Table 3.6: Experimental results of the proposed models on Spanish (P: precision; R: recall;
F1: F-score).

Types Systems
MUC BCUB CEAF BLANC

R P F1 R P F1 R P F1 R P F1

Participating
Systems

RelaxCor 14.8 73.8 24.7 65.3 97.5 78.2 66.6 66.6 66.6 53.4 81.8 55.6
SUCRE 52.7 58.3 55.3 75.8 79.0 77.4 69.8 69.8 69.8 67.3 62.5 64.5
TANL-1 16.6 56.5 25.7 65.2 93.4 76.8 66.9 64.7 65.8 52.5 79.0 54.1
UBIU 9.6 18.8 12.7 46.8 77.1 58.3 45.7 59.6 51.7 52.9 63.9 54.3

RankingSVM
Joint MD CR 43.8 50.2 46.8 73.2 75.3 74.4 66.3 66.3 66.3 68.6 58.3 61.2
Threshold θ 40.8 50.6 45.1 72.1 79.1 75.5 66.3 66.3 66.3 67.3 63.2 65.0

Proposed
Systems

ListNet 58.2 57.5 57.8 78.5 75.9 77.8 69.1 69.2 69.2 71.7 64.6 67.4
ListMLE 55.7 56.5 56.1 77.9 77.6 77.8 69.5 69.5 69.5 69.5 66.9 68.1

Spanish

Experimental results on Spanish language are presented in Table 3.6. Our system got the
best results on the two F-scores of BLANC and MUC. For the two remaining F-scores of
CEAF and BCUB, the proposed system’s results are comparative to previous best scores
(77.8 of both ListNet and ListMLE in comparison with 78.2 in the case of BCUB; 69.2
(of ListNet) and 69.5 (of ListMLE) in comparison with 69.8 in the case of CEAF).

Our system outperformed TANL-1 and UBIU systems in all four metrics. Compared
with RelaxCor, our system got higher results on three F-scores of CEAF (from 66.6 to 69.2
of ListNet and 69.5 of ListMLE), MUC (from 24.7 to 57.8 of ListNet and 56.1 of ListMLE)
and BLANC (from 55.6 to 67.4 of ListNet and 68.1 of ListMLE) which are all significant
increase. For the remaining BCUB F-score, our system decreased insignificantly (from 78.2
to 77.78). Compared to the SUCRE system, our system got the comparative performance.

German

Experimental results on German language are presented in Table 3.7. ListNet system
yielded the best results for BLANC metric and comparative results to SUCRE and TANL-
1 systems. In comparison to SUCRE system, ListNet system decreased ≈14% in MUC
score but it increased three remaining metrics (more than 2% in BCUB, ≈4% in CEAF
and ≈5% in BLANC). In comparison to TANL-1 system, ListNet system significantly
increased MUC(≈18%) and BLANC (≈14%) metrics and insignificant decreased BCUB
(2.4%) and CEAF (1.1%) metrics. Our systems outperformed UBIU system on all four

33

Table 3.7: Experimental results of the proposed models on German (P: precision; R:
recall; F1: F-score).

Types Systems
MUC BCUB CEAF BLANC

R P F1 R P F1 R P F1 R P F1

Participating
Systems

SUCRE 74.4 48.1 58.4 90.4 73.6 81.1 72.9 72.9 72.9 78.2 61.8 66.4
TANL-1 16.4 60.6 25.9 77.2 96.7 85.9 77.7 77.7 77.7 54.4 75.1 57.4
UBIU 22.1 21.7 21.9 73.7 77.9 75.7 67.4 68.9 68.2 60.0 77.2 64.5

RankingSVM
Joint MD CR 29.6 41.7 34.6 80.1 86.2 83.1 75.9 76 75.9 63.5 57.9 59.9
Threshold θ 39.4 35.4 37.3 82 79.4 80.7 71.5 71.6 71.6 65.7 61.2 63.1

Proposed
Systems

ListNet 43.8 43.5 43.7 83.2 83.8 83.5 76.6 76.7 76.6 71.1 70.8 71
ListMLE 40.4 44.4 42.2 80 89.2 84.3 76.3 76.4 76.3 64 69.1 66.1

evaluation metrics. The result also showed that ListNet performed slightly better than
ListMLE system. However, in comparison to the best SUCRE system, our listwise ap-
proach got slightly lower performance.

3.4.6 Comparing the effect of joining discourse-new detection
to coreference resolution

This subsection presents experimental results for comparing two settings of the anaphoric-
ity detection on a model using RankingSVM (as shortly described in the resolution phase
of Subsection 3.3). The first setting is the joint model of [95] in which it provides each
active mention with the option to start a new cluster (new entity in our method) by
creating an additional instance that (1) contains features that solely describe the active
mention, and (2) has the highest rank value among competing candidates (i.e., 1) if it is
discourse-new and the lowest rank value (i.e., 0) otherwise. In testing, if the additional
test instance is assigned the higheset rank value by the ranker, then the active mention is
classified as discourse-new. Otherwise, it is linked to the candidate that has the highest
rank. This model is marked as RankingSVM (Joint MD CR) in Tables 3.4-3.7.

Another setting which we used to conduct all experiments of this chapter is using a
threshold θ to determine the anaphoricity. If all candidates are assigned scores below the
threshold θ, it means that the active mention is discourse-new and will not be resolved.
Otherwise, it is linked to the candidate that has the highest rank. This model is marked
as RankingSVM (Threshold θ) in Tables 3.4-3.7.

Experimental results showed that Joint MD CR system yielded slightly higher BCUB
and CEAF metrics (0.2% and 0.7% respectively) but lower MUC and BLANC metrics
(1.5% and 4.8% respectively) on English. On German, it yielded higher results on BCUB
and CEAF (2.4% and 4.3% respectively) but lower MUC and BLANC metrics (3.3% and
3.2% respectively). On Spanish, it yielded higher MUC metric (1.7%) but lower results
for three remaining metrics. It yielded the lower result on all four evaluation metrics on
Catalan language. Therefore, we can see that on the copora of the SEMEVAL-shared
task 1, the method of using a threshold to determine the anaphoricity is more effective.
From this conclusion, we would like to choose this method to conduct all experiments of
the ranking approach on all four languages of the shared task.

34

Table 3.8: Model names and their properties.

Model Name Model Type Method
RelaxCor classification groupwise
SUCRE classification -
TANL-1 classification -
UBIU classification -
RankingSVM ranking pairwise
ListNet ranking listwise
ListMLE ranking listwise

3.4.7 Comparing the proposed models with a pairwise learning-
to-rank baseline model

In this sub-section, we compare our listwise approach to a baseline model which was not
implemented by any previous participating systems. It is the work of Ng and Rahman [95]
which is a quite strong baseline model. This baseline model also exploits the learning-to-
rank approach but using a pairwise method instead of using a listwise one. It belongs to
the mention-ranking models. The baseline model exploited SVM rank [46]4, an instance
of SVM struct for efficiently training Ranking SVMs [45], as the learning method. In this
experiment, we use the same feature sets as in conducting experiments for ListNet and
ListMLE models to ensure a fair comparison. The feature set is extracted as described
in Table 3.3. For this use of the SVM learner in our experiments, we set all parameters
to their default values as the same as the experimental setup in the work of [95]. For
choosing the best parameter θ, we also tune the parameter on the development set.

Table 3.8 shows properties of models used in our experiments. We can see that all
participating models in SemEval-2010 shared task 1 belong to the type of classification,
the RankingSVM belongs to the pairwise ranking approach and our two models proposed
in this chapter belong to the listwise ranking approach. Among three ranking models,
ListNet and ListMLE are listwise models, while RankingSVM is a pairwise model.

Tables 3.4-3.7 also contain the experimental results using three learning-to-rank meth-
ods. Experimental results showed that the listwise approach outperformed the baseline
pairwise approach. For all four languages, each of our proposed systems got the higher
results on most of four evaluation metrics in comparison with the pairwise approach.
Considering the remaining metrics which our systems could not outperform, it is the fact
that the decrease is not remarkable in comparison with the increase of other scores. This
leads to the sum of four metrics for each languages increases when using the listwise
approach. In other words, the listwise approach gave the better result compared to the
ranking model that uses a pairwise approach.

3.4.8 Comparing two methods of getting training instances

To verify that our learned model is not biased to anaphoric mentions with a large number
of candidates as in previous approaches, we also conducted experiments to compare two
ways of generating training instances.

4This software can be downloaded from
http://www.cs.cornell.edu/people/tj/svm light/svm rank.html

35

1. Subset of Preceding Mentions: We only consider a subset of preceding mentions
(candidates) which include one closest positive example and all negative examples
between the mention and the closest positive one.

2. All Preceding Mentions: We consider all preceding mentions.

Figure 3.3: Sum of four metrics on listwise learning-to-rank methods (On the left: ListNet;
On the right: ListMLE).

Figure 3.3 shows the chart of sums of four metrics for all four languages using the list-
wise learning-to-rank approach. The experimental results on both two listwise algorithms
ListNet and ListMLE showed that using all candidates to generate training instances
yields the better results in all four metrics in comparison to using only a subset of candi-
dates. This means that if we provide more context for training, it helps the ranker learn
better parameters for the coreference resolution task.

3.4.9 Some more results

P-R curves

This part presents P-R curves (see Figure 3.4) that give a more informative picture of
the system’s performance. We chose ListNet system as an example to conduct survey.
Each P-R point corresponds to a different value of the threshold θ. For the 3 metrics:
MUC, BCUB, and BLANC, the threshold is varied incrementally by the value of 0.01,
with consideration in the best threshold (the threshold which results in the highest sum
of four metrics) is in the middle points of curves. From the lower threshold to the upper
threshold, the P and R of the CEAF metric got the max value at the middle values.

The graph indicates that on all four languages, MUC usually got the lowest results and
BCUB usually got the highest results. CEAF and BLANC got the intermediate levels.
In all four languages, precision increases when recall increases on CEAF metric. In three
remaining metrics, it can be seen that precision usually decreases when recall increases or
vice verse. Therefore, we need a tradeoff between them depending on real applications.

Some true examples

This sub-section shows some English examples that listwise approach using ListMLE can
correctly determine the antecedent while the pairwise approach using SVM rank cannot.
In the figures 3.5 and 3.6, we used color texts and arrows to make them easy to under-
stand. The blue texts show referring expressions of the entity which our proposed method

36

Figure 3.4: P-R curves on four evaluation metrics of four languages.

correctly determine and the red texts show the one that the baseline model wrongly guest
for a mention. The blue arrows express the correct mention-antecedent pairs while the
red arrows express the wrong pairs. A mention pointing to the other is an anaphor while
a mention pointed by the other is an antecedent.

3.4.10 Discussion

The nature of previous approaches limits the number of antecedent candidates that can
be considered in a candidate set. If we enlarge the number of candidates, the number
of generated training instances varies largely between anaphoric mentions, which will re-
sult in training a model biased toward anaphoric mentions with more candidates. Our
listwise approach does not suffer from this limitation. Moreover, experimental results
in Subsection 4.7 showed that a better performance was achieved when we increase the
size of the candidate set used in the training phase. Another advantage is that our ap-
proach considers all antecedent candidates simultaneously, so it does not hold the strong
assumption about the i.i.d of candidates or candidate pairs. It provides us a more natural
approach that is suitable to the fact that in a given context of a document, mentions
are related to each other in some views; therefore, it is better to consider them simulta-
neously. In addition, with the usage of listwise loss functions, the performance showed
that the listwise approach is mostly more effective than previous approaches for the task

37

Figure 3.5: This example shows that our method correctly determined the antecedent for
the mention the town. While the baseline pairwise method cannot find this antecedent
and therefore determined this mention is non-anaphoric.

Figure 3.6: This case shows two examples in which the listwise method correctly deter-
mines the antecedent for each mention while the baseline pairwise method could not.

of coreference resolution in the corpora of the SemEval-2010 shared task number 1. We
achieved the comparative performance in comparison with the best participating system
SUCRE, which use the Decision Tree algorithm with best-first strategy.

In comparison with the pairwise learning-to-rank approach, experimental results showed
that the listwise method yields better results than the pairwise method. Among listwise
learning-to-rank approaches, the system using ListMLE performed slightly better than
the system using ListNet on English and Catalan, but slightly poorer on Spanish and
German. Experimental results also showed that using all negative and positive examples
to create training instances gives better results than using only negative examples between
the closest positive example and a given mention as training instances. In addition, our
model also act as an additional filter for detecting anaphora using the threshold θ.

Among lots of metrics proposed for evaluating a coreference resolution system, none of
them is fully adequate. Each metrics has its own strong points as well as weak points as
we discussed in section 4.1. This situation makes it hard to successfully compare different
systems. Getting the state-of-the-art performance on these four common metrics seems
to be a very difficult task. Until now there is no common agreement on a standard
measure for coreference resolution task. However, based on formulas and characteristics
of each metric, it is common that later-proposed metrics usually give the better quality
than metrics proposed early. If using this criterion, we saw that we obtained the highest
F-score for the latest proposed BLANC metric in all four languages.

38

3.5 Conclusion

In this chapter, we presented an empirical study on using a listwise approach to coreference
resolution. We formulated the task as a learning-to-rank problem and then exploited a
listwise learning-to-rank approach to solve the task. In this listwise approach, instead
of using single candidates or pairs of candidates, we use lists of candidates as training
instances. This approach allows all candidate antecedents to be considered simultaneously
in both the training and the resolution phases, which yields more benefits than traditional
approaches. All experiments presented in this chapter were conducted and compared in
the closed gold-standard setting of public corpora of the SemEval-2010 shared task 1, the
task of Coreference Resolution in Multiple Languages. The experimental results showed
that the proposed approach obtained relatively good performance in all four languages
including English, Catalan, Spanish, and German. For the latest proposed evaluation
metric BLANC, our models got the highest results in the F1 score. In comparison with
a pairwise learning-to-rank approach, our approach yielded a better performance. These
results suggest that this listwise approach is promising for the coreference resolution task
in multiple lanuages.

39

Chapter 4

Automated Reference Resolution in
Legal Texts

Reference resolution in legal texts is a new interesting task in the Legal Engineering
research. The goal of this chapter is to create a system which can automatically detect
references and then extracts their referents. Previous work limits itself to detect and
resolve references at the document targets. In this chapter, we go a step further in trying to
resolve references to sub-document targets. Referents extracted are the smallest fragments
of texts in documents, rather than the entire documents that contain the referenced texts.

4.1 Introduction

Legal Engineering [49, 50, 51] is a new research field which aims to achieve a trustworthy
electronic legal society. The main goals are to help experts make complete and consistent
laws and to design an information system which works based on laws. Hence, it is vital
to develop a system which can process legal texts automatically. One of the obstacles to
law processing is that, at the discourse level, legal texts contain many reference phenom-
ena. These references usually contain precious information. The law will be difficult to
comprehend if we cannot access the referenced items within it. Resolving the reference
phenomena, therefore, is an important task in Legal Engineering.

Figure 4.1 shows excerpts from three documents1 named A12P1, A12P4, and A13P1.
These excerpts contains two references2 (the texts bounded in red angle brackets), i.e.
‘the provision of previous article, para 4 ’ in the document A13P1 and ‘the notification in
the provision of para 1 ’ in the document A12P4. To comprehend the contents of these
documents, it is important to know the referenced items. In other words, we need to
know to which part of texts (the texts bounded in green square brackets) these references
refer. This kind of references is very popular in legal documents because law-makers
usually import pieces of available information which have already been introduced in
other documents by using briefer expressions. This, as a result, helps to guarantee the
soundness as well as the consistency in a law system. We name these briefer expressions

1The term ‘documents’ corresponds to articles, paragraphs, items, or sub-items according to the
naming rules used in the legal domain.

2These two reference examples are two typical examples of two classes of references, which will be
described in more detail later.

40

Figure 4.1: Examples of reference phenomena in legal texts (In this figure, references
are bounded in red angle brackets (〈〉) while their referents are bounded in green square
brackets ([]).). Expressions start after a colon (:) or a semicolon (;) in the bounded texts
are the identification expressions (ID) of these texts (i.e. A12P1-1). A reference and its
referent have the same ID

.

‘references (or mentions)’, and their referenced items ‘referents (or antecedents)’. We will
discuss the characteristics of references as well as their referents later in Section 4.3.

There exists some work related to this kind of research, developed for several lan-
guages such as Italian [12, 82], Spanish [68], and Dutch [64]. In previous work, authors
focus on detecting and resolving so-called normative references to distinguish them from
the above references. Normative references are slightly different from the above refer-
ences. In the above examples, normative references would appear in the forms of ‘para 1 ’
and ‘previous article, para 4 ’. In resolving these normative references, authors limit re-
solvers to identifying only the referred documents but not to which parts of texts in these
documents3. Normative references are much easier to detect and resolve because most
references are correct and unambiguous. They mostly follow some regular expressions.
Therefore, knowing the naming rules of the law, we can easily determine the identification

3With this output, users/law-makers need to read over the referenced document to find which part of
texts is actually referred to

41

of the document which is referred to by a reference.
In this chapter, we study the reference resolution task for a non-Western language,

particularly the Japanese language. Different from previous work, which is limited to
determine the positions of the referred documents (A12P1 and A12P4), in this research,
we go a step further. Our reference resolver tries to extract the smallest fragments of
texts that are actually referred to by references (the texts in green square brackets).
Resolving this type of references is more difficult because it requires syntactic and semantic
understandings of references and its context information as well as of the referenced
document that contains the referenced texts. Therefore, the methods used in previous
work are not sufficient to resolve these references. Based on the characteristics of reference
phenomena in legal texts which will be discussed in Section 4.3, we propose a four-step
framework using machine learning approaches which results in the final system being
automatically trainable from a corpus with a minimal amount of human intervention. We
recognize references (mentions) in the first step - Mention Detection. For each output
reference, we then extract its contextual information in the second step - Contextual
Information Extraction. This contextual information will be used in the third step -
Antecedent Candidate Generation - to generate referent (antecedent) candidates of this
mention. The fourth step - Antecedent Determination - will select the best one among
its candidates to determine its exact referents.

Our main contributions can be summarized as follows:

• Introducing the task of reference resolution in the domain of legal texts, in which
we detect references and then map them to the smallest fragment of texts that they
refer to.

• Analyzing the characteristics of references in the legal texts. Based on this analysis,
we propose a four-step framework using machine learning approaches to solve the
task.

• Introducing a new annotated corpus, the Japanese National Pension Law (JNPL)
corpus on reference resolution.

• Conducting experiments and evaluating our framework on the JNPL corpus.

From the experiments, we obtained 80.06% in the F1 score in detecting references
and 85.61% accuracy in resolving them. In the whole system, we obtained 67.02% in
the F1 score. Building a good reference resolver brings many potential benefits such as
providing computer science supports in making, maintaining and validating legal docu-
ments; supporting in finding contradictions in legal texts, which is obtained by reasoning
and semantic processing such as semantic parsing and reference resolution; supporting in
building a question answering system that allows citizens to have easier access to legal
information, etc.

The rest of this chapter is organized as follows: Section 4.2 reviews related work.
Section 4.3 introduces some characteristics of reference phenomena in legal texts. Based
on those characteristics, Section 4.4 presents our proposed framework to solve this task.
Section 4.5 presents solutions for each step in the framework. Next, we will describe
experiments in Section 4.6. In this section, we also analyze the impact of each step on
the whole system and illustrate an output example of the final system. In addition, we
propose a semi-supervised technique to improve the performance of the system. Section

42

4.7 provides an analysis of errors in the proposed framework. In Section 4.8, we discuss
the performance and the versioning problem of the system. Finally, Section 4.9 concludes
the chapter and proposes future work.

4.2 Related work

This section presents three kinds of related works, and places our work in the scope
of research on references. Firstly, we review some typical studies which also consider
resolving a fragment of texts to documents or sub-document targets. Secondly, we review
some work on reference resolution conducted in general texts. Finally, we focus on studies
on detecting and resolving references within the legal domain, which are closest to our
work. In this final sub-section, we also distinguish how our work is different from the
previous work.

4.2.1 Studies on resolving a fragment of texts to documents or
sub-document targets

If we consider each reference as an anchor and its referent as a linked document, our
work somehow can be regarded as citation linking which is studied in works such as
Entity-linking, Linking-the-Wiki, citation processing, etc.

• Entity-Linking is a track on TAC KBP 4 which is a series of evaluations and work-
shops organized to promote research in Natural Language Processing and related
applications. Given a name (of a Person, Organization, or Geopolitical Entity) and
a document containing that name, the goal of this track is to determine the Knowl-
edge Base node (KB) for the named entity, adding a new node for the entity if it is
not already in the KB. The reference KB is derived from English Wikipedia, while
source documents come from a variety of languages, including English, Chinese, and
Spanish. Such systems typically search for candidate entities and then disambiguate
them, returning either the best candidate or NIL. Some representative works are by
[36] and [35].

• Link-the-Wiki5 aims to produce a standard procedure and metrics for the evaluation
of link discovery between documents. Given a new orphan (unlinked) document,
the task is to analyze the text and recommend a set of outgoing links from anchors
(specified as passages in the orphan document) to Best Entry Points (BEPs) in
existing documents in the collection. The BEP for a link should be the position in
the target document from which the reader, having just followed the link, should
begin reading.

• Citation Processing : A common prerequisite for knowledge discovery is to accu-
rately combine data from multiple, heterogeneous sources into a unified, mineable
database. An important step in creating such a database is record deduplication,
consolidating multiple records that refer to the same abstract entity (i.e. [22]).

4http://www.nist.gov/tac/2013/KBP/EntityLinking/index.html
5http://www.inex.otago.ac.nz/tracks/wiki-link/wiki-link.asp

43

4.2.2 Studies on reference and anaphora resolution in general
texts

Reference resolution ([47]) is the task of determining which entities are referred to by
which linguistic expressions. This task plays an important role in a large number of nat-
ural language processing (NLP) applications. Therefore, it has attracted much attention
within the NLP community. Among all types of reference phenomena, coreference is the
most popular and is the focus of most research on reference resolution in general texts.
When the reader must look back to the previous context, reference is called ‘anaphoric
reference’. When the reader must look forward, it is termed ‘cataphoric reference’. Many
works on various aspects (linguistic features [37, 75],machine learning models [104], mul-
tiple languages [99], etc.) of the reference resolution in the general domain have been
published. This has boosted the development of robust machine learning models for the
task in the general domain.

Another type is discourse deixis [27, 30, 73], which relates an anaphor to a verbal
or (multi-)clausal antecedent. Discourse entities are called abstract objects because they
refer to propositional entities, such as events or facts. Grammatical rules used in CoRe
cannot be applied to this case because the antecedent is non-nominal. Although ab-
stract anaphora are not able to be reliably resolved in the near future, their identification
would be an important prepocessing step in a general CoRe system. The performance of
CoRe system will be improved if abstract anaphors are not assigned incorrectly to an NP
antecedent.

4.2.3 Studies on reference resolution within the legal domain

This section describes studies on reference resolution of legal texts, which are the most
closely related to our work. To the best of our knowledge, there are only a few studies
done for Italian, Dutch, and Spanish.

For Italian, there exists two typical studies. The first one is the work of [82], in
which the authors conduct a project to work out and implement a model for recognizing,
understanding, normalizing the normative references found in legal texts and bringing
such references under a set of common standards in order to favour the interoperability
between different legal information systems. The second one is the work of [12], in which
the authors name references as citations. On the basis of the different writing of the
element Act, authors have classified the various citation formats provided for by the
drafting rules into three categories, called: normal, simplified, and non-paradigmatic
citations. They also model each type of citations to extract templates to detect them.
The first analysis carried out on the laws enacted in the 1990s making up part of the
selected legislative corpus confirms that, up until that time, it is possible to identify and
extract more than 95% of the explicit textual legislative citations, conforming to the
legislative drafting rules.

For Dutch, [64] also perform automated detection of reference structures in law. They
first discuss the type and structure of references in Dutch legal sources, and then propose
a grammar containing most of the patterns analyzed to recognize these references. After
a reference has been found in a text, they resolve it to the URI of the document that is
referred to. They also expand their work to other legal sources. In testing, they achieved
a very high accuracy, between 95% and 99%.

44

For Spanish, [68] present an application of information extraction. Its goal is to auto-
mate the extraction of references from legal documents and the storage of their information
in order to facilitate an automatic processing of these information items by services of-
fered in digital libraries. They first classify references using four criteria. After that, they
extract patterns based on the information about vocabulary used to name legal items and
the grammar associated with each type of reference. They use these patterns to extract
references for each input document. Each extracted reference is then processed by the
solver, that tries to match each reference to some legal items.

In previous related works, the authors only consider references in terms of linguistic
expressions that identify a specific act or a text partition referred to. Their purpose is
to link the content of laws based on the naming rules used in a specific legal domain.
With an input sentence of legal texts, which contains the phrase ‘the notification in the
provision of paragraph 1 ’, these works only consider extracting the reference ‘the provision
of paragraph 1 ’, and then resolve them to the entire referenced document (i.e. Paragraph
1 of Article 12). Hence, to understand which notification is referred to, users need to read
that document to get its description. This is somewhat redundant because that document
may contain unnecessary information for the comprehension of the input sentence.

In this research, we go a step further. To avoid over-reading these unnecessary texts in
the referenced document, we consider a wider range of references. We extract references
in the form of which content is referred to and the location containing that content. After
that, we resolve them to the exact explanation of that content rather than only the entire
document which covers the explanation. In particular, in the previous input sentence, we
extract the full phrase and resolve it to the smallest fragment of texts that describes the
type of the notification in Paragraph 1, i.e. ‘notification of matters relating to the change
of name, address, as well as matters relating to change of type and loss and acquisition of
the qualification’. Moreover, we propose the use of machine learning approaches (rather
than rule-based approaches as used in the previous works) which results in the final
system being automatically trainable from a corpus with a minimal amount of human
intervention.

4.3 Characteristics of references in legal texts

Some characteristics of references in the legal domain are worth consideration when dealing
with an automatic extraction and resolution of references. Most types of references in
legal texts relate to terms, definitions or provisions of articles. Although referenced texts
can occur before or after a reference, in this research we derive the term ‘mention’ and
‘antecedent ’ from reference resolution in general texts to describe this relationship. We
use the term ‘mentions ’ to denote linguistic expressions that contain referring texts. The
texts that mentions refer to are called ‘antecedents ’.

Mentions in legal texts have their own structures, which are different from mentions in
the general domain. They mostly conform to several kinds of patterns. Figure 4.2 6 shows
that a mention usually consists of two main parts: a position part and a content part.
The later part may be a noun or a noun phrase (This noun phrase can be nested). The
former part usually conforms to a regular expression. By observing the position parts, we

6In Figure 4.2, | means ‘or’, [] means ‘optional’, and + means ‘repeat one or more times’. An example
of a mention and its translation into English are also given in Figure 4.2.

45

Figure 4.2: The structure of mentions in legal texts.

can see that they mostly fall under one of the following types:

1. Single position: concerns a single position of a mention.

(a) Well-formed positions: These positions comprise a label, such as an article, a
paragraph, or an item combined with a number. They usually start with the
broadest scope and end with the narrowest one. These positions contain all
the information needed to identify the location of the referred item.

(b) Anaphora, indirect positions: They often refer to a position of an earlier men-
tion. These positions are always resolved to one of the former (label and
number). This requires some context information (documents referenced be-
fore and near the current mention, in a specific part of the same texts, ..) to
solve the mention.

2. Coordinated positions: Several antecedents are referred to in the same mention by
using some linking expressions such as and, or, from ... to, etc.

3. Special cases: These are used when an element in the text contains a list that is
preceded by a description of the list, without which the list does not make sense.
Another special case is the use of the word each time that refers to sub-items of an
article.

Figure 4.3 shows some examples of position parts in mentions of legal texts, which
belong to different types as distinguished above.

Antecedents usually are definitions or explanations of related terms or provisions.
They can be nouns, noun phrases, sentences, and paragraphs of articles or they can even
be whole articles in some cases. They help readers to comprehend the law thoroughly,
and also help lawmakers to create legal texts that are concise and easy to understand.

46

Figure 4.3: Some examples of different types of position parts of mentions in legal texts.

Figure 4.4: A four-step framework for resolving references in legal texts.

4.4 A four-step framework to reference resolution in

legal texts

This section presents our proposed framework for the reference resolver as shown in Figure
4.4. In this figure, oval nodes denote data and box nodes denote processes. In comparison
with reference resolution in general texts, this framework has two additional steps (Step
1 and Step 2 that are bounded in the dotted rounded-corner rectangle). These two steps
take advantage of the characteristics of references in legal texts for solving the task more
effectively.

Step 0 - Mention detection
This step identifies the occurrence of mentions in legal texts. Detecting mentions is

very important for the downstream processing of the framework.
Each mention extracted in this step will be analyzed via two intermediate steps, viz

Step 1 and Step 2. The purpose of Step 1 is to extract the context information of the
mention which benefits the generation of its antecedent candidates in Step 2.

Step 1 - Context information extraction

47

The goal is to determine the context information, including the locative information
that a given mention refers to, documents referenced before and near the current mention,
the content part of the mention, and its classification. This information will be used later
to narrow down the search space of antecedent candidates for that mention. This step is
divided into three sub-steps as shown on the right hand side of Figure 5.3.

• 1.1 - Mention Splitting: Splits a mention into two parts which are a position part
and a content part. These two parts are independent, and therefore should be
processed separately. The position part allows to locate the position of the document
containing the referenced texts while the content part helps in extracting the smallest
fragment of texts that this mention refers to.

• 1.2 - Mention Classification: Determines whether a mention refers to an entire
document (Class 1) or only a fragment of a document (Class 2). Depending on
the classification of a mention, different strategies are designed to determine its
antecedent.

• 1.3 - Position Recognition: Locates the scope of antecedents. The goal is to exactly
determine which articles, which paragraphs, which items etc., a given mention refers
to.

Step 2 - Antecedent candidate generation
This step uses the position information extracted from Step 1 to determine the scope

of the exact document (in which articles, which paragraphs, which items) that a mention
refers to. From that document, we generate antecedent candidates for a given mention
based on the dependency trees of the antecedent sentences or punctuation marks such as
commas and full stops.

Step 3 - Antecedent determination
From a list of candidates generated in Step 2, we have to determine an exact antecedent

for each mention. The exact antecedent is the smallest fragment of texts that this mention
refers to. This is the most important and the most difficult step. The strategy to determine
the exact antecedent of a mention depends on the classification of a mention in the mention
classification step (Sub-step 1.2). We will describe these strategies in more detail in
Section 4.5.

4.5 Solutions to each step of the framework

In this section, we will present our proposed solutions for each step of the framework in
the previous section.

4.5.1 Mention detection and mention splitting

In the mention detection step, the goal is to extract all mentions appearing in the input
string. The input string is a sequence of words and the output is a collection of mentions
(or references) contained in the input string. Each extracted mention will be an input
for the mention splitting sub-step. This sub-step divides this mention into two parts: the
position and the content parts.

48

Figure 4.5: Mention Detection: A law sentence in the IOB, IOE and FIL notations.

Similarly to many classical NLP tasks such as text chunking [90] and named entity
recognition [32], we also formulate these two tasks as sequence labeling problems. Se-
quence labeling is a type of pattern recognition task that involves the algorithmic assign-
ment of a categorical label to each member of a sequence of observed values. A common
example of a sequence labeling task is part of speech tagging, which seeks to assign a
part of speech to each word in an input sentence or document. Sequence labeling can
be treated as a set of independent classification tasks, one per member of the sequence.
However, accuracy is generally improved by making the optimal label for a given ele-
ment dependent on the choices of nearby elements, using special algorithms to choose the
globally best set of labels for the entire sequence at once.

In the mention detection step, each word is assigned a label indicating whether it
starts a specific mention, is inside a specific mention, or is outside any mention. Figure
4.5 illustrates an example of a Japanese law sentence in the IOB, IOE and FIL notations.
In this example, the source sentence contains one mention (red texts) that should be
detected. The labels of this sentence using these three notations are described as follows:

• In the IOB notation, the first element of a mention is tagged with B M (Begin of
Mention); the remaining elements of the mention are tagged with I M (Inner of
Mention); all elements outside the mention are tagged with O (Others).

• In the IOE notation, the first and the intermediate elements of a mention are tagged
with I M (Inner of Mention); the last element of the mention is tagged with E M
(Ending of Mention); all elements outside the mention are tagged with O (Others).

• In the FIL notation, the first element of a mention is tagged with F M (First of
Mention); the intermediate elements of the mention are tagged with I M (Inner of
Mention); the last element of the mention is tagged with E M (Ending of Mention);
all elements outside the mention are tagged with O (Others).

Each detected mention is split into two parts; the position part and the content part.
Figure 3.5 illustrates an example of a mention in the IOB notation: the first word of the
position part is tagged with B P (Beginning of the Position part); the remaining words
of the position part are tagged with I P (Inner of the Position part); all words of the
content part are tagged with O (Others).

In these two tasks, we use Conditional Random Fields (CRF) [54] as the learning
method to learn the sequence labeling models. CRFs are discriminative undirected graph-
ical models, which encode known relationships between observations and construct con-
sistent interpretations. It is often used for labeling or parsing of sequential data. There

49

Figure 4.6: Mention Splitting: A law mention in the IOB notation.

Figure 4.7: Some examples of mentions of two classes.

are three popular reasons for using CRFs; (1) the nature of these two tasks; (2) the advan-
tages of CRFs, which have all the strong points of Maximum Entropy Markov models [67]
but do not suffer from the label bias problem; (3) CRFs have been applied successfully
to many NLP tasks such as POS tagging, chunking, named entity recognition, syntax
parsing, etc.

In extracting feature sets, we use a combination of n-gram (n ≤ 3) of words, part-of-
speech tags, and chunking information. When performing experiments, we exploit three
kinds of label settings which are the IOB, IOE, and FIL notations [60].

4.5.2 Mention classification

In this sub-step, each extracted mention of the previous step is classified into one of two
predefined classes; Class 1 and Class 2. Figure 4.7 shows some examples of mentions
belonging to these two classes.

To achieve the goal of this sub-step, we train a classifier using supervised machine
learning methods that have the advantage of combining arbitrary types of information in
making a classification decision. We use two robust classifiers which have demonstrated
strong performance in many classification tasks especially in statistical NLP. In the first
classifier, the classification is performed with a statistical approach, built around the max-
imum entropy (MaxEnt) principle [97]. This principle allows to estimate the conditional
probability p(y|x) that a model outputs a label y given a context x as follows:

P (y|x) = 1
Z(x)

exp(
∑
i

λifi(x, y))

where fi(x, y) refers to a feature function; λi is a parameter of the model; and Z(x) is
a normalization factor. There are several models that use this method, subject to certain
constraints. Among these models, the MaxEnt chooses the model with the flattest proba-
bility distribution (corresponding to the highest entropy). This constrained optimization

50

problem is first converted into a dual optimization problem using Lagrange multipliers.
The solution is then found by applying the improved iterative scaling method or LBFGS
method.

In the second classifier, we use support vector machines (SVMs) - a statistical machine
learning technique proposed by [115]. An SVM model is a representation of the examples
as points in space, mapped so that the examples of the separate categories are divided by
a clear gap that is as wide as possible. Besides linear classification, SVMs can also deal
with non-linear classification efficiently by using kernel functions which implicitly map its
inputs into high-dimensional feature spaces.

With each mention, we will extract features based on n-grams (n ≤ 3) of words ap-
pearing in the mention. After that, the model will classify which class it belongs to. We
set up two experimental settings by using two kinds of words: content words which are
the output of the mention splitting step and all words of a mention (not only content
words but also position words).

4.5.3 Position recognition

In this sub-step, the position of the antecedent of a given mention is located. The input
is a position part, which is the output of the mention splitting sub-step. The goal is to
recognize which articles, which paragraphs, which items etc., a given mention refers to.

Figure 4.8: Some examples of the output of the position recognition step.

We use regular expressions which are carefully constructed to recognize and determine
the scope of antecedent candidates for a given mention. Some examples of position recog-
nition results are given in Figure 4.8. The patterns of the position parts were described
in Section 4.2.

Recognizing the position of the antecedent is usually simple when the position part of
a mention is a complete one (i.e. the first example in Fig. 4.8). A position is complete if it

51

Figure 4.9: An example of generating candidates using strategy 1(a)(nhead = 17).

completely includes the information of the document it refers to. We can find the article
in the list. From this article, we will specify the precise location of the antecedent. Using
regular expressions, we know where it should be located. For this type, we also use regular
expressions to recognize complex positions and then resolve each of their positions.

Another group of positions that is a little bit harder to resolve is anaphora. We would
like to list some typical cases as follows:

• References that refer to the current text: For example, this article, this paragraph,
and so on. Recognizing this type of anaphora is feasible to resolve if we know the
current location of the reference (i.e. the second example in Fig. 4.8).

• References that refer to an earlier point in the text, such as the previous article.
These can be resolved using structure information of the law (i.e. the third example
in Fig. 4.8).

• References that refer to an earlier reference, i.e. dou kou (the same paragraph).
This reference refers not to the current paragraph, but to a paragraph that was
previously mentioned in the text (i.e. the fourth example in Fig. 4.8). It is usually
the most recent documents referenced before and near the current reference in the
text. To resolve this type of references, we need to keep a history of the references
found so far.

4.5.4 Antecedent candidate generation

This step generates a list of candidates in the search space for a given mention. The
search space is the output of the position recognition sub-step. We have two strategies

52

Figure 4.10: An example of parsing the sentence in the document of Article 12, Paragraph
1.

to generate candidates based on whether the mention head7 (or synonyms of the mention
head) of a mention appears in the antecedent sentences.

1. If the mention head or its synonyms appear, we generate candidates according to
two ways:

(a) Based on the dependency trees: We assume that the node containing the men-
tion head or its synonyms is nhead.

• Type 1 - Full subtrees: With each ancestor node of nhead, we extract all
its descendants as a candidate.

• Type 2 - Left subtrees: At each ancestor node of nhead, starting from the
ancestor node’s child that contains the node nhead, we gradually scan to
the leftmost child of the ancestor node. At each currently scanned child,
we extract all descendants of all the scanned children as a candidate. This
originates from the fact that, in Japanese, an explanation of a noun usually
appears on its left side.

• Type 3 - We limit the boundary of all candidates of Type 1 and Type 2
which must be ended after the position of the mention head or its syn-
onyms.

(b) Based on the punctuation marks (usually a comma): With each candidate
sentence, we perform a right-to-left scan from the position of the mention head
or its synonyms. Each time we meet a comma or the beginning of a sentence,
we will extract the scanned texts as a candidate.

Figure 4.9 illustrates an example of generated candidates using strategy 1(a). Type
1 generates Tree 1 and Tree 2; Type 2 generates Tree 3, 4, 5, and 6; Type 3 generates
Trees 1’, 2’ from Trees 1, 2 and Trees 3’, 4’, 5’, and 6’ from Trees 3, 4, 5, and 6. After
that we remove trees that are duplicated from previously generated trees (Trees 1’,
3, 3’ and 4 are identical to Tree 1; Tree 6’ is identical to Tree 2’)8 to create unique
candidates.

7A mention head is the main noun of a mention. It identifies the intellectual entity that this mention
contains.

8These identical trees are marked with the same color in Figure 4.9.

53

Figure 4.11: Candidates generated by using the first strategy to generate candidates for
the reference ‘the notification in the provision of para 1’.

To understand more about the first strategy of candidate generation, let us use the
texts in Article 12, paragraph 1 (see the texts in Section 4.1) as an example. We
also wish to find the candidates for the reference ‘the notification in the provision of
para 1 ’ in Article 12, paragraph 4. The parse tree of the sentence in this document
is presented in Figure 4.10. In this example, the node that contains the mention
head ‘notification’ is the node 21 (marked red), which has no ancestor node. By
using strategy 1a), we generate 14 candidates as shown in Figure 4.11. Type 1
(full subtrees) yields one candidate (the first one). Type 2 (left sub-strees) yields
the candidates from 2 to 7, in which candidate 5 is a true referent. Type 3 yields
the candidates from 8 to 14. After that, we remove duplicated candidates, i.e. the
candidates 1 and 7; and accordingly the candidates 8 and 149. In all, we obtained
12 candidates for the given reference.

9These two candidates are created from the candidates 1 and 7 respectively.

54

2. If neither the mention head nor its synonyms appear, we obtain candidates for a
mention as described in 1(b). However, the scan point starts from the end to the
beginning of a candidate sentence.

4.5.5 Antecedent determination

This step aims at determining the exact antecedent for each mention. Depending on the
classification of a mention, we have two strategies to determine its exact antecedent.

• For a mention of Class 1, using the information about the position of the antecedent,
we can exactly determine the antecedent for this mention.

• For a mention of Class 2, from its candidates, we use a state-of-the-art model on
the coreference resolution task to rank candidates based on the probability that the
candidate is the antecedent of a given mention. The 1st-ranked candidate will be
selected as the exact antecedent.

To determine the exact antecedent for an active mention from a list of candidates,
many models have been proposed, including mention-pair models [77, 91, 104], entity-
mention models [62, 126], mention-ranking models [125] and cluster-ranking models [95].
Among these models, mention-ranking and cluster-ranking models are more robust than
the first two models in the sense that they can address the limitation of previous ones
[76, 95, 125]. These ranking models yield a theoretically more adequate and empirically
better performance on some public standard corpora of the coreference resolution task.
They directly capture the ranking on all the antecedent candidates of an active mention,
instead of considering them independently. In this work, therefore, we choose a method
of mention-ranking models to solve the task.

To train a ranker, we used the SVM ranker-learning algorithm SVM rank [46] as the
learning method. In the training phase, each instance i(mi, cj) is created based on a
mention mi and an antecedent candidate cj. The feature sets used to represent each
training instance are grouped into three sets which are described in more detail in Table
4.1. These linguistic features are supposed to be effective in estimating the probability
that a candidate is an antecedent of an active mention. These feature sets are extracted
using the n-gram information, the mention head (or its synonyms) and the dependency
tree of the antecedent sentence. The first feature set tries to capture the boundary of the
candidate cj. The second feature set checks if the candidate cj contains the mention head
of mi and calculates the distance from the position of the mention head to the beginning
and the end of cj. The third feature set captures how good cj is a meaningful grammar
unit as well as the smallest fragment of texts that supports the understanding of the
mention mi.

The way of assigning class values to each training instance is as follows: Assuming
that Sk is the set of training instances created for a mention mi, the class value for an
instance i(mi, cj) in Sk is the rank of mi among competing candidates as determined using
the OFFSET 10 value.

10Why do we need the OFFSET value? Because generating the candidate that is the gold antecedent of a mention
is a quite difficult task. Consequently, in this step, the system is unable to find the correct antecedent in some special
cases. Moreover, the purpose of resolving mentions in legal texts is to show the referenced texts so that readers can quickly
understand more about the rules that they are reading. Therefore, can we loosen the criteria to estimate whether the

55

Table 4.1: Feature sets extracted for the training instance i(mi, cj) (positionhead: the
position of the mention head in the antecedent sentence; nmeeting: the meeting node
where the concatenation of all of its descendants covers the candidate cj).

No. Types Feature names Notes

1 N-gram

Start[1] 1st word of cj
Start[1-2] 1st and 2nd words of cj
Start[1-3] 1st, 2nd, and 3rd words of cj
End[1] Last word of cj
End[1-2] Two last words of cj
End[1-3] Three last words of cj

2
Mention

Head

ContainMentionHead Does cj contain the mention head of
mi?

DistanceToBeginning The distance from positionhead to the
beginning of cj

DistanceToEnding The distance from positionhead to the
end of cj

MentionHeadAtBegin Does mi appear at the beginning of cj?
MentionHeadAtEnd Does mi appear at the end of cj?

3 Dependency
CountNodesToMeetingNode The distance from the node containing

the mention head to the meeting node
nmeeting

NumberOfLeftChilds At node nmeeting , count the number
of children from its leftmost child to
the child that contains the first word
of the candidate cj

NumberOfRightChilds At node nmeeting , count the number
of children from its rightmost child to
the child that contains the last word of
the candidate cj

value i(mi, cj) =

1 if cj is the gold antecedent of the mention mi

0.5 if cj covers the gold, and the number of words
outside the gold is less than OFFSET

0 otherwise

After training, this mention-ranking model will be used to rank the candidates for a
given mention. We create test instances for a mention by pairing the latter with each of
its antecedent candidates. In the testing phase, the candidate that is assigned the largest
value by the ranker is selected as the exact antecedent of that mention.

4.6 Experiments

4.6.1 Corpus

The Japanese National Pension Law (JNPL) corpus on reference resolution was manually
built by law-making experts. In this corpus, all references that refer to the inside scope
of the JNPL were marked. However, the JNPL does not include the references that refer
to other laws, or refer to ambiguous ranges. The architecture of the JNPL is shown in
Figure 4.12. The law consists of articles, articles consist of paragraphs, and paragraphs

output of the system is considered to be the same as the gold antecedent? Instead of exactly matching, we allow the output
to exceed the boundary of the gold antecedent with the smallest number of words possible. If the output contains the
gold antecedent, and the total number of words in additional texts is not greater than the OFFSET value, the output is
considered to be true. In experiments, we set OFFSET to be equal to 10.

56

Figure 4.12: The architecture of the JNPL corpus on reference resolution.

consist of sentences. A sentence may belong to items, sub-items, or sub-sub-items of a
paragraph. Below are some statistics about this corpus:

• # Articles: 99 articles

• # Paragraphs: 931 paragraphs

• # Mentions: 748 mentions (586 mentions of Class 1, and 162 mentions of Class 2).
One mention can refer to one or more referents.

4.6.2 Experimental setup

We divided the JNPL corpus into 10 sets, and conducted 10-fold cross-validation tests for
all experiments. For the mention detection task which we modeled as a sequence labeling

57

problem, we evaluated the performance of our system by precision, recall, and the F1
score as follows:

P = #correctly detected mentions
#detected mentions

, R = #correctly detected mentions
#gold mentions

,

F1 = 2∗Precision∗Recall
Precision+Recall

.

For the remaining four tasks (the mention splitting, the mention classification, the
position recognition and the antecedent determination steps), we conduct experiments
using the gold mentions of the corpus. With each mention, the system always outputs
results for its input. Therefore, to estimate the performance of these sub-systems, we use
the accuracy score to evaluate the experimental results.

Accuracy = #correctly processed mentions
#gold mentions

.

where the numerator, #correctly processed mentions, corresponds to the number of
mentions that are correctly split in the mention splitting task; correctly classified in the
mention classification task; correctly position-recognized in the position recognition step
and correctly antecedent-determined in the antecedent determination step.

To estimate the performance of the whole system, we use precision, recall and the F1
score as follows:

P = #correctly detected&resolved mentions
#detected mentions

,

R = #correctly detected&resolved mentions
#gold mentions

, F1 = 2∗Precision∗Recall
Precision+Recall

.

where the #correctly detected&resolved mentions refers to the total number of men-
tions that are correctly detected and correctly antecedent-determined.

4.6.3 Experimental results

Mention detection and mention splitting

To learn the models, we used the CRF++11 tool written by Kudo. In extracting feature
sets, we used a combination of n-gram (n ≤ 3) of words, part-of-speech tags, and chunking
information. This information was taken from the output of the Cabocha12. Cabocha [53]
is a Japanese dependency structure analyzer based on Support Vector Machines (SVMs)
[115]. When performing experiments, we used three kinds of label settings which are
the IOB, IOE, and FIL notations [60]. We also investigated the task using different
combinations of feature sets to determine which feature sets yield better performances.

Table 4.2: Experimental results for the mention detection task (%).

Notations Word Word + POS Word+POS+Chunk

R P F1 R P F1 R P F1
IOB 79.05 76.95 77.95 80.6 79.32 79.92 80.58 79.6 80.06
IOE 79.2 77.93 78.53 79.63 78.3 78.92 79.99 79.09 79.51
FIL 79.88 77.83 78.82 80.51 79.49 79.95 80.7 79.66 80.14

11http://crfpp.googlecode.com/svn/trunk/doc/index.html
12http://code.google.com/p/cabocha/

58

Table 4.3: Experimental results for the mention splitting sub-step (Accuracy (%)).

Notations Word Word + POS Word+POS+Chunk
IOB 99.23 99.17 99.3
IOE 99.17 99.17 99.3
FIL 99.17 99.17 99.3

Table 4.4: Experimental results of the mention classification task (Accuracy (%)).

Content Words All Words
Baseline 78.34 78.34
MEM 87.03 86.54
SVM 87.16 87.23

Experimental results of the mention detection sub-step are shown in Table 4.2. We
realize that the more feature sets we use, the better the results are. This is reasonable
because these feature sets yield more benefits to the model. We obtained the highest
performance of 80.14% in the F1 score using the FIL notation on feature sets which
are based on words, part-of-speech tags and chunking information. That is because most
mentions begin with some words clearly locating positions such as dai, tsugi, mae, dou, etc;
and end with a noun phrase. In some cases, the NPs were nested, which slightly worsened
the performance of the IOE notation in comparison with that of the IOB notation. In
all settings, the recall was higher than the precision score. This can be attributed to the
fact that some detected mentions refer to the outside scope of the corpus and therefore
are not annotated.

Experimental results of the mention splitting sub-step are given in Table 4.3. For all
three notations, we obtained a very high accuracy of 99.3% when using words, part-of-
speech tags, and chunking features. The reason for this high performance is that most
mentions have their position parts ending with particles like ni or no.

Mention classification

To perform this step using MEM, we used the public MaxEnt classifier13 tool with the
BLMVM optimization algorithm [10]. We also used an SVM implementation of LibSVM14

of [20], which is an integrated software for support vector classification. As an appropriate
baseline model, we chose the model that assigns all mentions to the larger class (Class 1
by default).

Experimental results in Table 4.4 show that using only the content words results in a
higher accuracy than using all words of a mention with the two machine learning methods.
This is because position words do not usually convey the information about the class of
a mention. For this step, SVM performs slightly better than MEM on both settings. The
results also show that our system outperforms the baseline model by ≈8% in terms of
accuracy.

13Downloaded from: http://www-tsujii.is.s.u-tokyo.ac.jp/~tsuruoka/maxent/
14Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/

59

Position recognition

By using regular expressions and context information, we were able to locate up to 96.18%
of correct positions of all mentions. The few cases where our system was unable to
recognize the correct position can be classified under some exceptions that do not conform
to the regular expressions that were described in Section 4.2.

Antecedent determination

Table 4.5: Experimental results of the antecedent determination step.

No. Types of features Accuracy (%)
1 n-gram 84.76
2 n-gram + Head 85.40
3 n-gram + Head + Dependency 85.61

In this chapter, we chose to run an algorithm proposed by [95]. To train a ranker,
we used as the learning method the SVM ranker-learning algorithm SVM rank [46] 15, an
instance of SVM struct for efficiently training Ranking SVMs [45].

Table 4.5 presents the experimental results of determining a true antecedent among
candidates for each mention in the corpus. We conducted experiments by adding feature
sets incrementally to observe their effect on the model. The experimental results indicated
that the combination of feature sets of n-gram, the mention head and the dependency
information yields the best performance. We obtained 85.61% accuracy in determining
the antecedents for all mentions in the JNPL corpus. This table also shows that we
achieved better performance if we integrate more feature sets into the model.

This section also measures whether the output contains the gold antecedent and the
length of additional texts in terms of words is greater than the OFFSET value, but not
the entire document. The accuracy is 90.63%.

In this step, we also conducted experiments to compare two approaches to this problem
as discussed in the previous chapter: the pairwise and the listwise approaches. Table 4.6
shows the experimental results of these two approaches using three types of features.

Table 4.6: Experimental results of the antecedent determination step using two ap-
proaches: the pairwise and the listwise.

Approaches Methods Accuracy (%)
Pairwise SVMRanking 85.61

Listwise
ListNet 85.3

ListMLE 86.03

We kept the learning rate at 0.01 and varied the tolerance rate and the number of
iterations to see the effect of the listwise methods on this step. As we can see that, if we
have a good development set, in the ListMLE method, we can determine several values
for the tolerance rate, at where the accuracy is better than that of the SVMRanking
method. However, in the ListNet method, we did not see any improvement by varying

15This software can be downloaded from http://www.cs.cornell.edu/people/tj/svm light/svm rank.html

60

the number of iterations. Figures 4.13 and 4.14 illustrate the accuracy curves of two
listwise methods with different parameter values (the red line is the maximum accuracy
using the SVMRanking method).

Figure 4.13: The accuracy of the ListNet method depends on the number of iterations
(the learning rate is fixed at 0.01).

Figure 4.14: The accuracy of the ListMLE method depends on the tolerance rates (the
learning rate is fixed at 0.01).

We also measure the performance of each class (namely Class 1 and Class 2) for this
step. For the class 2, we got the accuracy of about 34%. The accuracy of Class 1 is perfect
because in this step we use the gold data.

4.6.4 Analyzing the impact of each step on the final system

Table 4.7 shows the experimental results of analyzing the impact of each step on the final
system based on the following assumptions:

• Experiment 1: assumes that the mention detection step correctly detects all men-
tions in the corpus. If that occurred, the whole system achieved 79.23% in the F1
score.

61

Table 4.7: Experimental results of the effect of each step on the final system (MD, MS,
MC, and PR stand for the Mention Detection, Mention Splitting, Mention Classification
and Position Recognition steps respectively).

No. Assumptions Precision Recall F1

1 Step 0 (MD) is true 79.73 78.74 79.23
2 Step 1.1 (MS) is true 67.42 66.65 67.03
3 Step 1.2 (MC) is true 71.53 70.71 71.12
4 Step 1.3 (PR) is true 67.48 66.66 67.07
5 Step 1 (MC+MS+PR) is true 71.56 70.72 71.14
6 Step 0 and Step 1 are true 86.74 85.61 86.17
7 End-to-end system 67.42 66.63 67.02

• Experiments 2,3, and 4: assume that the mention splitting, the mention classifica-
tion and the position recognition sub-steps perform perfectly respectively.

• Experiment 5: assumes that Step 1 - Contextual Information Extraction - is cor-
rectly performed. With that assumption, the whole system achieved 71.14% in the
F1 score.

• Experiment 6: assumes that the first two steps perform perfectly. If that occurred,
we obtained 86.17% in the F1 score for the whole system.

• Experiment 7: does not assume that any step perform perfectly, and the performance
reached 67.02% in the F1 score.

To comprehend the impact of each step on the whole system, it should be noted that
the higher the F1 score, the more important the step is. From these results, we can see
that the mention detection step plays the most important role in the performance of the
whole system. The next important step is the contextual information extraction. Since
this step includes 3 sub-steps, the order of the role of each step in importance in the final
system is as follows: the mention classification sub-step, the position recognition sub-step,
and the mention splitting sub-step.

The last experiment is also the end-to-end system in which the input of the current
step will be the output of the previous step. In the whole task setting, we obtained a result
of 66.63% recall, 67.42% precision, and 67.02% in the F1 score in determining antecedents
for mentions needed to be resolved in the corpus. This performance is quite promising.

4.6.5 Improving the performance of the final system

This section looks at the limitation of the proposed four-step framework and suggests a
solution for overcoming this limitation.

Limitation of the framework

We proposed a cascade framework, where the output of the previous step was used as
the input of the next step. So, the errors of the previous step could be propagated to
the next step. By analyzing the effect of each step on the final system, we saw that the

62

Figure 4.15: An example of Brown word-cluster hierarchy.

first step - mention detection has the biggest influence on the performance of the whole
system. Experimental results of each step showed that this step along with the mention
classification step yield the lowest performance. Hence, in this section, we would like
to focus on improving these two phases through the consideration of using the Brown
clustering algorithm to improve the performance.

A simple semi-supervised method using Brown clustering

This sub-section will briefly describe the Brown clustering algorithm and show how to
use the Brown word clusters to improve the mention detection step and the mention
classification sub-step. Among the word representation methods, we chose the Brown
clustering algorithm for our work because of its simplicity and efficiency.

The Brown clustering algorithm is a word clustering algorithm based on the mutual
information of bigrams [15]. The input to the algorithm is a set of words and a text
corpus. In the initial step, each word belongs to its own individual cluster. The algorithm
then gradually groups clusters to build a hierarchical clustering of words.

Figure 4.15 shows an example of a Brown word-cluster hierarchy in a binary tree style.
In this tree, each leaf node corresponds to a word, which is uniquely identified by its path
from the root node. This path can be represented by a bit string, as shown on the left
side. From the root node, we add bit 0 to the left branch and bit 1 to the right branch. A
word-cluster hierarchy is reduced to a depth of n if all words with the same n-bit prefix
are grouped in one cluster. For example, if the word-cluster hierarchy on the left side of
Figure 4.15 is reduced to a depth of 2, we will obtain a new hierarchy on the right side of
Figure 4.15.

Features extracted at n-bit depth are binary strings of length n. By reducing the word-
cluster tree to different values of depth n, we can group words at various levels, from coarse
clusters (small value of n) to fine clusters (large value of n). These features are used as
extra word features. Next, we will present how to integrate into the models in order to
improve the performance of the mention detection step and the mention classification
sub-step.

Mention detection step with extra word features
The main idea of our semi-supervised learning method is to use unsupervised word

representations (Brown word clusters) as extra word features of a supervised model. In
this framework, unlabeled data is used to produce word clusters. From these word clusters,
we extract extra word features, and add these features to a supervised model (labeled data
are used to train this model). Figure 4.16 shows our semi-supervised learning framework.
This framework consists of two phase: the unsupervised phase with the Brown clustering
algorithm, and the supervised phase with CRFs.

63

Figure 4.16: Semi-supervised learning framework.

Table 4.8: Mention Detection: Experimental results when integrating extra word features
using Brown Clustering information (- means that we did not use extra word features, +
means that we used extra word features).

No. Label Settings Features Precision Recall F1

1 IOB
- 80.58 79.60 80.06
+ 80.97 80.13 80.51

2 IOE
- 79.99 79.09 79.51
+ 80.82 80.9 80.82

3 FIL
- 80.70 79.66 80.14
+ 80.55 81.01 80.74

To produce word representations, we first collected plain text from the Japanese law
translation website16. This website provides many Japanese law articles in both Japanese
and English. The plain text corpus which we downloaded included more than 67.000
sentences of Japanese laws. We first performed word segmenting using Cabocha tool, and
then conducted the Brown clustering algorithm to cluster words. We used the implemen-
tation of Percy Liang [58], and set the number of clusters at 200.

For the mention detection task, we extracted features at 4-bit depth and 6-bit depth.
We integrated these features into three models which are the best models of each notation.
The results in Table 4.8 show that using extra words features improves the models on all
three kinds of notations. For the best performance, the system increases the F1-score
from 80.05% upto 80.82%.

Mention classification step with extra word features
With the same methodology when integrating extra word features of the mention

detection step, we also conducted experiments for the mention classification sub-step. We
used the same setting when extracting extra word features. The experimental results
of the semi-supervised method with extra word features are shown in Table 4.9. The
results showed that using extra words features improves the models on the two learning
algorithms, which are SVM and MEM. For the best performance, the system increases
the F1-score from 87.03% up to 87.86% on MEM, and fro 87.16% up to 87.88% on SVM.

16http://www.japaneselawtranslation.go.jp

64

Table 4.9: Mention Classification: Experimental results when integrating extra word
features using Brown Clustering information.

Classifiers Features Content Words All Words

MEM
- 87.03 86.54
+ 87.86 87.08

SVM
- 87.16 87.23
+ 87.88 87.40

4.6.6 A true working example of using the final system

Figure 4.17 gives an example of the systems output. It shows the detail process of how
the system works. The input is a piece of an article which is in the form of a sequence
of characters. This input contains a mention ‘The employer who employs the second type
of insured person provided in the preceding paragraph’ that should be detected. The first
mention detection step correctly recognizes this mention and lets this mention go through
Step 1. In this step, Sub-step 1.1 splits it into two parts which are a position part (‘in the
preceding paragraph’) and a content part (‘The employer who employs the second type of
insured person provided’). Based on the content part, Sub-step 1.2 classifies this mention
to Class 2. This means that this mention only refers to a fragment of a document. Based
on the position part, Sub-step 1.3 recognizes the position that contains the referenced
text fragment of this mention, which is in Article 12, Paragraph 6. The outputs from
Sub-step 1.2 and 1.3 are then used in combination to generate all possible antecedent
candidates for this mention through Step 2. The last step - Antecedent Determination -
determines exactly the true referenced texts (the texts in green) for this mention among
its candidates.

4.7 Error analysis

This research focused on two major problems. The first one is to detect all references
(mentions) in the legal texts, and the second one is to resolve these mentions to their
correct referenced expressions (antecedents). This section analyzes error cases and reasons
that contributed to the instance of failures in our system.

By observing the output of the final system, we realized that in detecting mentions,
most of errors can be attributed to the following reasons:

• Detected but they are not labeled as mentions in the corpus (Because, these men-
tions refer to the documents which is beyond the scope of JNPL corpus (i.e. the
first example in Figure 4.18)).

• Mentions are detected beyond the true boundary as labeled in the corpus. This is
usually caused by ambiguities of mentions, in which the content parts are usually
nested noun phrases (i.e. the second example in Figure 4.18)).

In determining antecedents, most of errors are caused by the following reasons:

• Mentions are wrongly split, classified, and position-recognized in intermediate sub-
steps.

65

Figure 4.17: An output example of our system.

• The antecedent candidate generation step did not get out the gold antecedent for
mentions. Among all mentions that we considered, there are approximately 90% of
mentions whose generated candidates contains their gold antecedents. Therefore, it
is impossible to find out the gold antecedents for the remaining 10% of mentions.

• Dependency parsers typically could not deal well with long sentences in the legal
domain. So, the information extracted using dependency trees is not highly reliable
in some cases.

4.8 Discussion

In this section, we discuss more our system. We first discuss the performance of the
system in comparison to other related systems. Then, we discuss the versioning problem
of our work.

66

Figure 4.18: Some error examples of the mention detection step.

4.8.1 Comparison with previous work

Previous sections (Section 4.1 and Section 4.2) have distinguished the difference of this
work and previous related work. References which are considered in this research consist
of two main parts, i.e. position parts and content parts. This form is slightly different
from the form of normative references, which are studied in previous work. Normative
references only consist of position parts, which are used to determine the location of
referenced documents. References in this research are extended to cover not only position
parts but also content parts. These content parts are used to determine the smallest
fragments of texts in the referenced documents, which are referred to. This is the novel
point of this research. Compared with previous work, therefore, our system yields a lower
performance17. This is understandable because our system aimed at a more complete
target, which tries to resolve references to the smallest fragment of texts rather than only
locating the referenced document18. This resolution requires deep syntactic and semantic
knowledge of the texts. Hence, detecting and resolving this kind of references is much
more difficult in comparison with normative references in previous work.

4.8.2 The versioning problem of laws

In this research, we did not take versions of laws into account. This means that our corpus
only contains one version of the JNPL law. If the law changes19, the system should be
changed a little bit to adapt to that change. In this case, the information about how laws
are changed will be used to help the resolver to extract the expected referents (extract
only old referents, or only new referents, or both depending on the real applications).
This interesting problem will be considered in future work.

4.9 Conclusion and future work

In this chapter, we presented a new interesting task of reference resolution in legal texts.
The goal is to create a system which can automatically extract referents for references
in real time. In this research, we go a step further in comparison to previous work by
extracting the smallest fragments of texts in the referenced documents. This does not only
help readers in understanding the law, support law-makers in developing and amending
laws, but also support in building an information system which works based on laws, etc.

Based on the characteristics of reference phenomena in legal texts, we proposed a
framework with four steps to solve the task. In comparison to reference resolution in

17Previous work reported F scores of more than 90% for normative reference detection and resolution
18In other research, we studied on detecting and resolving normative references. The experimental results showed that

we also obtained more than 90% in the F1 score on the same JNPL corpus on normative references.
19The provision of a document A is changed, and therefore A is changed to A’.

67

general texts, our framework consists of two extra steps (Step 1 and 2), which take
advantage of the reference phenomena in legal texts to help solve the task more effectively.
Experiments on the JNPL showed very promising results. We achieved a performance of
80.06% in the F1 score in the mention detection step; a 99.3% accuracy in splitting
mentions into two parts; a 96.18% accuracy in locating the positions of antecedents; an
87.03% accuracy in classifying them. In the final antecedent determination step, the
system achieved 85.61% accuracy in determining the antecedents for all mentions in the
corpus. Our final end-to-end system achieved 67.02% in the F1 score in the whole task of
detecting and determining antecedents for mentions.

There is a wide range of open possibilities for improving this important task. For
example, by conducting experiments to estimate the effects of each step on the final
model, we see that an improvement of this framework should imply paying more attention
to the mention detection step. In addition, we also should take care of solving error cases
analyzed in the error analysis section. In future research, we will exploit the output of this
system to find contradictions in legal texts. We will also build a QA system to support
citizens in accessing legal documents.

68

Chapter 5

Answering Legal Questions by
Mining Reference Information

This chapter presents a study on exploiting reference information to build a question an-
swering system restricted to the legal domain. Most previous research focuses on answer-
ing legal questions whose answers can be found in one document1 without using reference
information. However, there are many legal questions whose answers could not be found
without linking information from multiple documents. This connection is represented
by explicit or implicit references. To the best of our knowledge, this type of questions
is not adequately considered in previous work. To cope with them, we propose a novel
approach which allow us to exploit the reference information among legal documents to
find answers. This approach also uses requisite-effectuation structures of legal sentences
and some effective similarity measures to support finding correct answers without training
data. The experimental results showed that the proposed method is quite effective and
outperform a traditional QA method, which does not use reference information.

5.1 Introduction

A question answering (QA) system is a system that is able to automatically respond
answers to questions posed by human in a natural language by retrieving information
from a collection of documents. This is an important task and has drawn much attention
in natural language processing research. Particularly, there are several top conferences
which have organized special tracks for the topic of QA such as Text Retrieval Conference
(TREC2) and Cross Language Evaluation Forum (CLEF3).

When considering an application of QAs in a specific domain, especially the legal
domain, we saw that there is little work particularly devoted to this kind of research,
despite its wide uses and applications. In the legal domain, QAs could be applied to help
citizens and law-makers have easier access to legal information. Previous works [2, 28, 85]
showed that a common problem is that traditional QAs are not adequate to find the
correct answers to legal questions. This was mostly caused by special structures, specific
terms and long sentences.

1The term ‘documents’ corresponds to articles, paragraphs, items, or sub-items according to the naming rules used in
the legal domain.

2http://trect.nist.gov
3http://www.clef-campaign.org

69

Figure 5.1: A question is solved in this chapter. In this figure, references are bounded in
angle brackets (〈〉) while their referents are bounded in square brackets ([]).).

In many laws, it is common that some specific terms are first defined in one document
and then referred many times in other documents by using briefer expressions. Besides,
when editing laws, lawmakers usually import the explanation or description of application
conditions, purposes, provisions, etc. from other laws if available. This, as a result, helps
to guarantee the soundness as well as the consistency in a law system. In order to
link documents, references are used to identify the position as well as the fragment of
texts referred to. These references bring precious information and their resolution helps
interpreting the law. This is a useful characteristic of legal texts which can benefit the
process of finding correct answers to many legal questions. Until now, however, there
is no research on using this advantage of references to help finding correct answers. Of
several work dedicated to legal QAs [2, 28, 85, 111], they mostly focus on legal questions
whose answers can be found in only one document. However, the fact is that many legal
questions requiring answers are combined from multiple documents which are linked based
on references (as we can see later in Section 3). This type of questions is not adequately
considered in previous research[2, 28, 85, 111]. Building a good reference resolver is not
a trivial task. Therefore, for some languages, authors usually find an alternative solution
to help indirectly representing the relationship between documents[69] rather than using
the reference information.

In this chapter, we investigate an application of reference resolution to a QA system
restricted to the legal domain. We focus on one type of questions which can be benefited

70

from the reference information such as the example in Figure 5.1. In this example, to
answer the question, it is necessary to link the information from two documents to find
the answer. The linking information is expressed via the relation of the reference-referent
in the colored italic texts. The red texts bounded in angle brackets of the document
‘Article 12, Paragraph 4 ’ is a reference, which refers to the green texts bounded in square
brackets of the document ‘Article 12, Paragraph 1 ’. Such questions are quite popular in
the legal domain.

Sometimes, users are not only interested in obtaining just an answer, but also want
to know its evidence. In this chapter, therefore, we also give proofs of the answer. The
main contribution of our work can be concluded in the following points:

• Building a QA system for Japanese legal texts, based on the reference information.

• Adequately considering one type of legal questions that can be benefited from ref-
erence information.

• Testing the proposed system on some legal questions yields promising performance,
and outperforms a traditional QA system.

This chapter is organized as follows. Section 5.2 presents related work. Section 5.3
describes important characteristics of legal texts exploited in this research, i.e. references-
referents structures between documents. In this section, we also describe in more details
the type of legal questions considered in this work. Section 5.4 presents a proposed frame-
work, which exploits the characteristics of legal texts, especially the reference information
shown in Section 3. Section 5.5 presents experiments to compare the proposed system
with a traditional QA system. Finally, Section 5.6 concludes the chapter and discusses
future research.

5.2 Related Work

This section presents previous work closed to our work. We present two kinds of related
work which are question answering using coreference information in general texts and in
the domain of legal texts.

5.2.1 Question Answering using coreference information in gen-
eral texts

Various research projects have investigated how coreference information can be employed
to determine the contexts that contribute potentially relevant information about entities
mentioned in a question(as relevant for QA). Most of them concluded that Question
Answering is known to benefit from the availability of coreference information [13, 33,
39, 71, 72, 106, 120]. Coreference is necessary to resolve cases such as: How much did
Mercury spend on advertising in 1993?. The sentence which contains the answer in Last
year the company spent 12m on advertising and the company refers to Mercury three
sentences earlier.

For details, Morton [71] attempts to find coreference relationships between the entities
and events evoked by the query and those evoked in the document. Based on these

71

relationships, sentences are ranked, and the highest ranked sentences are displayed to
the user. The coreference relationships that are modeled by this system include identity,
part-whole, and synonymy relations. In other research [72], Morton also present a system
which retrieves answers to queries based on term weighting supplemented by coreference
relationships between entities in a document. An evaluation of this system is given which
demonstrates that the coreference relationships allow significantly more questions to be
answered than with a baseline system which doesnt model these relationships.

In [33], Gaizauskas et al., built a QA system in which coreference is applied to the
snippets obtained from the search engine in order to obtain all the information available
about the entities in the question.

In [13], Breck presented a QA system participated at TREC-8. In that research, they
also showed that QA can be solved by employing coreference information in the two stages
of (1) relating entities mentioned in the query to the retrieved doc-uments, and (2) looking
at the relevant coreference classes and searching the contexts in which these entities occur
for information that may contribute to answer the question.

Not only QA in English can be benifited from coreference information as in previous
research, there also other research for non-English languages such as Ductch [39], etc.

Previous work in general texts showed that QA benefits from the availability of coref-
erence information since it renders possible the identification of contexts in which infor-
mation regarding the entities a question is about is contributed.

5.2.2 Question Answering using coreference information in legal
texts

In the domain of legal texts, there is not much research dedicated to QAs.
In [85], Paulo et al. present a QA system for Portuguese juridical documents. The

proposed approach is based on computational linguistic theories: syntactical analysis
followed by semantic analysis; and finally, a semantic/pragmatic interpretation using on-
tologies and logical inference. The QA system was applied to the complete set of decisions
from several Portuguese juridical institutions. It uses very expensive sources. The appli-
cation texts legal domain is not law texts, therefore, it cannot use the characteristic of
the law.

Monroy et al. [69] focus on building a QA system for Spanish at the shallow level
by using graphs. The system gives answers which consist of a set of articles related to
the question and also the relevant articles related with them to complement the answer.
This method represents the link between documents by using the similarity (i.e. TF.IDF
measure) between them via terms in documents. They also limit questions that mainly
ask if it is possible to perform certain action or not.

Recently, Tomura et al. [111] present a study on building a QA system for Japanese
legal texts. In this work, they deal with 5 types of questions whose answers can be found
from one document using the requisite-effectuation structures of law sentences. This work
shares the same type of law with our work - the Japanese National Pension Law (JNPL).

To the best of our knowledge, there exists no work on QA, which focuses directly on
making use of reference information between legal documents.

72

5.3 A Type of Legal Questions Raised from Charac-

teristics of Legal Texts

Firstly, we introduce some important characteristics of legal texts. Then, we describe a
type of legal questions, which is mostly raised from these characteristics.

5.3.1 The Characteristics of Legal Texts

One important characteristics of legal texts is that they usually have some specific struc-
tures at both sentence and paragraph levels. At sentence levels, law sentences usually
have some specific structures[5]. At paragraph levels, sentences in the same paragraph
usually have close relations. Another important characteristic of legal texts is that, at the
discourse level, legal documents contain many reference phenomena which need solving
in order to understand their contents.

Reference phenomena in Legal Texts

Legal texts contain many reference phenomena within them. Legal references relate to
terms, definitions, provisions, etc. For example, when law-makers describe conditions of
a law in Article 12, Paragraph 4 of the JNPL, they recall the definition of a type of
notification by using a reference ‘the notification in the provisions of Para 1 or Para 2’. If
this reference is resolved, we can fully understand which notification (explained in Article
12, Paragraph 1) is actually referred to in this document.

References (Mentions) [114] in legal texts have their own structures, which are different
from mentions in general texts. A mention usually consists of two main parts: a position
part and a content part. The later part may be a noun or a noun phrase, which determines
the referred object. The former part conforms to some regular expressions which locate
the position of the referred object. Referents (Antecedents) are definitions or explanations
of related terms or provisions. They can be nouns, noun phrases, sentences, paragraphs
of articles or even whole articles in some cases. They help readers fully comprehend the
law, and also help lawmakers create concise and easy-to-understand legal texts.

Logical Parts and Logical Structures of Legal Texts

At the sentence level, a law sentence can roughly be divided into two high-level4 logical
parts: requisite part and effectuation part [5, 6, 110] in the form of:

[requisite part]⇒ [effectuation part]
Each requisite part or effectuation part consists of several logical parts. A logical part

is a clause or a phrase in a law sentence that conveys a part of the meaning of legal texts.
Each logical part contains a specific kind of information according to its type. Three main
types of logical parts are antecedent part, consequent part, and topic part. A logical part
in consequent type describes a law provision; a logical part in antecedent type indicates
cases (or the context) the law provision can be applied; and a logical part in topic type
describes subjects related to the law provision. In a simple case5, the requisite part only

4The reason why they call them high-level is that each requisite part or effectuation part consists of several logical parts.
5To understand more about four cases of legal sentences and their logical parts, please check the paper of Bach et al. [7]

73

Figure 5.2: An example of law sentences and their logical parts (A: Antecedent part; C:
Consequent part; T: Topic part).

consists of a topic part or an antecedent part ; and the effectuation part only consists of
one consequent part.

Figure 5.2 shows four cases of law sentences and their logical parts. Logical structures
in four cases can be expressed as follows:

At the paragraph level, a paragraph usually contains a main sentence and one or more
subordinate sentences [109]. To be concrete, in a paragraph, the first sentence presents a
law provision, and the other sentences describe cases in which the law provision can be
applied.

5.3.2 A type of questions raised from the characteristics of legal
texts

This sub-section describes a type of legal questions, which is mostly raised from above
characteristics.

Generally speaking, to find correct answers, a QA system should have the ability
to interpret content of documents. At the discourse level, legal documents are highly

74

Figure 5.3: A framework to extract answers for a type of legal questions.

related by references, which usually bring precious information. A law cannot be correctly
interpreted without reading some of the referenced items within it. These references can be
placed on requisite parts or effectuation parts of sentences. This means that if a sentence
contains a reference, the real content of its requisite or effectuation parts actually lie in a
different document. For example, the sentence in ‘article 12, paragraph 4 ’ of the tracing
example has its requisite part lying in ‘article 12, paragraph 1 ’ because it imports the
definition of the notification in that document. The challenge for us is to be able to
identify references and to jointly interpret them. Therefore, a good QA system should
have the ability to follow these connections, which are represented via the relation of the
references and their referents.

There are many legal questions falling under this type of questions because many
users tend to ask about the beneficial conditions of laws, or the beneficiaries that can be
achieved if some conditions of laws are satisfied 6.

5.4 A Proposed Framework for a Legal Question An-

swering System

Based on the above analyses, we propose a framework to help extracting answers to this
type of legal questions as presented in Figure 5.3. This framework includes five steps.
Each input question will be processed through the question processing step. In this step,
each question is split into two parts, i.e. the requisite part and the effectuation part. In
the next step - Article Retrieval, two collections of relevant articles are retrieved by using
the content words and their synonyms of two parts respectively. Next, in the passage
pairing step, a passage of articles in the first collection is aligned to a passage of articles
in the second one by using the reference-referent if available. The result is a set of paired-
passages which are likely to contain evidence for finding the correct answer. To find
the best pair, we rank all pairs by using some effective similarity measures derived from
previous research [63]. The best pair passage will be used to extract the correct answer to
the input question by using logical structures of legal texts. In the following sub-sections,
we will present the detail of each step in this framework.Figure 5.4 illustrates a running example of the proposed system. The question was first
processed via the first step to divide it into two parts, i.e. requisite part and effectuation
part. The next step retrieved 2 article collections corresponding to two logical parts.
With N equals to 5, Cr includes 5 articles (A12, A5, A105, A94-3, A10) and Ce includes

6We can use these characteristics for a QA system as shown in Tomura, K., A study on a question answering system for
laws, Master thesis, JAIST, 2013. The system answers to a question based on only one document.

75

Figure 5.4: A true example of the proposed system.

5 articles (A12, A105, A137-13, A125, A96). Passages in the articles of Cr are paired
with passages in the articles of Ce if they contain at least one reference which refers to
the other passages or vice verse. This step leaded to the results including 22 passage
pairs. The next step measured the similarity scores between these pairs and the question.
The pair, A12P1 and A12P4, with the highest score is chosen as containing the answer.
The question word lies in the effectuation part and the reference lies in A12P4, so the
system extracted the effectuation part of A12P4 as the correct answer. In the following
sub-sections, we will present in more details about these steps.

5.4.1 Question Processing

The goal of this part is to split the question into two parts, i.e. the requisite part qr and
the effectuation part qe. We exploit an implementation of Bach et al. [7] to recognize
these parts. An example is given in Figure 5.5. Each part is then preprocessed by
word segmentation, POS tagging, and dependency parsing using Cabocha tool7. We keep
content words and remove stop-words by using a list downloaded from this website8.

7http://code.google.com/p/cabocha/
8http://www.ranks.nl/stopwords/japanese.html

76

Figure 5.5: An example of the question processing step (A: Antecedent part; C: consequent
part; T: Topic part).

Removing stop-words helps the model ignore function words and high-frequency, but low-
content words.

In fact, the forms and words in user’s questions might be different from real laws
‘s. Therefore, the exact wording of the answers might look nothing like the questions.
Thus, it is necessary to expand the question by adding terms in hopes of matching the
particular from of the answer as it appears. In other words, to increase the number of
relevant articles, we also use the synonyms of each keyword in the question by using a
Japanese synonym list9.

5.4.2 Article Retrieval

Based on the content words extracted from the previous step, we retrieved relevant articles
from the corpus using Boolean AND and OR queries. The information retrieval system
selects a set of potentially relevant articles that are likely to contain the evidence for finding
correct answers. To retrieve, we implemented cosine similarity between the question and
an article. In the vector space model [47], articles and questions are represented as vectors
of features representing the terms (keywords) that occur within the collection. The value
of each feature is called the term weight. In this system, we use conventional tf-idf [65]
term weighting which is very useful and popular in many information retrieval tasks
[81, 83, 127]. Particularly, the weight of term i in the vector for article d is:

wi,j = tfi,j × idfi (5.1)

where tfi,j is term frequency of term i in article j; idfi is inverse document frequency and
calculated using the following equation:

idfi = log
N

ni
(5.2)

where N is the total number of articles in the collection, and ni is the number of articles
in which term i occurs.

Therefore, the cosine similarity between the question ~q and the article ~d is calculated
using the following equation:

9We used synonym list extracted from Japanese WordNet Copyright 2009, 2012 by National Institute of Information
and Communications Technology (NiCT).

77

sim(~q, ~d) =

∑
w∈q,d

tfw,qtfw,d(idfw)2

√∑
qi∈q

(tfqi,qidfqi)
2 ×

√∑
di∈d

(tfdi,didfdi)
2

(5.3)

This step returns two article sets Cr and Ce. Cr contains a set of relevant articles
for the requisite part of the question, qr. Ce contains a set of relevant articles for the
effectuation part of the question, qe.

5.4.3 Passage Pairing

The purpose of this step is to link passages of articles in two sets Cr and Ce using the
reference-referent information. Two passages in two sets are linked if one passage contains
at least one reference, which refers to a referent in the other passage. In more detail, we
pair each paragraph pr in an article of the set Cr to a paragraph pe of an article in the
set Ce if there exists one reference in pr referring to a fragment of texts in the paragraph
pe and vice verse.

5.4.4 Paired-Passages Ranking

In this step, all pairs in the form of (pr, pe) are ranked using a ranking function. The
ranking function is a linear combination of some similarity scores between the passage
pair and the question. The similarity score of each passage pair (pr, pe) with the question
(qr, qe) is calculated using the following equation:

TotalScore((pr, pe), (qr, qe)) = TotalScore(pr, qr) + TotalScore(pe, qe) (5.4)

Each TotalScore(,) between an answer passage px and a question part qx is calculated
using the following equation:

TotalScore(px, qx) =
n∑
i=1

λi × scorei(px, qx) (5.5)

where λi is the weight of scorei; each scorei(px, qx) corresponds to one score in the follow-
ing sets of scores derived from the work of Surdeanu et al.[63]. For the sake of simplicity,
we set all λi equal to 1.

• Similarities

The similarity between an part of a question q and the passage p is measured
using the length-normalized BM25 formula [100, 101]. According to this score, the
similarity between q and p is calculated as follows:

BM25(p) =

|q|∑
i=0

(k1 + 1)tfi,p(k3 + 1)tfi,q
(K + tfi,p)(k3 + tfi,q)

log(idfi) (5.6)

where tfi,p and tfi,q are the term frequencies of the question term i in q and p; and
idfi is the inverse document frequency of term i in the answer passage collection. K
is the length-normalization factor:

78

K = k1((1− b) + b |A| /avg len)

where avg len is the average answer passage length in the collection. For all the
constants in the formula we also use values reported optimal for other IR collections
[63] (b = 0.75, k1 = 1.2, and k3 = 1, 000).

For completeness, we also include the value of the tf.idf similarity measure as
presented in the article retrieval step.

To understand the contribution of the syntactic and semantic processors, we com-
pute the above similarity measures using three different representations of the ques-
tion and passage content as follows:

– Words (W) - the text is considered as a bag of words.

– Dependencies (D) - the text is represented as a bag of binary syntactic depen-
dencies. We extract dependency paths of length 1, i.e., direct head-modifier
relations.

– Bigrams (B) - the text is represented as a bag of bi-grams. This view is added
to ensuring a fair analysis of the above syntactic views.

• Density and frequency scores

These scores measure the density and frequency of question terms in the passage
text.

– Same word sequence - computes the number of non-stop question words that
are recognized in the same order in the passage.

– Answer span - the largest distance (in words) between two non-stop question
words in the passage.

– Same sentence match - number of non-stop question terms matched in a single
sentence in the passage.

– Overall match - number of non-stop question terms matched in the complete
passage. These scores are normalized into [0,1]. These last two scores are
computed also for the other two text representations previously introduced
above.

– Informativeness - models the amount of information contained in the answer
passage by counting the number of non-stop nouns, verbs, and adjectives in
the passage that do not appear in the question.

5.4.5 Answer Extraction

At the paragraph level, a paragraph usually contains a main sentence and one or more
subordinate sentences. In this thesis, we used an implementation of Bach et al. [5, 7] to
recognize the logical structures of paragraphs to extract the answer.

79

Figure 5.6: An example of the answer extraction step (A: Antecedent part; C: consequent
part; T: Topic part).

• If the question part lies in the effectuation part of the question, we extract the
effectuation part of the main paragraph10 as the answer and vice versa. To determine
this, we use clues of question words such as dare, itsu, doko, desuka, masenka,
masuka, dono, nani, etc.

• If the answer contains references, we also extract their referents to help people fully
understanding it.

Figure 5.6 shows an example of an answer sentence after analyzing its logical struc-
ture. Because the question part asks about the consequence of an action, we extract its
consequence part (consisting of the topic part and the consequent part) as the final an-
swer ‘pursuant to the provisions of the Ministry of Health, Labor and Welfare, s/he must
report it to the Minister of Health, Labor and Welfare’

5.5 Experimental Results of the QA system

In this section, we first present experimental setups including testing data, evaluation
measure and a traditional QA system. The purpose of implementing this traditional
QA system is to compare the performance of our QA system using reference information
and not using them. Then, we present experimental results of our QA system using the
proposed method and a traditional QA system.

5.5.1 Experimental Setups

This sub-section presents the testing legal questions and evaluation measure to estimate
the system’s performance. We also briefly present a traditional QA system to prove that
using reference information in answering this special type of questions yields better results.

Data

We tested our system using 51 legal questions on the Japanese National Pension Law. To
help us understand more about the behavior of the systems, we categorize these questions
into two main classes based on how they use the reference information in determining the
answers.

1. Obligatory references-resolving questions: Relevant sentences, which provide evi-
dence to answers, lie in different documents. These sentences are linked through
the reference information. This class is sub-divided as follows:

10the paragraph which contains the reference referring to the referenced paragraph.

80

Figure 5.7: The framework of the traditional QA system.

(a) Bi-document-linking questions: Only two documents are linked using reference
information to provide evidence to answers. A majority of legal questions falls
into this case.

(b) Multi-document-linking questions: more than two documents are linked to find
answers using reference information.

2. Optional references-resolving questions: In this case, the referenced documents play
the role of explaining more about the terms/phrases in the users questions. There-
fore, QA systems can still find the answers without using reference information.

The class of each question is given in Table 5.1.

Evaluation measure

To evaluate the performance, we use the evaluation measure of ResPubliQA 2009 [86]
which is a QA evaluation task over European Legislation, proposed at the Cross Language
Evaluation Forum (CLEF 2009). Because the traditional system and the proposed system
output answers to all 51 questions, the evaluation measure c@1 [86] becomes the accuracy
measure calculated as follows:

Accuracy =
#CorrectlyAnsweredQuestions

#Questions
(5.7)

A traditional QA system

The traditional QA system consists of four steps as presented in Figure 5.7. In the
question processing step, the question is processed as same as in the proposed method
except for dividing it into its logical parts. The second step, article retrieval, retrieves
top N relevant articles as in our method by using all question words and their synonyms.
The third step, the passages ranking, ranks all passages in each relevant articles based
on their similarity scores with the question. In this step, we use all two sets of scores as
in our methods. The last step is as same as the answer extraction step of the proposed
method.

5.5.2 Experimental results using the traditional QA system and
the proposed system

Table 5.1 presents the experimental results using the traditional QA system and the
proposed system on 51 legal questions. This table also shows the class of each question
based on the above classification. Table 5.2 presents the experimental results of the

81

traditional QA and the proposed QA systems using two evaluation criteria. The first
criterion is to measure the performance based on the extracted paragraphs. This means
that if the systems correctly determine the main paragraphs (which contain the answers).
The second criterion is to measure the performance based on the extracted answers. This
means that if the systems correctly find the answers.

Next, we describe the performance of each QA system in more details.

The traditional QA system

Table 5.1: Experimental results of two QA systems using the traditional method and the
proposed method on 51 legal questions.

Question
No.

Traditional Method
Proposed
Method

Questions’
Class

0 Wrong (referenced paragraph) True 1a
1 True True 2
2 Wrong (referenced paragraph) Wrong 1a
3 Wrong (referenced paragraph) True 1a
4 Wrong (referenced paragraph) True 1a
5 Wrong (referenced paragraph) Wrong 1b
6 True True 1a
7 Wrong (referenced paragraph) True 1a
8 Wrong True 1a
9 Wrong (referenced paragraph) True 1b
10 Wrong Wrong 1b
11 Wrong Wrong 1a
12 Wrong Wrong 1a
13 True True 1b
14 Wrong (referenced paragraph) True 1b
15 Wrong (referenced paragraph) True 1a
16 Wrong Wrong 1b
17 Wrong (referenced paragraph) True 1a
18 Wrong Wrong 1a
19 Wrong (referenced paragraph) Wrong 1a
20 Wrong (True main paragraph) True 1a
21 True True 1a
22 Wrong (referenced paragraph) Wrong 1a
23 Wrong Wrong 1a
24 Wrong (referenced paragraph) Wrong 1a
25 True True 1a
26 Wrong (True main paragraph) True 1a
27 Wrong (referenced paragraph) True 1a
28 True True 1a
29 Wrong (referenced paragraph) Wrong 1a
30 Wrong True 1a
31 True Wrong 1b
32 True True 1a
33 Wrong (referenced paragraph) True 1a
34 Wrong (referenced paragraph) True 1a
35 Wrong (referenced paragraph) Wrong 1b
36 Wrong (referenced paragraph) True 1a
37 Wrong (referenced paragraph) True 1b
38 Wrong (referenced paragraph) Wrong 1b
39 True True 1a
40 Wrong Wrong 1b
41 Wrong Wrong 1b
42 True True 1a
43 Wrong (referenced paragraph) Wrong 1a
44 Wrong (referenced paragraph) True 1a
45 True Wrong (True main paragraph) 1a
46 Wrong True 1a
47 Wrong (referenced paragraph) Wrong 1a
48 Wrong True 1a
49 True True 1a
50 Wrong (True main paragraph) True 1b

82

Table 5.2: Accuracy of the QA system using two methods on 51 questions.

Traditional System Proposed System
Paragraphs Answers Paragraphs Answers

#CorrectQuestions 15 12 32 31
Accuracy(%) 29.4 23.5 62.7 60.8

Although, the traditional QA system did not use the reference information, it still
correctly found the main paragraphs for 15 questions and correctly extracted answers for
12 questions. The reasons are high word overlaps between the questions and the main
paragraphs. Another reason is that in some questions, the usage of reference information
is optional to the process of finding their answers (i.e. in Question 2 in Figure 5.8, it
is not necessary to link the information from the main para A92-4P2 to the referenced
para A92-4P1. But, the information in A92-4P1 helps us understand more about the
situation). There are 24 questions that the traditional system finds out the referenced
paragraphs instead of the main paragraphs (i.e. the tracing example question). The
reason is that their majorities of question words contained in the referenced paragraphs
(as in the example question). Because their answers are not contained in these paragraphs,
the system is impossible to extract their correct answer.

For the remaining questions, the traditional system could not determine relevant para-
graphs. Hence, it is unable to find their answers.

In questions 20, 26, and 50, the system correctly finds the main paragraphs. However,
because the correct answers lie in the referents of the references contained in these main
paragraphs, it cannot extract their correct answers. The accuracy of the traditional
system, therefore, is 23.5%.

The proposed QA system

There are 20 questions whose answers could not be found. The reason may be that
the similarity measures could not capture the entire context between questions and the
paragraphs, which contain the answers; or the errors of the processing tools. For examples,
in question 48, the system correctly determines the paragraph pair, which contains the
answer. However, it extracts the wrong answer because of the error of the requisite-
effectuation tool11 (in Q.48, the answer is ‘14.6% per year ’ instead of the extracted answer
bounded in tags 〈C〉 and 〈/C〉.

There are 13 questions, in which finding their answers requires that the main para-
graph must be linked to more than one document to provide the contexts for the correct
answers (i.e. to find the answer of Question 5 in Figure 5.4, it is necessary to link the in-
formation from the document A96P3 to the document A96P1 via the document A96P2).
Although the proposed framework does not allow us to process on more than two docu-
ments, it can still find the correct main paragraph containing the correct answers (in 5
questions). In these cases, the system correctly determines one linking pair between the
main paragraph and one of the referenced paragraphs. Because the main paragraphs are
correctly determined, the proposed method can extract the correct answers. This method
also provides concrete evidences of the answers by showing the paragraph pairs, which
contain the answers.

11This tool got the accuracy of ∼ 90%

83

Figure 5.8: Some typical examples of the systems.

The accuracy of the proposed system, therefore, is 60.8%. It can be seen that the
proposed system outperformed the traditional system, which did not exploit the reference
information. Even if the traditional system can find the main paragraph because of high
word overlaps, it cannot provide the evidence to help users believe in the systems output.
However, our method can do this.

5.6 Conclusion and Future Work

This chapter presented an application of reference information to build a legal QA system.
We focused on one type of questions whose answers can not be found from merely one doc-
ument. To find their correct answers, it is necessary to link documents via the relation of
reference-referent. To achieve the goal, we first built a reference resolver. Based on that,
we proposed a novel framework which allows us to exploit the reference information be-
tween legal documents to find answers. This approach also uses the requisite-effectuation
structures of legal sentences and some effective similarity measures based on legal terms to

84

support finding correct answers without training data. The experimental results showed
that the proposed method was quite promising and outperformed a traditional method
which did not use reference information.

In our framework, there is an assumption that questions and related paragraphs can
be divided into two parts. Therefore, the proposed system is restricted to legal questions
asking about the requisite and the effectuation problems. In fact, there are many questions
falling under this category because users tend to ask about the beneficial conditions of
laws, or the beneficiaries that can be achieved if some conditions are satisfied. As an initial
step, we selected these questions manually. In the future, we aim at building a question
classifier, which can automatically filter this type of questions. In addition, the assumption
about dividing a paragraph into its logical structure is also quite reasonable. We counted
the frequency of paragraphs having requisite-effectuation structures in the JPL corpus
which are not definitions, and got 537 paragraphs among 547 paragraphs12. Hence, the
ratio of paragraphs having the requisite-effectuation structure is very high (98.2%). In our
corpus, definition sentences are also marked using requisite and effectuation tags where
a defined term is an effectuation and an explanation part a requisite. Therefore, our
method is also applied to definition paragraphs. Another aspect is that we focused on
providing the QA system with questions which are more easier to find the answers. In fact,
natural questions are usually ambiguous, therefore they need complicated preprocessing
techniques. These two problems will be further considered in the future work. Moreover,
we also plan to extend the framework so that the system can handle more than two-linked
documents.

12We did not count the number of definition in parentheses and only count paragraph main sentences.

85

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we investigated the task of reference resolution and its application to legal
question answering. Reference resolution is a task of determining which entities are re-
ferred to by which linguistic expressions. This phenomenon is not only popular in general
texts but also in legal texts. Once this task is solved, it does not only help readers in com-
prehending texts well, but also in supporting other tasks in Natural Language Processing
such as machine translation, text summarization, information retrieval and question an-
swering. Among six chapters, the main chapters are Chapters 3, 4, and 5. The main
contributions of our work can be summarized as follows:

• Firstly, we investigated the task of coreference resolution in general texts. This
problem has received much attention of researchers. Previous work has a drawback
which only considers one or two candidates . Therefore, the probability assigned
to each candidate merely encodes the likelihood of that particular candidate be-
ing coreferential with a given mention. To overcome this drawback, we proposed a
listwise approach using learning-to-rank algorithms. This listwise approach allows
all candidates to be examined simultaneously. Experimental results on a shared
task corpus showed the effectiveness of the proposed approach. In comparison to
the best participating system SUCRE, which uses the Decision Tree algorithm with
the best-first clustering strategy, our proposed system achieved comparable perfor-
mance. These results demonstrated that the listwise approach is appropriate for the
coreference resolution task.

• Secondly, we investigated the task of reference resolution in the legal domain. The
goal was to create a system which can automatically detect references and then ex-
tracts their referents. This is a new interesting task in Legal Engineering research.
Previous work limited itself to detect and resolve references at the document tar-
gets. We go a step further by trying to resolve references to sub-document targets.
Referents extracted are the smallest fragments of texts in documents, rather than
the entire documents that contain the referenced texts. Based on analyzing the
characteristics of reference phenomena in legal texts, we propose a four-step frame-
work to accomplish the task. We also show how machine learning methods can be
exploited in each step. The final system achieves 80.06% in the F1 score for detect-

86

ing references, 85.61% accuracy for resolving them, and 67.02% in the F1 score on
the end-to-end setting task on the Japanese National Pension Law corpus.

• Finally, we presented a study on exploiting reference information to build a question
answering system restricted to the legal domain. Most previous research focuses on
answering legal questions whose answers can be found in one document without
using reference information. However, there exist many legal questions, which re-
quire answers extracted from connections of more than one document. To the best
of our knowledge, this type of questions is not adequately considered in previous
research. To cope with them, we propose a novel approach which allows exploiting
the reference information between legal documents to find answers to this type of
legal questions. This approach also uses the requisite-effectuation structures of le-
gal sentences and some effective similarity measures based on legal terms to support
finding correct answers without training data. The experimental results showed that
the proposed method is quite effective and outperformed a baseline method which
does not use reference information.

The contribution of this dissertation also includes linguistic and computational aspects.
From the linguistic viewpoint, our research helps in interpreting the sentences of any
discourse. From the computational viewpoint, our research proposes effective solutions
for linguistic problems using machine learning approaches.

6.2 Future Work

In future work, we plan to focus on remaining issues of this thesis. The research in this
dissertation can be extended in many directions.

Firstly, we aim to continue improving the performance of the reference resolvers as
well as the question answering system. To perform this, we will complete our framework
to make it stronger. To accomplish these goals, we intend to pursue the following research
directions:

• Two listwise learning-to-rank algorithms are considered in Chapter 3. There are still
some other algorithms such as AdaRank [123], which have not been investigated in
this thesis. In the future, we will endeavor to implement other algorithms to com-
plete the framework. We also shall conduct experiments of the proposed approach
on other public corpora to estimate its performance.

• Concerning the task of reference resolution in legal texts, there a wide range of open
possibilities to improve the system. Our models use machine-learning approaches,
therefore, features play an important role. In the future, we will integrate more
features to improve the system, such as features extracted from outside resources,
etc. We will also consider problems such as versioning, etc.

• To complete the QA system in the legal domain, we will collect more questions to
test the performance of the system. We will also extend our work in order to be
able to handle more than two linked documents.

87

Secondly, we aim at extending our work to other types of legal texts, rather than
the Japanese National Pension Law. To adapt our system to work on other laws, it is
necessary to investigate those laws to understand the naming rules of the law systems. In
other words, our system should change towards understanding the structures of laws. For
other parts of the frameworks, we think that our approach is able to work well on other
types of legal texts. Moreover, once we have been successful in developing corresponding
systems for Japanese, we could think to extend our system to multi-language systems,
which can operate in other languages such as Vietnamese, English, etc. Our purpose is
to build real systems that can support users in easily accessing and fully understanding
as many kinds of natural texts as possible.

Finally, we also aim at investigating the more effective effects of reference information
on other applications of natural language processing, such as text summarization, and
finding contradictions in legal texts.

88

Appendix A

Questions and Answers List

Figure A.1: This is a list of questions with their gold answers and the proposed system’s
answers.

89

Figure A.1 (continued)

90

Figure A.1 (continued)

91

Figure A.1 (continued)

92

Figure A.1 (continued)

93

Bibliography

[1] A. Agarwal, H. Raghavan, K. Subbian, P. Melville, R.D. Lawrence, and D.C.
Gondek. Learning to rank for robust question answering. In Proceedings of the 21st
ACM international conference on Information and knowledge management (CIKM),
pages 833–842, 2012.

[2] R.D Anne, O. Yilmazel, and E.D. Liddy. Evaluation of restricted domain question-
answering systems. In Proceedings of Workshop on Question Answering in Re-
stricted Domains. 42nd Annual Meeting of the Association for Computational Lin-
guistics (ACL 2004), pages 2–7, 2004.

[3] G. Attardi, S.D. Rossi, and M. Simi. TANL-1: Coreference resolution by parse
analysis and similarity clustering. In Proceedings of SemEval-2, pages 108–111,
2010.

[4] S. Azzam, K. Humphreys, and R. Gaizauskas. Using coreference chains for text
summarization. In Proceeding CorefApp ’99 Proceedings of the Workshop on Coref-
erence and its Applications, pages 77–84, 1999.

[5] N.X Bach, N.L. Minh, and A. Shimazu. Recognition of requisite part and effectua-
tion part in law sentences. In Proceedings of the 23rd International Conference on
the Computer Processing of Oriental Languages (ICCPOL), pages 29–34, 2010.

[6] N.X. Bach, N.L. N.L. Minh, and A. Shimazu. RRE task: The task of recognition
of requisite part and effectuation part in law sentences. Journal of IJCPOL, 23(2):
109–130, 2010.

[7] N.X Bach, N.L. Minh, T.T. Oanh, and A. Shimazu. A two-phase framework for
learning logical structures of paragraphs in legal articles. Journal of ACM Trans-
actions on Asian Language Information Processing (ACM TALIP), 12(1, article no
3):1–32, 2013.

[8] A. Bagga and B. Baldwin. Algorithms for scoring coreference chains. In Proceedings
of LREC Workshop on Linguistic coreference, pages 563–566, 1998.

[9] L.E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite
state Markov chains. The Annals of Mathematical Statistic, 37:1554–1563, 1966.

[10] S.J. Benson and J.J. More. A limited-memory variable-metric method for bound-
constrained minimization. In Preprint ANL/MCS-P909-0901, 2001.

[11] A.L Berger, V.J.D Pietra, and S.A.D Pietra. A maximum entropy approach to
natural language processing. Journal of Computational Linguistics, 22:39–71, 1996.

94

[12] A. Bolioli, L. Dini, P. Mercatali, and F. Romano. For the automated mark-up of
Italian legislative texts in XML. In Proceedings of International on Legal Knowledge
and Information Systems (Jurix), pages 21–30, 2002.

[13] E. Breck, J. Burger, L. Ferro, D. House, M. Light, and I. Mani. A sys called Qanda.
In Proceedings of the 8th Text Retrieval Conference (TREC-8), pages 499–506, 1999.

[14] S. Brennan, M. Friedman, and C. Pollard. A Centering approach to pronoun.
In Proceedings of the 25th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 115–162, 1987.

[15] P.F. Brown, P.V. deSouza, R.L Mercer, V.J.D. Pietra, and J.C. Lai. Class-based
n-gram models of natural language. Journal of Computational Linguistics, 18(4):
467–479, 1992.

[16] Chris J.C. Burges and Bernhard Schlkopf. Improving the accuracy and speed of
support vector machines. In Advances in Neural Information Processing Systems 9,
pages 375–381. MIT Press, 1997.

[17] Christopher J. C. Burges. Advances in kernel methods. chapter Geometry and
invariance in kernel based methods, pages 89–116. MIT Press, Cambridge, MA,
USA, 1999. ISBN 0-262-19416-3. URL http://dl.acm.org/citation.cfm?id=

299094.299100.

[18] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121–167, 1998.

[19] Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li. Learning to rank: From pair-
wise approach to listwise approach. In Proceedings of International Conference on
Machine Learning (ICML), pages 129–136, 2007.

[20] C.C. Chang and C.J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[21] C. Cortes and V. Vapnik. Support-vector networks. Journal of Machine Learning,
20:273–297, 1995.

[22] A. Culotta and A. McCallum. Joint deduplication of multiple record types in rela-
tional data. In Proceedings of the 14th ACM international conference on Information
and knowledge management (CIKM), pages 257–258, 2005.

[23] W. Daelemans, J. Zavrel, K. Sloot, and A. Bosch. TiMBL: Tilburg memory based
learner version 6.1 reference guide. Technical Report ILK 07-07, Tilburg University,
2007.

[24] J.N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.
The Annals of Mathematical Statistics, 43(5):1470–1480, 1972.

[25] P. Denis and J. Baldridge. A ranking approach to pronoun resolution. In Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI), pages 1588–
1593, 2007.

95

[26] P. Denis and J. Baldridge. Specialized models and ranking for coreference resolution.
In Proceedings of Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 660–669, 2008.

[27] S. Dipper and H. Zinsmeister. Annotating abstract anaphora. Journal of Language
Resources and Evaluation, 46(1):37–52, 2012.

[28] H. Doan-Nguyen and L. Kosseim. The problem of precision in restricted-domain
question-answering. In Proceedings of Workshop on Question Answering in Re-
stricted Domains. 42nd Annual Meeting of the Association for Computational Lin-
guistics (ACL 2004), pages 8–15, 2004.

[29] C. Dyer. Using a maximum entropy model to build segmentation lattices for MT.
In Proceedings of North American Chapter of the Association for Computational
Linguistics - Human Language Technologies(NAACL-HLT), pages 406–414, 2009.

[30] M. Eckert and M. Strube. Dialogue acts, synchronizing units, and anaphora reso-
lution. Journal of Semantics, 17:51–89, 2000.

[31] Jenny Rose Finkel and Christopher D. Manning. Hierarchical joint learning: Im-
proving joint parsing and named entity recognition with non-jointly labeled data.
In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics (ACL), 2010. URL pubs/hier-joint.pdf.

[32] J.R. Finkel and C.D. Manning. Hierarchical joint learning: Improving joint parsing
and named entity recognition with non-jointly labeled data. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics (ACL), pages
720–728, 2010.

[33] R. Gaizauskas and K. Humphreys. A combined IR/NLP approach to question
answering against large text collections. In Proceedings of the 6th Content-Based
Multimedia Information Access Conference (RIAO-2000), pages 1288–1304, 2000.

[34] N. Ge, J. Hale, and E. Charniak. A statistical approach to anaphora resolution. In
In Proceedings of the Sixth Workshop on Very Large Corpora, pages 161–170, 1998.

[35] B. Hachey, W. Radford, and J.R. Curran. Graph-based named entity linking with
Wikipedia. In Proceedings of the 12th International Conference on Web Information
System Engineering (WISE), pages 213–226, 2011.

[36] B. Hachey, W. Radford, J. Nothman, M. Honnibal, and J.R. Curran. Evaluating
entity linking with Wikipedia. Journal of Artificial Intelligence, 194:130–150, 2013.

[37] A. Haghighi and D. Klein. Simple coreference resolution with rich syntactic and
semantic features. In Proceedings of Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1152–1161, 2009.

[38] S. Hartrumpf, I. Glckner, and J. Leveling. Coreference resolution for questions
and answer merging by validation. In Advances in Multilingual and Multimodal
Information Retrieval, Lecture Notes in Computer Science, pages 269–272, 2008.

96

[39] I. Hendrickx, G. Bouma, W. Daelemans, and V. Hoste. COREA: Coreference reso-
lution for extracting answers for Dutch. Journal of Essential Speech and Language
Technology for Dutch, Theory and Applications of Natural Language Processing,
pages 115–128, 2013.

[40] J. Heng and G. Ralph. Applying coreference to improve name recognition. In
Proceedings of ACL 2004: Workshop on Reference Resolution and its Applications,
pages 32–39, 2004.

[41] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for
ordinal regression, chapter 7, pages 115–132. MIT Press, 2000.

[42] J. Hobbs. Resolving pronoun references. Morgan Kaufmann Publishers, 1986.

[43] R. Iida, K. Inui, H. Takamura, and Y. Matsumoto. Incorporating contextual cues
in trainable models for coreference resolution. In Proceedings of EACL Workshop
on the computational Treatment of anaphora, pages 23–30, 2003.

[44] R. Jin, H. Valizadegan, and H. Li. Ranking refinement and its application to in-
formation retrieval. In Proceedings of the 17th international conference on World
Wide Web, WWW ’08, pages 397–406, New York, NY, USA, 2008. ACM.

[45] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of
ACM Conference on Knowledge Discovery and Data Mining (KDD), pages 133–142,
2002.

[46] T. Joachims. Training linear SVMs in linear time. In Proceedings of ACM Confer-
ence on Knowledge Discovery and Data Mining (KDD), pages 217–226, 2006.

[47] D. Jurafsky and J.H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics and Speech Recognition.
Prentice Hall Series in Artificial Intelligence, 2nd edition, 2009.

[48] M. Kahng, S. Lee, and S.G. Lee. Ranking in context-aware recommender systems.
In Proceedings of the 20th international conference companion on World wide web,
WWW ’11, pages 65–66, New York, NY, USA, 2011. ACM.

[49] T. Katayama. Legal Engineering - an engineering approach to laws in e-society age.
In Proceedings of International Workshop on Juris-informatics (JURISIN), 2007.

[50] T. Katayama. The curent status of the art of the 21st COE programs in the infor-
mation sciences field. verifiable and evolvable e-society - realization of trustworthy
e-society by computer science - (in japanese). Journal of Information Processing
Society of Japan, 46(5):515–521, 2010.

[51] T. Katayama, A. Shimazu, S. Tojo, K. Futatsugi, and K. Ochimizu. e-society
and legal engineering (in japanese). Journal of the Japanese Society for Artificial
Intelligence, 23(4):529–536, 2008.

[52] H. Kobdani and H. Schutze. SUCRE: Modular system for coreference resolution.
In Proceedings of SemEval-2, pages 92–95, 2010.

97

[53] T. Kudo and Y. Matsumoto. Japanese dependency analysis using cascaded chunk-
ing. In Proceedings of the 6th Conference on Natural Language Learning 2002 (COL-
ING 2002 Post-Conference Workshops) (CoNLL 2002), pages 63–69, 2002.

[54] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of International
Conference on Machine Learning (ICML), pages 282–289, 2001.

[55] S. Lapping and H.J. Leass. An algorithm for pronominal anaphora resolution.
Journal of Computational Linguistics, 20:535–561, 1994.

[56] Y.H. Lee, M.Y. Kim, and J.H Lee. Chunking using conditional random fields in
Korean texts. In Proceedings of International Joint Conference on Natural Language
Processing (IJCNLP), pages 155–164, 2005.

[57] H. Li. Learning to rank for information retrieval and natural language processing.
Synthesis leactures on human language technologies, Graeme Hirst, Series Editor,
2011.

[58] P. Liang. Semi-supervised learning for natural language. In Master’s thesis, Mas-
sachusetts Institute of Technology, 2005.

[59] T.Y. Liu. Learning to rank for information retrieval. Springer Publisher, 2011.

[60] D. Ludtke and S. Sato. Fast base NP chunking with decision trees experiments
on different POS tag settings. In Proceedings of Conferences on Computational
Linguistics and Natural Language Processing (CICLing), pages 139–150, 2003.

[61] X. Luo. On coreference resolution performance metrics. In Proceedings of Human
Language Technology Conference and Conference on Empirical Methods in Natural
Language Processing (HLT-EMNLP), pages 25–32, 2005.

[62] X. Luo, A. Ittycheria, H. Jing, N. Kambhatla, and S. Roukos. A mention-
synchronous coreference resolution algorithm based on the Bell tree. In Proceedings
of Annual Meeting of the Association for Computational Linguistics (ACL), pages
135–142, 2004.

[63] M. Ciaramita M. Surdeanu and H. Zaragoza. Learning to rank answers on large
online QA collections. In Proceedings of the 46th annual meeting of the Association
for Computational Linguistics: Human Language Technology (ACL-HLT), pages
719–727, 2008.

[64] E.D. Maat, R. Winkels, and T.V. Engers. Automated detection of reference struc-
tures in law. In Proceedings of International on Legal Knowledge and Information
Systems (Jurix), pages 41–50, 2006.

[65] C.D Manning, P. Raghana, and H. Schutze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[66] A. McCallum and B. Wellner. Conditional models of identity uncertainty with
application to proper noun coreference. In Neural Information Processing Systems
(NIPS), 2004.

98

[67] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy markov models for
information extraction and segmentation. In Proceedings of the 17th International
Conference on Machine Learning (ICML), pages 591–598, 2000.

[68] M.G. Mercedes, D.L.F. Pablo, and V. Dámaso-Javier. Reference extraction and
resolution for legal texts. In Proceedings of PReMI, pages 218–221, 2005.

[69] A. Monroy, H. Calvo, and A. Gelbukh. NLP for shallow question answering of legal
documents using graphs. In Proceedings of the 10th International Conference on
Intelligent Text Processing and Computational Linguistics (CICLing), pages 498–
508, 2009.

[70] T.S. Morton. Using coreference for question answering. In Proceeding CorefApp
’99 Proceedings of the Workshop on Coreference and its Applications, pages 85–89,
1999.

[71] T.S. Morton. Using coreference to improve passage retrieval for question answer-
ing. Technical report, In Proceedings of the AAAI Fall Symposium on Question
Answering Systems, 1999.

[72] T.S. Morton. Using coreference in question answering. In Proceedings of the ACL99
W orkshop on Conference and its Applications, pages 85–89, 1999.

[73] C. Navarretta. Resolving individual and abstract anaphora in texts and dialogues.
In Proceedings of the 20th international conference on Computational Linguistics
(COLING), 2004.

[74] V. Ng. Supervised ranking for pronoun resolution: Some recent improvements. In
Proceedings of National Conference on Artificial Intelligence (AAAI), pages 1081–
1086, 2005.

[75] V. Ng. Semantic class induction and co-reference resolution. In Proceedings of
Annual Meeting of the Association for Computational Linguistics (ACL), pages 536–
543, 2007.

[76] V. Ng. Supervised noun phrase coreference research: The first fifteen years. In
Proceedings of Annual Meeting of the Association for Computational Linguistics
(ACL), pages 1396–1411, 2010.

[77] V. Ng and V. Cardie. Improving machine learning approaches to coreference res-
olution. In Proceedings of Annual Meeting of the Association for Computational
Linguistics (ACL), pages 104–111, 2002.

[78] V. Ng and V. Cardie. Identifying anaphoric and non-anaphoric noun phrases to
improve coreference resolution. In Proceedings of International Conference on Com-
putational Linguistics(COLING), pages 730–736, 2002.

[79] J. Nocedal. Updating Quasi-Newton matrices with limited storage. Mathematics of
Computation, 35(151):773–782, 1980.

[80] M. Novak. Utilization of anaphora in machine translation. In Proceedings of WDS,
pages 155–160, 2011.

99

[81] J.H. Paik. A novel TF-IDF weighting scheme for effective ranking. In Proceedings
of the 36th international ACM SIGIR conference on Research and development in
information retrieval (SIGIR), pages 343–352, 2013.

[82] M. Palmirani, R. Brighi, and M. Massini. Automated extraction of normative
references in legal texts. In Proceedings of International Conference on Artificial
Intelligence and Law (ICAIL), pages 105–106, 2003.

[83] G. Paltoglo and M. Thelwall. A study of information retrieval weighting schemes
for sentiment analysis. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 1386–1395, 2010.

[84] M. Paul and E. Sumita. Utilization of coreferences for the translation of utterances
containing anaphoric expressions. In Proceedings of Pacific Rim International Con-
ference on Artificial Intelligence (PRICAI), pages 820–820, 2000.

[85] Q. Paulo and I.P. Rodrigues. A question-answering system for portuguese juridi-
cal documents. In Proceedings of the 10th international conference on Artificial
Intelligence and Law (ICAIL), pages 256–257, 2005.

[86] A. Penas, P. Forner, R. Sutcliffe, A. Rodrigo, C. Forascu, I. Alegria, D. Giampiccolo,
N. Moreau, and P. Osenova. Overview of respubliqa 2009: Question answering
evaluation over european legislation. In CLEF 2009 Workshop, Part 1, LNCS 6241,
pages 174–196, 2010.

[87] S. Peral, M. Palomar, and A. Ferrandez. Coreference-oriented interlingual slot
structure and machine translation. In Proceedings CorefApp ’99 Proceedings of the
Workshop on Coreference and its Applications, pages 69–76, 1999.

[88] S.D Pietra, V.D Pietra, and J. Lafferty. Inducing features of random fields. Technical
report, CMU-CS-95-144, Carnegie Mellon University, 1995.

[89] D. Pinto, A. McCallum, X. Wei, and W.B Croft. Table extraction using condi-
tional random fields. In Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, pages 235–242,
2003.

[90] E. Pitler, S. Bergsma, D. Lin, and K. Church. Using web-scale n-grams to improve
base NP parsing performance. In Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages 886–894, 2010.

[91] S.P. Ponzetto and M. Strube. Exploiting semantic role labeling, WordNet and
Wikipedia for coreference resolution. In Proceedings of Human Language Technolo-
gies: Annual Conference of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL), pages 192–199, 2006.

[92] J.R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1 edition, January 1993.

[93] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. In Proceedings of the IEEE, pages 257–286, 1989.

100

[94] F. Radlinski and T. Joachims. Query chains: Learning to rank from implicit feed-
back. In Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, KDD ’05, pages 239–248, New York, NY,
USA, 2005.

[95] A. Rahman and V. Ng. Supervised models for coreference resolution. In Proceedings
of Empirical Methods in Natural Language Processing (EMNLP), pages 968–977,
2009.

[96] A. Rahman and V. Ng. Ensemble-based coreference resolution. In Proceedings of
International Joint Conference on Artifical Intelligence (IJCAI), pages 1884–1889,
2011.

[97] A. Ratnaparkhi. A simple introduction to maximum entropy models for natural
language processing. Technical report, Institute for Research in Cognitive Science,
University of Pennsylvania, 1997.

[98] M. Recasens and E. Hovy. BLANC: Implementing the Rand Index for coreference
evaluation. Natural Language Engineering, 17(4):485–510, 2011.

[99] M. Recasens, L. Marquez, L. Sapena, M. Marti, M. Taule, V. Hoste, M. Poesio, ,
and Y. Versley. Semeval-2010 task 1: Co-reference resolution in multiple languages.
In Proceedings of International Workshop on Semantic Evaluation, pages 1–8, 2010.

[100] S. Robertson and S. Walker. On relevance weights with little relevance information.
In Proceedings of the 20th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 16–24, 1997.

[101] S. Robertson and S. Zaragoza. The probabilistic relevance framework: BM25 and
beyond. Journal of Foundations and Trends in Information Retrieval, 3:333–389,
2009.

[102] E. Sapena, L. Padro, and J. Turmo. RelaxCor: A global relaxation labeling approach
to coreference resolution for the SemEval-2 coreference task. In Proceedings of
SemEval-2, pages 88–91, 2010.

[103] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceed-
ings of Conference of the North American Chapter of the Association for Compu-
tational Linguistics (NAACL), pages 213–220, 2003.

[104] W.M. Soon, D.C.Y. Lim, and H.T. Ng. A machine learning approach to co-reference
resolution of noun phrases. In Journal of Computational Linguistics, 27(4):521–544,
2001.

[105] J. Steinberger, M. Poesio, M.A. Kabadjov, and K. Jeek. Two uses of anaphora
resolution in summarization. Information Processing and Management, 43(6):1663–
1680, 2007.

[106] R. Stuckardt. Coreference-based summarization and question answering: A case for
high precision anaphor resolution. In Proceedings of International Symposium on
Reference Resolution, pages 33–41, 2003.

101

[107] Charles Sutton and Andrew McCallum. An introduction to conditional random
fields for relational learning. In Lise Getoor and Ben Taskar, editors, Introduction
to Statistical Relational Learning. MIT Press, 2007.

[108] Charles Sutton and Andrew McCallum. An introduction to conditional random
fields. Journal of Foundations and Trends in Machine Learning, 4(4):267–373, 2012.

[109] K. Takano, M. Nakamura, Y. Oyama, and A. Shimazu. Semantic analysis of para-
graphs consisting of multiple sentences - towards development of a logical formula-
tion system. In Proceedings of the 23rd International Conference on Legal Knowledge
and Information Systems (JURIX10), pages 117–126, 2010.

[110] K. Tanaka, I. Kawazoe, and H. Narita. Standard structure of legal provisions for
the legal knowledge processing by natural language (in Japanese). In Res. rep. on
Natural Language Processing, IPSJ, pages 79–86, 1993.

[111] K. Tomura. Study on question answering system for laws. Technical report, School of
Information Science, Japan Advanced Institute of Science and Technology (JAIST),
2013.

[112] K. Toutanova and C.D. Manning. Enriching the knowledge sources used in a maxi-
mum entropy Part-of-Speech tagger. In Proceedings of J. SIGDAT Conf. on Empir-
ical Methods in NLP and Very Large Corpora (EMNLP/VLC-2000), pages 63–70,
2000.

[113] O.T Tran, C.A. Le, T.Q. Ha, and Q.H. Le. An experimental study on Vietnamese
POS tagging. In Proceedings of International Conference on Asia Language Pro-
cessing (IALP), pages 23–27, 2009.

[114] O.T. Tran, M.L. Nguyen, and A. Shimazu. Reference resolution in legal texts. In
Proceedings of ICAIL, pages 101–110, 2013.

[115] V.N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[116] M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and L. Hirschman. A model-
theoretic coreference scoring scheme. In Proceedings of MUC-6, pages 45–52, 1995.

[117] H.M. Wallach. Efficient training of conditional random fields. Master’s thesis,
University of Edinburgh, 2002.

[118] Mengqiu Wang, Wanxiang Che, and Christopher D. Manning. Joint word alignment
and bilingual named entity recognition using dual decomposition. In Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics (ACL),
2013. URL http://nlp.stanford.edu/pubs/wang-etal-acl13.pdf.

[119] T. Watanabe. Optimized online rank learning for machine translation. In Proceed-
ings of the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL HLT ’12, pages
253–262, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.

[120] C. Whidden. Utilizing automatic coreference resolution with the Jellyfish question
answering system. Technical report, Dalhousie FCS Technical Report, 2007.

102

[121] R. Witte and S. Bergler. Fuzzy coreference resolution for summarization. In Proceed-
ings of 2003 International Symposium on Reference Resolution and Its Applications
to Question Answering and Summarization (ARQAS), pages 43–50, 2003.

[122] F. Xia, T.Y. Liu, W. Wang, and H. Li. Listwise approach to learning to rank:
Theory and algorithm. In Proceedings of International Conference on Machine
Learning (ICML), pages 1192–1199, 2008.

[123] J. Xu and H. Li. AdaRank: A boosting algorithm for information retrieval. In
Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 391–398, 2007.

[124] Z. Xu, X. Qian, Y. Zhang, and Y. Zhou. CRF-based hybrid model for word seg-
mentation, NER and even POS tagging. In Proceedings of International Joint Con-
ference on Natural Language Processing (IJCNLP), pages 167–170, 2008.

[125] X. Yang, G. Zhou, J. Su, and C.L. Tan. Coreference resolution using competi-
tive learning approach. In Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL), pages 176–183, 2003.

[126] X. Yang, J. Su, G. Zhou, and C.L. Tan. An NP-cluster based approach to coref-
erence resolution. In Proceedings of International Conference on Computational
Linguistics(COLING), pages 226–232, 2004.

[127] W. Zhang, T. Yoshida, and X. Tang. A comparative study of TF*IDF, LSI and
multi-words for text classification. Expert Systems with Applications: An Interna-
tional Journal, 38:2758–2765, 2011.

[128] D. Zhekova and S. Kubler. UBIU: A language-independent system for coreference
resolution. In Proceedings of SemEval-2, pages 96–99, 2010.

103

Publications

Journal Articles

[1] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. Automated
Reference Resolution in Legal Texts, 2013. Journal of Artificial Intelligence and
Law, DOI:10.1007/s10506-013-9149-8, 22(1), 2014.

[2] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. An Empirical
Study on a Listwise Approach to Coreference Resolution using Learning-to-rank.
(submitted to the Journal of Knowledge-Based Systems)

[3] Ngo Xuan Bach, Nguyen Le Minh, Tran Thi Oanh, Akira Shimazu. A Two-Phase
Framework for Learning Logical Structures of Paragraphs in Legal Articles. ACM
Transactions on Asian Language Information Processing (ACM TALIP), 12(1), ar-
ticle 3, 2013.

Referred Conference Papers

[4] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. Answer-
ing Legal Questions by Mining References Information. In Post-Proceedings of the
7th International Workshop on Juris-informatics (JURISIN), Lecture Notes in AI,
Yokohama, Japan, 2013.

[5] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. Reference
Resolution in Japanese Legal Texts at Passage Levels. In Proceedings of the 5th
International Conference on Knowledge and Systems Engineering (KSE), Springer-
Verlag, pages 237–249 , 2013.

[6] Oanh Thi Tran, Minh Le Nguyen, Akira Shimazu. Reference Resolution in Legal
Texts. In Proceedings of the 14th International Conference on Artificial Intelligent
and Law (ICAIL), pages 101-110, Rome, Italy, June 2013. (Best student paper
award)

[7] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, Akira Shimazu. A List-
wise Approach to Coreference Resolution in Multiple Languages. In Proceedings
of the 25th Pacific Asia Conference on Language, Information and Computation
(PACLIC), pages 400–409, 2011.

[8] Ngo Xuan Bach, Nguyen Le Minh, Tran Thi Oanh, Akira Shimazu. Learning
Logical Structures of Paragraphs in Legal Articles. In Proceedings of the 5th Inter-
national Joint Conference on Natural Language Processing (IJCNLP), pages 20–28,
2011.

104

